Reference manual
20-sim 4.7
Windows 7 / 8 / 8.1 /10
Disclaimer

This manual describes the modeling and simulation package 20-sim.

Controllab Products B.V. makes every effort to insure this information is accurate and reliable. Controllab Products B.V. will not accept any responsibility for damage that may arise from using this manual or information, either correct or incorrect, contained in this manual.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Controllab Products B.V.

Windows is a registered trademark of the Microsoft Corporation, USA. MATLAB is a registered trademark of The MathWorks, Inc., USA.

Portions of this software are copyright © 2020 The FreeType Project (www.freetype.org). All rights reserved.

Reference

Kleijn, C., Groothuis, M.A., Differ H.G.

20-sim 4.7 Reference Manual
Enschede, Controllab Products B.V., 2020

Information

Controllab Products B.V.
Address: Hengelosestraat 500
7521 AN Enschede
the Netherlands
Phone: +31-85-7731872
Internet: www.20sim.com
www.controllab.nl
E-mail: info@20sim.com
Table of Contents

1 Welcome to 20-sim
2 What is new in 20-sim?
3 Requirements
4 Privacy Statement
5 Installation
 5.1 Versions of 20-sim
 5.2 Installing 20-sim
 5.3 Uninstalling
 5.4 Deactivation
 5.5 Unattended Installation
 5.6 Unattended Uninstall
 5.7 Matlab
6 Editor
 6.1 Introduction
 6.2 Using Models
 6.3 Compiling
 6.4 Icon Editor
 6.5 Global Parameters and Variables
 6.6 Interface Editor
 6.7 Domains, Quantities and Units
 6.8 FMI Support
7 Simulator
 7.1 Introduction
 7.2 Running a Simulation
 7.3 Run Properties
8 Language Reference
 8.1 Introduction
1 Welcome to 20-sim

This manual describes 20-sim 4.7 in full detail. It is not a Getting Started manual but intended as a detailed reference to the software. If you are a first time user you are advised to read the Getting Started manual first:

If you are an experienced 20-sim user, you can read the change notes first and then search the topic of your interest.
What is new in 20-sim?

General

- 20-sim 4.7 has been updated to support the Microsoft Windows 10 Creators Update and Fall Creators Update. While older versions of 20-sim will (mostly) work under Windows 10, 20-sim 4.7 has been specially developed and tested for latest releases of Windows 10.
- We have continued our efforts to support the FMI standard for co-simulation.

Editor

1. You can now delete a submodel but keep the connected signals or ports with the Dissolve command.
2. FMU import: You can now import models from other programs (supporting FMI 2.0 co-simulation export) into 20-sim. Simply drag and drop the model (with the extension .fmu) into 20-sim and connect!
3. FMU export: You can now export a 20-sim model as an FMU with a variable step integration method (using VODE Adams).
4. FMU export is now part of the File - Export menu.
5. Re-drawing of large models in the Editor is faster.
6. In the Interface Editor use the Move Up and Move Down buttons to order the list of ports.
7. Drawing closed curves has been improved.
8. The Search box now also shows port names of graphical models.
9. Flat drawing style for new submodels. A shadow is no longer added by default.
10. The Interface Editor now as support for ordering ports
11. "Edit Globals" added to the right-click menu.
12. Connecting boolean signals now allows for inserting And/Or/Xor/Nand/Nor blocks simlator to the PlusMinus/MultiplyDivide blocks for real and integer signals.

Simulator

1. In the Parameters Editor You can set initial values to zero with the Initials to Zero command.
2. In plots you can now select parameters to be displayed.
3. Faster plotting for fixed step-size simulations.
4. The Variable Chooser dialog for selecting plot variables now also shows parameters.
5. It is now possible to copy and paste curves from one plot to another.
6. It is now possible to copy and paste plots from one window to another.
2. What is new in 20-sim?

7. Real-time simulation timer is now more accurate.

Language
1. The function settoolsetting has been added to set specific simulation options from within the model during simulation.
2. Type casting is supported to prevent warnings when converting data types.

Library
1. You can now play a sound during a simulation or couple a sound to a specific event generated during the simulation.
2. A hydraulic line model has been added.
3. Most of the valves and pumps in the Hydraulics library now have parasitic volumes to minimize algebraic loops and speed up simulations of hydraulic models.
4. The Joystick library block and example model are updated to support multiple joysticks.

3D Animation Toolbox
1. Import of large binary STL-files in the 3D Animation toolbox is faster.

3D Mechanics Toolbox
1. The center of mass is shown when you select a body.

Real Time Toolbox
1. All code generation templates:
 o Generate more efficient code for matrix manipulations.
 o Extra code filtering to generate only the code necessary for the selected model
 o Visual Studio 2017 Solution and build support added
2. Arduino support: the Arduino code generation template now supports all AVR and ARM boards that are supported by the Arduino IDE and not only the Arduino Uno and Due.
3. FMU 1.0/2.0 export for 20-sim submodel:
 o Multi-instance support
 o Allow parameter updates during co-simulation
 o Vode-Adams integration method support
 o fmi2GetFMUstate/fmi2SetFMUstate support
 o Many small improvements & compatibility fixes
2. What is new in 20-sim?

Scripting

1. Support for Octave 4.2.0 / 4.2.1 for Windows (32-bit and 64-bit)

2. Allow set/reset of the endless simulation option from scripting using `xxsimSetSettings` (Octave) / `set_settings` (Python)

3. New Octave/Matlab scripting functions:
 - `xxsimAddPlotWindow`
 - `xxsimAddPlotToWindow`
 - `xxsimAddCurveToPlot`
 - `xxsimGetCurveIDFromName`
 - `xxsimGetCurvesFromPlot`
 - `xxsimGetSubmodelProperties`
 - `xxsimHideCurve`
 - `xxsimHidePlot`
 - `xxsimHidePlotWindow`
 - `xxsimRemoveCurveFromPlot`
 - `xxsimRemovePlotFromWindow`
 - `xxsimReplaceSubmodel`
 - `xxsimSaveSubmodel`
 - `xxsimGotoSubmodel`
 - `xxsimGetWindowSize`
 - `xxsimSetWindowSize`

4. New Python scripting functions:
 - `add_plot_window`
 - `add_plot_to_window`
 - `add_curve_to_plot`
 - `get_curves_from_plot`
 - `hide_curve`
 - `hide_plot`
 - `hide_plot_window`
 - `remove_curve_from_plot`
2. What is new in 20-sim?

- remove_plot_from_window
- remove_plot_window
- replace_submodel
- save_submodel
- goto_submodel
- get_submodel_properties
- get_window_size
- set_window_size

Installer

- Keep C-code, M-code and library path settings on 20-sim update

Bugfixes and Improvements

In addition to the above mentioned items, 20-sim 4.7 received more than 200 bugfixes and minor improvements since 20-sim 4.6.4. See the 20-sim website for the full list of changes.
3 Requirements

20-sim is supported on computers that meet the following requirements:

- **Operating System**: Windows Vista, 7, 8, 8.1 and 10 (32-bit or 64-bit).
- **Processor requirements**: 20-sim requires a CPU with SSE2 support. Supported: Intel Pentium 4 and above, AMD Athlon x64 and above.
- **Memory**: >= 3 GB
- **Available Disk Space**: 450 MB.
4 Privacy Statement

Controllab Products B.V. takes your privacy seriously. This privacy statement explains what personal data 20-sim collects from you and how we use it.

How do we collect data from you?
Controllab Products B.V. processes your personal data when you activate/deactivate 20-sim using a license key. Controllab Products B.V. uploads your 20-sim license to an on-line activation server (registerserver.net). This activation server stores information about the number of license activations and on which computers 20-sim is activated.

What type of information is collected from you?
20-sim collects the following details from your computer to check / activate and deactivate your 20-sim license:

Computer details
- Host Name
- IP-address
- Unique computer finger print calculated from serial numbers of several computer hardware components
- 20-sim Version Number
- Date & time of the activation/deactivation

Controllab Products B.V. uploads your 20-sim license to an on-line activation server. Your 20-sim license embeds the following personal data:

Company / Personal details
- Company Name (or First Name and Last Name for personal licenses)
- Department Name
- License Key

How is your information used?
The activation data is used to activate your 20-sim license key and to lock it to your computer. This data is processed in an automatic process running on our activation server to check and activate your 20-sim license. Controllab Products does not use your data for other purposes than license activation.

Controllab Products B.V. employees can access this data to provide support for license activation issues and transferring your license to a different computer.

Can this information be removed?
On your request (please contact us by e-mail or phone) we can remove all of your personal data from our servers. Note that without this data, there is no license key backup on our activation server anymore. This means that on-line activation is not possible anymore.
Questions?
If you have questions concerning this privacy statement, contact Controllab Products B.V.
5 Installation

5.1 Versions of 20-sim

20-sim is available in two versions: Viewer and Professional.

- **Viewer/Demonstration version**: This is a freeware version that allows you to load and run models and evaluate the package. Saving of models is not possible in this version.
- **Professional**: This is the full version of 20-sim with all toolboxes.

The table below shows in detail the options that are available in the three versions:

<table>
<thead>
<tr>
<th>Library Models</th>
<th>Viewer</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Mechanics Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Animation Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Control Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Frequency Domain Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Mechatronics Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Real Time Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Time Domain Toolbox</td>
<td>v*</td>
<td>v</td>
</tr>
<tr>
<td>Scripting Toolbox</td>
<td>x</td>
<td>v</td>
</tr>
</tbody>
</table>

v = included
v* = included but no saving possible
x = not available

20-sim is installed, using an Installation Manager that will lock 20-sim to your computer. There are three types of licenses available:

- **Free**: The demonstration version comes with a license that is not locked to your computer. No actions have to be taken after installation of the program.
- **Single License**: A single license locks 20-sim to a specific computer. After installation you have to register to get a valid license.
- **Floating License**: A floating license allows multiple users to work with 20-sim at the same time. After installation you have to register to get a valid license.
5.2 Installing 20-sim

20-sim can be downloaded from the website www.20sim.com. This is an installation file that will install 20-sim on your computer. The first 4 steps are equal for all users. Depending on the type of license (single, floating) you have to follow different steps to activate 20-sim.

1. **Download** and **Install** 20-sim on your computer.

2. During Installation you will be asked to install the (optional) **Python 3.4 package**. We advise to keep the default setting: **Yes**.

3. **Start** 20-sim (from the **Windows Start Menu** choose **20-sim 4.7**).

If a valid license of 20-sim 4.7 was activated before, the program will start automatically. If you have not installed 20-sim before, the **License Activation** dialog will open:

![20-sim License Activation Dialog](image)

20-sim License Activation Dialog.

4. If you have a valid license key or license file, press the **Activation** button to enter your license key or browse for the license file.

If you do not yet have a valid license, press the **Trial License** button request an trial license or press the **Buy** button to purchase a license. If you want to continue in **Viewer** mode (no save functionality), just close the dialog without activating 20-sim.

5. Select **which kind of license** you have and **who** should use the license.
5. Installation

Single License
If you are using a single license, you have to enter a license key or license file.

6. On the next dialog, select I received a license key by e-mail and enter the key in the next dialog. When you received a license file, you have to enter the location of the license file.

You will be asked for confirmation (click Activate Now) and activation will be carried out. After a successful activation process the License Information dialog will show the new license.
5. Installation

Floating License

Installing a floating license (Administrator)
If you are using a license that is shared by more users (floating license, also known as concurrent license or server license), you have enter the received license key and a location on the server (a normal Windows shared folder) first. This location on the server should be accessible to all users and have read/write permission. The floating license will be stored at the selected location.

6. On the next dialog, select First Installation and then enter the license key and the location on the server (Windows share).

On the location that you have given, a license file 20sim.lic will be installed. Remember the location of this file because every new user of 20-sim will need to enter it. You will be asked for confirmation (click Activate Now) and activation will be carried out. After a successful activation process the License Information dialog will show the new license.

Using a floating license (Other users, Administrator)
If you are using a floating license that was already installed you have to enter the location of the license file.

7. On the next dialog, select Administrator already installed server license and then enter the license location (the location of the file 20sim.lic).

After a successful entry of the location of the license location, the License Information dialog will show the new license.

5.3 Uninstalling
You can uninstall 20-sim by clicking the Uninstall command from the 20-sim start menu.

Warning: Uninstallation of 20-sim will not deactivate your license. If you want to move 20-sim to another computer, you have to deactivate your license first before uninstalling.

5.4 Deactivation
If you want to move 20-sim to another computer, you have to deactivate your license before uninstalling the program. On the new computer you can then install the program and activate the license. To deactivate your license:

1. From the Windows Start menu open 20-sim.
2. From the Help menu choose License Activation.
3. Press the Activation button.
You will be asked for confirmation and deactivation will start. After a successful deactivation, your version of 20-sim has turned into the demonstration version. You can now uninstall the software and reinstall it.

5.5 Unattended Installation

An unattended installation is an installation that is performed without user interaction during its progress or with no user present at all. To perform an unattended installation the default 'program files' installation directory run the following command on the 20-sim installer:

```
20sim.exe /S
```

It is possible to set an alternative installation directory by specifying the /D argument. It must be the last parameter used in the command line and must not contain any quotes, even if the path contains spaces. Only absolute paths are supported.

```
20sim.exe /S /D=D:\My Installation Files\20-sim 4.7
```

5.6 Unattended Uninstall

An unattended uninstall is an uninstall that is performed without user interaction during its progress or with no user present at all. To perform an unattended uninstall from the default 'program files' installation directory run the following command on the 20-sim uninstaller:

```
C:\Program Files (x86)\20-sim 4.7\Uninstall.exe /S
```

5.7 Matlab

In 20-sim you can exchange data with Matlab / Simulink in various ways:
- Export models as m-files
- Export models as dll-files
- Export a variable to Matlab
- Export a parameter to Matlab
- Pass a variable value to Matlab every simulation step
- Load a variable value from Matlab every simulation step
- Pass a command line string to Matlab every simulation step
- Export linear systems to Matlab
- Import Linear Systems from Matlab

Troubleshooting
If this fails check if the following three points have been fulfilled.
1. Have the correct version of 20-sim and Matlab
To make a connection with Matlab, make sure you have 20-sim 4.1.3.8 or higher installed and a recent version of Matlab (2007 or above). 64-bit versions of Matlab are supported starting with 20-sim 4.6.

2. Check if it works
To make the connection to Matlab, Matlab needs to be registered as a COM-component. Not all Matlab versions register the COM-component automatically.

1. In 20-sim, open the Simulator (Ctrl+R)

2. Open the Tools menu

3. Click the Matlab button

If Matlab starts (be patient this could take some time), the Matlab COM automation server is registered properly and you are finished. In case the error message "Could not start Matlab. Make sure that Matlab is installed and that the Matlab COM automation server is enabled.", proceed with step 3 and 4.

3. Enable the Matlab COM automation server
To make the connection to Matlab, Matlab needs to be registered as a COM-component. This can be done in the following manner from the command line (run: cmd):

 matlab /regserver

The COM-registration only, is not enough for 20-sim to find the DLL’s of Matlab. The next step (setting the PATH variable) must be performed also

4. Matlab registration in PATH
The standard registration of Matlab in the PATH is the following (assuming Matlab is installed in Program Files and the used version of Matlab is R2015b):

 C:\Program Files\MATLAB\R2015b\bin

The following path should be added too in case of a 32-bit version of Matlab:

 C:\Program Files\MATLAB\R2015b\bin\win32

In this additional path some important DLL’s are present that are necessary to make the connection. for example: libeng.dll. Please check if this DLL is present at this path. If not try to find this DLL in your Matlab installation and add the found path to the PATH environment.

Changing the PATH environment variable can be done in the following manner:

1. From "My Computer", right mouse button: Properties:

2. On Windows: choose Advanced Properties and go further as Admin
5. Installation

3. Choose the tab: Advanced
6 Editor

6.1 Introduction

6.1.1 Editor

20-sim consists of two main windows and many tools. The first window is the Editor and the second is the Simulator. The Editor is used to enter and edit models. The Editor opens automatically when you start 20-sim:

The Editor of 20-sim.

The Editor consists of four parts:

- **Model tab / Library tab**: The Model tab shows the model hierarchy, i.e. the composition of all the elements of the model. The Library tab shows the 20-sim library.

- **Graphical Editor / Equation Editor**: At the lowest level of the hierarchy this editor will show the model equations. In the higher levels this editor will show the graphical parts of your model.

- **Output tab / Process tab / Find tab**: The Output tab shows the files that are opened and stored. The Process tab shows the compiler messages. The Find tab shows the search results.

- **Interface tab / Icon tab / Globals tab**: The Interface tab shows the interface (inputs, outputs, ports) of a selected model. Double clicking it will open the Interface Editor. The Icon tab shows the icon of a selected model. Double clicking it will open the Icon Editor. The Globals tab will show the global parameters and variables of your model. Double clicking it will open the Global Relations Editor.
Using the Editor

The best way to find your way around the Editor is to read the Getting Started manual. It contains a number of topics that will explain the basics of entering equation models, graphical models and run a simulation.

6.1.2 Equation Editor

Equations models are the models at the lowest level in the model hierarchy. A model without an interface (inputs, output, ports), will have no hierarchy and is thus automatically an equation model. If you have opened an equation model, the right part of the Editor shows the Equation Editor. In the Equation Editor you can enter and edit equation models.

Use

Put your mouse in the Equation Editor and start typing. If you click on the buttons of the taskbar, sample code is inserted. Read the language reference section to find out more.

Color Syntax Highlighting

Functions, Variables etc. are given special colors to distinguish them from the other text.

Auto Indent

If a line is indented (using the tab), the next line will start at the same indentation. You can remove indentation by clicking the Backspace button.

Multi-Line Tabbing

You can give multiple lines of code a new indentation by clicking the tab button. Select all the lines and click Shift-tab to remove.
6.1.3 Equation Editor Taskbar

When you select an equation model, the corresponding equations are shown in the *Equation Editor*. A special button bar, called the *taskbar*, is part of the *Equation Editor*. The *taskbar* helps you to enter functions, statements, templates etc.

Taskbar of the Equation Editor.

- **Statements**: click on this button to insert if-then-else expressions and more.
- **Functions**: click on this button to insert functions.
- **Specials**: click on this button to insert special functions.
- **Operators**: click on this button to insert operators.
- **Units**: click on this button to insert quantities and units.
- **Declarations**: click on this button to insert declarations of parameters, variables and more.
- **Constants**: click on this button to insert predefined constants.
6. Editor

6.1.4 Graphical Editor

If you have opened a graphical model, the right part of the Editor shows the Graphical Editor. In the Graphical Editor you can enter and edit block diagram models, iconic diagram models and bond graphs.

![Graphical model with the Graphical Editor (right part).](image)

Use
- Select models from the Model Library and drag them to the Graphical Editor.
- You can use the buttons of the taskbar, to connect the models and change their position.
- Drag and drop image files (bitmaps, svg images,..) to enhance the appearance of your model.
- Use the buttons of the taskbar, to create your own drawings.

6.1.5 Graphical Editor Taskbar

When you view or enter a graphical model in 20-sim it is shown in the Graphical Editor. A special button bar, called the taskbar, is part of the Graphical Editor. The taskbar helps you to select models, connect them and manipulate them. You can also use the taskbar to enter drawing objects. The taskbar is also part of the Icon Editor.

![The taskbar of the Graphical Editor.](image)
6. Editor

Selection Mode: Click this button to select models and objects.

Insert Terminals: *(Icon Editor only)* Click this button to insert terminals.

Connection Mode: *(Graphical Editor only)* Click this button to create connections between models.

Line: Click this button to draw lines.

Spline: Click this button to draw splines.

Rectangle: Click this button to draw rectangles.

Ellipse: Click this button to draw ellipses.

Text: Click this button to insert text.

Bitmap: Click this button to insert bitmaps and images in svg format.

Line Color: Click this button to set the line color of a selected object.

Fill Color: Click this button to set the fill color of a selected object.

Rotate and Mirror: Click this button to rotate or mirror a selected object.

Arrange and Group: Click this button to group objects, put them to the front etc.

Line Styles: Click this button to select the line style of selected objects.

Zoom: Click this button to select the zoom factor. You can also click Ctrl + mouse wheel to zoom in and out.
6.1.6 Search

If you make the Editor wide enough, you will see at the top right a Search box. You can enter terms here and search them throughout the model. The results are displayed in the Find tab at the bottom of the Editor.

![Using the Find Box to quickly search the model.](image)

- **Scope**: The search scope depends on which level of the model you are in. Only the current submodel and all submodels below are searched. Select the top element in the Model Browser (Model tab at the left of the Editor) to search the whole model.
- **Library**: The 20-sim Library is always searched. The library results are shown below the model search.
- **Jump**: The Find tab shows the found items with an orange hyperlink. Click on the hyperlink to quickly jump to the corresponding model.
- **Find again (F3)**: Click the F3 button to quickly jump through the found items in the Find tab.
- **Menu**: You can also start a search from the menu: from the Edit menu select Find.

6.1.7 Library

In 20-sim, creating models only takes you just a few mouse clicks. By dragging an element from the library and dropping it in the graphical editor, your model is actually built the same way as you would draw an engineering scheme. 20-sim supports various model representations, such as block diagrams and iconic diagrams. These representations may be combined in one model.
You can find the library at the left of the Editor.

The library contains a variety of sections:
- **Bond Graph**: bond graph elements
- **Iconic Diagrams**: Physical components
- **Signal**: Block diagram elements
- **Tutorial**: Example models that show you how to perform various tasks in 20-sim
- **Getting Started**: All the models that you need in the lessons of the Getting Started manual.

Custom libraries
You can create your own model libraries in 20-sim:

1. From the **Tools** menu click **Options - Folders - Library Folders**.
2. Add your **folder**.
3. Give it a useful **name** by clicking **Edit Label**.
4. Click OK to close the dialog.

Then you can add your own library models to the library:

1. Select the **submodel** that you want to store in your library.
2. From the **File menu** select **Save Submodel**.
3. Store the submodel in your library **folder**.

The next time you start up 20-sim, the library will show the new submodel.
6.1.8 Options

The general properties of 20-sim models are shown in the Options dialog.

- From the Settings menu choose the Options command.
- From the Tools menu choose the Options command.

Editor

- **Fonts**: Enter the default fonts used in graphical models (Editor) and equation models (Equation Editor).
- **Syntax Highlighting Threshold**: Select the number of characters that should be submitted for color syntax highlighting. If this number is too large, the editor may become very slow.
- **Submodel Colors**: Check this option to turn Gradient Fill on. This option will apply a slight vertical gradient to all blocks with a background color.

Plots

You can choose the default settings for a simulation plot in this tab.

- **Default Line Thickness**: Enter the default plot line thickness.

Folders

You can choose the location of libraries and files in the Folders tab.

- **Library Folders**: Enter the library paths and corresponding library names here. The libraries are shown in the Library tab.
- **C-code Folders**: C-code can be generated for various targets. For each target a file targets.ini defines how the C-code should be generated. You can enter the locations of ini-files here.
- **Matlab-Code folders**: 20-sim models can be exported to Matlab. Similar to C-code generation, a file targets.ini defines how the code should be generated. You can enter the locations of ini-files here.
- **Model Template Folders**: You can enter the location of model templates.

Scripting Interface

20-sim uses the XMLRPC protocol to communicate with external software and run scripts. By default, 20-sim will only accept scripting connections from your local computer (**Localhost only** option is enabled by default). The defaults setting are shown below.
Communication can be done by:

- **HTTP**: XMLRPC protocol.
- **TCP**: Optimized for performance binary communication protocol.
- **Serial**: Serial communication using the RS232 port of your computer.

In most cases the default settings should be fine. However, for each of these protocols, settings may be changed. Ask your system administrator for details.

6.2 Using Models

6.2.1 Hierarchical Models

Any main model (or system) in 20-sim may be described as a composition of lower level submodels. These submodels themselves may again be described as a composition of lower level submodels etc. The lowest level consists of elementary submodels, which do not consist of submodels themselves.
20-sim supports hierarchic model. The lowest model in the hierarchy is always an equation model.

You can inspect this in the Editor. If you click the Model tab at the left of the Editor, the Model Browser shows complete model hierarchy: a tree like structure showing all the submodels that are used in the model.

The Model Browser at the left of the Editor shows the complete model hierarchy.

To travel through the hierarchy, click any model in the tree. You can also select a model in the Graphical Editor and click Go Up or Go Down from the Model menu.
6.2.2 Open Models
Models in 20-sim are stored with the extension .emx. You can open an existing model in several ways:

1. From the **File menu**, select **Open**.
2. Click the Library tab and from the Library **drag and drop** your model to the **Graphical Editor**.
3. Open a **Windows Explorer**. **Drag and drop** your model to the **Graphical Editor**.

You can open Packed Files with the **Open** dialog by selecting a file with the extension .emz.

6.2.3 Save Models
Models in 20-sim are stored with the extension .emx. You can save an existing model in several ways.

1. From the **File menu**, select **Save**: This will save the complete model. If no filename is known a Save dialog is opened.
2. From the **File menu**, select **Save As**: This is essentially the same as the **Save** command but now the **Save** dialog is opened even if a filename is known.
3. From the **File menu**, select **Save a copy As**: This is similar to **Save As** but now a copy of the file is saved instead. This allows the user to keep on working on the model while saving intermediate experiments.
4. From the **File menu**, select **Save Submodel**: This will save the submodel that is selected in your **Graphical Editor**.
5. From the **File menu**, select **Save Encrypted**: This will allow you to store a model using encryption. If a submodel was selected, a menu is opened asking you to store the submodel or the complete model.

Warning: Once a model is encrypted, you can not decrypt it anymore! So keep cautious that you always store a non-encrypted original.

Encrypted models are useful if you want others to use your 20-sim model, without seeing the underlying equations. If an encrypted model is loaded in 20-sim, the **Go Down** command does not work on that model.
6.2.4 Packed Files

To get a simulation running in 20-sim, the data stored in various files may be needed:
- .emx: model files
- .txt: data files (fileinput)
- .bmp: bitmap files (for use in 3D Animation)
- .dll: external dll-files (user defined external functions)
- etc.

You can pack all these files into one zip-file, using the **Pack** command from the **File** menu. With this command 20-sim will check all the files that are used and store them into a single zip-file. This option is useful for archiving and sending models by e-mail.

Pack

1. When the **Pack** command is clicked, a *Save As dialog* appears asking you to enter a name. Always save with the default extension *emxz* because 20-sim uses this extension to recognize packed files.

After the *Save As* dialog, a 20-sim **Pack dialog** appears, showing the collected files. In this dialog you can select the files that should be packed.

2. **Select** the files that should be packed and click the **OK** button.

Unpack

You can open Packed Files using the **Unpack** command from the **File** menu.

1. When the **Unpack** command is clicked, an *Open dialog* appears asking you to open a file. Open a file with the extension *.emxz* because 20-sim uses this extension to recognize packed files.

After the *Open* dialog, a 20-sim **Unpack dialog** appears. In this dialog you can see the file that you have selected to unpack and you can choose the method of unpacking.

2. If you want to unpack all files and put them in their original location, select the option **Unpack with full path**.

3. If you want to unpack all files and to a specific directory, select the option **Unpack to directory**.

4. Select **Keep Relative Paths** if you want to keep the original folder structure.
6.2.5 Insert Models

You can insert submodels from a library using the built-in Library tab:

1. Click the Library tab to open the library.
2. Select the submodel that you want to insert and drag and drop it in the Graphical Editor.

You can also use a file browser:

1. In the Editor From the File menu, select Open Browser. The File Explorer appears.
2. Select the submodel of interest and drag and drop it in the Graphical Editor.

You can also use the Insert menu:

1. In the Editor From the Insert menu, select a submodel to insert.

6.2.6 Connecting Models

In 20-sim, submodels can be connected using the mouse. When a connection is created it will be displayed using straight lines. When a connection has been made you can change it into a smooth line using the right mouse menu. You can change the color of a connection using the colorbar at the bottom of the Editor. 20-sim supports two types of mouse use. "Tapping Mode" and "Pressing Mode". In the Tapping Mode you click the mouse button (do not keep it pressed but quickly "tap" the button) while making a connection. In the Pressing Mode you keep the mouse button pressed while making a connection.

Tapping Mode

To connect two submodels using straight lines, you have to:

1. In the toolbar, click to change to connection mode.
2. Put the mouse pointer on top of the first submodel and click the left mouse button (do not keep it pressed but quickly "tap" the button).
3. Drag the mouse pointer towards the second submodel (you will see a connection drawn from the first submodel towards the mouse pointer).
4. Put the mouse pointer on top of the second submodel and click the left mouse button again (do not keep it pressed but quickly "tap" the button).
5. While dragging from the first submodel to the second, you can click the left mouse button (do not keep it pressed but quickly "tap" the button) to create intermediate points.

Pressing Mode

To connect two submodels using straight lines, you have to:

1. In the toolbar, click to change to connection mode.
2. Put the mouse pointer on top of the first submodel and press left mouse button (keep it pressed).

3. Drag the mouse pointer towards the second submodel (you will see a connection drawn from the first submodel towards the mouse pointer).

4. Put the mouse pointer on top of the second submodel and release the left mouse button.

5. While dragging from the first submodel to the second, you can click the right mouse button to create intermediate points.

Smooth Line

To connect two submodels using a smooth line, you have to:

1. Make a straight line connection with intermediate points.

2. In the toolbar, click to change to selection mode.

3. Select the connection that was created.

4. From the right mouse menu select "smooth line".

Tips

- 20-sim will automatically detect which connection has to be made: a signals, a bond or an iconic diagram connection.
- Depending on the physical domain, every connection will have a specific color. You can change these colors in the Units Editor.
- You can toggle between connection mode and selection mode by pressing the space bar.

6.2.7 Implode / Explode

Using the Implode command of the Editor menu you can quickly create a new submodel out of a set of select submodels.

1. In the toolbar, click to change to selection mode.

2. Select the submodels.

3. From the Edit menu, click the Implode command.

Using the Explode command of the Editor menu you can quickly open the contents of a selected submodel in the current model layer.

1. In the toolbar, click to change to selection mode.

2. Select a submodel.
From the **Edit** menu, click the **Explode** command.

6.2.8 Dissolve

If you want to delete a submodel from a signal path, but keep the signals/ports intact, you can use the Dissolve command. The Dissolve command will delete the submodel and connects the input signal directly to the output.

1. In the taskbar click the **Selection Mode** button.
2. **Select** the submodel that you want to delete.
3. From the **Edit menu**, select **Dissolve**: This will delete the selected submodel and move the signals/ports to the next submodel.

6.2.9 Simplify Models

Use the **Simplify Model** command to simplify graphical models according to the following rules:

Block Diagrams

1. Combining splitters.
2. Combining of multiplications and/or divisions.

Bond Graphs

1. Eliminating junctions.
2. Melt equal junctions.
3. Eliminating double differences.

Iconic Diagrams

1. Eliminating nodes.

To simplify a (sub)model, you have to:

1. Select the complete model or submodel of which you want to simplify.
2. From the **Model** menu select the **Simplify Model** command.
6.2.10 Check Models

To check a complete model, you have to:

1. From the Model menu select the Check Complete Model command. Now the complete model will be checked.

If any warnings or errors are found, they are displayed in Process tab of the Editor.

In the Process tab the compiler messages are displayed.

2. Put your mouse on top of an error message and click.

20-sim will jump to the part where the error was caused. You can try to solve the error and check again.
6.2.11 Model Properties

The properties of 20-sim models are shown in the Model Properties dialog. You can open the Model Properties in various ways.

- Select the proper model in the Model Browser and then click Properties from the Right Mouse menu.
- Select the model in the Graphical Editor and then click Properties from the Right Mouse menu.
- From the File menu choose the Properties command.
- From the Settings menu choose the Model command.
- From the Settings menu choose the Submodel command.

Depending if a submodel was selected or a main model, various tabs are visible:

![The model properties dialog.](image)

Description

In this tab you can enter the name of the submodel and enter various fields to classify a model. The most important elements are:

- **Name**: Enter a unique name for the model.
- **Help Page**: Enter the location of a help page that should be displayed when you click F1 or Help.
- **Version**: The version number of the model. The version number can be displayed in the background and is included if you generate C-code from the model.

Library

In this tab you can find information on location of the model and some important properties.
• **Version**: The version of 20-sim that was used to create the model.

• **Library Path**: If the model was stored in a known library, the path is shown.

• **Library File**: The relative location of the submodule in the library or the absolute location of the model submodule on your computer.

• **Created**: The date of creation.

• **Main Model / Submodel**: Shows if the model is a main model or submodule.

• **Allow model updates**: Allow the Check for Model Updates command to check if there is an update available for this model.

• **Replace parameters when this model is used to update another model**: If you drag and drop a model from the library on top of an existing model, it will be replaced. Select this option if you want the original parameters to be replaced as well.

Background Image

In this tab you can specify a background image for the model. If the model is a graphical model, in the background the image is shown.

• **None**: default, no image shown.

• **Inherit From Parent**: Use the background that was defined one model higher in the model hierarchy.

• **Static Bitmap**: Specify the bitmap file to be used.

• **Script File**: You can specify a script file if you want to use a dynamic background.

• **Scaling**: Scaling of the background image.

Processing

This tab is only available for main models. 20-sim can operate in two modes: **Debug Mode** and **Fast Mode**. In this tab you can define settings for both modes.

Warnings/Errors

• **Model contains algebraic variables**: See the section on algebraic loops.

• **Model contains algebraic loops**: See the section on algebraic loops.

• **Algebraic variables solved**: See the section on algebraic loops.

• **Model contains constraint variables**: See the section on constraints.

• **Constraint variables solved**: See the section on constraints.

• **Model contains dependant states**: The model contains differential equations which could not be solved.

• **Dependent states are transformed**: The model contains differential equations which were solved.

• **Output is not used**: Output signals that are not used for connections to other models.

• **Input is not used**: Input signals that are not used for connections to other models (to make such models simulate, a zero input value is applied to all not-connected inputs).

• **Port is not used**: Ports that are not connected.

• **Parameter is not used**: Parameters that are defined but not used.

• **Matrix is assigned a scalar**: A matrix is assigned to a scalar.

• **Variable is not used**: Variables that are defined but not used.

• **Variable Multiple set**: Variables that are assigned a value more than once.
- **Variable is never given a value**: Variables that are never assigned a value.
- **Variable is set but not used**: The variable is assigned a value but never used.
- **Unit Conversion when SI disabled**: Not relevant yet.
- **Unit Conversion when SI enabled**: A unit conversion was found.
- **Unit missing for variable when SI disabled**: Not relevant yet.
- **Quantities Mismatch**: Variables with different quantities are compared.
- **Unit is unknown**: A unit has been used that is not available in the Quantities and Units file.
- **Equations interpreted as code**: Equations can only be valid when interpreted as sequential code. For example when variables are assigned more than once.
- **Possible loss of data at type conversion**: A type conversion has been found that may lead to loss of precision digits.
- **Type conversion found**: A type conversion has been found.
- **Conversion of booleans found**: A type conversions involving booleans has been found.

Model optimization

- **Transform Dependents States**: Try to solve differential equations.
- **Solve algebraic variables**: Try to analytically solve algebraic loops.
- **Remove Redundant Equations**: Try to remove equations that do not influence model behavior.
- **Optimize Equation Structure**: Try to separate equations into an input section, a dynamic section and an output section.
- **Optimize Static Expressions**: Move expressions with constant output throughout the simulation to the static part of the model equations.
- **Optimize Duplicate Expressions**: Calculate and expression only once and use the result everywhere.
- **Optimize Divisions**: Rewrite divisions as multiplications whenever possible.

Simulator

This tab is only available for main models. You can set the simulator properties here.

- **Initialize variables at start of simulation**: You can choose to set any variable that was not given a proper value, to zero at the start of a simulation. You can also choose to set the value to NaN to make detection more easy.
- **Calculate Hold Instruction During Initialization**: Calculate an output for hold functions during the initialization of the a simulation.

6.2.12 General Properties

The general properties of 20-sim models are shown in the **Options** dialog.

- From the **Settings menu** choose the **Options** command.
- From the **Tools menu** choose the **Options** command.
Editor

- **Fonts**: Enter the default fonts used in graphical models (Editor) and equation models (Equation Editor).

- **Syntax Highlighting Threshold**: Select the number of characters that should be submitted for color syntax highlighting. If this number is too large, the editor may become very slow.

- **Submodel Colors**: Check this option to turn **Gradient Fill** on. This option will apply a slight vertical gradient to all blocks with a background color.

Plots

You can choose the default settings for a simulation plot in this tab.

- **Default Line Thickness**: Enter the default plot line thickness.

Folders

You can choose the location of libraries and files in the **Folders tab**.

- **Library Folders**: Enter the library paths and corresponding library names here. The libraries are shown in the Library tab.

- **C-code Folders**: C-code can be generated for various targets. For each target a file targets.ini defines how the C-code should be generated. You can enter the locations of ini-files here.

- **Matlab-Code folders**: 20-sim models can be exported to Matlab. Similar to C-code generation, a file targets.ini defines how the code should be generated. You can enter the locations of ini-files here.

- **Model Template Folders**: You can enter the location of model templates.

Scripting Interface

20-sim uses the XMLRPC protocol to communicate with external software and run scripts. By default, 20-sim will only accept scripting connections from your local computer (**Localhost only** option is enabled by default). The defaults setting are shown below.
Communication can be done by:
- HTTP: XMLRPC protocol.
- TCP: Optimized for performance binary communication protocol.
- Serial: Serial communication using the RS232 port of your computer.

In most cases the default settings should be fine. However, for each of these protocols, settings may be changed. Ask your system administrator for details.

6.2.13 Check Energetic Behavior

If you select the **Check Energetic Behaviour** command of the **Model** menu, 20-sim will check the complete model and generate additional variables. The additional variables will only be generated for submodels with powerports:
- power for every power port.
- the net power that flows into the submodel (total sum of all the powers).
- the net energy of the submodel (integrated net power)

This command is the same as Check Complete Model command but will generate extra variables:
- `Sumodelname\port.power`: the net power flow of the port.
- `Sumodelname\summated_port_power`: the net power flow into the model.
- `Sumodelname\summated_port_energy`: the net energy of the model.

You can inspect these variables during simulation in the Variable Chooser.
6.2.14 Analyze Causality

Causal analysis is the procedure to get the model equations correct form. For Bond Graph models this means that the direction of the efforts and flows of the bonds have to be determined. The result of the analysis is displayed by causal strokes (denoted by |). For Iconic Diagrams this means that the direction of the across and through variables of the connections have to be determined. The result of the analysis is displayed by causal arrows (denoted by ->).

To perform causal analysis you have to:

1. From the Model menu select the Analyze Causality command. Now causality will be assigned in the complete model.

Bond Graphs

- Causal strokes are shown in Bond Graphs automatically.
- Setting Causality can also be done by hand. Just select a bond and choose Properties from the right mouse menu. A menu pops up in which you can set causality by hand. The corresponding causal stroke is displayed in green (denoted by |).

![Bond Graph Image]

User defined causality (denoted by |).

- If 20-sim fails to perform a causal analysis of the model (a causal conflict), the corresponding bond is displayed red.

![Red Bond Image]

A causal conflict (denoted by the red bond).

- Some submodels have a preferred causality. If assignment of the preferred causality is not possible (because of other constraints), the corresponding causal stroke is displayed in orange (denoted by |).

![Orange Bond Image]

Preferred causality not assigned (denoted by |).
• To see the order in which automatic causality assignment has been performed, choose *Causality Info* from the *View* menu.

Iconic Diagrams

• Causality in Iconic Diagrams is only shown when you select the *Causality Info* command of the *View Menu*.

[Diagram of an iconic diagram showing causal information by arrows]

• If 20-sim fails to perform a causal analysis of the model (a *causal conflict*), the corresponding connection is displayed red.

6.2.15 Implementations

A model may have various implementations. It means that you can combine several versions of a model and store them in one file. If you drag and drop a model with implementations, 20-sim will ask which one to use.

Example

A fine example of a model with various implementations is the model *MachineDynamics.emx* from the *Examples\1D mechanics* library. This example model has several submodels with implementations:

• SpringDampers
• SignalGenerator-Sweep
The selected implementation is shown between brackets in the Model Browser.

When you drag and drop a model with implementation into the Graphical Editor you will be asked which implementation to use. In the Model Browser, the chosen implementation is shown between brackets (Default and ZeroMean in the picture above). If you hover the mouse above a submodel with an implementation, you also see the chosen implementation between brackets. While modeling, you may decide to change the implementation. This can easily be done by selecting the submodel and clicking the right mouse menu. Choose Implementation and select the implementation that you want to use.

Construction
You can make submodels with implementations yourself:

1. **Select a submodel.**
2. From the **right mouse** menu choose **Edit Implementation** and **Add New**.
3. Enter the **name** of the implementation and click **OK**.
4. **Store** the submodel using the **Save Submodel** command of the **File** menu.

Changes
You can change the implementation:

1. **Select** the submodel.
2. From the right mouse menu choose **Edit Implementation** and **select** the implementation that you want to change.
3. Make the **changes** that you want in the submodel.

4. **Store** the submodel using the **Save Submodel** command of the **File** menu.

6.2.16 Continuous-Time and Discrete-Time Models

In 20-sim you can model continuous-time systems, discrete-time systems and combinations of continuous-time systems and discrete-time systems (hybrid) systems. By default, models in 20-sim are continuous-time, and simulated using continuous-time integration methods. However, the program will automatically identify discrete-time parts in a model and simulate them at a fixed rate.

Continuous-Time

Continuous-time models describe real-world processes. To simulate a continuous-time model, the model will be calculated many steps per second to get a result that is a good representation of the real-world process. If you model a car suspension system, about 100 steps per second might be sufficient to give a good representation of the behaviour of the car. If you model an electronics circuit, 100,000 steps per second might be required. The default integration method in 20-sim will automatically choose the required steps per second.

Discrete-Time

Discrete-time models describe processes that run on computers at a fixed rate. To simulate a discrete-time model, you only have to indicate the rate at which the model should be calculated. This is called the sample rate or sample frequency. The sample rate of a discrete-time part can be set in the Simulator.

Mixed Models

In 20-sim you can model in continuous-time and discrete-time. Mixed models containing discrete-time parts and continuous time parts are supported as well. The example below shows a continuous time model of a PI-controlled system at the top. At the bottom the same system is shown with a discrete time controller and a continuous-time system. The discrete-time part is indicated by green input and output lines.
Identification of Discrete-Time Parts

In 20-sim every model is continuous-time by default. Discrete-time parts of a model are identified by the occurrence of special functions:

- sample
- hold
- next
- previous
- sampletime

Normally these functions are hidden in the equations that describe a submodel, but 20-sim will automatically recognize that the input or output of such a function should be discrete-time. If the output is discrete-time it is propagated to the next function, which output is then also "tagged" as discrete-time, and so on until the whole discrete-time part of a model is identified. A discrete time part of a model is indicated by green inputs and outputs (see previous picture).

Connection

Continuous-time parts of a model can be connected to discrete-time parts, by using the functions:

- sample: The sample function has a continuous-time input and a discrete-time output.
- hold: The hold function has a discrete-time input and continuous-time output.

You can find these functions for example in the following library models:

- DA.emx (Discrete to Analog Converter)
6. Editor

- AD.emx (Analog to Digital Converter)
- Encoder.emx (Optical Encode)

Forbidden Functions

In a discrete part of a model, certain functions are not allowed, because they are specifically meant for the use in continuous-time models:

- algebraic
- constraint
- ddt
- dly
- event
- eventdown
- eventup
- frequencyevent
- int
- limint
- tdelay
- timeevent

If you use a library model that contains such a function in a discrete-time part, an error message will be given.

6.2.17 Working with Multi-Dimensional Models

Multi-Dimensional models are models that have connections which are of a size \([n,m]\) with either \(n\) or \(m\) larger than one. Here \(n\) is the numbers of rows and \(m\) is the numbers of columns. More information on this matrix notation can be found in the topic on matrices and vectors.

The advantage of multidimensional models is shown in the example below. On top two submodels are connected by three (single) signals. The same submodels are also shown below, connected by one multi-dimensional signal of size \([3,1]\). If these submodels have to be used a lot, multi-dimensional signals or multi-signals, are easier to use. Multi-dimensional signals, bonds and connections are shown in 20-sim by double lines.
The Secret: Multi-Dimensional Ports

The secret of multi-dimensional models is hidden in the model interface. If you open the Interface Editor to inspect an interface, you will notice that each port (signal, iconic diagram or bond graph) has a default size (dimension) of 1 (1 Row, 1 Column). By increasing the number of rows and/or columns this size can be increased.

Definition of Multi-ports: increase the number of rows or columns.
The Trick: Automatic Connection

When two submodels are connected, 20-sim will automatically check for the port-sizes and create a connection:

1. If the port-sizes are unequal, an error message will be generated.
2. If both ports have size one, a single signal, bond or connection will be drawn.
3. If both ports have a size larger than one, a multi-signal, multi-bond or multi-connection will be drawn.

The Finishing Touch: Matrices and Vectors

Behind each multi-dimensional submodel, there are equations in the end. To combine multi-dimensional ports with equations, you can use matrices and vectors. 20-sim has a large connection of matrix and vector functions and operators, to help you define any possible matrix equation. For example the gain model in the picture on top, could have been described as shown below.

![Use the matrix and vector notation to define the model equations.](image)

6.2.18 Exporting Models

There are several methods to export 20-sim models.

Export to previous versions of 20-sim
6. Editor

You can save a model file using the **Save** command or the **Save As** command from the **File** menu. If you want to save part of your model, use the **Save Submodel** command of the **File** menu. A **Save** dialog will be opened in which you can enter the model name and location. At the bottom of the dialog, you can use the **Save As Type** box to select the file type:

- Model files (*.emx) Standard 20-sim 4.x format
- Packed files (*.emz) Zipped file including all linked files (e.g. datafiles, dll's, bitmaps etc.)
- Sidops text files Save model as text file. (*.txt)

Export to zip file

You can save a model and all externally linked files into one zip-file, using the **Pack** command of the **File** menu. With the **Unpack** command of the **File** menu, you can open these zip-files.

Export to Clipboard

From the **File** menu click **Export** and **To File** to export a selected model as a drawing to the clipboard (*Windows Enhanced Metafile format*).

Export to File

From the **File** menu click **Export** and **To File** to export a selected model as a drawing to a file (*Windows Enhanced Metafile format*).

Export to HTML

From the **File** menu click **Export** and **To HTML** to export the model, simulations etc. to an HTML file for the use in a word processor.

Export to Bitmap

From the **File** menu click **Export** and **To Bitmap** to export a selected model as a drawing to a file (*png format*).

Export to Matlab (m-file)

To export 20-sim models to Matlab, from the **Editor** you have to select the **File** menu and then click **Export to Matlab/Simulink** command. This will open a **Matlab-Code Generation** dialog. You can choose to export a complete model or a submodel. In both cases, three m-files are generated:

- **ModelName.m**: A file containing the model equations and special 20-sim functions. The model equations are directly translated from the equations that are shown with the **Show Equations** command of the **Model** menu.
- **ModelName_run.m**: An example file showing you how to run a simulation with the exported model in 20-sim.
- **ModelName_print.m**: This file contains a function that is used in the run file.

Export to Simulink (m-file)
20-sim models can be exported to Simulink S-functions. S-functions are block diagram elements of which the internal description can be an m-file or a dll-file. 20-sim can export both types. M-files can be opened from within Matlab and are therefore more accessible. Dll-files are compiled out of C-code, which makes them inaccessible, but a lot faster. Simulink does not support powerports. Therefore the powerports in a 20-sim model are translated to input and output ports.

To export 20-sim models to Simulink with an m-file description, from the Editor select the File menu and then click Export to Matlab/Simulink command. This will open a Matlab-Code Generation dialog. You can choose to export a complete model or a submodel. In both cases, two files are generated:
- ModelName_.mdl: The exported 20-sim model based on a m-file that describes the model.
- ModelName.m: An m-file that contains the model equations and special 20-sim functions. The model equations are directly translated from the equations that are shown with the Show Equations command of the Model menu.

Export to Simulink (dll-file)

To export 20-sim models to Simulink with an dll-file description, from the Simulator you have to select the Tools menu and then click the C-code generation command. This will open the C-code Generation dialog where you can choose to export to a Simulink S-function.

If you select the OK button, ANSI C-Code will be generated and compiled into a dll-function. Some files will be generated of which two are needed in Simulink:
- ModelName_.mdl: The exported 20-sim model based on a dll-file that describes the model.
- ModelName.dll: A dll-file that contains the model equations and special 20-sim functions. The model equations are directly translated from the equations that are shown with the Show Equations command of the Model menu.

Export as Functional Mockup Unit (FMU-file)

20-sim supports the FMI standard. See FMI Support for the details. In 20-sim, you can export several types of Co-Simulation FMUs. See the FMU Export page for the required steps.

6.2.19 Documentation Editor

The Documentation Editor can be open from the File menu in the 20-sim Editor by clicking Document. The Document Editor can be used to generate an html document that can be used for Word Processors and Presentation software.

The Document Editor will generate an html document that is fully hyperlinked. From a table of contents you can click to go to the desired part of the document. You can also click in pictures to go to the desired submodels.
The 20-sim Documentation Editor.

General Items
- **File**: Select the output file.
- **Source**: Select the whole model or parts of it.
- **Submodel**: If documentation of a part of the model should be documented, select the desired submodel.

Model
- **Table of Contents**: Select this option to start the document with a table of contents.
- **Information**: Information on the creation date, user, file location etc.
- **Structure**: The model hierarchy (list of all submodels, their submodels etc.).

SubModel
- **Information**: Information on the creation date, user, file location etc.
- **Icon**: The picture of the submodel icon.
- **Interface**: The inputs, outputs and ports.
- **Implementation**: The model implementation with equations at the lowest level.

Simulation
- **Constants**: List of the constants that are used in the model.
- **Parameters**: List of the parameters that are used in the model.
- **Initial Values**: List of the starting values of the states of the model.
- **Plots**: Show pictures of the plots.
- **Plot Properties**: Show the plot settings.
- **Frequency Response**: Show the frequency responses.
- **Favorite Parameters**: List of the favorite parameters that are used in the model.
- **Favorite Variables**: List of the favorite variables.
- **Variables**: List of the variables.
6. Editor

- **Run**: list of the run settings.
- **Multiple Run**: List of the multiple run settings.

6.2.20 Check for Model Updates

Most 20-sim models will be built using predefined submodels from a library. You can use the **Check for Model Updates** command of the Models menu to see if there are updates of these submodels. A window will open, showing you all the predefined library submodels.

Items

- **Library Paths**: This part shows the libraries that are included in the search for predefined submodels. You can select or deselect these libraries. You can add your own libraries in the General Properties window.
- **Models**: This part shows all the submodels of which a match has been found in the libraries.
 - **Model Name**: The local name of the submodel.
 - **Status**: Shows if the match is *older*, *equal* or *newer*.
 - **Original Filename**: Original name of the submodel file.
 - **Original Directory**: Original location of the submodel file.
 - **Model Time Stamp**: Time when the used model was saved.
 - **Library Time Stamp**: Time when the library model was saved.

Note

- The **Check for Model Updates** command will only check the time stamp of a model. If you have changed a submodel, without saving it, the time stamp is not altered.
- To prevent models from being included in the updates check, switch off the Allow model updates option of the Model properties.

![Update From Library](image)
If you are not sure if a submodel should be changed, open the new library submodel in a separate Editor first.

6.2.21 Backgrounds

Graphical models may be shown with a background picture. In the Editor from the Settings menu choose the Model command to define the settings.

Static Backgrounds

Static backgrounds are just bitmaps files that you can define.

Dynamic Backgrounds

Dynamic Background are .svg files in which you can enter 20-sim tokens (e.g. the model name, date, creator etc.). The tokens are replaced by 20-sim and then the .svg file has to be converted into a bitmap image. 20-sim uses the open source software Inkscape (http://inkscape.org) to make this conversion.

To get a clear understanding of this mechanism, have a look at the example model Examples\Tips and Tricks\Background images\BackgroundImage.emx. You can open it from the model library. In this model backgrounds are explained.

- In the same folder where the model is stored, a background image named background.svg can be found. This an image file which contains 20-sim specific tokens like %SUBMODELNAME% and %DESCRIPTION%. These tokens will be automatically replaced by 20-sim. Have a look at the example model to see the list of available tokens.
- In the same folder where the model is stored, an .xml file named inkscape_background.xml can be found. This is a script file that replaces the tokens and converts the .svg file into a png bitmap, using inkscape.

To create your own dynamic backgrounds:

1. Create an .svg image with the tokens that you want to use. Store it in the folder where your model is located.
2. Copy the .xml file inkscape_background.xml to your own .xml file and make it refer to the new .svg file. Store it in the folder where your model is located.
3. In the 20-sim model open the Model Properties. In the Background Image tab, select Script File and enter the name of your .xml file.

6.2.22 Keyboard shortcuts

This is a list of keyboard shortcuts in the graph editor.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Command</th>
<th>Shortcut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open File</td>
<td>Ctrl + O</td>
</tr>
<tr>
<td></td>
<td>Print</td>
<td>Ctrl + P</td>
</tr>
<tr>
<td></td>
<td>Save File</td>
<td>Ctrl + S</td>
</tr>
</tbody>
</table>
Current Page

Command	**Shortcut**
Zoom in | F4
Zoom reset | F5
Zoom out | F6
Zoom to fit | F7

Editing

Command	**Shortcut**
Copy | Ctrl + C
Cut | Ctrl + V
Delete | Del
Duplicate | Ctrl + D
Paste | Ctrl + V
Redo | Ctrl + Y
Select All | Ctrl + A
Undo | Ctrl + Z
Edit / Rename Submodel | F2
Toggle selection / connect mode | Space
Rotate Left | Alt + Shift + L
Rotate Right | Alt + Shift + R
Mirror Horizontal | Alt + Shift + H
Mirror Vertical | Alt + Shift + V
Send to Front | Alt + Shift + F
Send to Back | Alt + Shift + B
Group (drawing elements only) | Ctrl + G
Ungroup (drawing elements only) | Ctrl + U

Search

Command	**Shortcut**
Find | Ctrl + F
Find Again | F3

Help

Command	**Shortcut**
Current Selected Item | F1
Open Help File | Ctrl - H
6.3 Compiling

6.3.1 Compiling Models

When you enter a model and open the Simulator or when you select the **Check Complete Model** command of the **Model** menu, the model will be compiled. During compilation, 20-sim will perform a number of tasks.

Error Checking

- **Type checking**: 20-sim will search for illegal type conversion and possible loss of data.
- **Unit Checking**: Many models in 20-sim use units and quantities. 20-sim will check for a proper use of these units and quantities.

Optimizing Model Structure

- **Analyze causality**: determine the causal order of equations.
- **Integral Form**: Equations are changed to integral form as much as possible.
- **Solving differential equations**: Differential equations are solved directly if possible.
- **Solving Algebraic Loops**: Algebraic loops are solved to their analytical solution, where possible.
- **Optimizing Equation Structure**: Some equations have to be calculated only once during each simulation step, because they do not influence the model dynamics. Depending on their relation to the model dynamics (needed for or a result of) these equations are calculated before the model dynamics (input equations) or after the model dynamics (output equations).
- **Remove redundant equations**: A lot of model equations are just assignments like \(\text{var1} = \text{var2} \), where one variable is already known. 20-sim reduces these equations from the model and maps the unknown variables to known variables.

After these tasks a complete equation model is created, which can be inspected using the **Show Equations** command of the **Model** menu. After the complete equation model has been created the following tasks are applied:

Compiling

- **Find the correct order of execution**: All equations will split up into their most simple form and rewritten into the correct order of execution.
- **Interpreter Code**: Create interpreter like code out of the equations. This is low level code that can be understood by the simulation algorithms.
- **Machine Code**: When you have the Built-In compiler option selected, the interpreter code is compiled into platform specific 32-bit machine code. This code uses the full power of native Pentium and 486 instructions. The result is a dramatic increase of simulation speed: 100% to 400%, depending on the kind of model used!

Simulation Code
The resulting code, either interpreter code or machine code, is used in the Simulator to perform simulation runs with and therefore also know as simulation code. As we have learned, the simulation code can be quite different from the original model equations. To denote the function of each original model variable in the simulation code, 20-sim uses the following names:
- independent rate
- independent state
- dependent rate
- dependent state
- algebraic loop in
- algebraic loop out
- interesting variable
- hidden variable

6.3.2 Causal Form

Equations within 20-sim may be entered in random form. During compilation, 20-sim will automatically try to rewrite equations into a causal form and set them in a correct order. I.e. a form where all output variables are written as function of input variables. Consider for example the following model:

```plaintext
variables
    real u,z;

equations
    u = sin(time);
    u = cos(z);
```

Here the (input) variable u is given by the equation \(u = \sin(t) \). Consequently the (output) variable z should be written as a function of u. This is exactly what 20-sim will try to do while compiling the model into simulation code. I.e. the function \(\cos \) will be inverted and the model will be rewritten to:

```plaintext
variables
    real u,z;

equations
    u = sin(time);
    z = arccos(u);
```

Some functions cannot be inverted. Consequently not all equations can be rewritten. 20-sim will report this to the user, during model checking.

Fixed Causality

For some models there is only one causal form. For example a simple iconic diagram model that describes coulomb friction can be written as:

```plaintext
parameters
    real Rc;

equations
    p.F = Rc*abs(p.v);
```
6. Editor

Here $p.F$ denotes the force and $p.v$ denotes the velocity of the powerport p. The equation cannot be rewritten to a form where $p.F$ is the input. This can be explicitly stated, by giving the powerport p a fixed causality. During compilation 20-sim will try to keep the model in this fixed form. If this is not possible an error message will be generated.

Fixed causality has the highest priority for assigning causality. During compilation 20-sim will first assign all models with a fixed causality, then all models with a preferred causality, then all models with a likes causality and then all models with an indifferent causality.

Preferred Causality

For some models there is a preferred causal form. For example the iconic diagram model that describes a spring can be written as:

```plaintext
parameters
  real k;

equations
  p.F = (1/k)*int(p.v);
```

Here $p.F$ denotes the force and $p.v$ denotes the velocity of the powerport p. The equation is written in integral form which is preferred. Consequently the preferred input is the velocity. Should the force be the input, the equation must be rewritten to a differential form, which is leads to less efficient simulation. This can be explicitly stated, by giving the powerport p an preferred causality. During compilation 20-sim will try to keep the model in this preferred form. If this is not possible the equations will be rewritten to the less preferred form.

Preferred causality has a lower priority than fixed causality. During compilation 20-sim will first assign all models with a fixed causality and then all models with a preferred, likes and indifferent causality.

Likes Causality

For some models there is a causal form which is liked more than the other. For example the iconic diagram model that describes a parasitic volume can be written as:

```plaintext
effortincausality(p) then
  p.phi = 0;
else
  volume_ratio = int(p.phi/V);
  p.p = B * volume_ratio + p_initial;
end;
```

Here $p.phi$ denotes the volume flow and $p.p$ denotes the pressure of the powerport p. The equation is written in integral form which is liked. Consequently the preferred output is the pressure. Should the pressure be the input, the equation gives a zero flow as output. During compilation 20-sim will first try to keep all models the liked form. If this is not possible the equations will be rewritten to the other form.

Likes causality has a lower priority than preferred causality. During compilation 20-sim will first assign all models with a fixed causality and then all models with a preferred, likes and indifferent causality.
Indifferent Causality

For some models the causal form is not known beforehand. For example, the iconic diagram model that describes a damper can be written as:

\[
\begin{align*}
\text{parameters} \\
\quad \text{real } d; \\
\text{equations} \\
\quad p.F = d*p.v;
\end{align*}
\]

Here \(p.F \) denotes the force and \(p.v \) denotes the velocity of the powerport \(p \). There is no preferred input (force or velocity). This can be explicitly stated, by giving the powerport \(p \) an indifferent causality. During compilation 20-sim will determine whether \(p.F \) or \(p.v \) is the input variable and consequently rewrite the equations.

Indifferent causality has a lower priority than likes causality. During compilation 20-sim will first assign all models with a fixed causality and then all models with a preferred, likes and indifferent causality.

Setting Causality

For some models, the equations are too complex to analyze causality. To help 20-sim, using the right causality, you can set causality for every port in the Interface Editor.

6.3.3 Integral Form

Consider the following first order linear model:

\[
\text{output} = \text{int}(\text{input} - K\times\text{output})
\]

Now look at the following model:

\[
\text{output} = \frac{\text{input} - \text{ddt(output)}}{K}
\]

Note that we can rewrite this equation as:

\[
\text{ddt(output)} = \text{input} - K\times\text{output}
\]
This is the same equation as the previous model! Apparently, both models are the same! Both models can therefore be described by the dynamic equations:

\[
\begin{align*}
\text{ddt(output)} &= \text{input} - K\times\text{output} \\
\text{output} &= \text{int}(\text{input} - K\times\text{output})
\end{align*}
\]

We call the first equation the \textit{differential form} (no integrals). The second equation is called the \textit{integral form} (no derivatives). In 20-sim, models can be entered in integral form as well as the differential form.

\textbf{Solving Differential Equations}

During compilation, 20-sim will automatically try to rewrite equations into the integral form, since this leads to more efficient simulation. Sometimes an integral form cannot be found. Then algorithms will be applied to solve the differential directly. For example an equation like:

\[
\text{output} = \text{ddt(sin(a\times time))}
\]

will be replaced by the following equation (applying the chain rule and using the known derivative for the sine function):

\[
\text{output} = a\times\cos(a\times time)
\]

Sometimes a differential cannot be solved directly. Then only the Backward-Differentiation Methods can be used for simulation.

\textbf{Simulation Code}

After compilation simulation code is generated. The equation in integral form:

\[
\text{output} = \text{int}(\text{input} - K\times\text{output})
\]

will be written as:

\[
\begin{align*}
\text{independent state} &= \text{output} \\
\text{independent rate} &= \text{input} - K\times\text{output}
\end{align*}
\]

and can be handled by all integration methods. The equation in differential form:

\[
\text{ddt(output)} = \text{input} - K\times\text{output}
\]

will be written as:

\[
\begin{align*}
\text{dependent rate} &= \text{input} - K\times\text{output} \\
\text{dependent state} &= \text{output}
\end{align*}
\]

and can only be handled by the Backward-Differentiation Methods.
6.3.4 Algebraic Loops

An algebraic loop in a model is a loop consisting of elements without "memory like" functions. To calculate the variables in this loop, the variable values themselves are needed. Consider the following example of an algebraic loop in an amplifier with negative feedback:

\[
\begin{align*}
\text{Standard derivation of a simulation model would yield:} \\
x &= K*(u-x)
\end{align*}
\]

The variable \(x\) depends on its own value and must be solved by iteration. In 20-sim every simulation algorithm is accompanied by an iteration routine. Fortunately 20-sim is able to solve many algebraic loops at equation level. For this model this leads to the analytic solution the system:

\[
\begin{align*}
\text{Simulating algebraic loops} \\
x &= K*u/(1+K)
\end{align*}
\]

Although 20-sim contains a sophisticated algorithms to find analytic solutions, the occurrence of unbreakable loops can not always be prevented. The occurrence of algebraic loops may lead to an increase of simulation time, or even stop simulation when iteration fails.

The best solution for these problems is to have a critical look at the model and change the order of calculations in a model. Possible solutions are:

- Algebraic Loops occur when the order of calculations is arbitrary. When an algebraic loop occurs in an equation model or in a set of equation models, you may change the order of calculation by rewriting the equations. The calculation order in bond graph models can be changed by introducing hand-defined causality.

- Introduce 'parasitic' energy storage elements (e.g. a small mass, a small capacitor etc.) to break an algebraic loop. These elements introduce however, large poles in the state equations, which might increase the simulation time considerably.

- Delete elements in the algebraic loop which are not relevant for the model's simulation output (e.g. small dampers, very stiff springs etc.). Care should however be taken, since correct deletions are not always possible and require considerable modeling skill and intuition.

- Combine dual elements. Sometimes elements of the same type can be combined by adding the parameter values (e.g. combining a mass m1 and a mass m2 to a mass m1 + m2). This will in most cases decrease the amount of algebraic loops.
6.3.5 Order of Execution

Equations within 20-sim may be entered in random form. During compilation, 20-sim will automatically try to rewrite equations into a correct order of execution. I.e. a form where all output variables are written as function of input variables and output variables of previous lines. Consider for example the following equations:

```plaintext
variables
    real u,z;
equations
    z = sin(u);
    u = cos(time);
```

Here the (input) variable \(z \) is given as a function of \(u \). Consequently \(u \) should be calculated first. This is exactly what 20-sim will try to do while compiling the model into simulation code. I.e. the equations will be executed as:

```plaintext
u = cos(time);
z = sin(u);
```

Code Blocks

Equations in a code block are not reordered. A code block is a set of equations inside a statement. Suppose we have the following equations:

```plaintext
if condition then
    code block 1
    ...
else
    code block 2
    ...
end;
```

To prevent incorrect executions of the if-statement, the equations of the code blocks will not be separated. Inside a code-block, equations can are not rewritten into an new order of execution. E.g. the following equations:

```plaintext
if time > 10 then
    z = sin(u);
    a = z^2;
    u = cos(time);
end;
```

Will be **not be reordered** and therefore not correctly executed! To get correct code, enter code blocks in a correct order, e.g.:
if time > 10 then
 u = cos(time);
 z = sin(u);
 a = z^2;
end;

Prevent Order Changes
To make all equations a code block you can use the code section. E.g.

parameters
 real y = 8;
variables
 real x1, x2, x3;
code
 x1 = time;
 x2 = sin(time);
 x3 = y*x1;

Integration Steps
Some integration algorithms do more calculations before generating the next output value. These calculations are called minor steps, the output generation is called a major step. During a minor step, all model equations are executed. In most cases you will not notice this because only the results of the major step are shown in the simulator. There are however, exceptions. The next topic will discuss this in more detail.

6.3.6 Integration Steps
Some integration methods do more calculations before generating the next output value. These calculations are called **minor steps**, the output generation is called a **major step**.

<table>
<thead>
<tr>
<th>integration method</th>
<th>minor steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler</td>
<td>0</td>
</tr>
<tr>
<td>Backward Euler</td>
<td>variable</td>
</tr>
<tr>
<td>Adams-Bashford 2</td>
<td>0</td>
</tr>
<tr>
<td>Runge Kutta 2</td>
<td>1</td>
</tr>
<tr>
<td>Runge-Kutta 4</td>
<td>3</td>
</tr>
<tr>
<td>Runge Kutta Dormand Prince 8</td>
<td>variable</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg</td>
<td>variable</td>
</tr>
<tr>
<td>Vode Adams</td>
<td>variable</td>
</tr>
</tbody>
</table>
Execution of Equations

During a minor step, all model equations are executed. In most cases you will not notice this because only the results of the major step are shown in the simulator. There is one exception. If you use equations like

```plaintext
variables
    real y;
initialequations
    y = 0;
equations
    y = y + 1;
```

you will find that the value of \(y \) depends on the integration method that is used. The reason is obvious once you realize that the equations are executed during minor steps. If you use a Runge Kutta 2 integration method, there is one minor step during which \(y \) is increased and one major step during which \(y \) is increased again!

Major

To prevent an equation from being calculated during minor steps, you can use the predefined variable `major`. This variable will return the boolean `false` when calculations are performed for a minor step and will return `true` when calculations are performed during a major step. The `major` variable is used for example in the library model `Amplitude Sensor`:

```plaintext
parameters
    real initial = 0.0;
variables
    real prev, peak;
initialequations
    peak = initial;
    prev = 0;
    output = initial;
code
    if major then
        peak = max(|abs(input)|, peak);
        if (input > 0 and prev < 0) or (input < 0 and prev > 0) then
            output = peak;
            peak = 0;
        end;
        prev = input;
    end;
```
Note that the initial values are set in the *initial equations section*, because we do not want the variables to be set to zero at every integration step. Instead of an *equations section*, a *code section* is used to prevent 20-sim from rewriting the equations in a different order.

6.3.7 Show Equations

During processing a complete set of equations is generated of each model. To inspect these equations or copy them for use in other programs, you have to:

1. From the **Model menu** select the **Check Complete Model** command.
2. From the **Model menu** select the **Show Equations** command.

Now a window is popped up showing all the model equations.

![The model equations after compiling.](image)
6.4 Icon Editor

6.4.1 Icon Editor

The Icon Editor is a vector oriented drawing editor that can be used to create custom made icons for any 20-sim model. You can also use the Icon Editor to change the appearance of existing models.

The 20-sim Icon Editor can be used to create custom made model icons.

Open

1. In the Editor select the model that you want to give a new appearance.
2. From the Tools menu select Icon Editor,
3. or from the right mouse menu select Edit Icon,
4. or at the bottom left of the Editor click the Icon tab and in the Icon tab double click.

Use

1. Use the taskbar buttons or the menu commands to insert objects and edit these objects.
2. If you are satisfied with the icon, insert the terminals.
3. From the Icon Editor menu, select File and Update.
4. Close the Icon Editor.
6.4.2 Terminals

Most submodels will contain ports (i.e. an input signal, an output signal or a power port). If you are creating submodel icons, you want to indicate the connection points of these ports. These connection points are called terminals. In the Icon Editor you can define the position of the terminals.

1. In the taskbar click the Terminal button.
2. Click with the mouse pointer on the position where you want to insert a terminal.

If you have multiple inputs, outputs or ports, a menu will open to ask you which input, output or port should be selected.

The inputs, outputs and ports are indicated by small rectangles.

The terminals are visible in the drawing as small rectangles.

3. You can select a terminal and from the right mouse menu click Properties.

This will open the Terminal Properties showing the name of the input, output or port and the option to fixate the position. With a fixed position, the connections will start or end exactly at the position of the terminal. Without a fixed position, the connections will point to the center of the icon and start or end at the border of the icon.
6.5 Global Parameters and Variables

6.5.1 Introduction

If you want to share parameter values or variable values between submodels, you can use signals from one submodel to the others. This is not always desired and it will increase the effort that you have to make in connecting submodels.

Using globals is an alternative for sharing values. By defining a parameter or variable global, we can instruct 20-sim that a parameter or variable value is shared between submodels.

UsingGlobals
If you want to share parameters or variables between submodels, you have to:

1. Add the keyword `global` to definition of the parameter or variable.
2. Define the scope of the globals, i.e. which models share the same parameters and variables?

6.5.2 Global Parameters and Variables

Global parameters and variables are defined using the keyword `global`. In equation models, this keyword is added after the definition of the data type in the Equation Editor:

```plaintext
parameters
    real global par1 = 100 [Hz];
    real global par2 ;
variables
    real global var1;
    real global var2;
..
..```

Parameters can only be assigned a value once. The same goes for variables. Only one submodel must defined their value using an equation. If parameters or variables are assigned more than once, 20-sim will generate an error.
Example
The best way to describe the use of global parameters and variables is by an example model. You can find this model in the 20-sim demonstration library (Demo\Tips And Tricks\Global Parameters and Variables.emx). The model exists of three submodels. In the first submodel two global parameters (\(f\) and \(A\)) are assigned and one variable (\(\text{sinewave}\)). The variable is assigned a value in the equations section and connected with the output (\(\text{out1}\)).

submodel1

parameters
  real global \(f\) = 100 \{Hz\};
  real global \(A\) = 1 \{none\};
variables
  real global \(\text{sinewave}\);
equations
  \(\text{sinewave} = A \cdot \sin(f \cdot 2 \pi \cdot \text{time});\)
  \(\text{out1} = \text{sinewave};\)

In the second submodel, the two global parameters are used to connect them with two outputs (\(\text{out1}\) and \(\text{out2}\)).

submodel 2

parameters
  real global \(f\) \{Hz\};
  real global \(A\) \{none\};
variables
  real global \(\text{sinewave}\);

equations
  \(\text{out1} = f;\)
  \(\text{out2} = A;\)

In the third submodel, the global variable is connected with an output (\(\text{out1}\)).

submodel 3

variables
  real global \(\text{sinewave}\);

equations
  \(\text{out1} = \text{sinewave};\)

To prevent conflicts global parameters may be assigned a default value only once. The same goes for global variables: they may be assigned a value in the equation section only once.
6.5.3 Scope

Global parameters and variables are defined using the keyword `global`. In equation models, this keyword is added after the definition of the data type in the Equation Editor. In 20-sim we can define which submodels share the same parameter or variable. This is called the **scope** of this parameter or variable.

**Part of the Model**

You can set the scope by using the Global Relations Editor. In this editor you can enter parameters or variables. All global parameters or variables that are defined in submodels lower in the hierarchy, share the same value. Submodels higher in the hierarchy, can never share these parameter values.

**Whole Model**

If no parameter or variable is defined using the Global Relations Editor, the scope is the whole model. I.e. global parameters and variables are shared across the whole model.

![Setting the scope of global parameters with the Global Relations Editor.](image)

The image above shows an example. In the model hierarchy we see the submodel `MassSpringDamper2` selected. The Global Relations Editor, shows three parameters: \( f \), \( m \) and \( b \). If these parameters exists in the submodels lower in the hierarchy (`Mass`, `SpringDamper`, `Damper`, `Spring`), and use the keyword global, they share the same value. Submodels higher in the hierarchy, can never share these parameter values.

6.5.4 Global Relations Editor

The **Global Relations Editor** is used to restrict the scope of global parameters and variables. You can find the **Global Relations Editor** at the lower left of the **Editor** by selecting the **Globals** tab.

1. In the **Editor**, go to the **Model Hierarchy** at the left and **select** the **submodel**, you want to add global parameters or variables for.

2. Select the **Globals tab** at the lower left of the Editor.
6. Editor

Select the Globals tab, put your mouse pointer on top and click Edit Global Relations.

3. Put your mouse pointer in the middle of the tab. From the right mouse menu select Edit Global Relations.

This will open the Global Relations Editor. You can use this editor to enter parameters, variables and equations.

Use the Global Relations Editor to enter parameters, variables and equations.

You can enter parameters, variables and equations here just like in the Equations Editor. The parameters and variables will only be useful if they are used in submodels lower in the hierarchy as globals.

Example

The best way to describe the use of the Global Relations Editor is by an example model. You can find this model in the 20-sim demonstration library (Demo\Tips And Tricks \Global Parameters and Variables for submodels.emx). This model shows two mass-spring-dampers with shared parameters and variables.

1. In the Editor, go to the Model Hierarchy at the left and select the submodel MassSpringDamper1.

2. Select the Globals tab at the lower left of the Editor.
3. Put your **mouse pointer** in the middle of the tab. From the **right mouse menu** select **Edit Global Relations**.

Now you will see the Global Relations Editor, as shown in the previous figure. Three parameters are defined: \( f \), \( m \) and \( b \). The parameter \( m \) is use in the submodel *Mass* lower in the hierarchy. The variable \( k \) is used in the submodel *Spring* lower in the hierarchy. The parameter \( d \) is use in the submodel *Damper* lower in the hierarchy.

4. Now open the **Parameters Editor**.

![Parameters Editor](image)

*Parameters that are shared can be set at the top model.*

You will see that it contains the parameters \( f \), \( m \) and \( b \) at the level of the model *MassSpringDamper1*. This allows us to duplicate this model and use a second mass-spring-damper model with different parameters.
6.6 Interface Editor

6.6.1 Interface Editor

The Interface Editor can be used to define the interface, i.e. the input signals, output signals and power ports of a submodel.

The 20-sim Interface Editor can be used to define the model interface.

Open

1. In the Editor select the model of which you want to change the interface.
2. From the Tools menu select Interface Editor,
3. or from the right mouse menu select Edit Interface,
4. or at the bottom right of the Editor click the Interface tab and in the Interface tab double click.

Use

1. Use the Edit menu to add ports to the list.
2. Select a port from the list and change its properties (make it an input signal, output signals and power ports etc.)
3. From the Interface Editor menu, select File and Update.
4. **Close** the Interface Editor.

**Tips**

1. Use the **Move Up** and **Move Down** buttons to order the list of ports.

### 6.6.2 Port Properties

From the *Edit* menu select *Add Port*. A new port will now be added to the list. If you select the port in the list you can change its properties

- **Name**: Enter the name of the port.
- **Type**: Select the port-type: Signal, Iconic Diagram or Bond Graph.

#### Signal

- **Size**: If the signal is multi-dimensional, enter the number of rows and columns.
- **Orientation**: Choose input signal or output signal.
- **Quantity**: If the signal represents a physical quantity, you can choose the quantity from a predefined list.
- **Unit**: If the signal represents a physical quantity, you can choose the corresponding unit from a predefined list.
- **Type**: The default type of a signal is a real number. Choose out of *real*, *integer* or *boolean*.

#### Iconic Diagram

- **Size**: If the port is multi-dimensional, enter the number of rows and columns.
- **Orientation**: Choose an input or output orientation for the port.
- **Domain**: Choose the physical domain of the port. The most general domain is power. Depending on your choice you will see the two variables (Across and Through) associated with the port.
- **Causality**: Select the causality of the port.
- **Separate High/Low Terminals**: You may choose this option for models with a velocity difference, voltage difference etc.
- **Any Number of Terminals**: You may choose this option for models with a variable number of connections.

#### Bond Graph Port

- **Size**: If the port is multi-dimensional, enter the number of rows and columns.
- **Orientation**: Choose an input or output orientation for the port.
- **Domain**: Choose the physical domain of the port. The most general domain is power. Depending on your choice you will see the two variables (Effort and Flow) associated with the port.
6. Editor

- **Causality**: Select the causality of the port.

### 6.6.3 Orientation

In the *Interface Editor* you can set the orientation of a port. In the *Editor* this orientation can be made visible by setting the *Orientation Info* command from the *View* menu. Depending on the type of port the orientation has a different meaning.

- **Signals**: For signals the orientation indicates the direction of the associated variable: input or output.
- **Bond Graphs**: The orientation of a bond graph port is the direction of the half arrow at the end of a bond. It indicates the direction of the positive power flow.
- **Iconic Diagrams**: The orientation of an iconic diagram port also indicates the direction of the positive power flow.

If you select the top of the list in the Interface Editor, you can choose the *Port Relations tab* to set multiple port relations:

- **Equal / Not equal**: The equal and not equal restrictions can be used to specify that a port p1 must have the same or opposite orientation as port p2.

### 6.6.4 Causality

A powerport is always characterized by two variables. One of these variables should be an input and one of these variables should be an output. The choice of input and output variable is called causality. In the *Interface Editor* you can set the causality of the ports of a submodel. The following causal forms can be chosen:

1. **Fixed out**: One of the two variables is always an output variable.
2. **Preferred out**: One of the two variables is preferably an output variable.
3. **Likes**: Same as preferred out but with lower priority: one of the two variables is preferably an output variable.
4. **Indifferent**: A powerport with an indifferent causality restriction can have both variables as output.

During processing, the assignment of the causal forms goes with the rank in the list. First all elements with a *fixed out* assignment are set, then the elements with a preferred out assignment, then with a likes assignment and finally with an indifferent assignment.

If you select the top of the list in the *Interface Editor*, you can choose the *Port Relations tab* to set multiple port restrictions:

- **Equal / Not equal**: The equal and not equal restrictions can be used to specify that a powerport p1 must have the same or opposite causality as powerport p2. This is denoted as p1 equal p2 and p1 notequal p2 respectively.
- **One_out**: The restriction One_out should only be used for bond graph ports. It is used to indicate that at a one or zero junction, only one bond may have an effort out causality.
6. Editor

- **One_in**: The constraint restriction One_in should only be used for bond graph ports. It is used to indicate that at a one or zero junction, only one bond may have an effort in causality.

In the Editor this causality can be made visible by setting the **Causality Info** command from the View menu.

### 6.6.5 Ports with more than one Terminal

By default, an iconic diagram port is a port where power can be exchanged between a component and its environment in terms of an *across* variable and a *through* variable. Such a port is represented by one terminal (connection point). However, there are two special cases where it is desirable to define an iconic diagram port that has more than one terminal.

#### Separate High / Low Terminals

Consider, as an example, a mechanical spring. The power that flows into such a component is uniquely determined by the velocity difference between the two terminals of the component and the common force that acts upon both ends. Because of this one could say that there is one port, whose power is determined by one *across* value (the velocity difference) and one *through* value (the common force), but is represented by two terminals. To support this, 20-sim allows you to define a special type of iconic diagram port by indicating that is has **Separate High / Low Terminals**. The two terminals of the connection are named *high* and *low*. If the port is named *p*, the formal equations are:

**fixed in orientation:**

\[ p.F = p_{\text{high}}.F = p_{\text{low}}.F \]
\[ p.v = p_{\text{high}}.v - p_{\text{low}}.v \]

**fixed out orientation:**

\[ p.F = p_{\text{high}}.F = p_{\text{low}}.F \]
\[ p.v = -p_{\text{high}}.v + p_{\text{low}}.v \]

In 20-sim these equations are automatically derived.

#### Any Number of Terminals

Consider, as an example, a mass. A characteristic of this component is that you can connect many springs and dampers to it. Implicitly, one expects that the net force (i.e., the summation of the forces applied by the connected components) will be applied to the mass, and that it will have a single velocity. To support this, 20-sim allows you to define a special type of iconic diagram port by indicating the kind to be **Any Number of Terminals**. The terminals of the connection are named *1*, *2*, *3* etc.. If the port is named *p*, the formal equations are:

**fixed in orientation:**

\[ p.v = p_1.v = p_2.v = p_3.v = .... \]
\[ p.F = \text{sign1}\ast p_1.F + \text{sign1}\ast p_2.F + \text{sign1}\ast p_3.F + .... \]

**fixed out orientation:**
\begin{equation}
p.v = p1.v = p2.v = p3.v = ..... \nonumber 
p.F = -\text{sign}1*p1.F - \text{sign}1*p2.F - \text{sign}1*p3.F - .... \nonumber 
\end{equation}

with

\text{sign} = 1 \text{ when } p1 \text{ has a fixed in orientation etc.} 
\text{sign} = -1 \text{ when } p2 \text{ has a fixed out orientation etc.} 

In 20-sim these equations are automatically derived.

\section*{6.7 Domains, Quantities and Units}

\subsection*{6.7.1 Domains, Quantities and Units Editor}

At various modeling levels you can use information on physical domains, quantities and units. This information is stored in the file \textit{QuantitiesAndUnits.ini} in the 20-sim bin directory. To edit this information you can use the \textit{Domains, Quantities and Units Editor}. When opened, the editor automatically reads the file \textit{QuantitiesAndUnits.ini}. When closed the editor asks you where to store the file. Note that any changes made become effective after 20-sim has been restarted.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{20-simDomainsQuantitiesUnitsEditor.png}
\caption{The Domains, Quantities and Units Editor.}
\end{figure}

You can start the \textit{Domains, Quantities and Units Editor} by selecting the \textbf{Units Editor} command from the \textbf{Tools} menu. In the editor a tree-like structure is shown indicating the available Domains, Quantities and Units.

1. You can select every items in the tree for editing.
2. Use the **Add** or **Delete** button to add new items or delete existing item.

3. Use the **Find button** to find items in the tree.

### 6.7.2 Domains

In the Interface Editor every powertport (Iconic Diagram or Bond Graph) can be assigned a physical domain. 20-sim will use this information to prevent that ports of different physical domains may be connected. More popular: in this way you can never connect a translation model to an electric component.

In the *Interface Editor* you can select the physical domain that you want to assign to a port. The editor will show the corresponding port variables and the notation that should be used in the model equations.

The tables below show the available domains and their respective port variables.

<table>
<thead>
<tr>
<th>power domain</th>
<th>across</th>
<th>through</th>
</tr>
</thead>
</table>

*Use the Interface Editor to assign a physical domain to a port.*
## 6. Editor

For the power domains the variables multiply to **power**. There are also some domains defined where the variables do not multiply to power. These are called **pseudo domains**. The following pseudo domains are defined.

### pseudo domain
- Pseudo Pneumatic
- Pseudo Thermal
- Pseudo ThermalH
- Pseudo Hydraulic

You can enter new (pseudo) domains in the Domains, Quantities and Units Editor. If the port is defined as a bond graph port, effort and flow are used to indicate the domain variables. The corresponding tables are shown below.

### power domain
- Power
- Mechanical
- Translation
- Rotation
- Pneumatic
- Thermal
- Electric
- Hydraulic
- Magnetic

### effort
- effort
- force
- torque
- pressure
- temperature
- voltage
- pressure
- magnetomotoric force

### flow
- flow
- velocity
- am
- air
- entropy flow
- current
- volume flow
- magnetic flux

### pseudo domain
- Pseudo Pneumatic
- Pseudo Thermal

### effort
- pressure
- temperature

### flow
- mass flow
- heat flow
In 20-sim, to every constant, parameter and variable a quantity may be assigned. Well known quantities are for example position, velocity, time and energy. 20-sim will use these quantities to check the validity of (basic) equations. The value of a quantity can be expressed in a specific unit. The quantity time can for example be expressed in the unit second or in the unit minute:

<table>
<thead>
<tr>
<th>quantity</th>
<th>unit</th>
<th>multiplication to SI unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>second (SI unit)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>minute</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>hour</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td>day</td>
<td>86400</td>
</tr>
<tr>
<td></td>
<td>year</td>
<td>31556926</td>
</tr>
<tr>
<td>Position</td>
<td>meter (SI unit)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>foot</td>
<td>0.3048</td>
</tr>
<tr>
<td></td>
<td>inch</td>
<td>0.0254</td>
</tr>
<tr>
<td></td>
<td>yard</td>
<td>0.9144</td>
</tr>
</tbody>
</table>

In 20-sim a quantity can be expressed in every desired unit. To prevent conversion problems, internal calculations are always performed in standard SI-units. Therefore non-SI units are stored with a multiplication factor. When a variable has a unit, the unit can also have common engineering prefixes. For example, a parameter m {kg} with a value of 0.1 can be selected in the Parameters / Initial Values Editor. If you click on the unit, you can select other units to enter the mass.
You can enter new quantities and units in the Domains, Quantities and Units Editor.

### 6.7.4 Editing Domains

You can edit existing domains or add new domains in the Domains, Quantities and Units Editor. In the Domains section you can add new domains or edit existing domains. Each domain has several edit fields:

- **Domain name**: If you click on a selected domain in the tree, you can edit the name.
- **Description**: Enter a description of the domain.
- **Quantities**: You can enter quantities of these variables in the quantities section.
- **Mechanical Domain**: Select this button if your domain is part of the mechanical domain.
- **Pseudo Domain**: Select this button if your domain is a pseudo domain.
- **Color**: Double-click the color box to change the color of a domain.

In some domains the integrated effort/flow variables and differentiated effort/flow variables are of a specific quantity. You can enter these quantities in the according edit fields. For some domains these values have no meaning and you can leave the edit fields blank.
6.7.5 Editing Quantities

You can edit existing quantities or add new quantities in the Domains, Quantities and Units Editor. In the Quantities section you can add new quantities or edit existing quantities. Each quantity has several edit fields:

- **Quantity name:** If you click on a selected quantity in the tree, you can edit the name.
- **Description:** Enter a description of the quantity.
- **Variable name:** This name is used for display purposes. For example if one of the variables of a port p has the quantity length it will be denoted as p.x.
- **SI Symbol:** Enter the official SI-symbol here. Enter combinations as nominator/denominator (e.g. Electric Resistance: kg.m2/A2.s3)
- **Units:** Every quantity can be expressed in several unique units (i.e. a unit can be assigned to one quantity only). You can enter new units here or edit existing units that belong to the selected quantity.
- **Unit Symbol:** For display purposes every unit has a specific symbol. It is shown here in a read-only field.

A quantity can have an alias name. Enter this alias as a subentry of the main quantity. This alias name refers to the main quantity and therefore to the same associated units.

6.7.6 Editing Units

You can edit existing units or add new units in the Domains, Quantities and Units Editor. In the Units section you can add new units or edit existing units. Each unit has several edit fields:

- **Unit name:** If you click on a selected unit in the tree, you can edit the name.
- **Description:** Enter a description of the unit.
- **Quantity:** Choose the quantity to which the unit should be associated. A unit can be associated to one quantity only.
- **Symbol:** For display purposes every unit has a specific symbol.
- **Multiplications:** A quantity can be expressed in several units. To prevent conversion problems, internal calculations are always performed in standard SI-units. Therefore non-SI units are stored with a multiplication factor. You can enter the multiplication factor here.
- **Allow Symbol Prefixes:** Some units can be expressed with symbol prefixes. Select the check box to allow the use of prefixes. 20-sim supports the following prefixes:

<table>
<thead>
<tr>
<th>prefix</th>
<th>symbol</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>micro</td>
<td>u</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>
milli  m    10^{-3}  
centi  c    10^{-2}  
deci   d    10^{-1}  
hecto  h    10^{2}    
kilo   k    10^{3}    
mega   M    10^{6}    
giga   G    10^{9}    
tera   T    10^{12}   

Example

parameters
    real mylength = 1 {cm}; // equal to: 0.01 {m}

6.8 FMI Support

6.8.1 FMI Standard

FMI Standard
20-sim supports the Functional Mock-up Interface (FMI) standard (http://fmi-standard.org/) for tool independent exchange of simulation models. The FMI defines an interface to be implemented by an executable called FMU (Functional Mock-up Unit). The FMI functions are called by a simulation environment to create one or more instances of the FMU and to simulate them, typically together with other models. An FMU may either have its own solvers (FMI for Co-Simulation) or require the simulation environment to perform numerical integration (FMI for Model Exchange). The FMI standard has currently two versions FMI 1.0 and FMI 2.0.

A simulation tool that can import and simulate one or more FMUs is a FMI master. The FMU is a FMI slave.

FMI Support in 20-sim
20-sim implements the FMI 2.0 interface for Co-Simulation. 20-sim supports both importing and exporting FMUs. You can import an FMU in 20-sim as a special submodel and you can export a 20-sim submodel as an FMU. 20-sim implements an FMI master algorithm to run an FMU inserted into your model.

20-sim 4.7 supports:

Import
- FMI 2.0 Co-Simulation FMU

Export
6. Editor

- FMI 1.0 Co-Simulation FMU (Standalone)
- FMI 2.0 Co-Simulation FMU (Standalone)
- FMI 2.0 Co-Simulation FMU (Tool-wrapper)

with:

- **Standalone:** This FMU can be exported from a 20-sim submodel using C-code generation. It does not depend on the original 20-sim model or your 20-sim license and can be used standalone. However, this type of FMU can only be exported if the submodel is exportable as C-code.

- **Tool-wrapper:** This FMU can be exported from a 20-sim model with a Co-simulation Interface. A tool-wrapper FMU is a communication FMU that opens the original model in the modelling tool and takes care of remotely executing the co-simulation steps inside 20-sim. It uses the 20-sim Scripting Toolbox to communicate with 20-sim to exchange inputs/outputs and parameters.

### 6.8.2 Co-simulation Interface

The 20-sim tool-wrapper FMU uses 20-sim and its simulator to simulate the model. To exchange input and output signals between 20-sim and the FMI master (co-simulator), you will need to extend your model with special variables that can be set or read by the FMI master. These variables are the co-simulation inputs and outputs. They can be defined in the model in an equation section called `externals`:

```plaintext
externals
 real global export mycosimOutput;
 real global import mycosimInput;
```

To make it possible to set or read a parameter by the co-simulation engine, it should be marked as `'shared'`:

```plaintext
parameters
 // shared design parameters
 real mycosimParameter ('shared') = 1.0;
```

The next step is to export a tool-wrapper FMU for the prepared model. See FMU Export for the details.

### 6.8.3 FMU Import

You can import an FMU directly in 20-sim for co-simulation within 20-sim itself. Presently 20-sim can only import **FMI 2.0 co-simulation** FMUs. Follow these steps to import an FMU in 20-sim:

1. Copy/move the FMU to the same folder as your model. This is not required but recommended to prevent embedding hardcoded paths in your model.

2. Using Windows Explorer, drag the FMU file on your 20-sim model (see the Figure below). Alternatively, you can use the menu option **Insert, Submodel, FMI 2.0 Co-simulation Import** to import an FMU.
This creates a new submodel with a blue icon that acts as an FMU wrapper. FMU inputs and outputs are translated into 20-sim submodel inputs and outputs. FMU parameters (scalar variables with causality “parameter”) are also available in 20-sim. This means that you can alter the default values of these FMU parameters in 20-sim. The altered FMU parameters are transferred to the FMU during the initialization mode phase of the FMU.

### 6.8.4 FMU Export

20-sim can export two types of FMUs:

**Standalone FMU**

This FMU can be exported from a 20-sim submodel using C-code generation. It does not depend on the original 20-sim model or your 20-sim license and can be used standalone. However, this type of FMU can only be exported if the submodel is exportable as C-code.

To export a **Standalone FMU**:

1. Select a submodel
2. Select the File menu
3. Select Export
4. Select the option *FMI 1.0 Co-Simulation FMU Export (standalone)* or *FMI 2.0 Co-Simulation FMU Export (standalone)*
5. This will ask for a Folder in which your FMU will be generated

**Limitations:**

The following 20-sim language features that are not supported, (or are only partly supported) for standalone FMU export, are:

- **Hybrid models:** Models that contain both discrete- and continuous time sections cannot be generated at once. However, it is possible to export the continuous and discrete blocks separate.
6. Editor

- **File I/O**: The 20-sim “Table2D” block is supported; the “datafromfile” block is not yet supported.

- **External code**: Calls to external code are not supported. Examples are: DLL(), DLLDynamic() and the MATLAB functions.

- **Variable delays**: The tdelay() function is not supported due to the requirement for dynamic memory allocation.

- **Event functions**: timeevent(), frequencyevent() statements are ignored in the generated FMU.

- **Fixed-step integration methods**: Euler, Runge-Kutta 2 and Runge-Kutta 4 are supported.

- **Variable-step integration methods**: Only Vode-Adams is supported.

- **Implicit models**: Models that contain unsolved algebraic loops are not supported.

**Tool-wrapper FMU**

This FMU can be exported from a 20-sim model with a Co-simulation Interface. A tool-wrapper FMU is a communication FMU that opens the original model in the modelling tool and takes care of remotely executing the co-simulation steps inside 20-sim. It uses the 20-sim Scripting Toolbox to communicate with 20-sim to exchange inputs/outputs and parameters.

To export a **Tool-wrapper FMU** for your 20-sim model:

1. Extend the model with a *co-simulation interface*. See the page Co-simulation Interface for the details.

2. Select the *File* menu

3. Select *Export*

4. Select the option *FMI 2.0 Co-Simulation FMU Export (Toolwrapper)*
7 Simulator

7.1 Introduction

7.1.1 Simulator

20-sim consists of two main windows and many tools. The first window is the Editor and the second is the Simulator. The Editor is used to enter and edit models. The Simulator is used to simulate and analyze the models. The Simulator is opened in the Editor by clicking the Start Simulator button from the Model menu.

The Simulator is used to carry out simulations, show the results and analyze them.

The Simulator consists of three parts:

- **Simulator Tree**: This is the tree at the left. Here plots and plot windows can be added.
- **Simulation Plot**: This is the graph in the middle. Here the simulation results are shown.
- **Output tab**: The Output tab shows warnings and messages.

**Simulation**

A modeling and simulation session in 20-sim can be visualized by the diagram shown below.
7. Simulator

Compiling/Debugging
After the model has been successfully entered, it must be checked and compiled to generate simulation code. This is done in 20-sim automatically when you open the Simulator or when you check a model. In some cases the model contains errors which have to be solved by adapting the model. Errors in 20-sim are presented in the Process tab at the bottom of the Editor.

Settings
After a successful compilation of a model that is created in the Editor you can open the Simulator. In the Simulator you have to enter specific settings:
- Parameters / Initial Values.
- Run Properties.
- Plot Properties.

Running
After the settings have been entered you can run the simulation.

Plotting
Simulation results can be shown in 20-sim as:
- Numerical Plots:
  - Time Domain (default)
  - Frequency Domain (FFT Analysis & Linearization)
• Animation in a Graphical Model
• 3D Animation

Debugging
If you experience problems during simulation you have to resolve them in a debugging session.

Analysis
After a successful simulation you can analyze your model using various tools:
• Parameter Sweeps
• Curve Fitting
• Optimization
• Sensitivity Analysis
• Monte Carlo Analysis
• Variation Analysis
• FFT Analysis
• Linearization

Message Log
The bottom of the Simulator shows a tab named Output. This tab contains the Message Log which shows all the messages, warnings and errors, that are generated during a simulation.
7.2 Running a Simulation

7.2.1 Parameters and Initial Values

The Parameters/Initial Values Editor is used to edit the constants, parameters and initial values of a model. Parameters and initial values can be changed during simulation, constants cannot be changed. To open the Parameters/Initial Values Editor, you have to:

1. From the Properties menu select the Parameters command.

The Parameters/Initial Values Editor.

The parameter items (Name, Value, Quantity, Unit, Description, Kind, Arithmetic Type, Value) of the parameters and initial values are listed in right part of the window. The list of parameters and initial values that is displayed depends on the selected submodel in the left part of this window.

Items

- **Model Hierarchy**: The left part displays the complete model hierarchy. At each level of the hierarchy, submodels can be selected. The right part of the window then shows the parameters and initial values of that submodel. To see all parameters and initial values, select the top level of the hierarchy, i.e. the main model listed on top.

- **Parameters and Initial Values**: The order of the parameters or initial values in the list depends on the order in which the submodels were originally entered in the Editor. Click on the name box to make the order to alphabetical. Drag the name box to change the width of the parameters list.
• **Value**: You can change the default value of a parameter or initial value in the value list. Select the parameter or initial value (mouse) and enter the desired value. Use the Enter key to quickly run through a list of parameters.

• **Unit**: If available, select the desired Unit from the drop down list.

• **From Matlab / To Matlab**: Use the buttons to import or exports parameter values from or to Matlab.

• **Expand Vectors/ Matrices**: Select this option to see the individual members of matrices and vectors.

• **Show Hidden**: Hidden parameters are by default not visible. Select this option to show hidden parameters.

• **Import**: Use this button to import the parameter values from another model.

**Commands**

If you select a model or submodel in the hierarchy tree several command are available using the right mouse menu:

• **Copy Parameters (for parameters or Constants)**: Of the selected (sub)model, copy the parameter name, value and other properties to clipboard for use in a spreadsheet or file.

• **Copy Initials (for Initial Values)**: Of the selected (sub)model, copy the initial value name and other properties to clipboard for use in a spreadsheet or file.

• **Initials to Zero**: Of the selected (sub)model, set the initial values to zero.

If you select a parameter, initial value or several command are available using the right mouse menu:

• **Copy Value**: Copy the value to clipboard.

• **Copy with Unit**: Copy the value and unit to clipboard.

• **Copy Specified**: Specify what to copy to the clipboard.

**Note**

• All equations in 20-sim are calculated using standard SI-units. You can however enter parameters, using whatever Unit you like. In the Parameters/Initial Values Editor, you can change the unit using the little drop down list next to the Value box.

• The description of a parameter can be specified in the parameters part of the equation description of a model.

• To see a global parameter, select the top level of the hierarchy, i.e. the main model listed on top.

**7.2.2 Run Properties**

The Run Properties Editor can be used to choose the integration method used for simulation. An integration method is the algorithm that calculates the model equations during each simulation and generates the output values for the simulation plots. The default integration method is the Backward Differentiation Formula (BDF). To open the Run Properties Editor, you have to:
7. Simulator

1. From the **Properties** menu select the **Run** command.

![The Run Properties Editor.]

Initially, the fields in the Run Properties Editor contain default values if no experiment was loaded. Two or more tabs can be selected:

- **Simulator**: This tab shows the general simulation settings.
- **Discrete Systems**: This tab is only visible when discrete systems are part of your model. It contains the settings for the sample frequency.
- **Algebraic Relations Solver**: This tab is only visible when your model contains algebraic loops that could not be solved during processing.
- **Integration Method**: The last tab contains the specific settings for the selected integration method.
7.2.3  Plot Properties

The Plot Properties Editor can be used to enter the plot specifications. To open the Plot Properties Editor, you have to:

1. From the Properties menu select the Plot command.

The Plot Properties Editor.

The editor shows three tabs which can be used to set the properties of the plot and the x and y variables.

**Plot Properties Tab**

The Plot Properties Tab shows the general settings that accompany a plot. A preview is shown in the lower part of the tab.

- **Plot Title**: Select this option to add a title to the plot. In the text box you can type the desired title. Use the radio buttons to display the title to the left, in the middle or to the right of the plot.
- **Colors**: Click the Background, Plot and Grid buttons to select the background, plot and grid colors.
- **Grid**: Select this option to show the grid.
- **Background**
  - **Windows Default**: Select this option to get the default Windows background.
  - **3D Look**: Select this option to get a plot with 3D Look (sunken edges).
- **Axes**:
7. Simulator

- Select the options Logarithmic X and Logarithmic Y to show logarithmic plots.
- Show X-Values: Use this option to show or hide the X-axis values.
- Show Legend: Use this option to show to show a legend.
- Fonts: Click the Title, Values and Labels buttons to select the font options for the title, values and labels.

**X-Axis Tab**
The X-Axis Tab can be used to specify the variable plotted along the X-axis.

![X-Axis tab of the Plot Properties Editor.](image)

- **Variable Name**: The time, a variable or a parameter can be chosen as the X-axis variable. Click the button on the right (Choose) to open the Variable Chooser and select the desired variable or parameter.
- **Label**: Enter the label that should be printed below the X-axis.
- **Show Unit**: Select this option to display the unit of the chosen variable.
- **Scaling**
  - Manual: Fix the scale of the X-axis by selecting a minimum and maximum value in the From and To boxes.
  - Post: During the simulation run, the scale for the variable along the axis is fixed. When the run is finished or has been interrupted by the user, the minimal and maximal scale values are automatically updated and the plot is redrawn to make sure all calculated points are displayed.
7. Simulator

- **Automatic**: When a variable reaches the end of the scale, during simulation, the minimal and maximal scale values are automatically updated and the plot is redrawn to make sure all calculated points are displayed.

- **Clip to Bounds**: When a variable reaches the end of the scale, during simulation, the minimal and maximal scale values are automatically updated and the plot is redrawn to make sure all calculated points are displayed. When the run is finished or has been interrupted by the user, the minimal and maximal scale values are automatically updated to show the plot at maximum scope.

- **Show Values**: Use this option to show or hide the X-axis values.

**Y-Axis Tab**

The **Y-Axis Tab** is used to specify the curves that should be shown in the plot. For each selected curve, a tab is shown, displaying the settings of that curve.

![The Y-Axis tab of the Plot Properties Editor.](image)

**Curves**

- **Add Curve**: Add a new tab to specify a new curve to be displayed in the plot.

- **Delete Curve**: Delete the selected tab. As a result, the curve specified in the tab will not be displayed in the plot, and the settings are lost.

- **Variable Name**: Use this box to connect a variable to a curve. One of the dynamic variables of the model can be selected or a parameter. Click the button on the right (Choose) to open the Variable Chooser and select the desired variable or parameter.
• **Label**: Enter the name of the curve. This label is also printed next to the Y-axis.

• **Show Unit**: Select this option to display the unit of the chosen variable.

• **Line Properties**
  - **Line Style**: Select the desired line style of the curve.
  - **Thickness**: Select the desired line thickness of the curve.
  - **Color**: Select the desired line color of the curve.
  - **Order**: In the plot a line is drawn from plot point to plot point. You can choose the line to be of two orders of interpolation:
    - Zero: the line consists only of horizontal and vertical parts.
    - First: the line consists of straight parts.

• **Tick Style Properties**
  - **Tick Style**: Each calculated point of a curve, can be displayed by a special marker. Select here the desired marker.
  - **Min. Distance (pixels)**: To prevent markers from being drawn on top of each other, you can set the minimum distance between markers. Points that are too close to a previous marker are not drawn with a marker.
  - **Color**: Select the marker.

• **Scaling**: Scaling can be selected for each curve individually or combined for all curves.
  - **Shared Y Axes**: Select this option to use one Y-axis scale for all curves.
  - **Manual**: Fix the scale of the variable by selecting a minimum and maximum value in the From and To boxes.
  - **Post**: During the simulation run, the scale for the variable along the axis is fixed. When the run is finished or has been interrupted by the user, the minimal and maximal scale values are automatically updated and the plot is redrawn to make sure all calculated points are displayed.
  - **Automatic**: When a variable reaches the end of the scale, during simulation, the minimal and maximal scale values are automatically updated and the plot is redrawn to make sure all calculated points are displayed.
  - **Clip to Bounds**: When a variable reaches the end of the scale, during simulation, the minimal and maximal scale values are automatically updated and the plot is redrawn to make sure all calculated points are displayed. When the run is finished or has been interrupted by the user, the minimal and maximal scale values are automatically updated to show the plot at maximum scope.
  - **Show Values**: Select or de-select this option to show or hide the name and scale of a curve.

• **Separate X-Axis**: If you want another x-axis than specified in the X-axis tab, click the Choose button to select the desired variable.
7.2.4 Running a Simulation

After specification of the Parameters/Initial Values, the Run Properties and Plot Properties you can start a simulation run by choosing the appropriate command from the Simulation menu.

- **Run**: Select the Run command to start or continue a simulation run. Once a run is started, the Stop command becomes active. The run can be interrupted by selecting this command.

- **Stop**: Use the Stop command to interrupt a simulation. Once a simulation has stopped it can be continued by selecting the Start Simulation command.

- **Clear**
  - **All Runs**: Select the Clear All Runs command to clear all runs that were performed, from the graphical screen and from the computer memory.
  - **Last Run**: Select the Clear Last Run command to clear the run that was performed last, from the graphical screen and from memory.
  - **Previous Runs**: Select the Clear Previous Runs command to clear all runs, but the last, from the graphical screen and from memory.

- **One Step**: Use the One Step command to calculate one new simulation point. Using this command repeatedly, allows you to run a simulation step by step.

- **Brute Force**: Using the Brute Force command, curves are displayed after complete calculation of a simulation run. This saves time (re)drawing curves during calculations and therefore considerably speeds up simulation.

- **Multiple Run**: Select the Multiple Run command to start multiple runs needed for the Time Domain Toolbox. Runs can be interrupted by selecting the Stop command.

- **Replay**
  - **3D Animation**: Any 3D Animation that was performed during a simulation run, can be quickly replayed using this option.
  - **Real Time 3D Animation**: Any 3D animation that was performed during a simulation run, can be replayed in real time (i.e. frames are skipped if necessary) using this option.
  - **Read Datafile**: Use the Read Data File command to read previously stored simulation runs from file.

- **Copy States**: With the Copy States command the current independent state variables can be imported as new initial values. Current state variables are the state variables at the end of a simulation run or at the point where a simulation run was interrupted.
7.2.5 Numerical Values

In every simulation plot you can inspect the numerical values by selecting the Numerical Values command of the View menu. The Numerical Values window, can also be popped up by double clicking the left mouse button, while pointing the mouse at a curve in the plot.

The Numerical Values window will pop up and display the numerical values of all plotted variables as a function of time. The last variable shown is always the X-axis variable (usually time).

- **Run Number**: The run number indicates the run of which the numerical values are shown. The highest number indicates the last run simulated. Lower numbers are used for previous runs. To select another run number, type in the number of interest or point in the plot at the curve of interest. In the simulation plot, previous runs are shown with fading colors.
7. Simulator

- **List**: The list shows all variables that are shown in the plot and their corresponding X-values and Y-values. The variable that is currently selected is pointed out by an arrow in the plot.

- **Scroll-bar**: Use the scroll-bar to change the selected x-axis variable value (usually time).

- **Find**: With the Find button, the global maximum etc. of the selected variable can be found. The following functions can be selected:
  - **Global Maximum**
  - **Global Minimum**
  - **Next Local Maximum**
  - **Next Local Minimum**
  - **Previous Local Maximum**
  - **Previous Local Minimum**

- **Mark**: Click the Mark button to store the set of numerical values. If you drag the scroll-bar to find a new set of values, the relative changes will be displayed as well as a first order derivative.

### 7.2.6 Variable Chooser

The Variable Chooser can be used to select and inspect any dynamic variable of the loaded model. The names, kinds, types, values, quantities, units and descriptions of the variables of the loaded model are listed in right part of the window. The list of dynamic variables displayed, depends on the selected (sub)model in the left part of this window. The left part displays the complete model hierarchy.

![Variable Chooser](image)

*The Variable Chooser shows all variables of a model.*
Items

- **Model Hierarchy:** The model hierarchy shows several keys:
  - **Model:** At each level of the hierarchy, submodels can be selected and inspected. The right part of the window then shows the variables that are part of that submodel. To see all variables including time, select the top level of the hierarchy, i.e. the main model listed on top. Click on one of the variable items (Name, Value, Quantity, Unit, Description, Kind, Arithmetic Type, Value) to order the variables alphabetically.
  - **Input Probes/Output Probes:** In the Frequency Response dialog pairs of input variables and output variables can be selected for linearization. If input variables have been selected they are shown under the input probes key. If output variables have been selected they are shown under the output probes key.
  - **Favorites:** variables that are used a lot can be added to the favorites key for easy use.
  - **Variables:** Select the desired variable from the list (use your mouse pointer), select the desired Unit from the drop down list and click OK to close the window.
  - **Minimum and Maximum values:** If you run a simulation in **Debug Mode**, the minimum and maximum value of every variable is shown.
  - **Unit Selection:** If a quantity was assigned to the selected variable with multiple units (e.g. position -> m, mm, inch, etc.) you can switch units by the unit selection at the bottom of the variable list.
  - **Expand Vectors/Matrices:** Select complete vectors and matrices or only their elements.
  - **To Matlab:** Use the button to export a variable value to Matlab. You will be asked to enter a Matlab variable. Data will be exchanged between this Matlab variable and the variable that is selected in 20-sim.
  - **Show Variables:** Select the specific kind of variables (Variables, States/Rates, Alias Variables, Dependent/Algebraic, Hidden Variables, Knots) that should be displayed in the Variables list.

Actions

If you select a variable in the list and use the right mouse menu several actions can be performed:
- **Add to Favorites:** add the selected variable to the favorites list.
- **Add to Input Probes:** Add the variable to the list of inputs for linearization. This list is used in the Frequency Response dialog.
- **Add to Output Probes:** Add the variable to the list of outputs for linearization. This list is used in the Frequency Response dialog.
- **Copy:** copy the variable value to clipboard.
- **Copy with Unit:** copy the variable value and corresponding value to clipboard.
- **Copy Specified:** Specify the items that should be copied and then copy to clipboard.
7. Simulator

Tips

1. All equations in 20-sim are calculated using standard SI-units. You can however display the results, using whatever Unit you like. In the Variable Chooser, you can change the unit using the little drop down list just above the Show Variables section.

2. To see global variables, select the top level of the hierarchy, i.e. the main model listed on top.

3. To quickly find some variables out of the list, add the keyword interesting in the equation description. In the Variables list, de-select States, Rates, Algebraic Loops, Dependent States and Dependent Rates. Then only the interesting variables are shown.

4. When using large models, opening the Variable Chooser may take some time. Use the General Properties window to set the maximum number of variables that should be shown.

5. To hide variables from the list, add the keyword hidden in the equation description. Hidden variables are not visible in the Variable Chooser.

6. When you open the Variables Chooser from a plot, it will also show the parameters of a model or submodel, to allow parameters to be plotted.
7.2.7 Debugging

20-sim has various tools to help you pinpoint and resolve problems that may occur during a simulation.

- **Switch to Debug Mode**: 20-sim is operating in Debug Mode when you see the *Debug Mode* button 🔄. If your Simulator or Editor is in Fast Mode ⚡️, click on the button to change to Debug Mode.

- **Recompile your model**: In the editor select *Check Complete Model* from the *Model* menu. This will recompile your model in Debug mode and show a maximum of warnings. If any warning looks suspicious, solve this first.

- **Breakpoints**: Set breakpoints to monitor time or conditions between variables.

- **Run to the breakpoint**: Use the Run command from the *Simulation* menu to run the simulation to a breakpoint. As soon as the breakpoint has been reached, the simulation will halt. The *Output tab* at the bottom of the Simulator will display which breakpoint was active.

- **Simulate Step-by-Step**: Use the command One Step from the *Simulation* menu to simulate one simulation step for the complete model.

- **Inspect the Results**: After each step, open the Variable Chooser to inspect the various variables of the model. You can also switch to the *Editor* to inspect results at model level:
  - **Submodels**: Select a specific submodel and choose *parameters* or *variables* to inspect the parameters and variables of that submodel.
  - **Equation submodels**: Put the mouse pointer on top of an equation and point to a variable or parameter of interest. A box will appear, showing the numerical value associated with that variable or parameter.

```plaintext
parameters
 real initial = 0;

equations
 output := hold(input, initial);
```

*Use the mouse pointer to inspect numerical values.*

- Graphical submodels: Put the mouse pointer on top of a signal, bond or connection. A box will appear, showing the numerical value associated with that signal, bond or connection.
7. Simulator

7.2.8 Breakpoints

20-sim allows you define stops in a simulation called breakpoints. You can set breakpoints using the Breakpoint Editor. This editor can be opened by selecting the Breakpoints command from the Properties menu in the Simulator.

You can run a simulation from breakpoint to breakpoint, using the Continue command from the Simulation menu.

Breakpoints are useful when problems occur during simulation. By defining an appropriate breakpoint and using the Run command, you can run a simulation until the point where the problem occurs. You can continue the simulation using single steps or just running it again.

Use the mouse pointer to inspect numerical values.
Items

- **Add/Delete**: Use the Add and Delete buttons to add or delete breakpoints. When you add a breakpoint, an editor will be opened to enter the breakpoint conditions.
- **Breakpoints**: The Breakpoints list shows the entered breakpoints.
- **Enter the ... skip before stopping**: A breakpoint may occur more than once before it should stop the simulation run. Enter here the number of times to skip the breakpoint.
- **When**: A breakpoint may occur more than once during a simulation run. With this option you can select the breakpoint to be active only once or always.
- **Active**: Use this option to make a breakpoint effective or not.
- **Edit Condition**: When a breakpoint is selected in the breakpoints list, you can edit it, using the Edit Condition button. This will open an editor which helps you to enter the breakpoint condition.
- **Import**: Import breakpoints from another model.

**Note**

Breakpoints are only active when 20-sim is operating in *Debug Mode!*

### 7.2.9 New Simulation Plot

You can open additional plots by selecting the *New Plot Window* command from the *View* menu of the simulator.

![You can open additional plots in 20-sim.](image)

Every plot will have a menu bar and buttons to allow you to enter the settings for the plot and running a simulation.
7.2.10 New 3D Animation Plot

You can open additional 3D Animations by selecting the New 3D Animation Window command from the View menu of the simulator.

Every 3D Animation will have a menu bar and buttons to allow you to enter the settings for the plot and running a simulation.

7.2.11 Arrange Plots

A Plot Window can contain multiple plots with multiple curves. It can also contain a mix of curve plots and 3D animation plots.

Change the plot window layout

By default, 20-sim will auto-arrange plots row-wise, then column-wise. It is possible to change the tile options to:

- Tile Horizontal
- Tile Vertical
- Strip Chart

Strip Chart is a special version of Tile Vertical with a common X-axis for all plots.

To change the tile options, right-click on the plot window in the Plot Windows tree and select the menu Tile Plots.
7. Simulator

Reorder plots and curves
To change the order of plots within a plot window, you can drag-drop plots in the tree. It is also possible to move a plot from one plot window to another in this way. Moving curves within plots and between plots is also possible via drag-drop.

Change the plot tile options
7.2.12 Resample Curves

Select the *Resample Curves* command from the *View* menu to sample a simulation run with a fixed sample time. This is useful if you want to use your simulation results in other programs that need data with a fixed time step. An example is given below where a curve (red dots) is shown that is simulated with a variable step integration method. Resampling with a sample time of 0.1 s will result in a curve with only the blue dots.

Use the *Resample Curves* command to get equidistant timing in the plot.

Selection of the *Resample Curves* command of the *View* menu pops up the *Resample Curves dialog*. You can enter the amount of data that you want to resample and the sample time or frequency.
Note
To get simulation data with a fixed time step, using a fixed step integration method is not enough, because this data may contain additional steps generated by time or state events. Only the Resample Curves command will guarantee fixed time step data!

7.2.13 Copy States
To get the same model behavior, compared to the end of the previous run, we have to copy the states of a model to the initial values.

When you use the Copy States command of the Simulation menu, 20-sim overwrites the initial values of the functions ddt, int, limint and resint with their current output states. This can be done at the end of a simulation run or at any point where a simulation run was interrupted.

Tip
For some models, behavior at some operating point or "steady state" is of interest. Use the Copy States command to create simulation that directly starts at working level:

1. Run a simulation from \( t = 0 \) [s] until the operating point is reached. Use the Copy States command to store the states as new initial values. Now save the experiment using some special name.

2. Now each time you open this experiment, simulations directly start at operating point.
**States**

Consider the following first order linear model:

![Diagram of a first order linear model](image)

This model can be described by the dynamic equation:

\[
\text{output} = \text{int}(0) + \text{int}(\ f(\text{input},\text{output}) \ )
\]

with:

\[
\text{int}(0) = \text{the initial value of the integral} \\
f(\text{input},\text{output}) = \text{input} - K*\text{output}
\]

In more general terms this equation can also be described as:

\[
\text{state} = \text{int}(0) + \text{int}(\text{rate}) \\
\text{rate} = f(\text{input}, \text{state})
\]

When we start to simulate this model at \( t = 0 \) [s] the value of the integral is zero. The state is therefore equal to the initial value \( \text{int}(0) \):

\[
\text{state}(0) = \text{int}(0)
\]

At the end of a simulation, the integral may be unequal to zero. The state is therefore equal to:

\[
\text{state}(\text{end}) = \text{int}(0) + \text{int}(\text{rate}(\text{end})).
\]

In other words, the value of the state is characteristic for the behavior of the model. To start a new simulation with the same behavior, we have to change the initial value to:

\[
\text{int}(0) = \text{state}(\text{end})
\]

This is valid for all dynamic models: The states of a model are characteristic for its behavior. To get the same behavior, compared to the end of a previous run, we have to copy the states to the initial values.
7.2.14 Exporting Simulations

There are several methods to export simulation results:

1. Export Plot to Clipboard or File.
2. Export Experiment To Clipboard.
3. Export Data to File.

**Export to Clipboard or File**

From the File menu, you can choose Export Plot to MetaFile or Export Plot to Clipboard to export a drawing of the simulation plot.

**Export High Resolution Plot to Clipboard or File**

Simulation plots can be very dense. To limit the file size, by default not all details are exported to clipboard or to file. If you need a detailed plot, from the File menu, you can choose Export High Resolution Plot to Clipboard or Bitmap. Another option is to use the right mouse menu, when the mouse on top of a plot and select High Resolution Export.

**Export Experiment To Clipboard.**

From the File menu, you can choose Export Experiment to Clipboard to export all plot settings. A dialog will be opened asking you to specify the settings that should be copied. You can select:

- Parameters
- Initial Values
- Plot Specifications
- Run Specifications
- Multiple Run Specifications
- Export Data Specifications
- BreakPoints

**Export Data to File**

From the File menu, you can choose Save Data To File to export the plotted values to a data file. A file dialog window will pop up asking you to enter a filename. You can choose from the following file formats:

- Comma Separated File (*.csv): This is the default format and can be used for exporting data to spreadsheet programs such as Microsoft Excel or Open Office Calc.
- 20-sim data file (*.n): This is the standard 20-sim format.
- Data Files (*.dat): The standard ANSI format for data files.

**Tip**

You can use the Export Data To File command to store simulation results of time consuming simulations. For later use you can use the Import From Data File command to read the result from file.
7.2.15 Importing Simulations

There are several methods to import simulation results:

1. Import experiment.
2. Import simulation data.

**Export Plot Settings**

From the *File* menu, you can choose *Import Experiment* to import the simulation settings from another model. The setting contain all the necessary information that you need to define a simulation:

- parameters
- run properties
- plot properties
- ...

**Import Data File**

From the *File* menu, you can choose *Import Data From File* to import a previously saved simulation plot. A window will pop up allowing you to specify the filename and variables that should be plotted.

If the file contains a header describing the variables inside, they will be shown in the variables dialog.
7. Simulator

- **Filename**: You can select an existing filename using the browse button or type one. Data can be read as text file or as binary format.
- **Read Header**: Select this button if you want extra information (variable names etc.) to be read from the data file.
- **Variables**: The variables box shows the number of columns that were found in the data file. Each column must be matched with a variable that is shown in the plot. Click with the mouse on a column number to select it. Then click the Match Variable button. This opens a Variable Chooser in which you can select a variable. When a header was used when storing the data file, this matching is done automatically.
- **Match Variable**: Use this button to select a matching variable for each column in the variables box.
- **Plot Variables**: Use the Delete button to delete a selected variable
- **Plot Variables**: Use this button to put the same variables as shown in the plot into the columns of the variables box.
- **Up/Down**: Use the Up and Down buttons to change the order of the variables shown in the list.

**Tip**
You can use the Export Data To File command to store simulation results of time consuming simulations. For later use you can use the Import From Data File command to read the result from file.

### 7.2.16 Full Screen Mode

You can show simulation plots and 3D Animations in full screen mode.

1. Put your mouse on top of a plot or animation.
2. From the right mouse menu, select **Toggle Full Screen**.

To remove the full screen mode:

1. From the right mouse menu, select **Toggle Full Screen** or press the **Escape** key.

### 7.2.17 Keyboard shortcuts

This is a list of keyboard shortcuts in simulator.

**Navigation**

<table>
<thead>
<tr>
<th>Command</th>
<th>Shortcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save 20-sim project</td>
<td>[Ctrl] + S</td>
</tr>
</tbody>
</table>

**Current Page**

<table>
<thead>
<tr>
<th>Command</th>
<th>Shortcut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Simulator

**Zoom in**  [F4]
**Zoom normal**  [F5]
**Zoom out**  [F6]
**Zoom to fit**  [F7]

**Control**

<table>
<thead>
<tr>
<th>Command</th>
<th>Shortcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear simulation</td>
<td>[Ctrl] + e</td>
</tr>
<tr>
<td>Next camera</td>
<td>[Ctrl] + a</td>
</tr>
<tr>
<td>Process frequency response</td>
<td>[Ctrl] + f</td>
</tr>
<tr>
<td>Replay simulation</td>
<td>[Ctrl] + q</td>
</tr>
<tr>
<td>Run simulation</td>
<td>[Ctrl] + r</td>
</tr>
<tr>
<td>Stop simulation</td>
<td>[Ctrl] + t</td>
</tr>
<tr>
<td>Single step simulation</td>
<td>[Ctrl] + w</td>
</tr>
</tbody>
</table>

### 7.2.18 Training Simulators

Training simulators are simulation models that run in real-time and can be used to train people. 20-sim has some features that allow you to turn 20-sim into a training simulator. The example model KnuckleBoomCraneKeyboard will show you how it works:

1. Go to the Examples Library and look into the 3D Mechanics folder or in the search bar enter *KnuckleBoomCraneKeyboard*. The Find tab will show the results. Click on the link to jump to the model.
2. Drag and drop the model to the editor. The keyboard inputs are shown in the model.
3. Run a simulation and use the keyboard inputs to move the crane.

Developing your own training simulator is not difficult. All you have to do is:

1. Develop a model, that will mimic your training system.
2. Allow manual inputs, by keyboard or joystick. The library of 20-sim contains special blocks for keyboard input or joystick input which you can use.
3. Run the simulation in real-time.
4. Use 3D animations to show views of your system.
5. Run the 3D-Animations in full screen.

**Tips**

- Use transparency to show or hide parts of your 3D animation.
7.3 Run Properties

7.3.1 Simulator Tab

The Simulator tab is the first tab of the Run Properties Editor. This tab shows the general simulation settings:

![The 20-sim Run Properties.](image)

**Items**

- **Timing (seconds):**
  - *Start*: the start time of a simulation run (default: 0)
  - *Finish*: the finish time of a simulation run (default: 10)
  - *Event delta*: the accuracy for spotting state events. This option can only be selected if a model contains state events.

- **Integration Methods**: 8 numerical integration methods are available, each with its own parameters. The parameters can be changed by clicking the Set Properties button or selecting the tab on top of the editor.
  - Euler
  - Backward Euler
• Adams-Bashford 2
• Runge Kutta 2
• Runge-Kutta 4
• Runge Kutta Dormand Prince 8
• Runge-Kutta-Fehlberg
• Vode Adams
• Backward Differentiation Formula (BDF)
• Modified Backward Differentiation Formula (MBDF)

• **Output After Each**: This is the plot interval. Use this option to generate output only after each equidistant time interval has passed. For each interval, the exact simulation point is used (if available) or the nearest point is used (if not available, for example when using variable step algorithms).

• **Related Options**
  • **BreakPoints**: Click this button to open the Breakpoints Editor.
  • **General Properties**: Click this button to open the General Properties Editor.
  • **More**: Click this button to set advanced options:
    • **Endless**: Select this option if you do not want the simulation to stop.
    • **Attempting Real-Time simulation**: Select this option if you want the simulation to run as fast as the real time. You can choose the option *Catch up with lost time* and set the *Maximum allowed lost time*.

**Tips**

• Use **Attempting Real-Time simulation** when you have keyboard input or joystick input in your model.
7.3.2 Discrete System Tab

The Run Properties Editor can be used to edit the sample frequency of a discrete-time system in the model. 20-sim automatically detects the existence of discrete systems in a model. For each discrete system, one extra tab (Discrete System) is shown in the Run Properties Editor.

![Discrete Systems tab](image)

The Discrete Systems tab.

**Items**

- *Identified with*: Each discrete system in a model is assigned a unique identifier. 20-sim detects discrete systems by looking for discrete functions and variables:

  1. sample
  2. hold
  3. next
  4. previous
  5. sampletime

When a function has been found, the elements of the corresponding discrete system are identified by propagation of the equations. In order of appearance in the model, the discrete system is assigned a unique identifier:

  1. sample -> the variable that is assigned to the output of the sample function.
  2. hold -> the variable that is assigned to the output of the hold function.
  3. previous -> the discrete state corresponding with the previous function.
4. next -> the discrete state corresponding with the next function.
5. sampletime -> the variable that is equal to the sampletime.

- **Timing (Standard):** Each discrete system has a default sample frequency of 1 Hz. You can change this frequency to any desired value:
  - **Discrete Time Interval (s):** The sample interval (in s) of the discrete system
  - **Frequency (Hz):** The sample frequency (in Hz) of the discrete system.
- **Timing (Advanced):** For discrete-time control loops that interact with physical continuous-time systems through sensors (analog to digital) and actuators (digital to analog) the specific timing is important. Click the Advanced button to specify this timing.

### 7.3.3 Advanced Discrete System Settings

The Advanced Discrete System Settings dialog can be used to set the timing for discrete-time control loops that interact with physical continuous-time systems through sensors (analog to digital) and actuators (digital to analog). You can open the dialog by:

1. In the Simulator from the **Properties** menu, click **Run** to open the Run Properties Editor.
2. Select the **Discrete System tab** and click the **Advanced Settings** button.

In the Advanced Discrete System Settings dialog you can specify the timing of control loops with a fixed **sampletime** (click **Global Time**) and control loops with a variable **sampletime** (click **Previous Sample Event Time**).

**Fixed Sampletime**

When you click the **Global Time** option the following window appears.
The window shows the timing diagram for a fixed sampletime control loop. The loops start with an clock interrupt from a timer. It will take some time before the interrupt is handled and generally some calculations are performed before the sensor signals (sample) are read. This delay is represented by the sample delay which is divided in a fixed time and a variable time part. The control loop will proceed and perform the necessary calculations to generate the actuator output (hold). These calculations will take some time, which is represented by the fixed time hold delay. After this action the control loops will come to a halt until the next clock interrupt is generated.

If the control loops is properly designed it will know the task it is performing when a clock interrupt is getting in. E.g. if it is still calculating the actuator outputs when clock interrupt is getting in, an error will be generated, specifying that the sampletime is too small to perform all necessary calculations.

**Items**

- **Sample Delay**:
  - *Fixed*: Enter the fixed sample delay here.
  - *Variable*: Enter the variable delay here. You can chose from two distributions:
    - *Uniform*: The delay is uniformly distributed between the given minimum and maximum.
    - *Gaussian*: The delay has a given mean and standard deviation.
  - *Hold Delay*: Enter the fixed hold delay here.
  - *Action on Sample Missed*: An error will be generated when the total delay is larger than the sampletime or when the total delay is negative.
**Variable Sample Time**

When you click the **Previous Sample Event Time** option the following window appears.

The window above shows the timing diagram for a variable sample time control loop. It performs the same tasks as a fixed sample time control loop, but will start the next loop as soon as the previous loop was finished. The variable sample time control loop does not use a clock interrupt!

**Items**

- **Sample Delay:**
  - **Fixed:** Enter the fixed sample delay here.
  - **Variable:** Enter the variable delay here. You can choose from two distributions:
    - **Uniform:** The delay is uniformly distributed between the given minimum and maximum.
    - **Gaussian:** The delay has a given mean and standard deviation.
  - **Hold Delay:** Enter the fixed hold delay here.
  - **Action on Sample Missed:** Only an error will be generated when the total delay is negative.
7.3.4 Algebraic Relations Solver Tab

The Algebraic Relations Solver tab of the Run Properties Editor is visible when your model contains algebraic loops that could not be solved during processing. In the tab, you can specify the tolerance of the algebraic solver algorithm. For each model evaluation, this solver tries to solve the algebraic loop relations, while standard integration algorithms, such as Euler, can be use to evaluate the model equations.

7.3.5 Euler

This is the explicit Euler method. It is a single-step explicit method, which needs one model calculation per time step. The size of the time step is fixed. This simulation algorithm requires 1 parameter to be specified:

- **Step Size**: the step time of the integration algorithm (default: 0.01).

7.3.6 Backward Euler

This is a combination of the implicit Backward Euler method and the explicit Forward Euler method. It is a single-step implicit method, which needs one model calculation per time step. With the parameter alpha the combination is defined:

<table>
<thead>
<tr>
<th>alpha</th>
<th>combination</th>
<th>explicit/implicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>100% Forward Euler</td>
<td>explicit</td>
</tr>
<tr>
<td>0</td>
<td>50% Forward Euler, 50 % Backward Euler</td>
<td>explicit</td>
</tr>
<tr>
<td>1</td>
<td>100% Backward Euler</td>
<td>implicit</td>
</tr>
</tbody>
</table>
• **Step Size**: the step time of the integration algorithm (default: 0.01).

• **Relative Tolerance**: Relative tolerance for the rootfinding in the Backward Euler method.

• **Alpha**: Choose between Forward Euler (alpha = -1), Trapezoidal (alpha = 0) and Backward Euler (alpha = 1).

### 7.3.7 Adams-Bashford

This is the trapezoidal rule. It is a single-step explicit method, which needs only two model calculations per time step. The size of the time step is fixed. This simulation algorithm requires 1 parameter to be specified:

• **Step Size**: the step time of the integration algorithm (default: 0.1).

### 7.3.8 Runge Kutta 2

This is an explicit single-step second-order derivatives method which needs 2 model calculations per time step. It is the simple form of the classical Runge-Kutta method. The size of the time step is fixed. This simulation algorithm requires 1 parameter to be specified:

• **Step Size**: the step time of the integration algorithm (default: 0.01).

### 7.3.9 Runge-Kutta 4

This is an explicit single-step fourth-order derivatives method which needs 4 model calculations per time step. It is the classical Runge-Kutta method. The size of the time step is fixed. This simulation algorithm requires 1 parameter to be specified:

• **Step Size**: the step time of the integration algorithm (default: 0.01).

### 7.3.10 Runge-Kutta-Fehlberg

This is an explicit variable-step 4/5-order derivatives method, primarily designed to solve non-stiff and mildly stiff differential equations. Because the method has very low overhead costs, it will usually result in the least expensive integration when solving problems requiring a modest amount of accuracy and having equations that are not costly to evaluate. This simulation algorithm has 4 parameters:

• **Integration Error** (required)
  - **Absolute**: The absolute integration error, valid for every state variable (default: 1e-6).
  - **Relative**: The relative integration error, valid for every state variable (default: 1e-6).

• **Step Size** (not required)
  - **Initial**: The step size for the first simulation step (default: 0.01).
  - **Maximum**: The maximum size of a simulation step (default: 1).
7.3.11 Runge Kutta Dormand Prince 8

This is an explicit variable-step 8-order derivatives method, primarily designed to solve non-stiff and stiff differential equations. This simulation algorithm has 4 parameters:

- **Integration Error** (required)
  - *Absolute*: The absolute integration error, valid for every state variable (default: 1e-6).
  - *Relative*: The relative integration error, valid for every state variable (default: 1e-6).

- **Step Size** (not required)
  - *Initial*: The step size for the first simulation step (default: 0.01).
  - *Maximum*: The maximum size of a simulation step (default: 1).

7.3.12 Vode Adams

This is the explicit variable-step stiff integration algorithm of Cohen and Hindmarsh. This method is specially suited for explicit models that combine high and low frequency vibrations with little damping (so called "stiff" models). This simulation algorithm has 4 parameters:

- **Integration Error** (required)
  - *Absolute*: The absolute integration error, valid for every state variable (default: 1e-6).
  - *Relative*: The relative integration error, valid for every state variable (default: 1e-6).

- **Maximum Step Size** (not required): The maximum size of a simulation step (default: 1).

- **Multistep Method** (required): The variable step integration method that is used. A BDF method is default and best suited for stiff systems.

- **Iteration Type** (required): The method used for iteration loops (algebraic relations). The Newton method is default and best suited for stiff systems.

7.3.13 Backward Differentiation Formula (BDF)

This is an implicit multi-step variable-order first-order derivatives method. It is Gear's backward differentiation formula, which is up to fifth order, so 1 to 5 model calculations are needed per time step. The code of the Dassl library is used. It is suitable for models having derivative causalities and/or algebraic loops. This simulation algorithm has 4 parameters:

- **Integration Error** (required)
  - *Absolute*: The absolute integration error, valid for every state variable (default: 1e-5).
  - *Relative*: The relative integration error, valid for every state variable (default: 1e-5).
• **Step Size** (not required)
  • *Initial*: The step size for the first simulation step (default: 0.1).
  • *Maximum*: The maximum size of a simulation step (default: 1).

**Note**

- Undamped models are not simulated properly with this method.
- The default values are suitable for problems with time constants of order of magnitude of 0.1 to 1. Initial Step Size and Maximal Step Size influence the behavior of the method and should be tuned with care.

### 7.3.14 Modified Backward Differentiation Formula (MBDF)

This is an implicit multi-step variable-order first-order derivatives method. It is Gear's backward differentiation formula, which is up to fifth order, so 1 to 5 model calculations are needed per time step. The code of the Dassl library is used. It is suitable for models having derivative causalities and/or algebraic loops. The MBDF allows the use of constraint variables when proper initial values are used.

This simulation algorithm has 4 parameters:

• **Integration Error** (required)
  • *Absolute*: The absolute integration error, valid for every state variable (default: 1e-5).
  • *Relative*: The relative integration error, valid for every state variable (default: 1e-5).

• **Step Size** (not required)
  • *Initial*: The step size for the first simulation step (default: 0.1).
  • *Maximum*: The maximum size of a simulation step (default: 1).

**Note**

- This is the only method that supports the use of the constraint function.
- The MeBDFi method cannot handle contraints that do not influence the model. Therefore 20-sim will check at the beginning of the simulation if contraints have been properly defined. The contraints that do not influence the model are set to zero automatically. If you do not want to use this check, deselect the **Smart Contraint Solving** option.
- Undamped models are not simulated properly with this method.
- The default values are suitable for problems with time constants of order of magnitude of 0.1 to 1. Initial Step Size and Maximal Step Size influence the behavior of the method and should be tuned with care.
8 Language Reference

8.1 Introduction

8.1.1 Language Reference

Every (sub)model has an implementation. This can be a composition of lower level submodels, which themselves are composed of lower level submodels etc. At the bottom of this hierarchy the submodels consist of a set of mathematical equations (equation submodel). These submodels are therefore known as equation submodels.

All equations used in 20-sim are described in the language SIDOPS+. A simple equation model written in SIDOPS+ is shown below:
8. Language Reference

You will find out that in most cases the SIDOPS+ language is equal to standard mathematical notation. Regardless of your modeling background, you can learn quickly to build your own equation models. 20-sim comes with over 80 built-in functions that do most of the work for you. To learn more about equation models, have a look at the following sections:

1. Model Layout
2. Keywords ( Constants, Parameters, Variables, Equations )
3. Data Types
4. Operators
5. Functions
6. Statements

### 8.1.2 Equation Model Layout

The general layout of an equation model is:

```plaintext
constants
 // enter your constants here, for a description see constants
parameters
 // enter your parameters here, for a description see parameters
variables
```

A simple equation model in 20-sim.
8. Language Reference

// enter your variables here, for a description see variables
initialequations
// enter your initial equations here, for a description see initialequations
code
// enter your equations here, for a description see code
equations
// enter your equations here, for a description see equations
finalequations
// enter your final equations here, for a description see finalequations

At least one equations or one code section is required. The other sections are optional.

8.1.3 Equations

The body of an equation model consists of the keywords initialequations, code, equations and finalequations, each followed by one or more equations. Equations are relations between variables indicated by an equal (=) sign:

\[
y = x + 1; \\
z + y = \sin(time \times 2 \times \pi \times f); \\
g = ddt(g + z, g_{\text{initial}}); \\
\]

An equation can be combination of operators, functions, power-port variables, inputs and outputs (port names), constants, parameters and variables. Equations in 20-sim follow the standard mathematical notation.

Rules

The following rules must be obeyed when specifying equations:

1. An equation may span more than one line but must always be finished by a semicolon (;).
2. Parentheses may be used to indicate grouping as in ordinary mathematical notation, e.g.
   \[
u = \sin(time \times f \times 2 \times 3.1415 + (a + b)/c); \\
\]
3. Extensions like .e or .f are used to indicate the effort and the flow variables of powerports. These extensions are not allowed for any other type of identifier (i.e. inputs, outputs, constants, parameters or variables).
4. 20-sim has some predefined variables which have a special meaning.
5. Each variable must be assigned a value exactly once.
6. Errors are shown automatically after checking in the Process tab. Double clicking on the error text will make 20-sim jump to the error, which is then colored red.

Execution Order

1. Equations within 20-sim may be entered in random order. During compilation, 20-sim will automatically try to rewrite equations into a correct order of execution.
2. Some integration algorithms do more calculations before generating the next output value. These calculations are called minor steps, the output generation is called a major step. During a minor step, all model equations are executed. In most cases you will not notice this because only the results of the major step are shown in the simulator, but in some cases this may cause unwanted results.

### 8.1.4 Equation Sections

In 20-sim equations can be divided in four sections: *initialequations*, *equations*, *code* and *finalequations*.

#### Initialequations

The *initialequations* section should contain all equations that should calculated before the simulation run. The equations are calculated once. The equations in this section form a code block, i.e. the equations themselves and the order of the equations are not rewritten during compilation and executed sequentially. The results of the initialequations section are not shown in the simulator plots and can therefore not be inspected in the Numerical Values window!

**Example**

The *initialequations section* is used in the library model *Spring Damper (stiffness)*:

```plaintext
parameters
 real k = 10.0 {N/m};
 real m = 1.0 {kg};
 real b = 0.05 {};
variables
 real x {m};
 real d {damping,N.s/m};
initialequations
 d = 2*b*sqrt(k*m);
equations
 x = int (p.v);
 p.F = k * x + d*p.v;
```

As you can see in the *initialequations section* the damping $d$ is calculated out of the relative damping $b$, mass $m$ and stiffness $k$.

#### Equations

The equations section contains all standard equations. They do not have to be entered in a sequential form. They are rewritten during compilation to get the correct order of execution. The resulting code is calculated every simulation step. You can see the use of the equations section in the example above.

#### Code

The *code* section contains a code block. A code block contains all equations that must be calculated sequentially, i.e. the equations themselves and the order of the equations are not rewritten during compilation. The resulting sequential code is calculated every simulation step.

**Example**

The *code section* is used in the library model *Spring Damper (stiffness)*:
parameters
real initial = 0.0;
variables
real prev, peak;
initialequations
peak = initial;
prev = 0;
output = initial;
code
if major then
    peak = max([abs(input), peak]);
    if (input > 0 and prev < 0) or (input < 0 and prev > 0) then
        output = peak;
        peak = 0;
    end;
    prev = input;
end;

Finalequations
The finalequations section should contain all equations that should be calculated after a
simulation run. The equations are calculated once. The equations in this section form a
code block, i.e. the equations themselves and the order of the equations are not
rewritten during compilation and executed sequentially. The results of the finalequations
section are not shown in the simulator plots and can therefore not be inspected in the
Numerical Values window!

Example
The finalequations section is used in the library model DoMatlab-Final:

parameters
string command = "";
finalequations
// send the command to the workspace
doMatlab(command);

As you see you can give the parameter command any value, which is then exported to
Matlab at the end of the simulation run.

8.1.5 Using Port Names
To use port variables in equations, you must use the port names that are defined in the
Interface Editor.

Signal Ports
For signal ports, you can directly use the port names. The example below, shows the
library model Differentiate-SVF.emx. In the Interface Editor, two ports are defined with
the names input and output. In the equations these names are used.
The Interface tab shows the contents of the Interface Editor.

**Power ports**

Power ports describe the flow of power and are always characterized by two variables: the *power-port variables*. For bond graph ports the extensions .e and .f are used to indicate these variables. For iconic diagram ports many aliases are known, for example .u and .i for the electric domain. You can use these power-port variables in equations by typing the port name followed by a dot and the extension.

You can always find the correct extensions by opening the *Interface Editor* and selecting a port. The example below, shows the library model *Friction.emx*. In the Interface Editor, one power port is defined with the name *p*. As shown, the correct description of both variables is *p.v* and *p.F*.

Double clicking in the Interface tab will open the Interface Editor.
The equation description of this model (see below) shows the use of the variables \( p.v \) and \( p.F \).

In the equations the port variables \( p.F \) and \( p.v \) are used.

## 8.1.6 Reserved Words

While entering equations, the 20-sim Editor will automatically detect reserved words. You can recognize reserved words, because they will be shown with a different color:

- **element**  
  - **color** black

- **keywords**
  - **color** black

- **data types**
  - **color** black

- **functions**
  - **color** blue

- **statements**
  - **color** black

- **predefined variables**
  - **color** blue

20-sim knows the following reserved words:
8. Language Reference

- , * , / , ^ , + , < , <= , <> , == , > , >= , abs, adjoint, Adjoint, algebraic, and, antisym, arccos, arccosh, arcsin, arcsinh, arctan, arctanh, atan2, bitand, bitclear, bitcmp, bitget, bitor, bitset, bitshift, bitxor, boolean, by, ceil, code, collect, columns, constants, constraint, cos, cosh, cross, data, ddt, delta, det, diag, direct, discrete, div, dll, dlldynamic, dly, do, doMatlab, effortincausality, else, end, equal, equations, event, eventdown, eventup, exp, exp10, exp2, export, externals, eye, false, finalequations, first, floor, flowincausality, for, frequencyevent, from, fromMatlab, gauss, global, hidden, hold, homogeneous, if, import, initialequations, inner, int, integer, interesting, inverse, inverseH, limint, limit, log, log10, log2, major, max, min, mod, msum, mul, next, nonlinear, norm, norminf, not, or, parameters, previous, ramp, ran, random, real, realtime, repeat, resint, return, round, rows, sample, sampletime, settoolsetting, sign, sin, sinh, skew, sqr, sqrt, step, stopsimulation, string, sum, sym, table, tan, tanh, tdelay, then, tilde, time, timeevent, to, toMatlab, trace, transpose, true, trunc, type, types, until, variables, warning, while, xor

8.1.7 White Space

Like C and other programming languages, 20-sim does not recognize white space (spaces and tabs, carriage returns) except in a string. We recommend that you use white space to make your model easier to follow. For example, the following model is dense and difficult to read:

```plaintext
variables
 real y,u;
equations
 y = step(1);
 u = -step(1);
 if time > 5 then y = -ramp(1); u = ramp(1);
 else y = ramp(1); u = -ramp(1); end;
```

Adding white space with indentation makes the same code much easier to read:

```plaintext
variables
 real y;
 real u;
equations
 y = step(1);
 u = -step(1);
 if time > 5 then
 y = -ramp(1);
 u = ramp(1);
 else
 y = ramp(1);
 u = -ramp(1);
 end;
```
8.1.8 Writing Comments

20-sim gives you several options to create comments in a model. You can use each option to add explanatory text to your model or to exclude ("comment out") certain parts of your model for testing and debugging purposes.

**Block Quotes ("...")**

You can enclose a block of text between quotes ("). This method makes it easy to write a comment over multiple lines:

"This is a line of sample code that shows you how to use the 20-sim comments"

**Programming (/*...*/)**

You can enclose a block of text between the constructs /* and */. This method is used often in programming and also allows to write a comment over multiple lines:

/*This is a line of sample code that shows you how to use the 20-sim comments*/

**Single Line Comment (/.../**

A option often used in programming is to insert // into a line. The compiler ignores everything to the right of the double slashes on that line only.

// This is a line of sample code showing the 20-sim comments.

You can begin comments anywhere in a model. 20-sim will automatically recognize comments and color it green.

8.1.9 State and Time Events

Normally an integration algorithm uses a fixed time step or a variable step, depending only on the model dynamics. In some cases, the algorithm is forced to perform calculations at a specific time.

**Time Events**

The most simple form of forced calculation is calculation at a specific time. This is called a *time event*. The following functions cause time events.

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeevent</td>
<td>Forces the integration algorithm perform a calculation at a specific time.</td>
</tr>
<tr>
<td>frequencyevent</td>
<td>Forces the integration algorithm perform a calculation at a specific frequency.</td>
</tr>
<tr>
<td>sample, hold, next</td>
<td>These functions introduce a discrete system in a model. A discrete system forces the integration algorithm to perform calculations every sampletime.</td>
</tr>
<tr>
<td>previous</td>
<td></td>
</tr>
</tbody>
</table>
State Events
Some times the integration algorithm must iterate to find the next calculation step. This is called a *state event*. The following functions cause state events.

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>Forces the integration algorithm to find the exact point where the input crosses zero.</td>
</tr>
<tr>
<td>eventup</td>
<td>Forces the integration algorithm to find the exact point where the input crosses zero from a negative to a positive value.</td>
</tr>
<tr>
<td>eventdown</td>
<td>Forces the integration algorithm to find the exact point where the input crosses zero from a positive to a negative value.</td>
</tr>
<tr>
<td>limint</td>
<td>Forces the integration algorithm to find the exact point where the output become larger or smaller than the minimum and maximum parameters.</td>
</tr>
<tr>
<td>resint</td>
<td>Forces the integration algorithm to find the exact point where the input becomes zero.</td>
</tr>
</tbody>
</table>

To find the exact point where simulation should be performed iteration is used. The accuracy of the iteration can be set by the event delta parameter in the Run Properties window.

8.2 Keywords

8.2.1 Keywords

Before the actual equations, three sections can be entered denoted by the keywords *constants*, *parameters* and *variables*. This is shown in the example below:

```plaintext
constants
 real basefrequency = 60;
 real pi = 3.14159265;
parameters
 real amplitude = 1;
variables
 real plot;
equations
 plot = amplitude * sin (basefrequency*2*pi * time);
```

The order of appearance of these sections must always be: (1) constants, (2) parameters and (3) variables. The sections are optional. If you do not use constants parameters or variables, these sections may be omitted.

8.2.2 Constants

Constants are symbolic representations of numerical quantities that do not change during or in between simulation runs. Constants must be defined in 20-sim, using the constants keyword. After the keyword, lines with constant declarations can be entered. Every line must be finished by a semicolon (;). An example is given below:
8. Language Reference

```plaintext
constants
 real V = 1 {volume, m3}; // the volume of barrel 1
 real hidden D = 0.5 {length, m}; // the length of part 1
...
```

### Types

20-sim currently supports four types of constants: `boolean`, `integer`, `real` and `string`. These types must be specified explicitly. The use of the type `real` is shown in the example above.

### Hidden

To prevent users from inspecting constants, the keyword `hidden` can be applied. This keyword should follow the data type.

### Constant names

Constant names can consist of characters and underscores. A constant name must always start with a character. Constant names are case-sensitive. No reserved words may be used for constants. If a reserved word is used, an error message will pop-up while checking the model. In the example above the names `V` and `D` are used.

### Constant Values

It is advised to assign every constant a value. Otherwise 20-sim will assign a default value (0, false or an empty string), which can easily lead to misinterpretations. Unlike parameter values, constant values cannot be overridden in the Simulator.

### Quantity and Unit

If a constant is known to represent a physical value, you can define the corresponding quantity and unit. 20-sim will use this information to do a unit check on equations. The use of quantities and units is optional. In the example above the quantities volume and length are used with the units `m3` and `m`.

### Example

```plaintext
constants
 real pi = 3.14159265359;
 real two pi = 6.28318530718;
 integer i = 10 {length,m}; // vehicle length
 integer j = 1 {time,s};

customs
 string filename = 'data.txt';
 integer i = 1;
 real state = 0.0;
 boolean t = true, f = false;
```

### Tip

- You can easily enter constants by using the Add button 𝕫 in the **Equation Editor Taskbar**.
- You can easily select quantities and units by using the Units button 𝔪 of the **Equation Editor Taskbar**.
### Predefined Constants

Some constants in 20-sim have a predefined value. These constants do not have to be declared in the `constants` section of a model. You can add your own predefined constants in the file `Constants.ini` in the 20-sim bin-directory.

#### Standard

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi</td>
<td>3.1415926535897932384626433832795</td>
<td>Standard value of pi</td>
</tr>
<tr>
<td>exp1</td>
<td>2.71828182845904523536028747135266</td>
<td>Exponential constant</td>
</tr>
<tr>
<td>twopi</td>
<td>6.28318530717958647692528676655901</td>
<td>Twice the value of pi</td>
</tr>
<tr>
<td>sqrt2</td>
<td>1.41421356237309504880168872420969</td>
<td>Square root of 2</td>
</tr>
<tr>
<td>log2</td>
<td>0.693147180559945309417232121458176</td>
<td>Logarithm base 2</td>
</tr>
</tbody>
</table>

#### Physics

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_n</td>
<td>9.80665 {m/s^2}</td>
<td>Standard acceleration of gravity</td>
</tr>
<tr>
<td>G</td>
<td>66.7259e-12 {N.m/kg^2}</td>
<td>Newtonian constant of gravitation</td>
</tr>
<tr>
<td>c_0</td>
<td>299.792458e6 {m/s}</td>
<td>Speed of light (vacuum)</td>
</tr>
<tr>
<td>mu_0</td>
<td>1.25663706143591795385057</td>
<td>Permeability (vacuum)</td>
</tr>
<tr>
<td>epsilon_0</td>
<td>8.854188e-12 {F/m}</td>
<td>Permittivity (vacuum)</td>
</tr>
<tr>
<td>h</td>
<td>6.6260755e-34 {J.s}</td>
<td>Planck constant</td>
</tr>
<tr>
<td>m_p</td>
<td>2.17671e-08 {kg}</td>
<td>Planck mass</td>
</tr>
<tr>
<td>l_p</td>
<td>1.6105e-35 {m}</td>
<td>Planck length</td>
</tr>
<tr>
<td>t_p</td>
<td>5.39056e-44 {s}</td>
<td>Planck time</td>
</tr>
<tr>
<td>e</td>
<td>1.60217733e-19 {C}</td>
<td>Elementary charge</td>
</tr>
<tr>
<td>R_H</td>
<td>25812.8056 {Ohm}</td>
<td>Quantized Hall resistance</td>
</tr>
<tr>
<td>mu_B</td>
<td>9.2740154e-24 {J/T}</td>
<td>Bohr magneton</td>
</tr>
<tr>
<td>mu_N</td>
<td>5.0507866e-27 {J/T}</td>
<td>Nuclear magneton</td>
</tr>
<tr>
<td>Ry</td>
<td>10973731.534 {1/m}</td>
<td>Rydberg constant</td>
</tr>
<tr>
<td>a_0</td>
<td>5.29177249e-11 {m}</td>
<td>Bohr radius</td>
</tr>
<tr>
<td>N_A</td>
<td>6.0221367e+23 {1/mol}</td>
<td>Avogadro constant</td>
</tr>
<tr>
<td>m_u</td>
<td>1.6605402e-27 {kg}</td>
<td>Atomic mass constant</td>
</tr>
<tr>
<td>F</td>
<td>96485.309 {C/mol}</td>
<td>Faraday constant</td>
</tr>
<tr>
<td>k</td>
<td>1.380658e+23 {J/K}</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>sigma</td>
<td>5.67051e-08 {W/m^2.K^4}</td>
<td>Stefan-Boltzmann constant</td>
</tr>
<tr>
<td>b</td>
<td>0.002897756 {m.K}</td>
<td>Wien constant</td>
</tr>
<tr>
<td>R</td>
<td>8.31451 {J/mol.K}</td>
<td>Molar gas constant</td>
</tr>
<tr>
<td>V_m</td>
<td>0.0224141 {m^3/mol}</td>
<td>Molar volume (ideal gas)</td>
</tr>
<tr>
<td>n_0</td>
<td>2.686763e+25 {1/m^3}</td>
<td>Loschmidt constant</td>
</tr>
</tbody>
</table>

#### m_e

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_e</td>
<td>9.1093897e-31 {kg}</td>
<td>Electron mass</td>
</tr>
</tbody>
</table>

#### m_p

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_p</td>
<td>1.6726231e-27 {kg}</td>
<td>Proton mass</td>
</tr>
</tbody>
</table>

#### m_n

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_n</td>
<td>1.6749286e-27 {kg}</td>
<td>Neutron mass</td>
</tr>
</tbody>
</table>
8.2.4 Parameters

Parameters are symbolic representations of numerical quantities which can only be changed after simulation has been stopped. They can therefore be changed in between of simulation runs, or after the user has (temporarily) stopped the simulation.

Parameters must be defined in 20-sim, using the parameters keyword. After the keyword, lines with parameter declarations can be entered. Every line must be finished by a semicolon (;) and may be followed by comment with a description of the parameter. An example is given below:

```plaintext
parameters
 real V = 1 {volume, m3}; // the volume of barrel 1
 real hidden D = 0.5 {length, m}; // the length of part 1
...
```

Types

20-sim currently supports four types of parameters: boolean, integer, real and string. These types must be specified explicitly. The use of the type real is shown in the example above.

Hidden

To prevent users from inspecting parameters or decreasing the list of parameters, the keyword hidden can be applied. This keyword should follow the data type.

Global

To use the same parameter in other submodels, the keyword global can be applied. This keyword should follow the data type.

Parameter Names

Parameter names can consist of characters and underscores. A parameter name must always start with a character. Parameter names are case-sensitive. No reserved words may be used for parameters. If a reserved word is used, an error message will pop-up while checking the model. In the example above the names V and D are used.

Parameter Values

Parameters can be assigned default values. These values can be overridden in the Simulator using the Parameters command.
Quantity and Unit
If a parameter is known to represent a physical value, you can define the corresponding quantity and unit. 20-sim will use this information to do a unit check on equations. The use of quantities and units is optional. In the example above the quantities volume and length are used with the units m³ and m.

Comment
If comment is added at the end of the parameter declaration, it is shown in the Variable Chooser to facilitate the selection between variables.

Example
```plaintext
parameters
 real p1 = 12, p2, state = 1.1;
 integer i = 10 {length,m}; // vehicle length
 integer j = 1 {time,s};

parameters
 string filename = 'data.txt'; // This comment appears as a description in the Parameters/Initial values editor.
 integer i = 1; // Just a parameter
 real state; // Initial velocity [m/s]
 boolean t = true; // T = true
```

Tip
- You can easily enter parameters by using the Add button in the Equation Editor Taskbar.
- You can easily select quantities and units by using the Units button of the Equation Editor Taskbar.

8.2.5 Variables
Variables are symbolic representations of numerical quantities that may change during simulation runs. Variables must be defined in 20-sim, using the variables keyword. After the keyword, lines with variable declarations can be entered. Every line must be finished by a semicolon (;). An example is given below:

```plaintext
variables
 real interesting V {volume, m³}; // the volume of barrel 1
 real hidden D {length, m}; // the length of part 1
...
```

Types
20-sim currently supports four types of variables: boolean, integer, real and string. These types must be specified explicitly. The use of the type real is shown in the example above.
**Interesting**

By adding the keyword *interesting* after the variable type, a variable will be given special focus in the Variable Chooser. The Variable Chooser shows the complete list of variables of a model and is used to select variables for plotting. The keyword *interesting* is shown in the variable list, making it easier to find variables of special interest.

**Hidden**

To prevent users from inspecting variables or decreasing the list of variables, the keyword *hidden* can be applied. This keyword should follow the data type.

**Global**

To use the same variable in other submodels, the keyword *global* can be applied. This keyword should follow the data type.

**Variable Names**

Variable names can consist of characters and underscores. A variable name must always start with a character. Variable names are case-sensitive. No reserved words may be used for variables. If a reserved word is used, an error message will pop-up while checking the model.

**Variable Values**

Variables cannot be assigned default values.

**Quantity and Unit**

If a variable is known to represent a physical value, you can define the corresponding quantity and unit. 20-sim will use this information to do a unit check on equations. The use of quantities and units is optional. In the example above the quantities volume and length are used with the units m3 and m.

**Comment**

If comment is added at the end of the variable declaration, it is shown in the Variable Chooser to facilitate the selection between variables.

**Predefined Variables**

20-sim has some predefined variables which have a special meaning.

**Example**

```plaintext
variables
 real interesting p1, p2, state;
 integer i;
 integer j;

variables
 string filename;
 integer interesting i;
 real interesting state;
 boolean t, f;
```
8.2.6 Predefined Variables

Some variables in 20-sim have a predefined value. These variables do not have to be declared in the `variables` section of a model.

**time**

The variable `time` is equal to the simulated time. It can for example be used in functions such as:

\[ u = \sin(t \cdot f \cdot 2 \cdot 3.1415); \]

**starttime**

The variable `starttime` is equal to the `Start` value of the Simulator Run Properties (typically 0.0 {s}).

**finishtime**

The variable `finishtime` is equal to the `Finish` value of the Simulator Run Properties (e.g. 10.0 {s}). It can be used for example to execute some actions just before finishing the simulation:

\[
\text{if } (t \geq \text{finishtime} - 1.0) \text{ then} \\
\quad \text{// do some action} \\
\text{end;} \\
\]

**realtime**

The variable `realtime` contains the elapsed wall-clock time (in seconds) from the start of the simulation. It can be used to monitor if the simulation runs slower, equally fast or faster than real time.

\[
\text{if } (t \geq \text{realtime}) \text{ then} \\
\quad \text{// simulation is realtime or faster than realtime} \\
\text{else} \\
\quad \text{// simulation is slower that real time} \\
\text{end;} \\
\]

**sampletime**

The variable `sampletime` is equal to the sampletime. It is only meaningful when it is used in an equation model that is part of a discrete loop in your model. 20-sim will automatically detect, which loop the model belongs to and assign the proper value to the variable `sampletime`.

**stepsize**

The variable `stepsize` contains the actual stepsize of the integration routine. It can be used to monitor the variable step sizes of methods like BDF and Vode Adams.

**random**

The variable `random` will yield a random variable uniformly distributed in the interval \([-1,1]\). E.g.:
\[
    u = \text{random};
\]

**true**

The variable *true* will return the boolean value true.

**false**

The variable *false* will return the boolean value false.

**major**

Some integration algorithms, will perform model calculations at one or more intermediate points before calculating the next output value. To prevent equations being calculated, at these intermediate steps, you can use the variable *major*. This variable will return the boolean *false* when calculations are performed for an intermediate step and will return *true* when calculations are performed for the output values.

**Example**

```plaintext
....
if major then
 sim_steps = sim_steps + 1; // this equation is not evaluated at intermediate points
end;
....
```

### 8.2.7 Global Parameters and Variables

Global parameters and variables are defined using the keyword *global*. In equation models, this keyword is added after the definition of the data type in the Equation Editor:

```plaintext
parameters
 real global par1 = 100 \{\text{Hz}\};
 real global par2 ;
variables
 real global var1;
 real global var2;
```

Parameters can only be assigned a value once. The same goes for variables. Only one submodel must defined their value using an equation. If parameters or variables are assigned more than once, 20-sim will generate an error.

**Example**

The best way to describe the use of global parameters and variables is by an example model. You can find this model in the 20-sim demonstration library (*Demo\Tips And Tricks\Global Parameters and Variables.emx*). The model exists of three submodels. In the first submodel two global parameters (*f* and *A*) are assigned and one variable (*sinewave*). The variable is assigned a value in the equations section and connected with the output (*out1*).
submodel1

parameters
    real global f = 100 {Hz};
    real global A = 1 {none};
variables
    real global sinewave;
equations
    sinewave = A*sin(f*2*pi*time);
    out1 = sinewave;

In the second submodel, the two global parameters are used to connect them with two outputs (out1 and out2).

submodel 2

parameters
    real global f {Hz};
    real global A {none};
variables
    real global sinewave;
equations
    out1 = f;
    out2 = A;

In the third submodel, the global variable is connected with an output (out1).

submodel 3

variables
    real global sinewave;
equations
    out1 = sinewave;

To prevent conflicts, global parameters may be assigned a default value only once. The same goes for global variables: they may be assigned a value in the equation section only once.
8.3 Types

8.3.1 Data Types

For all parameters, variables, initial conditions etc. 20-sim supports the following data types:

1. Boolean
2. Integer
3. Real
4. String

The declaration of data types can be done in the constants, parameters and variables sections of the model. E.g.:

```plaintext
parameters
 real a = 1;
 integer B[2,2];
variables
 string c;
 boolean yesno;
```

Declaration of data types in equations is not allowed. E.g.:

```plaintext
real v = sin(t*a + b); // This is not allowed!
```

Hidden

To prevent users from inspecting variables, parameters or constants (e.g. for encrypted models) or decreasing the list of parameters and variables, the keyword hidden can be applied. This keyword should follow the data type. For example:

```plaintext
parameters
 real hidden a = 1;
 integer hidden B[2,2];
variables
 string hidden c;
 boolean hidden yesno;
```

Interesting

To allow for a quick selection of variables in the Variable Chooser, the keyword interesting can be applied for variables. This keyword should follow the data type. For example:

```plaintext
parameters
 real a = 1;
 integer B[2,2];
variables
 string interesting c;
 boolean interesting yesno;
```
Interesting variables are shown, even when all options are deselected in the Variable Chooser. This makes it possible to quickly select variables out of a large list.

### 8.3.2 Boolean

Either *true* (1) or *false* (0). Variables of this type should not be used to store any other values. Like C++, 20-sim evaluates non-zero values as true; only the value of zero is evaluated as false. Normally, the value of one is used to indicate true.

**Examples**

```plaintext
boolean a;
boolean b = true;
boolean c = false;
boolean D[2,2] = [true,true;false;false];
a = b and c;
```

**Limitations**

When used in standard functions, booleans are treated as reals with value 0 or 1. An equation like:

```plaintext
boolean a = true;
real c;
c = sin(a);
```

would yield `c` equal to 0.8415. Try to avoid these constructions, since they lead to confusions.

### 8.3.3 Integer

Signed four-byte integer. It can hold any value between -2147483648 and +2147483647. Integer is the recommended data type for the control of program loops (e.g. in for-next loops) and element numbering.

**Example**

```plaintext
parameters
 integer i = 1,j = 2;
 real B[2,2] = [1,2;3,4]
 real b;
equations
 b = B[i,j];
 for i := 1 to 10 doend;
```

**Limitations**

When used in standard functions, integers are treated as reals. An equation like:

```plaintext
parameters
 integer c;
equations
 c = 10*sin(time);
```

would yield `c` equal to 0.8415. Try to avoid these constructions, since they lead to confusions. Use the `round` function instead:
8. Language Reference

parameters
  integer c;
equations
  c = round(10*sin(time));

8.3.4 Real

Signed 64 bit floating point number. The maximum representable number is 1.7976931348623158e+308. The minimum positive value unequal to zero is 2.2250738585072014e-308. If reals exceed this range during simulation, the numerical values window will display the values 1.#INF (positive infinite) or -1.#INF (negative infinite).

Example

  real a = 0.0;
  real b = 1.04e-31,c = -3198.023e-64;
  real B[2,2] = [1.2,22.4;3.0e3,-4.023e-6];

Limitations

In practice, during simulation, real should not exceed 1e-100 .. 1e100 to prevent instability in the integration algorithms.

8.3.5 String

A string is an array of characters. There is no limit to the amount of characters a String may contain. Simple string concatenation (e.g. concatenation that can be done during processing) is allowed. Strings must always be entered between single quotes ('). A single quote can be escaped with a second quote, so if a single quote should be part of the string, it needs to be typed twice.

Example

parameters
  string c = 'C:\data.txt';
  string b = 'This is a string with a " single quote';
variables
  real d;
  string name;
equations
  if time > 10 then stopsimulation (b); end;
  d = table(c,1);
  name = c + ' // file';
toMatlab (d, name)

Limitations

Strings may only be used as input for some special functions (e.g. table).
8.3.6 Typecasting

Type casting is a way to convert a variable from one data type to another data type. For example from real to boolean or from real to integer. Typecasting can be done in equations using the data type between parentheses:

\[
\begin{align*}
\text{variables} & \\
\text{real } t; & \\
\text{boolean } b; & \\
\text{equations} & \\
\text{t} & = \text{if time > 10 then 1.33 else 0 end;} \\
\text{b} & = (\text{boolean}) t;
\end{align*}
\]

In the example above the real variable \( s \) is converted to the boolean variable \( b \). In 20-sim the C-code style type casting is used. An integer or real value of 0 is converted to True and a non zero value is converted to false.

Typecasting is done automatically in 20-sim, but when the data type is not given a warning will be generated:

\[
\begin{align*}
\text{variables} & \\
\text{real } s; & \\
\text{boolean } b; & \\
\text{equations} & \\
\text{s} & = \text{if time > 10 then 1.33 else 0 end;} \\
\text{b} & = s;
\end{align*}
\]

In the example above the warning "Possible loss of data when converting from real to boolean in equation b = s;" will be given. To prevent this warning, use typecasting with parenthesis as shown in the top example.
8.4 Functions

8.4.1 Functions

In 20-sim you can use all kind of functions to describe your equations. They are classified according to the list below.

1. Arithmetic
2. Discrete
3. Event
4. Expansion
5. Extern
6. Matrix
7. Port
8. Source
9. Trigonometric

8.4.2 Arithmetic

abs

Syntax

\[ Y = \text{abs}(X); \]

Description

Returns the absolute value of X or the elements of X.

Examples

<table>
<thead>
<tr>
<th>X</th>
<th>abs(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>-2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>-1e-102</td>
<td>1e-102</td>
</tr>
<tr>
<td>[1.1,2.7;-3.6,-4]</td>
<td>[1.1,2.7;3.6,4]</td>
</tr>
</tbody>
</table>

Limitations

- X and Y must have the same size.
- For scalars, the abs function can also be written as: \[ Y = |X|; \]
algebraic

Syntax

\[ y = \text{algebraic}(x); \]

Description

\( y \) becomes equal to \( x \). This function forces the integration algorithm to find a solution by using the algebraic loop solver. Normally when algebraic loops occur in a model, 20-sim will itself will break the algebraic loop using the algebraic loop solver internally. You can use this function to break an algebraic loop at a user-defined position.

Examples

\[ u = \sin(t); \]
\[ a = \text{algebraic}(y); \]
\[ y = K*(u - a); \]

Note

Be very careful with this function. In most cases the symbolic engine of 20-sim will find an exact solution which will lead to much faster simulation!

ceil

Syntax

\[ Y = \text{ceil}(X); \]

Description

Rounds \( X \) or the elements of \( X \) to the nearest integers greater than or equal to \( X \).

Examples

<table>
<thead>
<tr>
<th>( X )</th>
<th>( \text{ceil}(X) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>3</td>
</tr>
<tr>
<td>-2.6</td>
<td>-2</td>
</tr>
<tr>
<td>3.4</td>
<td>4</td>
</tr>
<tr>
<td>[1.1,-2.7;3.5,-4.1]</td>
<td>[2,-2;4,-4]</td>
</tr>
</tbody>
</table>

Limitations

\( X \) and \( Y \) must have the same size.

constraint

Syntax

\[ y = \text{constraint}(x); \]

Description
This function iteratively assigns a value to y such that x approaches zero within a given error margin. It only works in combination with the MBDF simulation method! The function is very useful for entering constraints in physical systems and inverse dynamics.

**Examples**

This example makes a velocity \( v_m \) equal to a reference velocity \( v_s \):

\[
\begin{align*}
  v_s &= \sin(\text{time}); & // \text{reference velocity} \\
  v &= v_m - v_s; & // \text{If } v = 0 \text{ then the mass follows the reference velocity} \\
  F &= \text{constraint}(v); & // \text{Make } F \text{ have a value that yields a zero velocity } v \\
  v_m &= (1/m) \times \text{int}(F); & // \text{mass}
\end{align*}
\]

**ddt**

**Syntax**

\[
y = ddt(x, \text{init});
\]

**Description**

Returns the derivative value of x with respect to the time. The initial value of y is equal to the value of init.

**Method**

20-sim will always try to rewrite equations in such a way that only integrals are used (integral form). This is done automatically and means all integration methods can be applied. Sometimes an integral form cannot be found. Then only the Backward-Differentiation Method can be used for simulation.

**Examples**

<table>
<thead>
<tr>
<th>equation</th>
<th>integral form</th>
<th>integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>( ddt(x,0) = u - k*x; )</td>
<td>( x = \text{int}(u - k*x); )</td>
<td>All methods</td>
</tr>
<tr>
<td>( x = ddt(\sin(\text{time}),0); )</td>
<td>not possible!</td>
<td>Only BDF</td>
</tr>
</tbody>
</table>

**Limitations**

When no integral form can be found, the use of the derivative function can introduce noisy signals or may even cause signals to exceed the data range.

**derivative**

**Syntax**

\[
y = \text{derivative}(x, \text{base});
\]

**Description**

Returns the derivative value of x with respect to base. E.g:
variables
    real x, y, z;
equations
    x = sin (time);
y = derivative (x, time);
z = derivative (x^2, x);

Limitations
20-sim will use its symbolic engine to solve the derivative and rewrite it to a closed form. If no solution is found, an error message is generated.

dly
Syntax
    y = dly(x,init);
Description
y is equal to the value of x, one simulation-time step delayed. The initial value of y is equal to init
Example
    x = sin(time*0.3);
y = dly(x, 1.0);
Limitations
x, y and init must be scalars.

exp
Syntax
    Y = exp(X);
Description
Returns the exponential function of X or the elements of X.

    y = e^x;
Examples
X                 exp(x)
1                  2.718282 (= e^1)
2.1                8.166170 (= e^2.1)
-2.6               0.074274 (= e^-2.6)
[1,2.1;-2.6,1]    [2.718282,8.166170;0.074274,2.718282]
( = [e^1,e^2.1;e^-2.6,e^1] )
Limitations
X and Y must have the same size.

exp10

Syntax

\[ Y = \text{exp10}(X); \]

Description
Returns the exponential function (base 10) of X or the elements of X.

\[ y = 10^x; \]

Examples

<table>
<thead>
<tr>
<th>X</th>
<th>\text{exp10}(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 ( = 10^1)</td>
</tr>
<tr>
<td>2.1</td>
<td>125.89 ( = 10^{2.1})</td>
</tr>
<tr>
<td>-2.6</td>
<td>0.00251 ( = 10^{-2.6})</td>
</tr>
<tr>
<td>[1,2.1;-2.6,1]</td>
<td>[10,125.89;0.00251,10]</td>
</tr>
<tr>
<td></td>
<td>( = [10^1,10^{2.1};10^{-2.6},10^1] )</td>
</tr>
</tbody>
</table>

Limitations
X and Y must have the same size.

exp2

Syntax

\[ Y = \text{exp2}(X); \]

Description
Returns the exponential function (base 2) of X or the elements of X.

\[ y = 2^x; \]

Examples

<table>
<thead>
<tr>
<th>X</th>
<th>\text{exp2}(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 ( = 2^1)</td>
</tr>
<tr>
<td>2.1</td>
<td>4.8709 ( = 2^{2.1})</td>
</tr>
</tbody>
</table>

Limitations
X and Y must have the same size.
-2.6 0.16494 (= $2^{-2.6}$)

$[1, 2.1; -2.6, 1]$ [2, 4.8709; 0.16494, 2]

($ = [2^1, 2^{2.1}; 2^{-2.6}, 2^1]$ )

**Limitations**

X and Y must have the same size.

---

### floor

**Syntax**

$Y = \text{floor}(X)$;

**Description**

Rounds X or the elements of X to the nearest integers less than or equal to X.

**Examples**

<table>
<thead>
<tr>
<th>X</th>
<th>floor(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>2</td>
</tr>
<tr>
<td>-2.6</td>
<td>-3</td>
</tr>
<tr>
<td>3.4</td>
<td>3</td>
</tr>
<tr>
<td>[1.1, -2.7; 3.5, -4.1]</td>
<td>[1, -3; 3, -5]</td>
</tr>
</tbody>
</table>

**Limitations**

X and Y must have the same size.

---

### initialvalue

**Syntax**

$Y = \text{initialvalue}(X)$;

**Description**

Returns the initial value of X or the elements of X. Value should be assigned to X first.

**Examples**

<table>
<thead>
<tr>
<th>X</th>
<th>initialvalue(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1$</td>
<td>1</td>
</tr>
<tr>
<td>$\sin(\text{time})$</td>
<td>0</td>
</tr>
<tr>
<td>$[\cos(\text{time}); \sin(\text{time})]$</td>
<td>[1; 0]</td>
</tr>
</tbody>
</table>

**Limitations**

X and Y must have the same size.
### int

**Syntax**

\[ y = \text{int}(x, \text{init}); \]

**Description**

Returns the integral of \( x \) with respect to the time. The initial value of \( y \) is equal to the value of \( \text{init} \). This initial value is optional. If no value is entered, a default initial value of 0 is used.

**Examples**

\[
\begin{align*}
  y &= \text{int}(x,0); \\
  z &= \text{int}(\sin(time*w + p) - \cos(time*x + z), b);
\end{align*}
\]

### limint

**Syntax**

\[ y = \text{limint}(x, \text{min}, \text{max}, \text{init}); \]

**Description**

Returns the integral of \( x \) with respect to the time. The initial value of \( y \) is equal to the value of \( \text{init} \). The output of this integral is limited between a maximum and minimum bound given by the parameters \( \text{min} \) and \( \text{max} \).

This function forces the integration algorithm to find the exact point where the gets saturated. If the integral is in saturated condition and the input changes sign, the output wanders away from the bounds immediately.

The limitedIntegrator block is used for the prevention of wind-up in PI and PID controllers in control applications. It is also used in kinematics, electrical circuits, process control, and fluid dynamics.

**Examples**

\[
\begin{align*}
  x &= 10*\sin(time*10); \\
  y &= \text{limint}(x,-1,1,0);
\end{align*}
\]

### limit

**Syntax**

\[ y = \text{limit}(x, a, b); \]

**Description**

This function limits the signal \( x \) between a minimum of \( a \) and a maximum of \( b \).
Examples
\[ x = 10*\sin(time); \]
\[ y = \text{limit}(x, -5, 5); \]

Limitations
a, b, x and y must be scalars. a must be smaller than b.

\textbf{log}

Syntax
\[ y = \log(x); \]

Description
Returns the natural logarithm of \( X \) or the elements of \( X \).

Examples
\[ \begin{array}{c|c}
X & \log(X) \\
\hline
1 & 0 \\
2.1 & 0.6931 \\
4 & 1.3863 \\
[1,2.1;4,1] & [0,0.6931;1.3863,0] \\
-2.6 & \text{not allowed!} \\
\end{array} \]
### Limitations
X and Y must have the same size. X or the elements of X must be larger than zero.

### log10

**Syntax**

\[ Y = \log_{10}(X); \]

**Description**

Returns the base 10 logarithm of X or the elements of X.

**Examples**

<table>
<thead>
<tr>
<th>X</th>
<th>\log_{10}(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1.6990</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>[1,50;100,1]</td>
<td>[0,1.6990;2,0]</td>
</tr>
<tr>
<td>-2.6</td>
<td>not allowed!</td>
</tr>
</tbody>
</table>

**Limitations**

X and Y must have the same size. X or the elements of X must be larger than zero.

### log2

**Syntax**

\[ Y = \log_{2}(X); \]

**Description**

Returns the base 2 logarithm of X or the elements of X.

**Examples**

<table>
<thead>
<tr>
<th>X</th>
<th>\log_{2}(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.1</td>
<td>1.0704</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>[1,2.1;4,1]</td>
<td>[0,1.0704;2,0]</td>
</tr>
<tr>
<td>-2.6</td>
<td>not allowed!</td>
</tr>
</tbody>
</table>

**Limitations**

X and Y must have the same size. X or the elements of X must be larger than zero.
resint

Syntax

\[ y = \text{resint}(x,\text{newoutp},\text{reset},\text{init}); \]

Description

Returns the integral of \( x \) with respect to the time. The initial value of \( y \) is equal to the value of \( \text{init} \). The output of this integral is reset to the value of \( \text{newoutp} \) when the Boolean argument \( \text{reset} \) is \( \text{TRUE} \).

Examples

\[
\begin{align*}
  & x = 1; \\
  & \text{reset} = \text{event}(\sin(\text{time})); \\
  & y = \text{resint}(x,0,\text{reset},0);
\end{align*}
\]

or

\[
\begin{align*}
  & x = 1; \\
  & \text{reset} = \text{if } y > 10 \text{ then true else false end}; \\
  & y = \text{resint}(x,0,\text{reset},0);
\end{align*}
\]

round

Syntax

\[ Y = \text{round}(X); \]

Description

Rounds \( X \) or the elements of \( X \) to the nearest integer.

Examples

\[
\begin{array}{c|c}
\text{X} & \text{round(X)} \\
1 & 1 \\
2.1 & 2 \\
-2.6 & -3 \\
3.7 & 4 \\
[1.1,-2.7;3.5,-4.1] & [1,-3;4,-4]
\end{array}
\]

Limitations

\( X \) and \( Y \) must have the same size.
**sign**

**Syntax**

\[ Y = \text{sign}(X); \]

**Description**

Returns the sign of \( X \) or the elements of \( X \).

\[
\begin{align*}
X < 0 : Y &= -1 \\
X = 0 : Y &= 0 \\
X > 0 : Y &= 1
\end{align*}
\]

**Examples**

<table>
<thead>
<tr>
<th>( X )</th>
<th>( \text{sign}(X) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>-2.6</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>([1,2.1;-2.6,0])</td>
<td>([1,1;-1,0])</td>
</tr>
</tbody>
</table>

**Limitations**

\( X \) and \( Y \) must have the same size.

**square**

**Syntax**

\[ Y = \text{sqr}(X); \]

**Description**

Returns the square of \( X \) or the elements of \( X \).

**Examples**

<table>
<thead>
<tr>
<th>( X )</th>
<th>( \text{sqr}(X) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (= 1(^2) )</td>
</tr>
<tr>
<td>2.1</td>
<td>4.41 (= 2.1(^2) )</td>
</tr>
<tr>
<td>-2.6</td>
<td>6.76 (= -2.6(^2) )</td>
</tr>
<tr>
<td>0</td>
<td>0 (= 0(^2) )</td>
</tr>
<tr>
<td>([1,2.1;-2.6,0])</td>
<td>([1,4.41;6.76,0])</td>
</tr>
</tbody>
</table>

\( (= [1^2,2.1^2;-2.6^2,0^2] ) \)
Limitations
x and y must be scalars.

sqrt

Syntax

\[ X = \text{sqrt}(Y); \]

Description
Returns the square root of X or the elements of X.

Examples

\[
\begin{array}{ll}
X & \text{sqrt}(X) \\
1 & 1 \\
2.1 & 1.44913 \\
4 & 2 \\
[1,2.1;4,1] & [1,1.44913;2,1] \\
-1 & \text{not allowed!}
\end{array}
\]

Limitations
X and Y must have the same size. X or the elements of X must be larger than or equal to zero.

tdelay

Syntax

\[ y = \text{tdelay}(x,\text{delaytime}); \]

Description
Returns the (continuous) signal \( x \) delayed for an absolute time (given by \( \text{delaytime} \)). The initial value of \( y \) for \( time = 0 \) to \( \text{delaytime} \) is equal to zero. This block is intended to model a continuous delay in a continuous simulation. Use the Unit Delay block to model a digital delay.

Examples

\[
\begin{array}{l}
x = 10*\sin(time*10); \\
y = \text{tdelay}(x,2);
\end{array}
\]

Limitations
\( x, y \) and \( \text{delaytime} \) must be scalars. \( \text{delaytime} \) must be a \textbf{positive} constant value.
trunc

Syntax

\[ Y = \text{trunc}(X); \]

Description

Rounds \( X \) or the elements of \( X \) towards zero (i.e. the function \( \text{trunc} \) removes the fraction).

Examples

\[ \begin{array}{c|c}
X & \text{trunc}(X) \\
\hline
1 & 1 \\
2.1 & 2 \\
-2.6 & -2 \\
3.4 & 3 \\
[1.1,-2.7;3.5,-4.1] & [1,-2;3,-4] \\
\end{array} \]

Limitations

\( X \) and \( Y \) must have the same size.

8.4.3 Discrete

hold

Syntax

\[ y = \text{hold}(x,\text{init}); \]

Description

The hold function implements a zero order hold function operating at a specified sampling rate. It provides a mechanism for creating a continuous output signal \( y \) out of a discrete input signal \( x \). The initial value of \( y \) is equal to the value of \( \text{init} \).
Examples

\[ x = \sin(\text{time} \times 0.3); \]
\[ y = \text{sample}(x); \]
\[ z = \text{previous}(y); \]
\[ u = \text{hold}(z, -1); \]

Limitations

x and y must be scalars. x be a discrete signal. y is a continuous signal. 20-sim will automatically detect the existence of discrete signals. Each chain of discrete signals will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

next

Syntax

\[ y = \text{next}(x, \text{init}); \]

Description

The next function allows you to make constructs like:

\[ x(k+1) = x(k) - 0.1 + u(k) \]

where k is the k\textsuperscript{th} sample. Using the next function, this can be entered in 20-sim as:

\[ \text{next}(x, 0) = x - 0.1 + u; \]

Limitations

x and y will become discrete signals. 20-sim will automatically detect the existence of discrete signals. Each chain of discrete signals will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).
previous

Syntax

\[ y = \text{previous}(x, \text{init}); \]

Description

The previous function delays the input signal \( x \) and holds it for one sample interval. It is equivalent to the \( z-1 \) discrete time operator. The \( \text{init} \) argument is the first value for \( y \) at \( t=0 \) {s}.

Examples

\[ x = \sin(\text{time} \times 0.3); \]
\[ y = \text{sample}(x); \]
\[ z = \text{previous}(y); \]
\[ u = \text{hold}(z); \]

Limitations

\( x \) and \( y \) will become discrete signals. 20-sim will automatically detect the existence of discrete signals. Each chain of discrete signals will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

sample

Syntax

\[ y = \text{sample}(x, \text{init}); \]

Description
The sample function implements a sample and hold function operating at a specified sampling rate. It provides a mechanism for discretizing a continuous input signal. The initial value of \( y \) is equal to the value of \( \text{init} \). This initial value is optional. If no value is entered, a default initial value of 0 is used.

\[
\text{y} = \text{sample}(x)
\]

**Examples**

\[
\begin{align*}
x &= \sin(time \times 0.3); \\
y &= \text{sample}(x); \\
z &= \text{previous}(y); \\
u &= \text{hold}(z);
\end{align*}
\]

**Limitations**

- \( x \) and \( y \) must be scalars. \( x \) represents a continuous signal and \( y \) represents a discrete signal.
- \( y \) will become a discrete signal. 20-sim will automatically detect the existence of discrete signals. Each chain of discrete signals will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose *Properties, Simulation*, and *Discrete System*).
8.4.4 Event

**event**

**Syntax**

\[ y = \text{event}(x); \]

**Description**

\( y \) becomes true when \( x \) is zero. This function forces the integration algorithm to find the exact point where the input crosses zero. This is called a state event.

**Examples**

\[
\begin{align*}
x &= \sin(time*omega +phi); \\
y &= \text{event}(x);
\end{align*}
\]

**Limitations**

\( y \) must be a boolean, \( x \) must be an expression yielding a scalar.

**eventdown**

**Syntax**

\[ y = \text{eventdown}(x); \]

**Description**

\( y \) becomes true when \( x \) is zero. This function forces the integration algorithm to find the exact point where the input crosses zero from a positive to a negative value. This is called a state event.

**Examples**

\[
\begin{align*}
x &= \sin(time*omega +phi); \\
y &= \text{eventdown}(x);
\end{align*}
\]

**Limitations**

\( y \) must be a boolean, \( x \) must be an expression yielding a scalar.

**eventup**

**Syntax**

\[ y = \text{event}(x); \]

**Description**

\( y \) becomes true when \( x \) is zero. This function forces the integration algorithm to find the exact point where the input crosses zero from a negative to a positive value. This is called a state event.
Examples

\[ x = \sin(time \cdot \omega + \phi); \]
\[ y = \text{eventup}(x); \]

Limitations

\( y \) must be a boolean, \( x \) must be an expression yielding a scalar.

**frequencyevent**

Syntax

\[ y = \text{frequencyevent}(p,o); \]

Description

\( y \) becomes true every time when \( p \) [s] have passed. The function starts after an offset of \( o \) [s]. The offset parameter is optional. This function is a time event function.

Examples

\[
\text{parameters}
\begin{align*}
\text{real} \ period & = 0.1 \ \{s\}; \\
\text{real} \ offset & = 0.005 \ \{s\};
\end{align*}
\]

\[
\text{variables}
\begin{align*}
\text{boolean} \ y,z;
\end{align*}
\]

\[
\text{equations}
\begin{align*}
y & = \text{frequencyevent}(1); \quad \text{// } y = \text{true every second} \\
z & = \text{frequencyevent}(\text{period}, \text{offset}); \quad \text{// } z = \text{true at } 0.005 \text{ s}, 0.105 \text{ s}, 0.205 \text{ s etc.}
\end{align*}
\]

Limitations

\( y \) must be a boolean, \( p \) and \( o \) must be a parameter or a constant.

**timeevent**

Syntax

\[ y = \text{timeevent}(x); \]

Description

\( y \) becomes true when time is equal to \( x \). This function forces the integration algorithm to do a calculation when time \( y \) becomes true. This is a time event function.

Examples

The example code below forces the integration algorithm, to do a calculation at the start of the step:

\[
\begin{align*}
x & = \text{step}(\text{start_time}); \\
y & = \text{timeevent}(\text{start_time});
\end{align*}
\]

Limitations

\( y \) must be a boolean, \( x \) must be an expression yielding a scalar.
8.4.5 Expansion

equal

Syntax

`equal([x1, x2, ..., xn]);`

Description

This function is used to make all elements of a matrix equal. It returns the equations \( x_2 = x_1, x_3 = x_1, \ldots, x_n = x_1 \). During processing the equations will be automatically reshaped into a proper causal form. This function is created for use in library models that use a matrix with unknown size which results from the collect function.

Examples

Suppose we have \( m \) bonds connected to a submodel, collected in a port \( p \). We could then use the function:

`collect(p.e);`

During processing this equation will be expanded as:

`[p.e1; p.e2; ...; p.n];`

If we use the equal function:

`equal(collect(p.e));`

this results in:

`equal([p.e1; p.e2; ...; p.n]);`

which will be expanded in:

\[
p.e2 = p.e1; \\
P.e3 = p.e1; \\
\ldots \\
p.en = p.e1
\]

Limitations

This function is designed for a special class of models and should be used by experienced users only!
mul

Syntax

\[ y = \text{mul}([x_1, x_2, \ldots, x_n]); \]

Description

This function is used for multiplication of variables of which one may be unknown. It returns the equation \( y = x_1 \times x_2 \times \ldots \times x_n \). During processing this equation will be automatically reshaped into a causal form.

This function is created for use in library models that have unknown inputs such as MultiplyDivide model. Try to avoid the use of this function!

Examples

equations after reshaping (processing)
\[
\begin{align*}
x_1 &= 1; \\
x_2 &= 2; \\
0 &= \text{mul}([x_1, x_2, x_3]); \\
y &= \sin(\text{time}); \\
x_2 &= 2; \\
y &= \text{mul}([x_1, x_2]); \\
y &= \sin(\text{time}); \\
x_1 &= y/x_2;
\end{align*}
\]

Limitations

This function is designed for a special class of models and should be used by experienced users only! \( y, x_1, x_2, \ldots, x_n \) must be scalars. \( n \) may be 1 or higher.

sum

Syntax

\[ y = \text{sum}([x_1, x_2, \ldots, x_n]); \]

Description

This function is used for summation of variables of which one may be unknown. It returns the equation \( y = x_1 + x_2 + \ldots + x_n \). During processing this equation will be automatically reshaped into a causal form.

This function is created for use in library models that have unknown inputs such as PlusMinus model. Try to avoid the use of this function!

Examples

equations after reshaping (processing)
\[
\begin{align*}
x_1 &= 1; \\
x_2 &= 2; \\
0 &= \text{sum}(x_1, x_2, x_3); \\
y &= \sin(\text{time}); \\
x_2 &= 2; \\
y &= \text{sum}([x_1, x_2]); \\
y &= \sin(\text{time}); \\
x_1 &= x_1 + x_2;
\end{align*}
\]
\[ y = \sin(time); \quad y = \sin(time); \]
\[ x2 = 2; \quad x2 = 2; \]
\[ y = \text{sum}(x1,x2); \quad x1 = y - x2; \]

**Limitations**

- This function is designed for a special class of models and should be used by experienced users only! \( y, x1, x2, \ldots, x_n \) must be scalars. \( n \) may be 1 or higher.
- Use the function `msum` if you want to use a standard summation of multiple variables.

**8.4.6 External**

**Settoolsetting**

**Syntax**

\[ status = \text{settoolsetting}('key', \text{value}) \]

**Description**

The `settoolsetting()` function can be used to change simulator settings from your model.

The following values for `key` are possible:

- fastmode
- endless
- integrationmethod
- starttime
- finishtime
- eventdelta
- outputaftereach
- integrationmethod.Euler.stepsize
- integrationmethod.BackwardEuler.alpha
- integrationmethod.BackwardEuler.stepsize
- integrationmethod.BackwardEuler.absolutetolerance
- integrationmethod.BackwardEuler.relativetolerance
- integrationmethod.AdamsBashforth.stepsize
- integrationmethod.RungeKutta2.stepsize
- integrationmethod.RungeKutta4.stepsize
- integrationmethod.RungeKutta8.absolutetolerance
- integrationmethod.RungeKutta8.relativetolerance
- integrationmethod.RungeKutta8.initialstepsize
- integrationmethod.RungeKutta8.maximumstepsize
- integrationmethod.RungeKuttaFehlberg.absolutetolerance
- integrationmethod.RungeKuttaFehlberg.relativetolerance
- integrationmethod.RungeKuttaFehlberg.initialstepsize
- integrationmethod.RungeKuttaFehlberg.maximumstepsize
8. Language Reference

integrationmethod.VodeAdams.absolutetolerance
integrationmethod.VodeAdams.relativetolerance
integrationmethod.VodeAdams.initialstepsize
integrationmethod.VodeAdams.maximumstepsize
integrationmethod.BDFMethod.initialstepsize
integrationmethod.BDFMethod.maximumstepsize
integrationmethod.BDFMethod.absolutetolerance
integrationmethod.BDFMethod.relativetolerance
integrationmethod.MeBDFiMethod.initialstepsize
integrationmethod.MeBDFiMethod.maximumstepsize
integrationmethod.MeBDFiMethod.absolutetolerance
integrationmethod.MeBDFiMethod.relativetolerance

Example
variables
  real x, y, dummy;

code
  y = int (x);
  x = sin (time);
  
  if time > 7 then
    dummy = settoolsetting ('integrationmethod.Euler.stepsize', 0.1 );
  else
    if time > 6 then
      dummy = settoolsetting
        ('integrationmethod.Euler.stepsize', 0.01 );
    else
      if time > 5 then
        dummy = settoolsetting
          ('integrationmethod.Euler.stepsize', 1 );
      end;
    end;
  end;
end;

data
Syntax
  y = data(filename,column);

Description
This function generates an output by linear interpolation of data read from file. The data
on file is stored in columns. The first column contains the time values (t) and the second
column contains the corresponding output values (y).

- The time data of the first column needs to be monotonically increasing.
- Discontinuities are allowed, by providing the same time point twice in the table.
- Values outside of the range, are computed by linear extrapolation of the last two
  points.
The first argument \textit{\texttt{filename}} of this function must be a parameter of the type string and is used as a reference to a filename. This reference can be specified using the complete path or relative to the model directory. The second argument \textit{\texttt{column}} of this function must be a parameter of the type integer denoting a whole number. It is used to denote the column number.

\begin{table}[h]
\begin{tabular}{ll}
0 & -0.5  \\
0.5 & -1   \\
2.5 & -1   \\
3.5 & 0    \\
4.5 & 1    \\
5.5 & 1.75 \\
7   & 2.5  \\
8   & 2.5  \\
\end{tabular}
\end{table}

The input file must be an ASCII (text) file or a Comma Separated Values (.csv) file and should consist at least two columns of data. The first column (number 0) should always contain the time values. The other columns (number 1, 2, 3, etc.) should contain the corresponding data values. The parameter \textit{\texttt{column}} is used to specify which column is used for as output data.

The various values must be separated by a space, a tab or a comma. Each new set of time and data values must start on a new line. No comment or other text may be part of the file. The filename of the input file can be specified using the complete path (e.g. `c:\data\data.tbl`). When no path is given, the file is assumed to be in the same directory as your model.

The first row may contain names for the columns. Names should be indicated by quotation marks ("').

\textbf{Example}
\begin{verbatim}
parameters  
    string filename = 'data.txt';  
    integer col = 2;  
variables   
    real y;  
equations   
    y = data(filename,col);  
\end{verbatim}

Example data.txt file with header:
\begin{verbatim}
"time","x","y"
0.0, 1, 2  
0.1, 5, 10
\end{verbatim}
0.2, 6, 11

**Limitations**

*y* must be a scalar. *from_file* must be string parameter. *x* must be an integer parameter.

---

**dll**

**Syntax**

```plaintext
y = dll(filename, functionname, x);
```

**Description**

Given a function (*functionname*) of a dll (*filename*), the dll function returns the output values (*y*) for a given input (*x*).

Users can write their own source code using a native compiler such as Visual C++ or Borland C++. With these compilers it is possible to create DLLs with user defined functions that have an input- output relation which can be embedded in simulation code.

**Example**

```plaintext
parameters
 string filename = 'example.dll';
 string function = 'myFunction';
variables
 real x[2], y[2];
equations
 x = [ramp(1); ramp(2)];
 y = dll(filename, function, x);
```

**Limitations**

*filename* and *functionname* must be string parameters. Note that the size of Y and X (scalars or matrices) must correspond with the size that is expected for the given dll-function.

**Search Order**

20-sim uses the following search order for the dll-file:

1. The bin directory of 20-sim (usually C:\Program Files\20-sim 4.7\bin).
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories that are listed in the PATH environment variable.

The simplest place to put the DLL-file is the bin directory, but it is always possible to give a complete path for the DLL filename.
**Code generation notice**

20-sim allows for code generation of the 20-sim model. In case of a DLL call, 20-sim cannot generate the complete code for a DLL call since it only knows the DLL file name, function name and arguments and not the internal DLL code.

Therefore, in the generated code, the `dll(dll_name, function_name, in)` will be generated as:

```
%dll_name%_%function_name%(double *inarr, int inputs, double *outarr, int outputs, int major)
```

Where `%dll_name%` and `%function_name%` are replaced with the actual DLL and function name. You have to add the C-code implementation of this function yourself to the generated code before you can compile it.

**Writing Static DLL's**

Almost every compiler that can build Windows applications, can also build dll-files containing dll-functions. For two compilers an example will be given how to build the static dll's (i.e. dll functions that do not contain internal model states) in combination with 20-sim. The two compilers are: Visual C++ and Borland C++.

When the simulator has to call the user defined dll for the first time the dll is linked and the appropriate function is called. At the end of the simulation run the dll will be disconnected from the simulator. In general the dll-function called by the simulator has the following syntax in 20-sim:

```
Y = dll(filename,functionname,X);
```

For example (equation model):

```plaintext
parameters
 string dll_name = 'example.dll';
 string function_name = 'myFunction';
variables
 real in[2],out[2];
equations
 in = [ramp(1),ramp(2)];
 out = dll(dll_name, function_name, in);
```

The name of the function is the actual name which was given to the corresponding string parameter. The return value of the function determines whether the function was successful or not. A return value of 0 means success, every other value error. When a nonzero value is returned the simulation stops after finishing its current simulation step. The parameters given to the function correspond directly to the 20-sim parameters: double pointers for the inputs and outputs point to an array of doubles.

**Function arguments**

The user-function in the dll must have certain arguments. The function prototype is like this:
int myFunction(double *inarr, int inputs, double *outarr, int outputs, int major)

where

- \textit{inarr}: pointer to an input array of doubles. The size of this array is given by the second argument.
- \textit{inputs}: size of the input array of doubles.
- \textit{outarr}: pointer to an output array of doubles. The size of this array is given by the fourth argument.
- \textit{outputs}: size of the output array of doubles.
- \textit{major}: boolean which is 1 if the integration method is performing a major integration step, and 0 in the other cases. For example Runge-Kutta 4 method only has one in four model evaluations a major step.

\textbf{Initializing the DLL-file}

When the dll is linked to the simulator it is often useful to perform some initializations. There are several ways to perform these initializations.

\textbf{Method 1}

When the simulator has attached the dll-file it automatically searches for a function with the name \texttt{int Initialize()}. If this function is found it is called. The return value is checked for success, 1 means success, 0 means error. At the end of the simulation run just before the dll-file is detached the simulator searches for a function called \texttt{int Terminate()}. In this function the necessary termination action can be performed like cleaning up allocated memory.

At the start of every run the simulator also searches a function with the name \texttt{int InitializeRun()}. If it is found it is called the same way the Initialize function was called. At the end the same happens with the function \texttt{int TerminateRun()}. This is very useful in multiple run simulations, in this case the dll-file is linked only once with the simulator, and only once the Initialize and Terminate functions are called. But for every subsequent run the InitializeRun and TerminateRun functions are called so every run can be initialized and terminated gracefully. In this case in the Terminate function collection of multiple run data could be collected and saved for example.

So suppose you have a multiple run with 2 runs, the following functions (if they exist) will be called in the dll-file in this order:

\begin{verbatim}
Initialize()
InitializeRun()
TerminateRun()
Terminate()
\end{verbatim}
Method 2
Using the DLLEntryPoint function. This function is automatically called when the library is linked or detached. Both in Visual C++ and in Borland C++ this function has the same syntax. However when using visual C++ as the compiler, our simulator which is build with Visual C++ does not seem to be able to call this function. So the framework as given below only works with a Borland C++ dll.

```c
// Every dll has an entry point LibMain || DllEntryPoint
// and an exit point WEP (windows exit point).
BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll, DWORD fdwRreason, LPVOID plvReserved)
{
 if (fdwRreason == DLL_PROCESS_ATTACH)
 {
 return 1; // Indicate that the dll was linked successfully.
 }
 if (fdwRreason == DLL_PROCESS_DETACH)
 {
 return 1; // Indicate that the dll was detached successfully.
 }
 return 0;
}
```

Method 3
When using an object oriented language it is possible to have a global variable which is an instance of a class. When linking the dll-file to the simulator the constructor function of this global variable will be called automatically. In this constructor the initialization can be performed. When the dll-file is detached the destructor of the global variable is called. Some care should be taken with this method of terminating. E.g. if the user is asked for a filename using a FileDialog this sometimes causes the complete application to crash. The reason for this is that some of the dll-files contents was already destructed and that some functionality may not work anymore resulting in an application error. The solution for this problem is to use method 1 of initialization and destruction.

Frame work for a Visual C++ dll-file implementation.
```c
#include <windows.h>
#define DllExport __declspec(dllexport)
extern "C"
{
 DllExport int myFunction(double *inarr, int inputs, double *outarr, int outputs, int major)
 {
 ... // function body
 return 0; // return successful
 }
 DllExport int Initialize()
 {
 ... // do some initializations here.
 return 0; // Indicate that the dll was initialized successfully.
 }
```
8. Language Reference

```c
DllExport int Terminate()
{
 // do some cleaning here
 return 0; // Indicate that the dll was terminated successfully.
}

Frame work for a Borland C++ dll-file implementation.
#include <windows.h>
extern "C"
{
 int _export myFunction(double *inarr, int inputs, double *outarr, int outputs, int major)
 {
 // function body
 return 0; // return successful
 }
 int _export Initialize()
 {
 // do some initializations here.
 return 0; // Indicate that the dll was initialized successfully.
 }
 int _export Terminate()
 {
 // do some cleaning here
 return 0; // Indicate that the dll was terminated successfully.
 }
}

// Every dll has an entry point LibMain || DllEntryPoint
// and an exit point WEP.
BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll, DWORD fdwRreason, LPVOID plvReserved)
{
 if (fdwRreason == DLL_PROCESS_ATTACH)
 {
 // do some initializations here.
 return 1; // Indicate that the dll was initialized successfully.
 }
 if (fdwRreason == DLL_PROCESS_DETACH)
 {
 // do some cleaning here
 return 1; // Indicate that the dll was initialized successfully.
 }
 return 0;
}

Note
```
Make sure that Borland C++ does not generate underscores in front of the exported function names! This can probably be found in the compiler settings.

Working example

Here is a complete working example of how to use a dll-function from within the simulator. This code will compile with Visual C++ or gcc. See the Borland C++ framework how to write this code in Borland C++.

```c++
/* Example C++ DLL for 20-sim */
#include <windows.h>
#include <math.h>
#include <fstream>
#include <stdio.h>
#define DLLEXPORT __declspec(dllexport)
using namespace std;
ofstream outputStream;
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
extern "C"
{
 char g_lasterrormessage[255]; /* Used to store a DLL error message
 for transfer to 20-sim */
 const char* g_modelpath;

 /**
 * This is an example of a function that can be called in your 20-sim
 * model using the dll() Sidops call
 *
 * @param inarr This double array contains all inputs that will be
 * send from 20-sim to the other side
 *
 * @param inputs 20-sim tells the dll how many elements inarr[]
 * contains.
 *
 * @param outarr Result from this dll function that will be returned
 * to 20-sim
 *
 * @param outputs 20-sim tells the dll how many elements it expects
 * (and allocated) in outarr.
 *
 * @param major 1-major integration step, 0-minor step (e.g. an
 * intermediate integration method step in Runge Kutta
 * 4)
 **/
 DLLEXPORT int myFunction(double *inarr, int inputs, double *outarr,
 int outputs, int major)
 {
 // Check the sizes of our input and output arrays
 }
```
if (inputs != outputs)
{
    snprintf(g_lasterrormessage, 255, "%s: expects that the number of inputs is equal to the number of outputs.", __FUNCTION__);
    return 0; // Failure
}

for (int i = 0; i < inputs; i++)
{
    outarr[i] = cos(inarr[i]);
    outputStream << inarr[i] << " " << outarr[i] << " ";
}
outputStream << endl;
return 1; // Success

/***** Initialization and cleanup *****/

/**
 * Initialize() [optional]
 *
 * This function is called by the 20-sim simulator BEFORE starting the simulation experiment (and only once in a multiple run experiment) to initialize the dll properly.
 */
DLLEXPORT int Initialize()
{
    outputStream.open("c:\temp\data.log");
    return 0; // Indicate that the dll was initialized successfully.
}

/**
 * InitializeRun() [optional]
 *
 * This function is called by the 20-sim simulator BEFORE starting the simulation experiment (and only once in a multiple run experiment) to initialize the dll properly.
 */
DLLEXPORT int InitializeRun()
/* Clear lasterrormessage before every run. */
snprintf(g_lasterrormessage, 255, "");

return 0; /* Indicate that the dll was initialized successfully. */
}

/**
* TerminateRun() [optional]
* This function is called by 20-sim after each finished run
*/
DLLEXPORT int TerminateRun()
{
    /* Cleanup / reset your DLL here for the next run
    * (e.g. in a multiple run experiment)
    */
    return 0; // Indicate that the dll was terminated successfully.
}

/**
* Terminate() [optional]
* This function is called by 20-sim on a DLL unload
*/
DLLEXPORT int Terminate()
{
    outputStream.close();
    return 0; // Indicate that the DLL was terminated successfully.
}

/**
* LastErrorMessage() [optional]
* Used by 20-sim to fetch a string with the last error that occurred
* within the DLL
* @return A char pointer to a string indicating the error message
*/
DLLEXPORT char* LastErrorMessage()
{
    return g_lasterrormessage;
}

/**
* RegisterModelPath() [optional]
* This function is called by 20-sim before Initialize() to learn the
* DLL where the model is located. It can be used e.g. to find data
* files stored in the same folder as the model.
* @param modelPath char pointer to the model directory
* @return 0 if parameter is set successfully, 1 if not successful.
*/
8. Language Reference

```c
DLLEXPORT int RegisterModelPath(const char * modelPath)
{
 g_modelpath = modelPath;
}
```

**Usage within 20-sim**

Suppose the dll has been created as "example.dll". With the following code this model can be tested:

```c
parameters
 string dll_name = 'example.dll';
 string function_name = 'myFunction';
variables
 real in[2], out[2];
equations
 in = [ramp(1), ramp(2)];
 out = dll(dll_name, function_name, in);
```

Note that the general function "dll" is used. The arguments of this function, dll_name and function_name, are parameters which are used to denote the dll that should be used and the function of that dll that should be called. You can load this model from the Demonstration Models Library:

1. Open the Editor.
2. From the demo library open the model DllFunction.emx (choose File and Open)
3. Start the simulator (Model menu and Start Simulator).
4. Start a simulation run (select Run from the Simulation menu).

**Code generation notice**

20-sim allows for code generation of the 20-sim model. In case of a DLL call 20-sim cannot generate the complete code for a DLL call since it only knows the DLL file name, function name and arguments and not the internal DLL code.

Therefore, in the generated code, the `dll(dll_name, function_name, in)` will be generated as:

```
%dll_name%_%function_name% % (double *inarr, int inputs, double *outarr, int outputs, int major)
```

Where `%dll_name%` and `%function_name%` are replaced with the actual DLL and function name. You have to add the C-code implementation of this function yourself to the generated code before you can compile it.
**dlldynamic**

**Syntax**

\[ Y = \text{dlldynamic}(\text{filename}, \text{functionname}, X); \]

**Description**

Given a function (functionname) of a dll (filename), the dll function returns the output values (X) for a given input (Y).

Users can write their own source code using a native compiler such as Visual C++ or Borland C++. With these compilers it is possible to create DLL’s with user defined functions that have an input- output relation which can be embedded in simulation code.

**Examples**

```plaintext
parameters
 string dllName = 'demoDynamicDll.dll';
 string functionName = 'SFunctionCalculate';
variables
 real x[2], y[2];
equations
 x = [ramp(1); ramp(2)];
 y = dlldynamic(dllName, functionName, x);
```

**Limitations**

The *filename* and *functionname* must be string parameters. Note that the size of Y and X (scalars or matrices) must correspond with the size that is expected for the given dll-function.

**Search Order**

20-sim uses the following search order for the dll-file:

1. The bin directory of 20-sim (usually C:\Program Files\20-sim 4.7\bin).
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories that are listed in the PATH environment variable.

The simplest place to put the dlldynamic-file is the bin directory, but it is always possible to give a complete path for the dll filename.

**Writing Dynamic DLL's**

Almost every compiler that can build Windows applications, can also build dll-files containing dll-functions. For the Visual C++ compiler an example will be given how to build the dynamic dll’s (i.e. dll functions that may contain internal model states) in combination with 20-sim.

The functions in the DLL are called in a specific sequence. For communication with the functions and the Simulator Kernel information is passed in a structure. This structure looks like this:
struct SimulatorSFunctionStruct
{
    double versionNumber;
    int nrInputs;
    int nrOutputs;
    int nrIndepStates;
    int nrDepStates;
    int nrAlgLoops;
    double simulationStartTime;
    double simulationFinishTime;
    double simulationCurrentTime;
    BOOL major;
    BOOL initialOutputCalculation;
};

1. Initialize
At the start of the simulation the function

int Initialize()

is called. When this function is not present it is not called. Any initializations of data
structures can be performed here.

2. SFunctionInit
During initialization of the Simulator Kernel the function

int SFunctionInit(SimulatorSFunctionStruct *s)

is called. Return value is 0 means error. every other value succes Argument is a pointer
to the simstructure. On initialization the following fields should be filed in:

nrIndepStates
nrDepStates
nrAlgLoop

The following fields already have valid values:

    simulationStartTime      giving the start time of the simulation
    simulationFinishTime     giving the finish time of the simulation
    simulationCurrentTime    giving the current time (actually the start time at
                              the moment of initialization)

3. Initial values for the states:
8. Language Reference

```c
int SFunctionGetInitialStates(double *initialIndepStates,
 double *initialDepRates,
 double *initialAlgloopIn,
 SimulatorSFunctionStruct *simStruct);
```

Return value is 0 means error, every other value succes. The initial value for the independent states, dependent rates and algebraic loop variables can be specified by the DLL in this function. It is just called before the initial output calculation function in step 3. If all the initial values are zero, nothing has to be specified.

4. Initial Output Calculation
It is possible that the DLL-function can give an initial output. A separate function is called so that the DLL can calculate it's initial output values. The boolean initialOutputCalculation in the simulatorSFunction structure is used. Just the sFunction is called as in point 5.

5. SFunction calling:
Here all the fields of the SimulatorSFunctionStruct are input for the function. The inputArray, stateArray, outputArray and rateArray are always given as arguments of the function. Dependent on the number of dependent states and algebraic loop variables more arguments can be given as shown in the functions below (sFunctionName is the name defined by the parameter name specified by the user):

Return value is 0 means error, every other value succes

```c
case: no dependent states, no algebraic loop variables
int sFunctionName(double *inputArray,
 double *stateArray,
 double *outputArray,
 double *rateArray,
 SimulatorSFunctionStruct *simStruct);
```

```c
case: dependent states, no algebraic loop variables
int sFunctionName(double *inputArray,
 double *stateArray,
 double *dependentRateArray,
 double *outputArray,
 double *rateArray,
 double *dependentStateArray,
 SimulatorSFunctionStruct *simStruct);
```

```c
case: no dependent states, algebraic loop variables
int sFunctionName(double *inputArray,
 double *stateArray,
 double *algLoopInArray,
 double *outputArray,
```
8. Language Reference

double *rateArray,
double *algLoopOutrray,
SimulatorSFunctionStruct *simStruct);

case: dependent states, algebraic loop variables
int sFunctionName(double *inputArray,
double *stateArray,
double *dependentRateArray,
double *algLoopInArray,
double *outputArray,
double *rateArray,
double *dependentStateArray,
double *algLoopOutrray,
SimulatorSFunctionStruct *simStruct);

the boolean major in the SimulatorSFunctionStruct determines whether the evaluation of
the model is done at the time output is generated (major == TRUE ) or that the model is
evaluated because of determining model characteristics. For example Runge-Kutta4
integration method uses three minor steps before taking a major step where output is
generated. Higher order methods can have different number of minor steps before a
major step is taken.

6. Termination
At the end of the simulation the function:

int Terminate()

is called. When this function is not present it is not called. Any terminations of data
structures can be performed here.

Frame work for a Visual C++ dll-file implementation.

#include <windows.h>
#define DllExport __declspec( dllexport )
extern "C"
{
    DllExport int dllfunction(double *inarr, int inputs, double *outarr, int outputs, int major)
    {
        // function body
        return 0; // return succesfull
    }
    DllExport int Initialize()
    {
        // do some initializations here.
        return 0; // Indicate that the dll was initialized successfully.
Frame work for a Borland C++ dll-file implementation.

```c
#include <windows.h>
extern "C"
{
 int _export dllfunction(double *inarr, int inputs, double *outarr, int outputs, int major)
 {
 ... // function body
 return 0; // return succesfull
 }
 int _export Initialize()
 {
 ... // do some initializations here.
 return 0; // Indicate that the dll was initialized successfully.
 }
 int _export Terminate()
 {
 ... // do some cleaning here
 return 0; // Indicate that the dll was terminated successfully.
 }
}
// Every dll has an entry point LibMain || DllEntryPoint
// and an exit point WEP.
BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll,DWORD fdwRreason,LPVOID plvReserved)
{
 if(fdwRreason == DLL_PROCESS_ATTACH)
 {
 ... // do some initializations here.
 return 1; // Indicate that the dll was initialized successfully.
 }
 if(fdwRreason == DLL_PROCESS_DETACH)
 {
 ... // do some cleaning here
 return 1; // Indicate that the dll was initialized successfully.
 }
```
Working example

Here is a complete working example of how to use a dll-function from within the simulator. This code will compile with Visual C++. See the Borland C++ framework how to write this code in Borland C++.

```c
#include <windows.h>
#include "SimulatorSFunctionStruct.h"

/ **

* in this source file we are gonna describe a linear system which is defined by
* the following transfer function description:

 34
Y = ---------------- * U
 s^2 + 6s + 34

or A, B, C, D system:

 A = [0, -3.4;
 10, -6];
 B = [-3.4;
 0];
 C = [0, -1];
 D = 0
which has two poles on (-3 + 5i) and (-3 -5i)

 steady state = 1

 *******/

#define DllExport __declspec(dllexport)

extern "C"
{
 // called at begin of the simulation run
 DllExport int Initialize()

```
{  
// you can perform your own initialization here.

// success
return 0;
}

// called at end of the simulation run
DllExport int Terminate()
{
// do some cleaning here

// success
return 0;
}

DllExport int SFunctionInit (SimulatorSFunctionStruct *s)
{
// tell our caller what kind of dll we are
s->nrIndepStates = 2;

s->nrDepStates = 0;

s->nrAlgLoops = 0;

// dubious information, since 20-sim itself does not check and need this info
s->nrInputs = 1;

s->nrOutputs = 1;

// return 1, which means TRUE
return 1;
}

DllExport int SFunctionGetInitialStates (double *x0, double *xd0, double *xa0,
SimulatorSFunctionStruct *s)
{
// fill in the x0 array here. Since we specified no Dependent states, and No algebraic loop variables
// the xd0 and xa0 may not be used.

// initial value is zero.

x0[0] = 0;

x0[1] = 0;

// return 1, which means TRUE
return 1;
Use within 20-sim

Suppose the dll has been created as "demoDynamicDll.dll". With the following code this model can be tested:

parameters
    string dllName = 'demoDynamicDll.dll';
    string functionName = 'SFunctionCalculate';

equations
    output = dlldynamic (dllName, functionName, input);
Note that the general function "dlldynamic" is used. The arguments of this function, dllName and functionName, are parameters which are used to denote the dll that should be used and the function of that dll that should be called. You can load this model from the Demonstration Models Library:

1. Open the Editor.
2. From the demo library open the model DllFunction.emx (choose File and Open)
3. Start the simulator (Model menu and Start Simulator).
4. Start a simulation run (select Run from the Simulation menu).

### table

**Syntax**

\[ y = table(file\_name,x); \]

**Description**

This model uses a one-dimensional table with data points to calculate the output \( y = f(x) \) as a function of the input \( x \). The output \( y \) is calculated using linear interpolation between the table data points.

- The input data \( x \) of the first column needs to be monotonically increasing.
- Discontinuities are allowed, by providing the same input point twice in the table.
- Values outside of the table range, are computed by linear extrapolation of the last two points.

The first argument \( (file\_name) \) of this function must be a parameter of the type string and is used as a reference to a filename. This reference can be specified using the complete path or relative to the model directory. The second argument \( (x) \) should be a real variable.

<table>
<thead>
<tr>
<th>( x )</th>
<th>( y )</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
</tr>
</tbody>
</table>
A table must be stored as an ASCII (text) file or a Comma Separated Values (.csv) file and should consist two columns of data. The first column consists of the \( x \)-values and the second column of the corresponding \( y \)-values. Each line of the file may only contain one \( x \)- and one corresponding \( y \)-value. The two values must be separated by a space or a tab. Each new set of \( x \)- and \( y \)-values must start on a new line. No comment or other text may be part of the table-file.

**Example**

```plaintext
parameters
 string filename = 'data.txt';
variables
 real y;
 real x;
equations
 x = ramp(1);
 y = table(filename,x);
```

Example data.txt format:

```
-2.5, -0.5
-2.0, -1.0
0.0, -1.0
1.0, 0.0
2.0, 2.0
3.0, 3.0
5.0, 4.0
6.0, 4.0
```

**Limitations**

\( x \) and \( y \) must be scalars. `from_file` must be string parameter.

8.4.7 **Matrix**

**adjoint**

**Syntax**

\[
Y = \text{adjoint}(T);
Y = \text{adjoint}(W,V);
\]

**Description**

Returns the adjoint matrix \([6,6]\) of a twist or wrench vector \( T \) \([6,1]\):
or returns the adjoint matrix $[6,6]$ of an angular velocity vector $W [3,1]$ and a velocity vector $V [3,1]$:

$$ W = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}, \quad V = \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix} \rightarrow $$

$$\text{adjoint}(W,V) = \begin{bmatrix} \text{skew}(W) & 0 \\ \text{skew}(V) & \text{skew}(W) \end{bmatrix} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 & 0 & 0 & 0 \\ \omega_3 & 0 & -\omega_1 & 0 & 0 & 0 \\ -\omega_2 & \omega_1 & 0 & 0 & 0 & 0 \\ 0 & -\nu_3 & \nu_2 & 0 & -\omega_3 & \omega_2 \\ \nu_3 & 0 & -\nu_1 & \omega_3 & 0 & -\omega_1 \\ -\nu_2 & \nu_1 & 0 & -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

The adjoint function is useful for dynamics described by twists and wrenches.

**Examples**

$$ W = [w1 ; w2 ; w3]; $$
$$ V = [v1 ; v2 ; v3]; $$
$$ Y = \text{adjoint}(W,V); $$

**Limitations**

$Y$ must be of size $[6,6]$, $W$ must always be of size $[3,1]$ , $V$ must have the size $[3,1]$ and $T$ must have size $[6,1]$. 
**Adjoint**

**Syntax**

\[ A = \text{Adjoint}(H); \]
\[ A = \text{Adjoint}(R,P); \]

**Description**

Returns the adjoint matrix \([6,6]\) of a homogeneous matrix \([4,4]\):

\[
H = \begin{bmatrix}
    r_{11} & r_{12} & r_{13} & P_1 \\
    r_{21} & r_{22} & r_{23} & P_2 \\
    r_{31} & r_{32} & r_{33} & P_3 \\
    0 & 0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix} R & P \end{bmatrix} \rightarrow
\]

\[
\text{Adjoint}(H) = \begin{bmatrix}
    R & 0 \\
    \text{skew}(P) \times R & R \\
\end{bmatrix} = \begin{bmatrix}
    r_{11} & r_{12} & r_{13} & 0 & 0 & 0 \\
    r_{21} & r_{22} & r_{23} & 0 & 0 & 0 \\
    r_{31} & r_{32} & r_{33} & 0 & 0 & 0 \\
    -P_3 \cdot r_{31} + P_2 \cdot r_{32} - P_2 \cdot r_{21} + P_1 \cdot r_{23} - P_3 \cdot r_{33} + P_2 \cdot r_{23} & r_{11} & r_{12} & r_{13} \\
    P_3 \cdot r_{31} - P_2 \cdot r_{32} - P_2 \cdot r_{21} + P_1 \cdot r_{23} - P_3 \cdot r_{33} + P_2 \cdot r_{23} & r_{21} & r_{22} & r_{23} \\
    -P_3 \cdot r_{31} + P_2 \cdot r_{32} - P_2 \cdot r_{21} + P_1 \cdot r_{23} - P_3 \cdot r_{33} + P_2 \cdot r_{23} & r_{31} & r_{32} & r_{33} \\
\end{bmatrix}
\]

or returns the adjoint matrix \([6,6]\) of a rotation matrix \([3,3]\) and position vector \([3]\):

\[
R = \begin{bmatrix}
    r_{11} & r_{12} & r_{13} \\
    r_{21} & r_{22} & r_{23} \\
    r_{31} & r_{32} & r_{33} \\
\end{bmatrix}, \quad P = \begin{bmatrix} p_1 \\
    p_2 \\
    p_3 \end{bmatrix} \rightarrow
\]

\[
\text{Adjoint}(R,P) = \begin{bmatrix}
    R & 0 \\
    \text{skew}(P) \times R & R \\
\end{bmatrix} = \begin{bmatrix}
    r_{11} & r_{12} & r_{13} & 0 & 0 & 0 \\
    r_{21} & r_{22} & r_{23} & 0 & 0 & 0 \\
    r_{31} & r_{32} & r_{33} & 0 & 0 & 0 \\
    -P_3 \cdot r_{31} + P_2 \cdot r_{32} - P_2 \cdot r_{21} + P_1 \cdot r_{23} - P_3 \cdot r_{33} + P_2 \cdot r_{23} & r_{11} & r_{12} & r_{13} \\
    P_3 \cdot r_{31} - P_2 \cdot r_{32} - P_2 \cdot r_{21} + P_1 \cdot r_{23} - P_3 \cdot r_{33} + P_2 \cdot r_{23} & r_{21} & r_{22} & r_{23} \\
    -P_3 \cdot r_{31} + P_2 \cdot r_{32} - P_2 \cdot r_{21} + P_1 \cdot r_{23} - P_3 \cdot r_{33} + P_2 \cdot r_{23} & r_{31} & r_{32} & r_{33} \\
\end{bmatrix}
\]

The Adjoint function is useful for dynamics described by twists and wrenches.

**Examples**

\[
R = [\cos(\alpha) , -\sin(\alpha) , 0 ; \sin(\alpha) , \cos(\alpha) , 0 ; 0,0,0];
\]
\[
P = [p1 ; p2 ; p3];
\]
\[
A = \text{Adjoint}(R,P);
\]

**Limitations**

\(H\) must be of size \([4,4]\), \(R\) must always be of size \([3,3]\), \(P\) must have the size \([3,1]\) and \(A\) must have size \([6,6]\).
antisym

Syntax

\[ y = \text{antisym}(A); \]

Description

Returns an anti-symmetric matrix. This function is equal to:

\[ y = (A - \text{transpose}(A))/2; \]

Examples

\[
A = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}; \\
Y = \text{antisym}(A);
\]

Limitations

A must be a square matrix. Y and A must be of the same size.

columns

Syntax

\[ y = \text{columns}(A); \]

Description

Returns the number of columns of A.

Examples

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{bmatrix}; \\
y = \text{columns}(A);
\]

Limitations

\[ y \text{ must be a scalar.} \]

cross

Syntax

\[ Y = \text{cross}(A,B); \]

Description

This function returns the vector cross product of the vectors A and B. That is \( Y = A \times B \) or:

\[
Y = \begin{bmatrix}
A_2B_3 - A_3B_2 \\
A_3B_1 - A_1B_3 \\
A_1B_2 - A_2B_1
\end{bmatrix}
\]
\[
\]

**Examples**

```plaintext
parameters
 real A[3] = [1;2;3];
 real B[3] = [4;5;6];
variables
 real Y[3];
equations
 Y = Cross(A,B); // Y = [-3;6;-3]
```

**Limitations**

Y, A and B must be column vectors of size 3.

---

### det

**Syntax**

\[
y = det(A); \\
or \\
Y = |A|;
\]

**Description**

Returns the determinant of the square matrix A.

**Examples**

\[
A = [1,2;3,ramp(1)]; \\
y = det(A);
\]

**Limitations**

A must be a square matrix, y must be a scalar.

---

### diag

**Syntax**

\[
Y = diag(x);
\]

**Description**

Fills the diagonal elements of the matrix Y with the elements of the column vector x.

**Example**

```plaintext
variables
 real x[3];
 real Y[3,3];
equations
 x = [1;2;3];
 Y = diag(x);
```

**Limitations**

Y must be a matrix of size \([n,n]\). x must be a column vector of size n.
eye

Syntax

\[ Y = \text{eye}(n); \]

Description

Returns the the n-by-n identity matrix.

Example

\[ Y = \text{eye}(3); \]

Limitations

Y must be a matrix of size \([n,n]\). n must be an integer value.

homogeneous

Syntax

\[ H = \text{homogeneous}(R,P); \]

Description

Returns the homogenous matrix \([4,4]\) of a rotation matrix \(R[3,3]\) and position vector \(P[3]\):

\[
R = \begin{bmatrix}
    r_{11} & r_{12} & r_{13} \\
    r_{21} & r_{22} & r_{23} \\
    r_{31} & r_{32} & r_{33}
\end{bmatrix}, \quad P = \begin{bmatrix}
    p_1 \\
    p_2 \\
    p_3
\end{bmatrix} \quad \rightarrow \quad H = \begin{bmatrix}
    r_{11} & r_{12} & r_{13} & p_1 \\
    r_{21} & r_{22} & r_{23} & p_2 \\
    r_{31} & r_{32} & r_{33} & p_2 \\
    0 & 0 & 0 & 1
\end{bmatrix}
\]

The homogeneous matrix gives a full coordinate transformation from one reference frame to another. It can be used for 3D dynamics.

Examples

\[
R = \begin{bmatrix}
    \cos(\alpha) & -\sin(\alpha) & 0 \\
    \sin(\alpha) & \cos(\alpha) & 0 \\
    0 & 0 & 1
\end{bmatrix}, \quad P = \begin{bmatrix}
    p_1 \\
    p_2 \\
    p_3
\end{bmatrix};
\]

\[ H = \text{homogeneous}(R,P); \]

Limitations

R must always be of size\([3,3]\), P must have the size \([3,1]\) and H must have size \([4,4]\).

inner

Syntax

\[ y = \text{inner}(A,B); \]

Description
Returns the scalar product of the column vectors A and B. A and B must be vectors of the same length. Inner(A,B) is the same as transpose(A)*B.

Example

\[ A[3] = [1;2;3]; \\
B[3,1] = [4;5;6]; \\
y = inner(A,B); \]

Limitations

A and B must be vectors of the same size [n,1] or [n]. y must be a scalar.

---

inverse

Syntax

\[ Y = inverse(A); \]

Description

Returns the inverse of square non-singular matrix A.

Examples

\[ A = [1,0;0,1+ramp(1)]; \]
\[ Y = inverse(A); \]

Limitations

A must be a non-singular square matrix. Y must have the same size as A.

---

inverseH

Syntax

\[ Y = inverseH(H); \]
\[ Y = inverseH(R,P); \]

Description

Returns the inverse of a homogeneous matrix H [4,4]. The homogeneous matrix can be entered directly or by a rotation matrix R[3,3] and position vector P [3,1]. The size of the inverse Y is also [4,4].

This function uses the special nature of a homogeneous matrix. I.e the inverse can be computed directly instead of the numerical approach of the standard inverse function.

Examples

\[ H = [cos(alpha),-sin(alpha),0,p1 ; sin(alpha),cos(alpha),0,p2 ; 0,0,0,p3 ; 0,0,0,1]; \]
\[ Y = inverseH(H); \]
or
\[ R = [cos(alpha),-sin(alpha),0 ; sin(alpha),cos(alpha),0 ; 0,0,0]; \]
\[ P = [p1 ; p2 ; p3]; \]
\[ Y = inverseH(R,P); \]

Limitations

H must be a homogeneous matrix of size [4,4], R must always be of size[3,3] , P must have the size [3,1] and Y must have size [4,4].
linsolve

Syntax

\[ x = \text{linsolve}(A,b [,\text{method}]); \]

Description

This function solves the equation

\[ A * x = b; \]

Where A is a square matrix of arbitrary size n and x and b are vectors of size n. Returns the inverse of square non-singular matrix A. The last argument is a string that specifies the desired method to use.

<table>
<thead>
<tr>
<th>method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lu</td>
<td>LU decomposition (default method)</td>
</tr>
<tr>
<td>qr</td>
<td>QR factorization</td>
</tr>
<tr>
<td>cholesky</td>
<td>Cholesky factorization</td>
</tr>
<tr>
<td>gmres</td>
<td>Generalized Minimum Residual</td>
</tr>
</tbody>
</table>

The gmres method allows further steering of the method by specifying method parameters:

<table>
<thead>
<tr>
<th>method parameter</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tol</td>
<td>Set the desired tolerance to use</td>
</tr>
<tr>
<td>maxiter</td>
<td>Set the maximum number of iterations to use</td>
</tr>
<tr>
<td>ortho</td>
<td>Set the method of Gramm-Schmidt orthogonalization:</td>
</tr>
<tr>
<td></td>
<td>1 modified Gramm-Schmidt</td>
</tr>
<tr>
<td></td>
<td>2 iterative Gramm-Schmidt</td>
</tr>
<tr>
<td></td>
<td>3 classical Gramm-Schmidt</td>
</tr>
<tr>
<td></td>
<td>4 iterative classical Gramm-Schmidt</td>
</tr>
</tbody>
</table>

The lu, qr and gmres methods allow a non-square matrix A to be entered yielding a pseudoinverse.

Examples

\[
A = [1,2;0,1+ramp(1)];
b = [1;5];
x = \text{linsolve}(A,b);
x2 = \text{linsolve} (A, b, 'qr');
x3 = \text{linsolve} (A, b, 'gmres tol=1e-8 ortho=4');
\]

Limitations

A must be a non-singular square matrix.

Note

The following equations

\[
A * x = b;
x = \text{inverse}(A)*b;
x = (A^-1)*b;
\]

all lead in the calculation of the inverse of A and will give the same result as
$x = \text{linsolve}(A,b);$  
For the inverse calculation, Cramers rule is used. This is a method which is fast for small matrix sizes. The linsolve function with the gmres method is superior to Cramers rule for larger matrix sizes.

**max**

**Syntax**

$y = max(A);$  

**Description**

Returns the value of the largest matrix element of A.

**Examples**

$A = [1,2;3,ramp(1)];$

$y = max(A);$  

**Limitations**

$y$ must be a scalar.

**min**

**Syntax**

$y = \text{min}(A);$  

**Description**

Returns the value of the smallest matrix element of A.

**Examples**

$A = [1,2;3,ramp(1)];$

$y = \text{min}(A);$  

**Limitations**

$y$ must be a scalar.

**msum**

**Syntax**

$y = \text{msum}(A);$  

**Description**

Returns the sum of the matrix elements of A.

**Examples**

$A = [1,2;3,4;5,6];$

$y = \text{msum}(A);$  

**Limitations**

$y$ must be a scalar.
multiplyH

Syntax

\[ C = \text{multiplyH}(A, B); \]

Description

Returns the multiplication of two homogenous matrices \([4,4]\) or multiplies one homogenous matrix \([4,4]\) with one homogeneous position vector \([4,1]\).

Examples

\begin{verbatim}
parameters
  real D[4,4] = [1,0,0,1;
                0,1,0,0;
                0,0,1,0;
                0,0,0,1];
  real E[4,4] = [1,0,0,2;
                0,1,0,3;
                0,0,1,0;
                0,0,0,1];
  real F[4,1] = [1,1,1,1];

variables
  real G[4,4];
  real H[4,1];

equations
  G = multiplyH(D,E);
  H = multiplyH(D,F);
\end{verbatim}

Limitations

When A and B are homogeneous matrices \([4,4]\) then C must be a homogenous matrix \([4,4]\). When A is a homogenous matrix \([4,4]\) and B is a homogenous position vector \([4,1]\) then C must also be a position vector \([4,1]\).

norm

Syntax

\begin{verbatim}
y = \text{norm}(A);
or
Y = ||A||;
\end{verbatim}

Description

Returns the square root of the sum of the squared matrix elements of A:
**norminf**

**Syntax**

\[ y = \text{norminf}(A); \]

**Description**

Returns the largest row sum of the absolute values of the matrix \( A \):

\[
\max \left\{ \sum_{j=1}^{n} |a_{ij}|, 1 \leq i \leq m \right\}
\]

**Examples**

\[ A = [1,2;3,ramp(1)]; \]
\[ y = \text{norm}(A); \]

**Limitations**

\( y \) must be a scalar.

**rows**

**Syntax**

\[ y = \text{rows}(A); \]

**Description**

Returns the number of rows of \( A \).

**Examples**

\[ A = [1,2;3,4;5,6]; \]
\[ y = \text{rows}(A); \]

**Limitations**

\( y \) must be a scalar.
skew

**Syntax**

\[ Y = \text{skew}(X); \]

**Description**

Returns the vector product:

\[
X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}
\]

**Examples**

\[
X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix}
\]

**Limitations**

X must be a vector of size n. Y must be a matrix of size [n,n].

sym

**Syntax**

\[ y = \text{sym}(A); \]

**Description**

Returns a symmetric matrix. This function is equal to:

\[ y = (A + \text{transpose}(A))/2; \]

**Examples**

\[
A = \begin{bmatrix} 1,2;3,4 \end{bmatrix};
Y = \text{sym}(A);
\]

**Limitations**

A must be a square matrix. Y and A must be of the same size.

tilde

**Syntax**

\[
H = \text{tilde}(T);
H = \text{tilde}(W,V);
\]

**Description**

Returns the twist matrix [4,4] of a twist or wrench vector T [6,1]: 
Or returns the twist matrix $[4,4]$ of an angular velocity vector $W_{3,1}$ and a velocity vector $V_{3,1}$:

$$
\begin{bmatrix}
\omega_1 \\
\omega_2 \\
\omega_3 \\
\nu_1 \\
\nu_2 \\
\nu_3 
\end{bmatrix}
, \rightarrow \tilde{t}(T) =
\begin{bmatrix}
0 & -\omega_3 & \omega_2 & \nu_1 \\
\omega_3 & 0 & -\nu_1 & \nu_2 \\
-\omega_2 & \omega_1 & 0 & \nu_3 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

The tilde function is useful for dynamics described by twists and wrenches.

**Examples**

$$
W = [w1; w2; w3];
V = [v1; v2; v3];
H = \tilde{t}(W,V);
$$

**Limitations**

$H$ must be of size $[4,4]$, $W$ must always be of size $[3,1]$, $V$ must have the size $[3,1]$ and $T$ must have size $[6,1]$.

**trace**

**Syntax**

```
y = trace(A);
```

**Description**

Returns the sum of the diagonal elements of the matrix $A$.

**Examples**

```
A = [1,2,3;4,ramp(1),6];
y = trace(A);
```

**Limitations**

$y$ must be a scalar.
### transpose

**Syntax**

\[ Y = \text{transpose}(A); \]

**Description**

Returns the transpose of the matrix \( A \).

**Examples**

\[ A = [1,2;3,\text{ramp}(1)]; \]
\[ Y = \text{transpose}(A); \]

**Limitations**

With the \( A \) matrix of size \([n,m]\), \( Y \) must have the size \([m,n]\).

### collect

**Syntax**

\[ y = \text{collect}(p.e); \]
\[ y = \text{collect}(p.f); \]
\[ y = \text{collect}(m); \]

(with \( p.e \) and \( p.f \) powerportvariables and \( m \) a signal)

**Description**

Some models in 20-sim can have an unknown amount of signals or bonds connected. They are treated as an array with unknown length.

For example the PlusMinus model can have \( n \) signals that must be added and \( m \) signals that must be subtracted. 20-sim treats them as an array plus and an array minus with:

\[
\text{plus} = [\text{plus1};\text{plus2};\ldots;\text{plusn}] \text{ and } \text{minus} = [\text{minus1};\text{minus2};\ldots;\text{minusm}] 
\]

To assign an array of unknown length, the \textit{collect} function is used. It creates an array with port variables or signals. This function is created for use in library models that have an unknown amount of bonds or signals connected. **Try to avoid the use of this function**!

**Examples**

Suppose we have \( m \) bonds connected to a submodel, collected in a port \( p \). We could then use the equation:

\[ Y = \text{collect}(p.e); \]

During processing, this equation will be rewritten as:

\[ Y = [p.e1;p.e2;\ldots;p.n]; \]
Suppose we have a submodel with \( n \) input signals connected. We could then write the equation:

\[
y = \text{sum}(\text{collect(input)});
\]

During processing, this equation will be rewritten as:

\[
y = \text{sum}([\text{output1};\text{output2};...;\text{outputn}]);
\]

which is of course equal to:

\[
y = \text{output1} + \text{output2} + .. + \text{outputn};
\]

**Limitations**

This function is designed for a special class of models and should be used by experienced users only! The function is only valid when used in a submodel.

**direct**

**Syntax**

\[
y = \text{direct}(p.e);
\]

\[
y = \text{direct}(p.f);
\]

(with \( p.e \) and \( p.f \) powerportvariables)

**Description**

This function is equal to the collect function, but utilizes the direction of the bonds connected to the submodel to sign the powerportvariables. This function is created specially for the bond graph submodels *OneJunction.emx* and *ZeroJunction.emx*. Try to avoid the use of this function!

**Examples**

Suppose we have 4 bonds connected to a 0-junction, collected in a port \( p \). \( p1 \) and \( p4 \) are pointing towards the junction and \( p2 \) and \( p3 \) are pointing from the 0-junction. We could then use the equation:

\[
Y = \text{direct}(p.f);
\]

During processing, this equation will be rewritten as:

\[
Y = [p.f1; -p.f2; -p.f3, p.f4];
\]

Which can of course be used in combination with the sum function:

\[
\text{sum}(Y) = 0;
\]

To get the 0-junction equation:
\[ p.f1 - p.f2 - p.f3 + p.f4 = 0; \]

**Limitations**

This function is designed for a special class of models and should be used by experienced users only! The function is only valid when used in a submodel.

---

**first**

**Syntax**

\[
y = \text{first}(p.e);
y = \text{first}(p.f);
y = \text{first}(m);\]

(with \(p.e\) and \(p.f\) powerportvariables and \(m\) a signal)

**Description**

Some models in 20-sim can have an unknown amount of signals or bonds connected. They are treated as an array with unknown length. For example, the PlusMinus model can have \(n\) signals that must be added and \(m\) signals that must be subtracted. 20-sim treats them as an array \(\text{plus}\) and an array \(\text{minus}\) with:

\[
\text{plus} = [\text{plus1};\text{plus2};..;\text{plusn}] \text{ and } \text{minus} = [\text{minus1};\text{minus2};..;\text{minusm}]\]

The function \(\text{first}\) returns the value of the first element of an array of unknown length. This function is created for use in library models that have an unknown amount of bonds or signals connected. **Try to avoid the use of this function!**

**Examples**

Suppose we have \(m\) bonds connected to a submodel, collected in a port \(p\). We could then use the equation:

\[
y = \text{first}(p.e);\]

During processing, this equation will be rewritten as:

\[
y = p.e1;\]

**Limitations**

This function is designed for a special class of models and should be used by experienced users only! The function is only valid when used in a submodel.
8.4.9 Source

**gauss**

**Syntax**

\[ y = gauss(x,s); \]

**Description**

Returns gaussian noise with a variance \( x \) and seed \( s \). The seed parameter is optional. When omitted, the default value (0) is used.

**Examples**

\[
\begin{align*}
  x &= 20; \\
  y &= gauss(x); \\
  z &= gauss(x, 450);
\end{align*}
\]

**Limitations**

\( x \) and \( y \) must be scalars. The seed \( s \) must be a number in the region \( <0, 65535> \).

**impulse**

**Syntax**

\[ y = impulse(x, w); \]

**Description**

Returns a pulse signal with start time \( x \), width \( w \) and height \( 1/w \):

\[
\begin{align*}
  \text{time} < x &: y = 0 \\
  \text{time} \geq x \text{ and } < x+w &: y = 1/w \\
  \text{time} \geq x+w &: y = 0
\end{align*}
\]

Note: The integral (i.e the area) of an impulse is always 1. If \( w \) is chosen small, the amplitude of the impulse will be high.

**Examples**

\[
\begin{align*}
  x &= 20, w = 0.01; \\
  y &= impulse(x, w);
\end{align*}
\]

**Limitations**

\( x \) and \( w \) must be scalars, \( w > 0 \).

**ramp**

**Syntax**

\[ y = ramp(x); \]

**Description**

Returns a ramp signal with start time \( x \):
8. Language Reference

\[ \text{time} < x: y = 0 \]
\[ \text{time} >= x: y = \text{time} - x \]

Examples

\[ x = 20, \text{amplitude} = 10; \]
\[ y = \text{amplitude} \times \text{ramp}(x); \]

Limitations

x and y must be scalars.

---

**ran**

Syntax

\[ y = \text{ran}(x,s); \]

Description

Returns uniformly distributed noise in the interval \([-x, x]\) with seed s. The seed parameter is optional. When omitted, the default value (0) is used.

Examples

\[ x = 20; \]
\[ y = \text{ran}(x); \]
\[ z = \text{ran}(x,450); \]

Limitations

x and y must be scalars. The seed s must be a number in the region \(<0,65000>\).

---

**Random Seed**

20-sim generates a sequence of random numbers for each simulation differently depending upon the value of the seed parameter. The random noise function and gaussian noise function are affected by this. The default value of the seed is 0. The maximum value is 65535.

**default value (0)**

When the seed value is 0 (default value), 20-sim generates a new sequence of random numbers for each simulation and for each new random function. E.g. when two random functions with default seed value (0) are used in one model, they will generate different sequences of random numbers during a simulation.

**other values (>0)**

When the seed value is chosen larger than zero, 20-sim generates the same sequence of random numbers for each simulation. Moreover 20-sim will generate the same sequence of random numbers for each random function that uses the same seed parameter (>0). E.g. when two random functions with seed value 50, are used in one model, they will generate the same sequence of random numbers during a simulation.
### step

**Syntax**

\[ y = \text{step}(x); \]

**Description**

Returns a step signal with start time \( x \):
- \( \text{time} < x \): \( y = 0 \)
- \( \text{time} \geq x \): \( y = 1 \)

**Examples**

\[
\begin{align*}
x &= 20, \ \text{amplitude} = 10; \\
y &= \text{amplitude} \times \text{step}(x);
\end{align*}
\]

**Limitations**

\( x \) and \( y \) must be scalars.

### 8.4.10 Trigonometric

#### arcsin

**Syntax**

\[ Y = \text{arcsin}(X); \]

**Description**

Returns the arcsine of the elements of \( X \).

**Examples**

\[
\begin{align*}
b &= \cos(\text{time}); \\
a &= \text{arcsin}(b); \\
X &= [0.5\cos(\text{time}); 0.75\cos(\text{time})]; \\
Y &= \text{arcsin}(X);
\end{align*}
\]

**Limitations**

\( Y \) and \( X \) must have the same size. The elements of \( X \) must be in the range \([-1, 1]\).
8. Language Reference

arccos

Syntax

\[ Y = \text{arccos}(X); \]

Description

Returns the arccosine of the elements of X.

Examples

\[ b = \sin(\text{time}); \]
\[ a = \text{arccos}(b); \]
\[ X = [0.5*\sin(\text{time});0.75*\sin(\text{time})]; \]
\[ Y = \text{arccos}(X); \]

Limitations

Y and X must have the same size. The elements of X must be in the range \([-1, 1]\).
arccosh

Syntax

\[ Y = \text{arccosh}(X); \]

Description

Returns the hyperbolic arccosine of the elements of \( X \).

Examples

\[ y = \text{arccosh}(\text{time} + 1.0); \]

Limitations

\( Y \) and \( X \) must have the same size. The elements of \( X \) must be 1 or bigger.
arcsinh

**Syntax**

\[ Y = \text{arcsinh}(X); \]

**Description**

Returns the hyperbolic arcsine of the elements of \( X \).

**Examples**

\[
\begin{align*}
a &= \text{arcsinh}(\text{time}); \\
X &= [0.5*\cos(\text{time}); 0.75*\cos(\text{time})]; \\
Y &= \text{arcsinh}(X);
\end{align*}
\]

**Limitations**

\( Y \) and \( X \) must have the same size.

---

arctan

**Syntax**

\[ Y = \text{arctan}(X); \]

**Description**

Returns the arctangent of the elements of \( X \).

**Examples**

\[
\begin{align*}
a &= \text{arctan}(\text{time}); \\
X &= [\text{ramp}(1); -0.5*\text{ramp}(9)]; \\
Y &= \text{arctan}(X);
\end{align*}
\]

**Limitations**

\( Y \) and \( X \) must have the same size.
arctanh

Syntax

\[ Y = \text{arctanh}(X); \]

Description

Returns the hyperbolic arctangent of the elements of \( X \).

Examples

\[
\begin{align*}
    b &= \sin(\text{time}); \\
    a &= \arctan(b); \\
    X &= [\sin(\text{time});-0.5\cos(\text{time})]; \\
    Y &= \text{arctanh}(X);
\end{align*}
\]

Limitations

\( Y \) and \( X \) must have the same size. The elements of \( X \) must be in the range \([-1, 1]\).
atan2

Syntax

\[ R = \text{atan2}(Y, X); \]

Description

This is the four quadrant arctangent of the elements of \( Y \) and \( X \). Unlike arctangent function, \text{atan2} does distinguish between diametrically opposite directions.

Examples

\[
\begin{array}{ccc}
\text{X, Y} & \text{arctan}(Y/X); & \text{atan2}(Y, X); \\
1,1 & n/4 & n/4 \\
-1,-1 & n/4 & -3n/4 \\
0,1 & - & n/2 \\
0,0 & - & \text{set to 0 instead of undefined.}
\end{array}
\]

\[
y = \sin(\text{time}); \\
x = \cos(\text{time}); \\
r = \text{atan2}(y,x);
\]

\[
X = \text{[ramp(0); ramp(1)]}; \\
Y = [1;1]; \\
R = \text{atan2}(Y,X);
\]

Limitations

\( r, x \) and \( y \) must have the same size. It produces results in the range \((-n, n]\). Atan2(0, 0) is defined as 0 instead of undefined.
**cos**

**Syntax**

\[ Y = \cos(X); \]

**Description**

Returns the cosine of the elements of \( X \).

**Examples**

```matlab
b = ramp(2.5);
a = cos(b);
X = [ramp(0); ramp(1)];
Y = cos(X);
```

**Limitations**

\( Y \) and \( X \) must have the same size.

---

**cosh**

**Syntax**

\[ Y = \cosh(X); \]

**Description**

Returns the hyperbolic cosine of the elements of \( X \).

**Examples**

```matlab
b = ramp(2.5);
a = cosh(b);
X = [ramp(0); ramp(1)];
Y = cosh(X);
```

**Limitations**

\( Y \) and \( X \) must have the same size.
8. Language Reference

**sin**

**Syntax**

\[ Y = \sin(X); \]

**Description**

Returns the sine of the elements of \( X \).

**Examples**

\[
\begin{align*}
b &= \text{ramp}(2.5); \\
a &= \sin(b); \\
X &= [\text{ramp}(0); \text{ramp}(1)]; \\
Y &= \sin(X);
\end{align*}
\]

**Limitations**

\( Y \) and \( X \) must have the same size.
sinh

Syntax

\[ Y = \sinh(X); \]

Description

Returns the hyperbolic sine of the elements of \( X \).

Examples

\[
\begin{align*}
    b &= \text{ramp}(2.5); \\
    a &= \sinh(b); \\
    X &= [\text{ramp}(0); \text{ramp}(1)]; \\
    Y &= \sinh(X);
\end{align*}
\]

Limitations

\( Y \) and \( X \) must have the same size.
tanh

Syntax
  \[ Y = \tanh(X); \]

Description
Returns the hyperbolic tangent of the elements of \( X \).

Examples
  \[
  b = \text{ramp}(2.5);
  a = \tan(b);
  X = [\text{ramp}(0);\text{ramp}(1)];
  Y = \tanh(X);
  \]

Limitations
\( Y \) and \( X \) must have the same size.
tan

Syntax

\[ Y = \tan(X); \]

Description

Returns the tangent of the elements of \( X \).

Examples

\[
\begin{align*}
    b &= \text{ramp}(2.5); \\
    a &= \tan(b); \\
    X &= [\text{ramp}(0); \text{ramp}(1)]; \\
    Y &= \tan(X);
\end{align*}
\]

Limitations

\( Y \) and \( X \) must have the same size.
8.5 Operators

8.5.1 Operators

In 20-sim you can use the following operators in equations:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Multiplication</td>
</tr>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
</tr>
<tr>
<td>.*</td>
<td>ArrayMultiplication</td>
</tr>
<tr>
<td>./</td>
<td>ArrayDivision</td>
</tr>
<tr>
<td>.^</td>
<td>ArrayPower</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
</tr>
<tr>
<td>div</td>
<td>Integer division</td>
</tr>
<tr>
<td>mod</td>
<td>Modulus operator</td>
</tr>
<tr>
<td>^</td>
<td>Power</td>
</tr>
<tr>
<td>and</td>
<td>Boolean and</td>
</tr>
<tr>
<td>or</td>
<td>Boolean or</td>
</tr>
<tr>
<td>xor</td>
<td>Boolean exclusive or</td>
</tr>
<tr>
<td>&lt;</td>
<td>Less than</td>
</tr>
<tr>
<td>&lt;=</td>
<td>Less than or equal</td>
</tr>
<tr>
<td>&lt;&gt;</td>
<td>Not equal</td>
</tr>
<tr>
<td>==</td>
<td>Equal</td>
</tr>
<tr>
<td>&gt;=</td>
<td>Larger than or equal</td>
</tr>
<tr>
<td>&gt;</td>
<td>Larger than</td>
</tr>
<tr>
<td>-</td>
<td>Prefix Minus Sign</td>
</tr>
<tr>
<td>+</td>
<td>Prefix Plus Sign</td>
</tr>
<tr>
<td>not</td>
<td>Prefix Boolean Not</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td>(data type)</td>
<td>Type casting operator</td>
</tr>
<tr>
<td>bitand</td>
<td>Bitwise AND</td>
</tr>
<tr>
<td>bitor</td>
<td>Bitwise OR</td>
</tr>
<tr>
<td>bitxor</td>
<td>Bitwise XOR</td>
</tr>
<tr>
<td>bitcmp</td>
<td>Bitwise complement</td>
</tr>
<tr>
<td>bitset</td>
<td>Bitwise set</td>
</tr>
<tr>
<td>bitget</td>
<td>Bitwise get</td>
</tr>
<tr>
<td>swapbytes</td>
<td>Swap bytes</td>
</tr>
</tbody>
</table>
8.5.2 Arithmetic

Absolute

Absolute / Determinant / Norm ( |..| )

Syntax

|A| or ||A||

Description

The upright stroke (|) is not a real operator. Depending on what's between the strokes, the following functions are applied:

| scalar | -> abs(scalar)  
| matrix | -> det(matrix)  
| vector | -> abs(vector)  
|| matrix || -> norm(matrix)

Multiplication

Syntax

A * B

Description

A * B multiplies A with B. For nonscalar A and B, the number of columns of A must equal the number of rows of B. If C = A*B then the elements of C can be calculated out of the matrix elements of A and B as:

\[ C[1,j] = \sum_{k=1}^{n} A[1,k]B[k,j] \]

A scalar can be multiplied with a matrix of any size.

Examples

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A * B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>-4.5</td>
<td>5.4</td>
<td>-24.3</td>
</tr>
<tr>
<td>2</td>
<td>[1,2;3,4]</td>
<td>[2,4;6,8]</td>
</tr>
<tr>
<td>[1,-2;-3,4]</td>
<td>4</td>
<td>[4,-8;-12,16]</td>
</tr>
<tr>
<td>[1,2,3;4,5,6]</td>
<td>[1,2,3,4,5,6]</td>
<td>[22,28;49,64]</td>
</tr>
<tr>
<td>[1,2,3;4,5,6]</td>
<td>[1,2,3;4,5,6]</td>
<td>not allowed!</td>
</tr>
</tbody>
</table>
Limitations
For nonscalar A and B, the number of columns of A must equal the number of rows of B.

Addition

Syntax
A + B

Description
A + B adds A and B. A and B must have the same size, unless one is a scalar. A scalar can be added to a matrix of any size.

Examples

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A + B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>-3.2</td>
<td>-1.1</td>
</tr>
<tr>
<td>[1,2;3,4]</td>
<td>[1,1;5,5]</td>
<td>[2,3;8,9]</td>
</tr>
<tr>
<td>2</td>
<td>[1,2;3,4]</td>
<td>[3,4;5,6]</td>
</tr>
<tr>
<td>[1,2;3,4]</td>
<td>4</td>
<td>[5,6;7,8]</td>
</tr>
<tr>
<td>[1,2;3,4]</td>
<td>[5,6;7,8;9,10]</td>
<td>not allowed!</td>
</tr>
</tbody>
</table>

Limitations
If A and B are matrices, they must have the same size.

Subtraction

Syntax
A - B

Description
A - B subtracts B from A. A and B must have the same size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.

Examples

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>-4.2</td>
<td>5.5</td>
<td>-9.7</td>
</tr>
<tr>
<td>[4, 5; 6, 7]</td>
<td>[1, 1; 5, 5]</td>
<td>[3, 4; 1, 2]</td>
</tr>
<tr>
<td>[4, 5; 6, 7]</td>
<td>4</td>
<td>[0, 1; 2, 3]</td>
</tr>
</tbody>
</table>
Array Multiplication

**Syntax**

\[ A \cdot B \]

**Description**

\( A \cdot B \) multiplies the elements of \( A \) by the elements of \( B \). \( A \cdot B \) is the array or matrix with elements \( A(i,j) \cdot B(i,j) \).

**Examples**

\[
\begin{array}{c|c|c}
A & B & A \cdot B \\
\hline
[1,-2,-4,2] & [1,2,1,4] & [1,-4,-4,8] \\
[2,0;0,2] & [1,2;3,4] & [2,0,0,8] \\
[2,0;0,2] & 1 & \text{not allowed!}
\end{array}
\]

**Limitations**

\( A \) and \( B \) must have the same size.

Array Division

**Syntax**

\[ A \div B \]

**Description**

\( A \div B \) divides the elements of \( A \) by the elements of \( B \). \( A \div B \) is the matrix with elements \( A(i,j) / B(i,j) \).

**Examples**

\[
\begin{array}{c|c|c}
A & B & A \div B \\
\hline
[1,-2,-4,2] & [1,2,1,4] & [1,-1,-4,0.5] \\
[2,0;0,2] & [1,2;3,4] & [2,0,0,0.5] \\
[2,0;0,2] & 1 & \text{not allowed!}
\end{array}
\]

**Limitations**

\( A \) and \( B \) must have the same size.
Array Power

Syntax

\[ A .^ B \]
\[ A .^ b \]

Description

\~ A .^ B \ raises the elements of A to the power of the elements of B (B is a matrix). A .^ B is the matrix with elements \( A_{ij}^B_{ij} \).

\~ A .^ b \ raises the elements of A to the power of b (b is a scalar). A.^b is the matrix with elements \( A_{ij}^b \).

Examples

\begin{tabular}{ccc}
\textbf{A} & \textbf{B} & \textbf{A .^ B} \\
[1,-2,-4,2] & [1,2,1,4] & [1,4,-4,16] \\
[2,2;3,2] & [1,0;3,4] & [2,1;27,16] \\
\end{tabular}

\begin{tabular}{ccc}
\textbf{A} & \textbf{b} & \textbf{A .^ b} \\
[1, 2; 3, 4] & 2 & [1, 4; 9, 16] \\
[16, 4] & 0.5 & [4, 2] \\
\end{tabular}

Limitations

The A and B matrices must have the same size or b should be a scalar.

Division

Syntax

\[ A / B \]

Description

A / B divides A by B. For a nonscalar B, A/B equals A*inverse(B). For a nonscalar A, each element of A is divided by the scalar B.

Examples

\begin{tabular}{ccc}
\textbf{A} & \textbf{B} & \textbf{A / B} \\
15 & 3 & 5 \\
-40.5 & 5 & -8.1 \\
2 & [1,2;3,4] & [-4,2;3,-1] \\
[1,-2;-3,4] & 4 & [0.25,-0.5;0.75,1] \\
\end{tabular}
Limitations
If A and B are matrices, they must have the same size. If B is a matrix and it becomes singular, simulation is stopped.

**Integer Division**

**Syntax**

\[ a \div b \]

**Description**

\( a \div b \) divides the scalar\( a \) by the scalar\( b \) and rounds the output toward zero.

**Examples**

<table>
<thead>
<tr>
<th>( a )</th>
<th>( b )</th>
<th>( a \div b )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>9.9</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>-8</td>
<td>2</td>
<td>-4</td>
</tr>
<tr>
<td>-7.9</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>-7.9</td>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>

**Limitations**

\( a \) and \( b \) must be scalars.

**Modulus Operator**

**Syntax**

\[ a \mod b \]

**Description**

\( a \mod b \) returns the signed remainder after division:

\[
\text{a mod b} = a - \text{trunc}(a / b) \times b
\]

**Examples**

<table>
<thead>
<tr>
<th>( a )</th>
<th>( b )</th>
<th>( a \mod b )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
9.9  5  4.9
-8   2  0
-7.9 2  -1.9
-7.9 -2 -1.9

Limitations
a and b must be scalars.

Power

Syntax
A ^ b

Description
A ^ b raises A to the power b. For a non-scalar A and integer b, A^b is computed by repeated multiplication of A. If b is negative A is inverted first. If b is zero, A^b is the identity matrix. For other values of b, it is rounded to its nearest integer value. Making b a non-scalar is not allowed.

Examples

<table>
<thead>
<tr>
<th>A</th>
<th>b</th>
<th>A ^ b</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>-2.1</td>
<td>0.054409</td>
</tr>
<tr>
<td>5.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2.1</td>
<td>10.04511</td>
</tr>
<tr>
<td>[2, 0; 0, 2]</td>
<td>4</td>
<td>[16, 0; 0, 16]</td>
</tr>
<tr>
<td>[1, 2; 3, 4]</td>
<td>-2.1</td>
<td>[5.5, -2.5; -3.75, 1.75]</td>
</tr>
<tr>
<td>[1, 2; 3, 4]</td>
<td>0</td>
<td>[1, 0; 0, 1]</td>
</tr>
<tr>
<td>[1, 2; 3, 4]</td>
<td>[1, 2; 3, 4]</td>
<td>not allowed!</td>
</tr>
</tbody>
</table>

Limitations
- b must be a scalar. b is rounded downward to the nearest integer value.
- A should be a scalar value or a square matrix.
### 8.5.3 Binary

#### bitand

**Syntax**

\[ y = a \text{ bitand } b \]

**Description**

*a bitand b* performs a bitwise AND between *a* and *b*. Both *a* and *b* are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.

**Example**

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. Similarly, the binary representation of 9 is 1001. The binary value of \( 30 \text{ bitand } 9 \) is equal to 01000, which corresponds with decimal value of 8.

<table>
<thead>
<tr>
<th>operation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1110</td>
</tr>
<tr>
<td>b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1001</td>
</tr>
<tr>
<td>a bitand b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000 1000</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1111</td>
</tr>
<tr>
<td>a bitxor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 0111</td>
</tr>
<tr>
<td>a bitcmp b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1110 0001</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1111</td>
</tr>
<tr>
<td>a bitset 5</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1110</td>
</tr>
<tr>
<td>swapbytes a</td>
<td>0001 1110</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>503316480</td>
</tr>
<tr>
<td>a bitwise 1</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0011 1100</td>
<td>60</td>
</tr>
<tr>
<td>a bitclear 3</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0001 1010</td>
<td>26</td>
</tr>
</tbody>
</table>

**Limitations**

*a* and *b* must be integers.

#### bitclear

**Syntax**

\[ y = a \text{ bitclear } b \]

**Description**

*a bitclear b* clears the \( b^{th} \) bit of *a*. Both *a* and *b* are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.
Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. The operation `30 bitclear 3` clears the $3^{rd}$ bit of 11110 which gives 11010. This binary value has a decimal value of 26.

<table>
<thead>
<tr>
<th>operation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>1110</td>
</tr>
<tr>
<td>b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1001</td>
</tr>
<tr>
<td>a bitand b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1000</td>
</tr>
<tr>
<td>a bitxor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1111</td>
</tr>
<tr>
<td>a bitcmp b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1111</td>
</tr>
<tr>
<td>a briget 5</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>swapbytes a</td>
<td>0001</td>
<td>1110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>a bitshift</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1100</td>
</tr>
<tr>
<td>a bitclear</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1010</td>
</tr>
</tbody>
</table>

Limitations

a and b must be integers.

bitcmp

Syntax

\[ y = a \text{ bitcmp } b \]

Description

`a bitcmp b` performs the $b$ bit complement of $a$. Both $a$ and $b$ are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. The operator `30 bitcmp 9` performs the 9 bit complement of 30. This gives the binary value 111100001 which corresponds with the decimal value 481.
8. Language Reference

Limitations
a and b must be integers.

bitget

Syntax
\[ y = a \text{ bitget } b \]

Description
a bitget b gets the \( b \)th bit of \( a \). Both \( a \) and \( b \) are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.

Example
In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. The operation 30 bitget 5 gets the 5th bit of 11110 which is 1.
8. Language Reference

Limitations

a and b must be integers.

**bitor**

**Syntax**

\[ y = a \text{ bitor } b \]

**Description**

a bitor b performs a bitwise OR between a and b. Both a and b are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.

**Example**

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. Similarly, the binary representation of 9 is 1001. The binary value of 30 bitor 9 is equal to 11111, which corresponds with a decimal value of 31.

<table>
<thead>
<tr>
<th>operation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0001 1110</td>
<td>30</td>
</tr>
<tr>
<td>b</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 1001</td>
<td>9</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 1000</td>
<td>8</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0001 1111</td>
<td>31</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0001 0111</td>
<td>23</td>
</tr>
<tr>
<td>a bitcmp b</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0001</td>
<td>481</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 1111</td>
<td>1</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0001 1111</td>
<td>1</td>
</tr>
<tr>
<td>swapbytes a</td>
<td>0001 1110</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>503316480</td>
</tr>
<tr>
<td>a bitshift 1</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0011 1100</td>
<td>60</td>
</tr>
<tr>
<td>a bitclear 3</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0000 0000</td>
<td>0001 1010</td>
<td>26</td>
</tr>
</tbody>
</table>

Limitations

a and b must be integers.

**bitset**

**Syntax**

\[ y = a \text{ bitset } b \]

**Description**

a bitset b sets the \(b^{th}\) bit of a. Both a and b are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.
Example
In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. The operation 30 \textit{bitset 1} sets the last bit of 11110 to one which gives 11111. This binary value corresponds with a decimal value of 31.

<table>
<thead>
<tr>
<th>operation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>1110</td>
</tr>
<tr>
<td>b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1901</td>
</tr>
<tr>
<td>a bitand b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1900</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1111</td>
</tr>
<tr>
<td>a bitxor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0111</td>
</tr>
<tr>
<td>a bitcmp b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>1111</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>a bitset 5</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>swapbytes a</td>
<td>0001</td>
<td>1110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>a bitshift 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0011</td>
</tr>
<tr>
<td>a bitclear 3</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
</tr>
</tbody>
</table>

Limitations
a and \(b\) must be integers.

\textbf{bitshift}

\textbf{Syntax}
\[ y = a \text{ bitshift } b \]

\textbf{Description}
a \textit{bitshift} \(b\) shifts the bits of \(a\) with \(b\) places. Both \(a\) and \(b\) are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.
A positive value of \(b\) shifts the bits to the left and a negative value shifts the bits to the right.

\textbf{Example}
In 20-sim all variables are stored as doubles. This means a decimal value of 30 is 4 bytes as shown in the figure below. Because the binary representation of 30 is equal to 11110, only the last byte is filled with non zero bits. The operation 30 \textit{bitshift 1} shifts the bits of 11110 with one place which gives 111100. This number has a decimal value of 60.
Limitations

a and b must be integers. B should be in the range: [-31..31]

**bitxor**

**Syntax**

\[ y = a \text{ bitxor } b \]

**Description**

*a bitxor b* performs a bitwise XOR between *a* and *b*. Both *a* and *b* are treated as 32-bit (4-byte) integer values, so an eventual fraction will be ignored.

**Example**

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure below. Similarly, the binary representation of 9 is 1001. The binary value of 30 bitxor 9 is equal to 10111, which corresponds with a decimal value of 23.
8. Language Reference

224

4.7 Reference Manual

Limitations
a and b must be integers.

8.5.4 Boolean

and

Syntax

\( a \text{ and } b \)

Description

\( a \text{ and } b \) performs a logical AND between \( a \) and \( b \). If \( a \) or \( b \) are not a boolean, 0 represents a logical false and any nonzero value represents a logical true. The truth table for this operator is shown below.

Table

<table>
<thead>
<tr>
<th>Operation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a bitand b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>1000</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>1111</td>
</tr>
<tr>
<td>a bitxor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0011</td>
<td>0111</td>
</tr>
<tr>
<td>a bitcmp b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1110</td>
<td>0001</td>
</tr>
<tr>
<td>a bitset 5</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>1110</td>
</tr>
<tr>
<td>swapbytes a</td>
<td>0001</td>
<td>1110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>a bitshift 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0011</td>
<td>1100</td>
</tr>
<tr>
<td>a bitclear 3</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001</td>
<td>0110</td>
</tr>
</tbody>
</table>

Limitations
a and b must be scalars.
### or

**Syntax**

\[
a \text{ or } b
\]

**Description**

The `or` operator performs a logical OR between `a` and `b`. If `a` or `b` are not boolean values, `0` represents a logical false and any nonzero value represents a logical true. The truth table for this operator is shown below.

**Table**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a or b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

**Limitations**

- `a` and `b` must be scalars.

### xor

**Syntax**

\[
a \text{ xor } b
\]

**Description**

The `xor` operator performs a logical Exclusive OR between `a` and `b`. If `a` or `b` are not boolean values, `0` represents a logical false and any nonzero value represents a logical true. The truth table for this operator is shown below.

**Table**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a xor b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

**Limitations**

- `a` and `b` must be scalars.
8.5.5 Comparison

Less than

Syntax

\[ a < b \]

Description

The `<` operator compares two arguments and yields a boolean. If \( a \) is less than \( b \), then \( a < b \) yields true. If \( a \) is equal or larger than \( b \), then \( a < b \) yields false.

Example

<table>
<thead>
<tr>
<th>( a )</th>
<th>( b )</th>
<th>( a &lt; b )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
</tr>
<tr>
<td>1.01e2</td>
<td>101.0</td>
<td>false</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>false</td>
</tr>
<tr>
<td>-12</td>
<td>-11</td>
<td>true</td>
</tr>
</tbody>
</table>

Limitations

\( a \) and \( b \) must be scalars.

Less than or Equal

Syntax

\[ a <= b \]

Description

The `<=` operator compares two arguments and yields a boolean. If \( a \) is less than or equal to \( b \), then \( a <= b \) yields true. If \( a \) is larger than \( b \), then \( a <= b \) yields false.

Example

<table>
<thead>
<tr>
<th>( a )</th>
<th>( b )</th>
<th>( a &lt; b )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>true</td>
</tr>
<tr>
<td>1.01e2</td>
<td>101.0</td>
<td>true</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>false</td>
</tr>
<tr>
<td>-12</td>
<td>-11</td>
<td>true</td>
</tr>
</tbody>
</table>

Limitations

\( a \) and \( b \) must be scalars.
Not Equal

Syntax
   a <> b

Description
The <> operator compares two arguments and yields a boolean. If a is equal to b, then a <> b yields false. If a is not equal to b, then a <> b yields true.

Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a &lt;&gt; b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>false</td>
</tr>
<tr>
<td>1.01e2</td>
<td>101.0</td>
<td>false</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Limitations
a and b must be scalars.

Equal

Syntax
a == b

Description
The == operator compares two arguments and yields a boolean. If a is equal to b, then a==b yields true. If a is not equal to b, then a==b yields false. It is typically used in an if-statement.

Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a == b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>1.01e2</td>
<td>101.0</td>
<td>true</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

Note
The normal equal sign (=) should only be used for equations. The equal sign (=) makes the left side of an equation equal to the right side. This is different to the equal statement (==) which compares two arguments and yields a boolean.
Larger Than

Syntax
\[ a > b \]

Description
The > operator compares two arguments and yields a boolean. If a is less than or equal to b, then \( a > b \) yields false. If a larger than b, then \( a > b \) yields false.

Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a &gt; b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>false</td>
</tr>
<tr>
<td>1.01e2</td>
<td>101.0</td>
<td>false</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>-12</td>
<td>-11</td>
<td>false</td>
</tr>
</tbody>
</table>

Limitations
a and b must be scalars.

Larger Than or Equal

Syntax
\[ a >= b \]

Description
The >= operator compares two arguments and yields a boolean. If a is less than b, then \( a > b \) yields false. If a larger than or equal to b, then \( a > b \) yields true.

Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a &gt;= b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>false</td>
</tr>
<tr>
<td>1.01e2</td>
<td>101.0</td>
<td>true</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>-12</td>
<td>-11</td>
<td>false</td>
</tr>
</tbody>
</table>

Limitations
a and b must be scalars.
8.5.6 Prefix

Prefix Plus Sign

Syntax

\[ Y = +A \]

Description
The plus sign may be used as a prefix for scalars, vectors and matrices.

Examples

\[
\begin{array}{ll}
A & +A \\
5 & 5 \\
[4, 5; -6, 7.1] & [4, 5; -6, 7.1]
\end{array}
\]

Prefix Minus Sign

Syntax

\[ Y = -B \]

Description
The minus sign may be used as a prefix for scalars, vectors and matrices.

Examples

\[
\begin{array}{ll}
A & -A \\
5 & -5 \\
[4, 5; -6, 7.1] & [-4; -5; 6; -7.1]
\end{array}
\]

Boolean Not

Syntax

\[ y = \text{not } a \]

Description
The boolean prefix not performs an inversion of a.

Table

\[
\begin{array}{ll}
a & \text{not } a \\
\end{array}
\]
false       true
true       false

Limitations
a must be a boolean.

swapbytes

Syntax

swapbytes a

Description

swapbytes a swaps the bytes of a.

Example

In 20-sim all variables are stored as doubles. This means a decimal value of 30 is 4 bytes as shown in the figure below. Because the binary representation of 30 is equal to 11110, only the last byte is filled with non zero bits. The operation swapbytes 30 swaps byte D to A, C to B, B to C and A to D (see figure below) which gives a decimal value of 503316480.

<table>
<thead>
<tr>
<th>operation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1110</td>
<td>30</td>
</tr>
<tr>
<td>b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000 1001</td>
<td>9</td>
</tr>
<tr>
<td>a bitand b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000 0000</td>
<td>8</td>
</tr>
<tr>
<td>a bitor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000 1111</td>
<td>31</td>
</tr>
<tr>
<td>a bitxor b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000 0111</td>
<td>23</td>
</tr>
<tr>
<td>a bitcmp b</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000 0001</td>
<td>481</td>
</tr>
<tr>
<td>a bitset 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1111</td>
<td>1</td>
</tr>
<tr>
<td>a bitset 5</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1110</td>
<td>1</td>
</tr>
<tr>
<td>swapbytes a</td>
<td>0001</td>
<td>1110</td>
<td>0000</td>
<td>0000 0009</td>
<td>503316480</td>
</tr>
<tr>
<td>a bitshift 1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0011 1100</td>
<td>60</td>
</tr>
<tr>
<td>a bitclear 3</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0001 1010</td>
<td>26</td>
</tr>
</tbody>
</table>

Limitations

a and b must be integers.
8.6 Statements

8.6.1 Statements

Statements are important to guide the flow of information in equation models. 20-sim supports the following statements:

1. For to Do
2. If Then
3. If Then Else
4. If Then Else (expression)
5. Repeat Until
6. Switch Case
7. Stopsimulation
8. Warning
9. While Do
10. toMatlab
11. fromMatlab
12. doMatlab
13. Effortincausality
14. Flowincausality

8.6.2 If Then

Syntax

\[
\text{if } \text{condition} \text{ then } \\
\text{equation; } \\
\text{.... } \\
\text{end;} \\
\]

Description

The simplest if statement evaluates a condition and performs the specified equation(s) if the condition is true. If the condition is not true, 20-sim ignores the equation(s).
8. Language Reference

Examples

\[
\begin{align*}
&b = \text{false}; \\
y &= \text{ramp}(1); \\
u &= -\text{ramp}(1); \\
&\text{if time} > 5 \text{ then} \\
&\quad y = -\text{ramp}(1); // \text{equations to be executed if condition is true,} \\
&\quad u = \text{ramp}(1); // \text{these are not executed if condition is false} \\
&\text{end;} \\
&\text{if time} == 10 \text{ then} // \text{note the use of the equal operator ==} \\
&\quad b = \text{true}; // \text{equations to be executed if condition is true,} \\
&\text{end;}
\end{align*}
\]

Limitations

1. The output of the condition must be a boolean.
2. If needed, always use the equal operator (==) in the condition.

Note

1. Take care when using event functions in if-then-else statements. In if-then-else statements only the equations of the true parts are evaluated, so event functions may not always be triggered!
2. Equations within an if statement have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.

8.6.3 If Then Else

Syntax

\[
\begin{align*}
&\text{if condition then} \\
&\quad \text{equation;} \\
&\quad \ldots \\
&\text{else} \\
&\quad \text{equation;} \\
&\quad \ldots \\
&\text{end;}
\end{align*}
\]

Description

The if-then-else statement evaluates a condition and performs the first set of equation(s) if the condition is true and the second set of equation(s) if the condition is false. If the condition is true, 20-sim ignores the second set of equation(s). If the condition is false, 20-sim ignores the first set of equation(s).

Nesting

If-then-else statements may be nested as many times as desired. Do not forget to included the word "end;" to finish every nested statement!
Examples

\[
y = \text{step}(1);
\]
\[
u = -\text{step}(1);
\]
\[
\text{if } \text{time} > 5 \text{ then}
\]
\[
y = -\text{ramp}(1); \quad // \text{equations to be executed if condition is true},
\]
\[
u = \text{ramp}(1); \quad // \text{these are not executed if condition is false}
\]
\[
\text{else}
\]
\[
y = \text{ramp}(1); \quad // \text{equations to be executed if condition is false},
\]
\[
u = -\text{ramp}(1); \quad // \text{these are not executed if condition is true}
\]
\[
\text{end;}
\]

//Nesting

\[
\text{if } \text{time} < 5 \text{ then}
\]
\[
a = 1;
\]
\[
b = \sin(\text{time}*1);
\]
\[
\text{else}
\]
\[
\text{if } \text{time} == 5 \text{ then}
\]
\[
a = 2;
\]
\[
b = \sin(\text{time}*2);
\]
\[
\text{else}
\]
\[
a = 3
\]
\[
b = \sin(\text{time}*3);
\]
\[
\text{end;}
\]
\[
\text{end;}
\]

Limitations

1. The output of the condition must be a boolean.

2. If needed, always use the equal operator (==) in the condition.

Note

1. Take care when using event functions in if-then-else statements. In if-then-else statements only the equations of the true parts are evaluated, so event functions may not always be triggered!

2. There is also an if-then-else expression.

3. Equations within an if statement have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.
8. Language Reference

8.6.4 If Then Else (expression)

Syntax

\[
y = \text{if condition then} \\
\text{expression} \\
\text{else} \\
\text{expression} \\
\text{end;}
\]

Description

The if-then-else expression evaluates a condition and makes \( y \) equal to the first expression if the condition is true and makes \( y \) equal to the second expression if the condition is true. If the condition is true, 20-sim ignores the second expression. If the condition is false, 20-sim ignores the first expression. Because the complete construct forms one expression, only one semicolon is used at the end.

Nesting

If-then-else expression may be nested. Take care that no semicolons are used, because no matter how large the construct is, it is still one expression!

Examples

\[
y = \text{if time > 5 then} \\
\text{-ramp(1) // statement to be executed if condition is true,} \\
\text{else} \\
\text{ramp(1) // statement to be executed if condition is false,} \\
\text{end;}
\]

// Nesting:
\[
x = \text{if time < 1 then} \\
\text{1} \\
\text{else} \\
\text{if time < 2 then} \\
\text{2} \\
\text{else} \\
\text{if time == 2 then} \\
\text{1} \\
\text{else} \\
\text{0} \\
\text{end} \\
\text{end}
\]

Limitations

1. The output of the condition must be a boolean.
2. If needed, always use the equal operator (\( == \)) in the condition.

Note

1. Take care when using event functions in if-then-else expressions. In if-then-else expressions only the equations of the true parts are evaluated, so event functions may not always be triggered!
2. There is also an if-then-else statement.

3. Equations within an if statement have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.

8.6.5 For To Do

Syntax

```plaintext
for variable = start to stop by step do
 equation;
 equation;

end;
```

Description

The for statement is designed to execute equation(s) a fixed number of times. It begins with the keyword `for` and an expression that specifies the number of times the equations within the for statement should be executed. The for statement ends with the keyword `end`. The default increment in a for statement is one (1), but you can use the keyword `by` to adjust the increment.

The equations within the for statement are always executed once. The for statement stops when the variable has exceeded the stop value.

Examples

```plaintext
variables
 real i,y[10];
equations
 for i = 1 to 2 do
 // executed 2 times: y[1] and y[2]
 y[i] = ran (1);
 end;
 for i = 2 to 4.1 by 2 do
 // executed 3 times: y[2], y[4] and y[6]
 y[i] = ran (1);
 end;
```

Limitations

1. The start, stop and step values must be scalars. The step value is optional. There are no limitations to the number of equations that can be used within the for statement.

2. Equations within an for statement have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.
8.6.6 While Do

Syntax

```
code
 while condition do
 equation;
 equation;

 end;
```

Description

The while statement is designed to execute equation(s) repeatedly, as long as the condition is true. The condition is evaluated before the equations are executed.

It is the user’s responsibility to guarantee that the execution of the while statement finishes by making the condition become false at a certain time.

Example

```
variables
 real i, y[3];
initial equations
 y = 0;
code // Use code to ensure sequential execution
 i = 1;
 while i <= rows(y) do
 // executed 3 times for each model calculate:
 // y[1] and y[2] and y[3] are filled
 y[i] = sin(time) * i;
 // i is incremented to guarantee a stop of the loop
 i = i + 1;
 end;
```

Limitations

1. The output of the condition must be a boolean. If the boolean does not become false, the loop never ends! There are no limitations to the number of equations that can be used within the while statement.

2. Equations within an while statement have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.
8.6.7 Repeat Until

Syntax

code
    repeat
        equation;
        equation;
        ....
    until condition;

Description

The repeat statement is designed to execute equation(s) repeatedly, as long as the condition is true. The condition is evaluated after the equations are executed.

It is the user's responsibility to guarantee that the execution of the repeat statement finishes by making the condition become false at a certain time.

Examples

variables
    real i,z[4];
initialize
    z = 0;
code // Use code to ensure sequential execution
    i = 1;
repeat
    // executed 4 times:
    z[i] = cos(time) * i;
    // i is incremented to guarantee a stop of the loop
    i = i + 1;
    until (i > rows(z));

Limitations

1. The output of the condition must be a boolean. If the boolean does not become false, the loop never ends! There are no limitations to the number of equations that can be used within the repeat statement.
2. If needed, always use the equal operator (==) in the condition.
3. Equations within an repeat statement have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.
### 8.6.8 Switch Case

**Syntax**

```
switch variable
 case condition1 do
 equations;
 case condition2 do
 equations;
 default do
 equations;
end;
```

**Description**

The switch case statement is designed to execute equation(s) based on the condition of a variable. Only the equations of the valid branch are executed. If none of the branches is valid, the equations of the default branch are executed.

**Limitations**

1. The switch variable should not be changed inside one of the branches.
2. Equations within a switch case statement have to be written in the correct order of execution, i.e., they are not rewritten into a causal form but executed sequentially. Therefore, it is advised only to use this statement in a code section.

### 8.6.9 Stopsimulation

**Syntax**

```
stopsimulation ('string');
```

**Description**

The stopsimulation function stops the simulation as soon as it comes to action. It is useful when used in combination with an if statement. As soon as the simulation stops, the log window will appear showing the string that is used in the function.

- **Normal stop**: If the string starts with 'Error', the Simulator will stop and the Editor will jump to the model containing the stopsimulation function.
- **Silent stop**: If the string does not start with 'Error' the Simulation will jump to the `finalequations` section, execute them and stop the simulation.

**Examples**

In the example below the Simulator will stop the simulation at time > 6 and show a message 'time > 6' in the output tab. The `finalequations` are evaluated and number has a value of 2:
variables
  integer number;
initialequations
  number = 1;
equations
  if time > 6 then
    stopsimulation ('time > 6');
  end;
finalequations
  number = 2;

In the example below the Simulator will stop the simulation at time > 6 and show a message 'time > 6' in the output tab. The Editor will jump to this model showing an error message. The finalequations are not evaluated and number has a value of 1:

variables
  integer number;
initialequations
  number = 1;
equations
  if time > 6 then
    stopsimulation ('Error time > 6');
  end;
finalequations
  number = 2;

8.6.10 Warning

Syntax

  warning ('string',boolean);

Description

The warning function displays a message in the the log window. You can choose to display the string once (boolean = true) or every simulation step (boolean = false). It is advised to use the warning function in combination with an if-then statement or event-function.

Examples

  warning('this message will be displayed every simulationstep!',false);
  if time > 1
    warning('this message will be displayed every simulationstep after time > 1!',false);
  end;
  if x > 100 then
    warning('this message will be displayed only once after x > 100',true);
  end;
  if event(y) then
    warning('this message will be displayed when y is exactly 0',false);
  end;
8.6.11 toMatlab

Syntax

\[
\text{toMatlab(<20-sim variable>)} \\
\text{toMatlab(<20-sim variable>, 'matlab variable name')} \\
\]

Description

The **toMatlab** statement allows you to pass a variable from 20-sim to Matlab.

The first argument is the name of the 20-sim variable to send to Matlab (source). This 20-sim variable can be a scalar variable, a vector or a matrix.

The second (optional) argument 'matlab variable name' is the name of the corresponding matlab variable (destination).

When the 'matlab variable name' argument is omitted, 20-sim will use the full hierarchical name of the 20-sim variable.

A 20-sim variable named *Controller\x* becomes in Matlab: *Controller_x*

The corresponding **fromMatlab** statement allows you to retrieve a variable from Matlab.

Example

// this example shows how a variable can be transferred to matlab and from matlab during simulation

variables

real x;
real y;
real vector[2];
real matrix[2,2];

// at the start of the simulation

initialequations

// create an empty array a
\text{doMatlab ('a = []; ')};
// create a variable
\text{doMatlab ('b=0; ')};
// create a vector
\text{doMatlab ('vector=[1 2];'});
// create a matrix
\text{doMatlab ('matrix=[1 2; 3 4];')};

// during simulation

equations

// calculate x
x = sin (time);
// send it to Matlab
\text{toMatlab (x,'x')};
// and add it to array a
\text{doMatlab ('a = [ a x ]; ')};
// in Matlab add 2 to x
\text{doMatlab ('b = x + 2;')};
// read matlab 'b' into 20-sim variable 'y'
\text{fromMatlab(y, 'b')};
// read matlab 'vector' into 20-sim variable 'vector'
fromMatlab(vector, 'vector'); // read matlab 'matrix' into 20-sim variable 'matrix'
fromMatlab(matrix, 'matrix');

// at the end of the simulation
finalequations
  // plot the resulting array in Matlab
doMatlab(' plot (a); ');

8.6.12 doMatlab

Syntax
  doMatlab('string')

Description
The doMatlab statement allows you to pass a command line string to Matlab.

Example
// this example shows how a variable can be transferred to matlab and from matlab during simulation
variables
  real x;
  real y;
  real vector[2];
  real matrix[2,2];

// at the start of the simulation
initialequations
  // create an empty array a
doMatlab('a = []; ');
  // create a variable
doMatlab('b=0; ');
  // create a vector
doMatlab('vector=[1 2];' );
  // create a matrix
doMatlab('matrix=[1 2; 3 4]; ');

// during simulation
equations
  // calculate x
  x = sin(time);
  // send it to Matlab
toMatlab(x,'x');
  // and add it to array a
doMatlab('a = [ a x ]; ');
  // in Matlab add 2 to x
doMatlab('b = x + 2; ');
  // read matlab 'b' into 20-sim variable 'y'
fromMatlab(y, 'b');
  // read matlab 'vector' into 20-sim variable 'vector'
fromMatlab(vector, 'vector');
  // read matlab 'matrix' into 20-sim variable 'matrix'
fromMatlab(matrix, 'matrix');
// at the end of the simulation
finalequations
   // plot the resulting array in Matlab
   doMatlab (' plot (a); ');

8.6.13 fromMatlab

Syntax

   fromMatlab(<20-sim variable>)
   fromMatlab(<20-sim variable>, 'matlab variable name')

Description

The fromMatlab statement allows you to retrieve a variable from Matlab and store it into a 20-sim variable.

The first argument is the name of the 20-sim variable to use as storage (destination). This 20-sim variable can be a scalar variable, a vector or a matrix and should match the size used at the Matlab side.

The second (optional) argument 'matlab variable name' is the name of the Matlab variable to retrieve (source).

When the 'matlab variable name' argument is omitted, 20-sim will use the full hierarchical name of the 20-sim variable.

A 20-sim variable named Controller\x requests from Matlab: Controller_x

The corresponding toMatlab statement allows you to pass a variable from 20-sim to Matlab.

Example

// this example shows how a variable can be transferred to matlab and from matlab during simulation
variables
   real x;
   real y;
   real vector[2];
   real matrix[2,2];

// at the start of the simulation
finalequations
   // create an empty array a
   doMatlab ('a = []; ');
   // create a variable
   doMatlab ('b=0; ');
   // create a vector
   doMatlab ('vector=[1 2];');
   // create a matrix
   doMatlab ('matrix=[1 2; 3 4];');

// during simulation
equations
   // calculate x
   x = sin (time);
   // send it to Matlab
toMatlab (x,'x');
// and add it to array a
doMatlab ('a = [ a x ];
// in Matlab add 2 to x
doMatlab ('b = x + 2;');
// read matlab 'b' into 20-sim variable 'y'
fromMatlab(y, 'b');
// read matlab 'vector' into 20-sim variable 'vector'
fromMatlab(vector, 'vector');
// read matlab 'matrix' into 20-sim variable 'matrix'
fromMatlab(matrix, 'matrix');

// at the end of the simulation
finalequations
// plot the resulting array in Matlab
doMatlab (' plot (a); ');

8.6.14 Effort in causality

Syntax

effortincausality (portname) then
  equation;
  equation;
  ...
else
  equation;
  equation;
  ...
end;

Description

The effortincausality statement evaluates if a port has causality effort in and performs
the first set of equation(s) if the condition is true and the second set of equation(s) if the
condition is false. If the condition is true, 20-sim ignores the second set of equation(s). If
the condition is false, 20-sim ignores the first set of equation(s).

Depending on the domain you are working in, effort and flow correspond to particular
variables. The table below shows the variables for the domains that are currently
supported in 20-sim.

<table>
<thead>
<tr>
<th>Domain</th>
<th>effort (e)</th>
<th>flow (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>effort e</td>
<td>flow f</td>
</tr>
<tr>
<td>mechanical (trans)</td>
<td>force F [N]</td>
<td>velocity v [m/s]</td>
</tr>
<tr>
<td>mechanical (rot)</td>
<td>torque T [Nm]</td>
<td>angular velocity omega [rad/s]</td>
</tr>
<tr>
<td>pneumatic</td>
<td>pressure p [Pa]</td>
<td>volume flow phi [m^3/s]</td>
</tr>
</tbody>
</table>
Examples

effortincausality p then
   \[ R = \begin{cases} \text{Ron} & \text{if } p.u > 0 \\ \text{Roff} & \text{else} \end{cases} \] // executed if causality of port p is effort (u) in
else
   \[ R = \begin{cases} \text{Ron} & \text{if } p.i > 0 \\ \text{Roff} & \text{else} \end{cases} \] // executed if causality of port p is flow (i) in
end;
p.i = p.u/R;

Note

1. Take care when using event functions in effortincausality statements. In this statement only the equations of the true parts are evaluated, so event functions may not always be triggered!
2. There is also a flowincausality statement.
3. Equations within an effortincausality have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.

8.6.15 Flowincausality

Syntax

\[ \text{flowincausality (portname) then} \]
\[ \text{equation;} \]
\[ \text{equation;} \]
\[ \ldots \]
\[ \text{else} \]
\[ \text{equation;} \]
\[ \text{equation;} \]
\[ \ldots \]
\[ \text{end;} \]

Description

The effortincausality statement evaluates if a port has causality flow in and performs the first set of equation(s) if the condition is true and the second set of equation(s) if the condition is false. If the condition is true, 20-sim ignores the second set of equation(s). If the condition is false, 20-sim ignores the first set of equation(s).
Depending on the domain you are working in, effort and flow correspond to particular variables. The table below shows the variables for the domains that are currently supported in 20-sim.

<table>
<thead>
<tr>
<th>Domain</th>
<th>effort (e)</th>
<th>flow (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>effort ( e )</td>
<td>flow ( f )</td>
</tr>
<tr>
<td>mechanical</td>
<td>force ( F ) [N]</td>
<td>velocity ( v ) [m/s]</td>
</tr>
<tr>
<td>(translation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mechanical</td>
<td>torque ( T ) [Nm]</td>
<td>angular velocity ( \omega ) [rad/s]</td>
</tr>
<tr>
<td>(rotation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pneumatic</td>
<td>pressure ( p ) [Pa]</td>
<td>volume flow ( \phi ) [m³/s]</td>
</tr>
<tr>
<td>thermal</td>
<td>temperature ( T ) [K]</td>
<td>entropy flow ( dS ) [J/Ks]</td>
</tr>
<tr>
<td>electric</td>
<td>voltage ( u ) [V]</td>
<td>current ( i ) [A]</td>
</tr>
<tr>
<td>hydraulic</td>
<td>pressure ( p ) [Pa]</td>
<td>volume flow ( \phi ) [m³/s]</td>
</tr>
<tr>
<td>magnetic</td>
<td>current ( i ) [A]</td>
<td>voltage ( u ) [V]</td>
</tr>
<tr>
<td>pseudothermal</td>
<td>temperature ( T ) [K]</td>
<td>heat flow ( dQ ) [W]</td>
</tr>
</tbody>
</table>

**Examples**

\[
\text{flowincausality } p \text{ then } \\
R = \text{if } p.i > 0 \text{ then } Ron \text{ else } Roff \text{ end}; \quad // \text{executed if causality of port } p \text{ is flow (i) in} \\
\text{else} \\
R = \text{if } p.u > 0 \text{ then } Ron \text{ else } Roff \text{ end}; \quad // \text{executed if causality of port } p \text{ is effort (u) in} \\
\text{in} \\
p.u = p.i*R;
\]

**Note**

1. Take care when using event functions in effortincausality statements. In this statement only the equations of the true parts are evaluated, so event functions may not always be triggered!

2. There is also an effortincausality statement.

3. Equations within an effortincausality have to be written in the correct order of execution, i.e. they are not rewritten into a causal form but executed sequentially.
8.7 Matrices and Vectors

8.7.1 Declaration

Matrices and column vectors are declared in the constants, parameters and variables sections of a model. Declaration of matrices and column vectors is equal to the declaration of scalars, the size however has to be specified explicitly. For example:

```plaintext
parameters
 real A[3,3], B[3,3];
 integer C[2,2] = [1,3;5,7];
 real K[4] = [1;2;3;4];
variables
 real K[4], L[4], D[4,5];
 integer M[2,2], N[2,2];
```

Matrices and Vectors can only be of the datatype real or integer.

8.7.2 Notation

Matrix sizes in 20-sim are always denoted by [n,m] where n is the numbers of rows and m is the numbers of columns. Elements can separately be denoted with commas (,) distinguishing between row elements and semicolons (;) distinguishing between rows.

<table>
<thead>
<tr>
<th>matrix size</th>
<th>matrix form</th>
<th>20-sim notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4,1]</td>
<td>1 3 5 7</td>
<td>[1;3;5;7]</td>
</tr>
</tbody>
</table>

Column vectors are matrices with only one column. Consequently the column size may be omitted in the notation.

<table>
<thead>
<tr>
<th>column size</th>
<th>column form</th>
<th>20-sim notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4]</td>
<td>1</td>
<td>[1;3;5;7]</td>
</tr>
</tbody>
</table>
8.7.3 Use

Matrices and Vectors can be used in equations just like scalars. If possible, the element notation can be left out. **If equations get ambiguous, element notation must be used!**

**Whole matrix or vector**

1. \[ K = 1; \] // Make all elements of K equal to 1.
2. \[ M = C; \] // Make matrix M equal to matrix C (sizes have to be equal).
3. \[ N = D^{-1}; \] // Make matrix N equal to the matrix product of D // and the inverse of L (sizes of N, D and L have to be equal).

**Matrix and vector elements**

1. \[ N = [\sin(time), \cos(time); \cos(time), -\sin(time)]; \] // Make elements of N equal to functions.
3. \[ D[2,5] = A[2,2] \times B[1,1]; \] // Declare one element

**Multiple elements (ranges)**

To prevent multiple equations for assigning matrix elements, ranges can be assigned using a colon. E.g. 1:5 means element 1 to 5, 7:8 means element 7 and 8. Backward counting ranges (like 10:1) are not allowed!

2. \[ \text{variables} \]
3. \[ \text{real } v[3], p[6,6]; \]
4. \[ \text{equations} \]

**Operators**

Some scalar operators can also be used for matrices and vectors. Depending on the specific operator, the meaning may differ for scalars, vectors and matrices.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Multiplication</td>
</tr>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
</tr>
<tr>
<td>.*</td>
<td>ArrayMultiplication</td>
</tr>
<tr>
<td>./</td>
<td>ArrayDivision</td>
</tr>
</tbody>
</table>
\[ \cdot^\wedge \] ArrayPower
\[
/ \]
Division
\[
\wedge \]
Power
\[
- \]
Prefix Minus Sign
\[
+ \]
Prefix Plus Sign
\[
| .. | \]
Absolute / Determinant / Norm

**Functions**

A lot of special matrix and vector functions are supported in 20-sim:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjoint</td>
<td></td>
</tr>
<tr>
<td>adjoint</td>
<td></td>
</tr>
<tr>
<td>Antisym</td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td></td>
</tr>
<tr>
<td>Cross</td>
<td></td>
</tr>
<tr>
<td>Determinant</td>
<td></td>
</tr>
<tr>
<td>Diag</td>
<td></td>
</tr>
<tr>
<td>Eye</td>
<td></td>
</tr>
<tr>
<td>Homogeneous</td>
<td></td>
</tr>
<tr>
<td>Inner</td>
<td></td>
</tr>
<tr>
<td>Inverse</td>
<td></td>
</tr>
<tr>
<td>InverseH</td>
<td></td>
</tr>
<tr>
<td>Linsolve</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td></td>
</tr>
<tr>
<td>Msum</td>
<td></td>
</tr>
<tr>
<td>Norm</td>
<td></td>
</tr>
<tr>
<td>Norminf</td>
<td></td>
</tr>
<tr>
<td>Rows</td>
<td></td>
</tr>
<tr>
<td>Skew</td>
<td></td>
</tr>
<tr>
<td>Sym</td>
<td></td>
</tr>
<tr>
<td>Tilde</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>Transpose</td>
<td></td>
</tr>
</tbody>
</table>
8.8 Advanced Topics

8.8.1 Algebraic Loops

An algebraic loop in a model is a loop consisting of elements without "memory like" functions. To calculate the variables in this loop, the variable values themselves are needed. Consider the following example of an algebraic loop in an amplifier with negative feedback:

\[ x = K*(u-x) \]

The variable \( x \) depends on its own value and must be solved by iteration. In 20-sim every simulation algorithm is accompanied by an iteration routine. Fortunately 20-sim is able to solve many algebraic loops at equation level. For this model this leads to the analytic solution the system:

\[ x = \frac{K\cdot u}{1+K} \]

Simulating algebraic loops

Although 20-sim contains a sophisticated algorithms to find analytic solutions, the occurrence of unbreakable loops can not always be prevented. The occurrence of algebraic loops may lead to an increase of simulation time, or even stop simulation when iteration fails.

The best solution for these problems is to have a critical look at the model and change the order of calculations in a model. Possible solutions are:

- **Algebraic Loops** occur when the order of calculations is arbitrary. When an algebraic loop occurs in an equation model or in a set of equation models, you may change the order of calculation by rewriting the equations. The calculation order in bond graph models can be changed by introducing hand-defined causality.

- **Introduce ‘parasitic’ energy storage elements** (e.g. a small mass, a small capacitor etc.) to break an algebraic loop. These elements introduce however, large poles in the state equations, which might increase the simulation time considerably.

- **Delete elements** in the algebraic loop which are not relevant for the model’s simulation output (e.g. small dampers, very stiff springs etc.). Care should however be taken, since correct deletions are not always possible and require considerable modeling skill and intuition.

- **Combine dual elements**. Sometimes elements of the same type can be combined by adding the parameter values (e.g. combining a mass \( m_1 \) and a mass \( m_2 \) to a mass \( m_1 + m_2 \)). This will in most cases decrease the amount of algebraic loops.
8.8.2 Causal Form

Equations within 20-sim may be entered in random form. During compilation, 20-sim will automatically try to rewrite equations into a causal form and set them in a correct order. I.e. a form where all output variables are written as function of input variables. Consider for example the following model:

```plaintext
variables
 real u,z;
.equations
 u = sin(time);
 u = cos(z);
```

Here the (input) variable u is given by the equation \( u = \sin(time) \). Consequently the (output) variable z should be written as a function of u. This is exactly what 20-sim will try to do while compiling the model into simulation code. I.e. the function \( \cos \) will be inverted and the model will be rewritten to:

```plaintext
variables
 real u,z;
.equations
 u = sin(time);
 z = \arccos(u);
```

Some functions cannot be inverted. Consequently not all equations can be rewritten. 20-sim will report this to the user, during model checking.

Fixed Causality

For some models there is only one causal form. For example a simple iconic diagram model that describes coulomb friction can be written as:

```plaintext
parameters
 real Rc;
.equations
 p.F = Rc*abs(p.v);
```

Here \( p.F \) denotes the force and \( p.v \) denotes the velocity of the powerport \( p \). The equation cannot be rewritten to a form where \( p.F \) is the input. This can be explicitly stated, by giving the powerport \( p \) a fixed causality. During compilation 20-sim will try to keep the model in this fixed form. If this is not possible an error message will be generated.

Fixed causality has the highest priority for assigning causality. During compilation 20-sim will first assign all models with a fixed causality, then all models with a preferred causality, then all models with a likes causality and then all models with an indifferent causality.

Preferred Causality

For some models there is a preferred causal form. For example the iconic diagram model that describes a spring can be written as:
Here \( p.F \) denotes the force and \( p.v \) denotes the velocity of the powerport \( p \). The equation is written in integral form which is preferred. Consequently the preferred input is the velocity. Should the force be the input, the equation must be rewritten to a differential form, which is leads to less efficient simulation. This can be explicitly stated, by giving the powerport \( p \) an preferred causality. During compilation 20-sim will try to keep the model in this preferred form. If this is not possible the equations will be rewritten to the less preferred form.

Preferred causality has a lower priority than fixed causality. During compilation 20-sim will first assign all models with a fixed causality and then all models with a preferred, likes and indifferent causality.

**Likes Causality**

For some models there is a causal form which is liked more than the other. For example the iconic diagram model that describes a parasitic volume can be written as:

```plaintext
effortincausality(p) then
 p.phi = 0;
else
 volume_ratio = int(p.phi/V);
 p.p = B * volume_ratio + p_initial;
end;
```

Here \( p.phi \) denotes the volume flow and \( p.p \) denotes the pressure of the powerport \( p \). The equation is written in integral form which is liked. Consequently the preferred output is the pressure. Should the pressure be the input, the equation gives a zero flow as output. During compilation 20-sim will first try to keep all models the liked form. If this is not possible the equations will be rewritten to the other form.

Likes causality has a lower priority than preferred causality. During compilation 20-sim will first assign all models with a fixed causality and then all models with a preferred, likes and indifferent causality.

**Indifferent Causality**

For some models the causal form is not known beforehand. For example the iconic diagram model that describes a damper can be written as:

```plaintext
parameters
 real d;
equations
 p.F = d*p.v;
```

Here \( p.F \) denotes the force and \( p.v \) denotes the velocity of the powerport \( p \). There is no preferred input (force or velocity). This can be explicitly stated, by giving the powerport \( p \) an indifferent causality. During compilation 20-sim will determine whether \( p.F \) or \( p.v \) is the input variable and consequently rewrite the equations.
indifferent causality has a lower priority than likes causality. During compilation 20-sim will first assign all models with a fixed causality and then all models with a preferred, likes and indifferent causality.

**Setting Causality**

For some models, the equations are too complex to analyze causality. To help 20-sim, using the right causality, you can set causality for every port in the Interface Editor.

### 8.8.3 Integral Form

Consider the following first order linear model:

\[
\text{output} = \text{int}( \text{input} - K \times \text{output} )
\]

Now look at the following model:

\[
\text{output} = \frac{\text{input} - \frac{d\text{output}}{dt}}{K}
\]

Note that we can rewrite this equation as:

\[
\frac{d\text{output}}{dt} = \text{input} - K \times \text{output}
\]

or

\[
\text{output} = \text{int}( \text{input} - K \times \text{output} )
\]

This is the same equation as the previous model! Apparently, both models are the same! Both models can therefore be described by the dynamic equations:

\[
\frac{d\text{output}}{dt} = \text{input} - K \times \text{output} \\
\text{output} = \text{int}( \text{input} - K \times \text{output} )
\]

We call the first equation the *differential form* (no integrals). The second equation is called the *integral form* (no derivatives). In 20-sim, models can be entered in integral form as well as the differential form.
Solving Differential Equations

During compilation, 20-sim will automatically try to rewrite equations into the integral form, since this leads to more efficient simulation. Sometimes an integral form cannot be found. Then algorithms will be applied to solve the differential directly. For example an equation like:

\[ \text{output} = ddt(\sin(a \times \text{time})) \]

will be replaced by the following equation (applying the chain rule and using the known derivative for the sine function):

\[ \text{output} = a \times \cos(a \times \text{time}) \]

Sometimes a differential cannot be solved directly. Then only the Backward-Differentiation Methods can be used for simulation.

Simulation Code

After compilation simulation code is generated. The equation in integral form:

\[ \text{output} = \int(\text{input} - K \times \text{output }) \]

will be written as:

\[
\begin{align*}
\text{independent state} & = \text{output} \\
\text{independent rate} & = \text{input} - K \times \text{output}
\end{align*}
\]

and can be handled by all integration methods. The equation in differential form:

\[ ddt(\text{output}) = \text{input} - K \times \text{output} \]

will be written as:

\[
\begin{align*}
\text{dependent rate} & = \text{input} - K \times \text{output} \\
\text{dependent state} & = \text{output}
\end{align*}
\]

and can only be handled by the Backward-Differentiation Methods.

8.8.4 Order of Execution

Equations within 20-sim may be entered in random form. During compilation, 20-sim will automatically try to rewrite equations into a correct order of execution. I.e. a form where all output variables are written as function of input variables and output variables of previous lines. Consider for example the following equations:

\[
\begin{align*}
\text{variables} \\
\text{real } u, z; \\
\text{equations} \\
z & = \sin(u); \\
u & = \cos(\text{time});
\end{align*}
\]
Here the (input) variable $z$ is given as a function of $u$. Consequently $u$ should be calculated first. This is exactly what 20-sim will try to do while compiling the model into simulation code. I.e. the equations will be executed as:

\[
\begin{align*}
    u &= \cos(time); \\
    z &= \sin(u);
\end{align*}
\]

**Code Blocks**

Equations in a code block are not reordered. A code block is a set of equations inside a statement. Suppose we have the following equations:

```
if condition then
 code block 1
 ...
 ...
else
 code block 2
 ...
 ...
end;
```

To prevent incorrect executions of the if-statement, the equations of the code blocks will not be separated. Inside a code-block, equations can are not rewritten into an new order of execution. E.g. the following equations:

```
if time > 10 then
 z = \sin(u);
 a = z^2;
 u = \cos(time);
end;
```

Will be **not be reordered** and therefore not correctly executed! To get correct code, enter code blocks in a correct order, e.g.:

```
if time > 10 then
 u = \cos(time);
 z = \sin(u);
 a = z^2;
end;
```

**Prevent Order Changes**

To make all equations a code block you can use the code section. E.g.
parameters
  real y = 8;
variables
  real x1, x2, x3;

code
  x1 = time;
  x2 = sin(time);
  x3 = y*x1;

Integration Steps
Some integration algorithms do more calculations before generating the next output value. These calculations are called minor steps, the output generation is called a major step. During a minor step, all model equations are executed. In most cases you will not notice this because only the results of the major step are shown in the simulator. There are however, exceptions. The next topic will discuss this in more detail.

8.8.5 Show Equations
During processing a complete set of equations is generated of each model. To inspect these equations or copy them for use in other programs, you have to:

1. From the Model menu select the Check Complete Model command.
2. From the Model menu select the Show Equations command.

Now a window is popped up showing all the model equations.

The model equations after compiling.
9 Toolboxes

9.1 3D Mechanics Toolbox

9.1.1 Introduction

Introduction

With the 3D Mechanics Editor you can create 3D dynamic models of mechanical structures. The resulting 3D mechanical model can be connected with other 20-sim components. In the example shown below (Getting Started/3D Mechanics Toolbox/ScaraRobotSimulation.emx), you see a robot model that has been generated with the 3D Mechanics Editor. The model has two actuated rotation joints and one actuated translation joint. The rotation joints are directly coupled to gearboxes. The translation joint is coupled via a spindle.

In 20-sim you can use plots to show the simulation results and use the 3D Animation Toolbox to show an animation of the 3D model.

Opening The 3D Mechanics Editor

You can open the 3D Mechanics Editor by:

1. In the 20-sim Editor from the Tools menu select 3D Mechanics Toolbox and 3D Mechanics Editor.
Now a masked model is inserted in the Editor and the 3D Mechanics Editor will be opened.

If you select a 3D Mechanics model and select Go Down, the 3D Mechanics Editor will be automatically opened.

The first time you start 20-sim 3D Mechanics Editor the following screen will appear.
This topic is only important for users who are migrating from older version of 20-sim and want to use previously constructed 3D Mechanics models. Since 20-sim 4.1, the 3D Mechanics Editor operates on masked models. I.e. you can open the 3D Mechanics Editor by selecting a 3D Mechanics model and clicking the Go Down command. If you import a 20-sim 4.0 model, you will notice that this option does not work. We will explain the actions you have to perform to do make this trick work on older models.

1. Open the 20-sim model that contains a submodel that was generated by the 3D Mechanics Editor (make sure you have stored an emergency copy).
The star shaped model was created using the 3D Mechanics Editor of 20-sim 4.0.

2. Select the model that was generated by the 3D Mechanics Editor and select Go Down.

The automatically generated equations of a 3D Mechanical Model.

3. At the top of the model enter the following code:
   // 20-sim 3D Mechanics Editor
   // C:\Program Files\20-sim 4.7\Models\Examples\3D Mechanics\hexapod.3dm
The first line tells 20-sim which editor should be opened. The second line shows the location of the corresponding 3D Mechanics configuration file. Enter the path and name of your own file here.

The comment at the top tells 20-sim which editor should be opened and the corresponding configuration file.

The next time you select the model and select Go Down the 3D Mechanics Editor will be opened with the proper 3D Mechanics model.
**Edit Window**

In the center of the 3D Mechanics Editor the **Edit window** is visible. At the start a reference frame and a base plane is shown. In the Edit window, you can insert components and assemble your model.

*In the Edit Window you can assemble your model.*
Model Tab

One of the two tabs at the left of the 3D Mechanics Editor is the **Model tab**. The Model tab contains a tree of all the components of in your current model. This tree can be used to select components and edit their properties.
Library Tab

One of the two tabs at the left of the 3D Mechanics Editor is the **Library tab**. The Library tab contains predefined components, which you can use to construct your model with. The components in the library tree can be dragged into the Edit window.
**Selection Properties**

Below the Bodies/Library tabs the *properties* of the selected component are shown. When no components are selected the selection properties are empty.

When a component is selected, the edit button will be enabled. You can click the button to change the component properties.

**3D Representation**

Below the Selection Properties, the 3D representation of the selected component is shown. When no components, the 3D Representation is empty.

When a component is selected, the edit button will be enabled. You can click the button to change the 3D Representation of the component.
A component may be composed of several representations. Using the Add Representation and Delete Representation commands of the Actions menu you can add more representations or remove representations.

Output

In the Output part of the 3D Mechanics Editor, messages will be shown during analysis of the model.

Edit Modes

At the right of the 3D Mechanics Editor you will find the Edit Mode buttons. You can select them to enter several edit modes.

- **Translation Mode**: In this mode you can translate components.
- **Connection Mode**: In this mode you can make connections between components.
- **Rotation Mode**: In this mode you can rotate components.
- **Camera Mode**: In this mode you can change the camera position and orientation. I.e. the way you look at your model.

Ghost Modes

At the right of the 3D Mechanics Editor you will find the Ghost Mode buttons. You can use these buttons to make components transparent. This is useful when components are hidden inside other components.

- **Ghost Mode for Bodies**: Make every body transparent.
9. Toolboxes

Ghost Mode for Joints  Make every joint transparent.

Ghost Mode for Sensors/Actuators  Make every sensor/actuator transparent.

View Modes

In the button bar of the 3D Mechanics Editor you will find the View Mode buttons. You can select them to select different views.

- **3D View**  Default view.
- **X-Y plane**  View perpendicular to the x-y plane. You can only move objects along the x-y plane.
- **X-Z plane**  View perpendicular to the x-z plane. You can only move objects along the x-z plane.
- **Y-Z plane**  View perpendicular to the y-z plane. You can only move objects along the y-z plane.
- **All**  A combination of all the views.
Model Settings

The *model Settings* command of the *Tools* menu will open the *Model Settings* dialog. In this dialog you can change some general settings such as the size of the reference frames or the amount of gravity.

![The Model Setting Dialog.](image)

**Items**

- **Gravity**: You can set the gravitational acceleration to any desired value.
  - **Hard Coded**: choose this option if you want to optimize for speed.
  - **As Parameter**: Use a gravity parameter, allowing you to change the value before the start of a simulation run.
  - **As Input Signal**: get the gravity value from an input signal, allowing you to change the value during simulation.
- **Spring Dampers for Constraint Joints**: Choose this option if you want to use spring dampers for closed kinematic chains. You can override the spring damper values for individual joints if required.
  - **Rotation Spring**: Set the desired stiffness for the rotational spring.
  - **Rotation Damper**: Set the desired rotational damping.
  - **Rotation Spring**: Set the desired stiffness for the translation spring.
• Translation Damper: Set the desired translation damping.
• Reference Frames: Choose the size and thickness of the reference frames.
• Grid: Set the grid.
• Angle Representation: 20-sim uses SI-units for the model equations (e.g. radians). You can choose to show them in non-SI-units like degrees or grads.
• Power Port Type: Choose Iconic Diagram power ports or bond Graph power ports.
• Constraint Solver: set the accuracy of the constraint solver.

**Camera Settings**

At the start of a model session, in the Edit window, a default camera is used. You can change camera settings by clicking **Camera Settings** from the **Tools** menu.

In the Camera Settings dialog you can change the range (front and back plane) and zooming of the camera, use a perspective view or orthographic, select the camera position and the point to look at.
Spring Dampers and Constraints

In the 3D Mechanics Editor you can connect bodies with joints. If no path from any body through a joint to another body and so on never returns to the starting body, we have an open chain mechanism. Open chain mechanisms are easy to simulate with all known integration methods.

Open Chain Mechanism.

If a path from any body through a joint to another body and so on returns to the starting body we have a closed chain mechanism. Closed chain mechanisms are generally more difficult to simulate.

Closed Chain Mechanism.

20-sim uses a special feature to simulate closed chain mechanisms. At an arbitrary place a joint is removed to create an open chain mechanism. Then the open chain is closed again using a spring damper joint or a constraint joint. You can choose which joint to use in the Model Settings Dialog.
Spring Damper Joint
A spring damper joint is a joint where all rigid connections are replaced by spring dampers. If weak spring dampers are used a certain amount of (unwanted) displacement will be possible. By increasing the stiffness and damping, the displacement can be decreased. You can set the spring stiffness and damping in the Model Settings Dialog. You can override these spring damper values in the Joint Constraint Settings Dialog.

Constraint Joint
The constraint joint works exactly like the original joint but uses constraint forces to do the job. Constraint forces can only be simulated with special integration methods. In 20-sim the Modified Backward Differentiation Method is able to calculate constraint forces.

The concept of constraint forces is quite easy to understand if we look at the open chain mechanism below. At the tips of the mechanism a force is applied. If we apply a force that keeps the tips at the same position at each time step, it will effectively work as a rotation joint. That is exactly what constraint forces do. At every simulation step, an iterative procedure is run to find exactly that force that keeps the position offset at zero.

This iterative procedure is not standard for most integration methods. In 20-sim only the Modified Backward Differentiation Method supports it. In the 3D Mechanics Editor you do not have to worry about closed chain mechanisms. If necessary, standard joints are replaced automatically by constraint joints. You only have to realize that simulation of a mechanism with constraint joints in 20-sim should be performed using the Modified Backward Differentiation Method.
Flexibility

Flexibility in a 3D mechanics structure can be modeled using constraint joints. All you have to do is:

1. Insert a joint into the editor.
2. Click **Edit Joint** to open the Joint Properties.
3. Click on the **More** button to show the advanced properties.
4. Select the **As Constraint Joint** option.
5. Now you will see the **Constraint Settings** button. Click this button.

![Joint Properties](image)

The **Joint Constraint Settings** dialog will open.

4. In this dialog you can **Override the General Spring Damper Values**,
5. and select the desired stiffness and damping for the joint.
• If you do not choose *Override the General Spring Damper Values*, the global settings for constraint joints are used which can be specified in the Model Settings dialog.

• Only the degrees of freedom which are fixed by the joint, can be set by spring damper values. In the dialog above the spring damper values of an X-rotation joint are shown. The rotation around the x-axis can not be restricted by a spring damper. If you want to insert flexibility in all directions and rotations, use a weld joint to override the general spring damper values.

• You can choose the option *Generate Global Parameters* to make the spring damper values available as global parameters.

### 9.1.2 Working Order

**3D Mechanics Editor**

From the Library tab you can drag and drop components to the Edit window. If you put the editor in translation mode you can select the components and use the mouse to put them in the correct position.
A standard model will at least consist of some bodies and joints. The bodies have to be connected with the joints to define the degrees of freedom of the model. The connecting of joints and bodies can be done in the connection mode. By clicking on a body and then on a joint a connection is defined.

If all connections are defined, you can test the possible motions of your model. Return to the translation mode and click on a body. You will see arrows that indicate the possible motion of the connected joint. By dragging the mouse you can make the body move.
When the model is ready you can check it. When no errors are found you can update it to 20-sim.

**Generating a 20-sim Model**

**Checking**

When your 3D dynamic model has been created and assembled, you can check for errors by selecting the *Check Model* command from the *Actions* menu. If everything is OK the Output will show the message "Analysis Completed Successfully".

**Generating 20-sim Model**

After the model has been checked, you can export it as a 20-sim submodel by selecting the *Generate 20-sim Model* command from the Actions menu.
As you may know from the Joint Properties dialog, all joints have an initial value. During analysis of your model, some joints may have been twisted. You can use the current (twisted) configuration to generate a 20-sim model for, or reset it to its initial values first.

**Additional Outputs**
For advanced users, some additional outputs may be useful. First time users are advised not to select these outputs.

**Output Filename**
Use the *Browse* button to select a folder and a filename for the generated 20-sim model.

**20-sim Scenery**
In 20-sim you can use the 3D Animation Toolbox to show an animation of the mechanical structure. You can export the structure to a scenery file, which can be loaded in the 3D Animation Toolbox.

- Don't Generate Joint Representations: Each joint is represented in the 3D Animation as autonomous component with variables to denote the position and orientation. For large models you can save memory space by not exporting the joints.
- Submodel Name to be used in 20-sim: The 3D Animation will use 20-sim submodel names to identify the movements of object. You have to enter the submodel name, that you will use for the 3D dynamic model in 20-sim.
9.1.3 Library

The Library Tab shows all components that can be used to create your 3D Dynamic model.

- Bodies
- Joints
- Sensors
- Actuators

Bodies

Position

When you drag and drop a body into the Edit window, its position (i.e. the position of its reference frame) will be defined with respect to the base reference frame. You can change the position with the mouse pointer. From the View menu click Mode and Translation or click the button to go to translation mode. If you put the mouse pointer on top of the body, you can change its position by pressing the left mouse button. If you pressing the Ctrl-button at the same time, the body will move up and down.

You can also set the position manually by double clicking the body. This will open the Body Properties dialog.
Using this dialog you can:

- change the name of the body
- set the inertia parameters
- change the position
- change the orientation
- make it a fixed body
- set more options

**Fixed Body**

The purpose of building a 3D model in most cases is to construct some kind of mechanism using bodies and joints. The joints make the bodies move in a particular way, which can be inspected in the 3D Editor. Every body in 3D mechanics editor is floating by default, unless specifically set to be attached to the fixed world, or connected to another body by means of a joint. Any body can be set to be a fixed body by checking the **Is Fixed World** option in the **Body Properties dialog**. Changing the position of a fixed body in a mechanism will change the base position of the mechanism. Dragging the other bodies will only make the mechanism move, but not change the base position. If you want to model a floating mechanism (e.g. a satellite in space), all bodies should remain floating.

**Orientation**

To set the orientation of a body, the same procedure can be followed as for the position of a body. If you set the Editor in Rotation mode ( ), you can change the orientation of the body with the mouse pointer. You can also use the Body Properties dialog to set the orientation precisely by clicking the orientation button.
The orientation of a body is specified by the orientation of its reference frame. You can define this orientation using various representations.

- **Direction Up Vector:** Using the Direction Up vector method you have to specify the Y-axis (Direction) and Z-axis (Up) of the body reference frame.

- **Bryant angles:** Using Bryant angles we start with the initial body reference frame. First we rotate around the Y-axis of the body reference frame, then we rotate around the Y-axis of the body reference frame en finally around the Z-axis of the body reference frame. Bryant angles are also known as X-Y-Z relative Euler angles or Cardan angles.

- **X-Y-X Euler:** Using X-Y-X Euler angles we start with the initial body reference frame. First we rotate around the X-axis of the body reference frame, then we rotate around the Y-axis of the body reference frame en finally around the X-axis of the body reference frame.

- **Euler Parameters:** Using Euler parameters we start with the initial body reference frame and rotate this frame around a vector \([X,Y,Z]\) about an angle theta.

- **Rotation Matrix:** Using a 3x3 rotation matrix, you can enter 9 elements that will transform the initial orientation of the body reference frame to the new orientation.

**Inertia Properties**

Each body has a mass and rotational inertia. The mass indicates the resistance of the body to a change in position. Given a fixed force, a body with a large mass will accelerate more slowly. This property is the same for all directions. Therefore the mass can be indicated by a single parameter.

The rotational inertia indicates the resistance of a body to a rotation. Given a fixed torque, a body with a large rotational inertia will start to rotate more slowly. The rotational inertia is not the same for all orientations. Generally, for any body three axes can be identified that indicate a stable rotation. The rotational inertia for these three principal axes of rotation is sufficient to describe the motion of a body. The connection of these three principal axes of rotation is generally known as the center of mass.
Any body, indifferent of its shape, which has the same mass, the same principal axes of rotation and the same rotational inertia, will show the same dynamic behavior. That is why you can change the representation of a body to any size, it will not change its dynamic properties.

If you open the **Body Properties Dialog** you can click the **Edit** button to change the inertia properties. You can set mass and the rotational inertias for each of the principle inertia axis. By selecting the option **As Global Parameter** you can make the inertia parameters available as global parameters.

The center of mass does not necessarily have to coincide with the body reference frame and the orientation of the principal inertia axes do not have to coincide with the orientation of the body reference frame.
You can enter the offset position of the center of mass and the orientation of the principal inertia axes, by clicking the offset button.

**More Options**

If you click the More button in the *Body Properties dialog*, options are shown which form a shortcut for the normal way of building models. They are meant for experienced users.

First a list of connection points are shown and some buttons to edit these points. Connection points are used to indicate at which point a joint or other element is connected with the body. Connection Points are explained in more detail in the next section.

At the bottom two options are shown. If you choose the Generate Power Interaction Port option, a power port will be added to the body, which allows you to insert forces and torques onto the body, from other 20-sim submodels.

The Output Absolute H-matrix option, will create an 4x4 output signal that gives the position and orientation of the body, using an H-matrix. This signal can be connected to other 20-sim submodels.

**Joints**

**Properties**

In order to make two bodies move with respect to each other, we have to connect them by joints. Joints do not have any mass or rotational inertia. They only constrain the motion of bodies. The position of a joint is indicated by its reference frame. Because the joint position and orientation is completely determined by the bodies that are connected, you do not have to specify any position or orientation parameters. These are automatically derived when you make connections.

**Connections**

Making connections is not difficult when you understand how frames work. We will explain this with a simple example. Suppose we have two bodies and a rotational joint. The initial positions of the bodies and joints are indicated by their reference frames.

Now we have to define for each of the two bodies the offset to the joint. This can be done using connection points. A connection point is in fact a new frame with an offset from the body reference frame. As you can see, in the picture below, we have defined ConnectionPoint1 with an offset of \([x = 1, y = 1, z = -1]\) with respect to the Body1 and we have defined ConnectionPoint2 with an offset of \([x = 1, y = -1, z = -0.3]\) with respect to Body2.
Now the bodies and the joint can be assembled by changing the body positions in such a way that the frames of the connection points coincide with the reference frame of the joint exactly.

Suppose that Body1 is set as the reference body. Now the whole assembly will be moved until Body1 has its original position.
Creating Connections

In the 3D Mechanics Editor most of the assembly of joints and bodies is automated. You simply have to make connections between joints and bodies. To make a connection you have to drag and drop bodies and a joint to the Edit window. Then change to Connection mode ( ). First click a body and then the joint it should be connected to.

The Create Connection dialog will pop to ask you for the location of the connection point. In the connection dialog you can set the offset (both the position as well as rotation) from the body reference frame to the connection point.
After the dialog is closed the body will automatically assemble with the joint. When two bodies are assembled with a joint, you can view their constrained motions.

**Joint Properties**
When you want to change the Connection Points after the connection has been made, you have to double clicking the joint. This will open the Joint Properties Dialog.

You can change the name, position, orientation, and the rotation axis of the connection points. You can also change the joint type and the initial rotation or translation of the joint. If you lock the joints, it will not move when you want to show the possible motions of the system.

**Advanced Properties**
At the bottom of the Joint Properties you can click the More button to see the advanced properties.
As Constraint Joint: Calculate the joint using constraints. You can use constraint joints to introduce flexibility into your 3D structure.

Power Interaction Port: add a power port to the joint to make it an actuated joint.

Output Position: Create an output signal that gives the joint position.

Output Velocity: Create an output signal that gives the joint velocity.

Output Constraint Forces: Create an output signal that gives the forces and torques that act on the joint.

**Constraint Settings**

If you click the *More* button to see the *Advanced Joint Properties*, you can click the *As Constraint Joint* selection box. This box allows you to manually choose to make this joint a constraint joint. A button will be visible showing the *Constraint Settings*. If you click this button a dialog is shown allowing your to override the constraint by a spring damper. In this way you can set each individual joint by its own spring damper constants.
Spring Damper

If you click the More button to see the Advanced Joint Properties, you can click the Spring Damper button. This will allow you to add damping to a joint or a spring and define end-stops.

- **Has Spring**: choose this option to define a spring parallel to the joint.
- **Has Damping**: select this option to define the damping (linear with the velocity).
- **Has Minimum**: set an endstop at the minimum joint rotation/extension.
- **Has Maximum**: set an endstop at the maximum joint rotation/extension.

**Joint Types**

Several types of joints are available in the library:
### Rotation Joints (Non-Actuated)

<table>
<thead>
<tr>
<th>joint</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ-Rotation</td>
<td>Joints which rotate around the principal axes.</td>
</tr>
<tr>
<td>Hinge XYZ-Rotation</td>
<td>Same as XYZ-Rotation but with a different representation.</td>
</tr>
<tr>
<td>Balljoint connection</td>
<td>XYZ-Balljoints with orientations of the principal axes.</td>
</tr>
</tbody>
</table>

### Rotation Joints (Actuated)

<table>
<thead>
<tr>
<th>joint</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ-Rotation</td>
<td>Joints which rotate around the principal axes.</td>
</tr>
<tr>
<td>Hinge XYZ-Rotation</td>
<td>Same as XYZ-Rotation but with a different representation.</td>
</tr>
</tbody>
</table>

### Translation Joints (Non-Actuated)

<table>
<thead>
<tr>
<th>joint</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ-Rotation</td>
<td>Joints which rotate around the principal axes.</td>
</tr>
<tr>
<td>Hinge XYZ-Rotation</td>
<td>Same as XYZ-Rotation but with a different representation.</td>
</tr>
<tr>
<td>Balljoint connection</td>
<td>XYZ-Balljoints with orientations of the principal axes.</td>
</tr>
</tbody>
</table>

### Translation Joints (Actuated)

<table>
<thead>
<tr>
<th>joint</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ-Translation</td>
<td>Joints which rotate around the principal axes.</td>
</tr>
</tbody>
</table>

### Other Joints

<table>
<thead>
<tr>
<th>joint</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weld joint</td>
<td>A joint that welds two bodies together.</td>
</tr>
<tr>
<td>Free Moving Joint</td>
<td>Opposite of the weld joint. In practice this joint will only be used to give a body a fixed starting position with respect to another body.</td>
</tr>
</tbody>
</table>
Sensors

Sensors are components that indicate the position or velocity of bodies as output signals.

Connecting Sensors
Sensors have to be connected with bodies, just like joints.

The position of the sensor is indicated by its connection point. The connection point is shown automatically when you make a connection between a body and a sensor. First change to **Connection mode** ( 
, then click the body and then click the sensor.

The **Create Connection** dialog will pop to ask you for the location of the connection point. In the connection dialog you can set the offset (both the position as well as rotation) from the body reference frame to the connection point.
Sensor Types

Various sensor types are available in the library.

**Position/Orientation**

<table>
<thead>
<tr>
<th>sensor</th>
<th>output signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position-X</td>
<td>A signal with the x-position of the body.</td>
</tr>
<tr>
<td>Position-Y</td>
<td>A signal with the y-position of the body.</td>
</tr>
<tr>
<td>Position-Z</td>
<td>A signal with the z-position of the body.</td>
</tr>
<tr>
<td>Position (3x1)</td>
<td>A signal (size 3) with the x-, y- and z-position of the body.</td>
</tr>
<tr>
<td>H-matrix (4x4)</td>
<td>A 4x4 signal with the H-matrix.</td>
</tr>
<tr>
<td>Rotation (3x3)</td>
<td>A 3x3 signal with the rotation-matrix.</td>
</tr>
</tbody>
</table>

**Velocity**

<table>
<thead>
<tr>
<th>sensor</th>
<th>output signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity-X</td>
<td>A signal with the x-velocity of the body.</td>
</tr>
<tr>
<td>Velocity-Y</td>
<td>A signal with the y-velocity of the body.</td>
</tr>
<tr>
<td>Velocity-Z</td>
<td>A signal with the z-velocity of the body.</td>
</tr>
<tr>
<td>Velocity (3x1)</td>
<td>A signal (size 3) with the x-, y- and z-velocity of the body.</td>
</tr>
</tbody>
</table>
Omega-X
A signal with the rotational velocity in x-direction of the body.

Omega-Y
A signal with the rotational velocity in y-direction of the body.

Omega-Z
A signal with the rotational velocity in z-direction of the body.

Omega (3x1)
A signal (size 3) with all three rotational velocities.

**Acceleration**

<table>
<thead>
<tr>
<th>sensor</th>
<th>output signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration-X</td>
<td>A signal with the x-acceleration of the body.</td>
</tr>
<tr>
<td>Acceleration-Y</td>
<td>A signal with the y-acceleration of the body.</td>
</tr>
<tr>
<td>Acceleration-Z</td>
<td>A signal with the z-acceleration of the body.</td>
</tr>
<tr>
<td>Acceleration (3x1)</td>
<td>A signal (size 3) with the x-, y- and z-acceleration of the body.</td>
</tr>
<tr>
<td>Rotational Acceleration-X</td>
<td>A signal with the rotational acceleration in x-direction of the body.</td>
</tr>
<tr>
<td>Rotational Acceleration-Y</td>
<td>A signal with the rotational acceleration in y-direction of the body.</td>
</tr>
<tr>
<td>Rotational Acceleration-Z</td>
<td>A signal with the rotational acceleration in z-direction of the body.</td>
</tr>
<tr>
<td>Rotational Acceleration (3x1)</td>
<td>A signal (size 3) with all three rotational accelerations.</td>
</tr>
</tbody>
</table>

**Jacobian Matrix**
This yields the Jacobian Matrix of the connected mass.

**Actuators**

Actuators are components that impose a force or torque on bodies, where the force or torque is given by a power port or input signal.

**Connecting Sensors**
Actuators have to be connected with bodies, just like joints.
The position of the sensor is indicated by its connection point. The connection point is shown automatically when you make a connection between a body and a sensor. First change to *Connection mode* ( ), then click the body and then click the sensor.

The *Create Connection dialog* will pop to ask you for the location of the connection point. In the connection dialog you can set the offset (both the position as well as rotation) from the body reference frame to the connection point.
Local or Global Coordinates
For each actuator, you can change its settings, by double clicking it. This will open the Actuator Properties dialog.
9.2 Animation Toolbox

9.2.1 3D Animation

3D Animation Window

In the Simulator choose Tools and Animation Toolbox and 3D Animation to open a 3D Animation window.

The 3D Animation window.

Editing

- To start editing, from the Properties menu select 3D Properties. This will open 3D Properties window where you build your animation.

Running

- You can run an animation by clicking the green run button. You can also select the Run command from the Replay menu.
- At the top right of the window you see the Speed box where you can set the replay speed. The default speed is to replay an animation at real time but you can set it to play an animation faster or slower.
- If you have multiple camera's in your animation, you can switch camera, by clicking the camera button.

Ray Trace

- Ray Tracing will add shadows and mirror images to a 3D Animation. From the File menu, select RayTrace to apply Ray Tracing to the current window.

Creating Movies

- From the File menu select Create Movie to create movies from your animation.

Full Screen

- Right click your mouse when pointing on a 3D Animation. Select Full Screen to see the animation in full screen. Click the Escape button to remove the full screen view.
3D Properties

The **3D Properties** window allows you to define the various objects that should be shown in a 3D Animation. The 3D Properties window can be opened, by **double clicking** the mouse pointer in the **Animation** window or using the **Properties** menu.

![3D Properties window at start-up.](image)

**Menu**

The menu of the 3D Animation Properties consists of three parts.

- The **File** menu allows you to store and load scenes (parts of the object tree) and create movies.
- The **Edit** menu allows you to create and edit objects.
- The **Properties** menu allows you to set the General Properties.

**Lights, Cameras and Objects**

Two lights and five cameras are standard available when you start a new animation. You can delete or change these lights and cameras or add new additional lights and cameras. Inserting new objects can be done with the **Edit** menu by selecting the **Insert Object** command.

**Object Tree**

The left side of the 3D Animation Properties window shows tree-like listing of the objects that are inserted. All objects are defined with respect to a reference frame. This can be done hierarchically by inserting new reference frames.
Object Attributes

On the right side of the 3D Animation Properties window shows the attributes of a selected object (e.g. position, orientation, scaling etc.). Objects can be selected, by clicking the mouse pointer on top of the object in the objects tree.

Show Frame

Each object has an object attached reference frame. This frame can be shown by selecting the object and clicking the **Show Frame** option. This is useful for manipulating objects. If you press the **Control** button while selecting the **Show Frame** option, all frames in the current branch are shown. Do the same for the top reference frame to quickly show or hide all reference frames.

Solo

Click the **Solo** option, to hide all other objects. This is useful for manipulating a single object. If you press the **Control** button while selecting the **Solo** option, all objects in the current branch are shown. Do the same for the top reference frame to quickly show or hide all objects.

Hidden

Click the **Hidden** option, to hide a single object. This is useful for manipulating a the other objects. If you press the **Control** button while selecting the **Hidden** option, all objects in the current branch are hidden. Do the same for the top reference frame to quickly hide or show all objects.
Next Camera
Click the Next Camera button to see the next camera view.

Manipulate
Click the Manipulate button to move an object with use of your mouse.

Selecting Objects
An object can be selected by pointing with the mouse in the object tree.

Select an object in the 3D Animation Properties window.

This selection is also shown in the 3D Animation window as a pink box around the object.
It is also possible to select an object with the mouse by clicking in the 3D Animation window. The selection will automatically jump to the object in the tree of the 3D Animation Properties window.
**Moving Objects**

To move an object, you have select it.

![3D Properties window](image)

*Select an object in the 3D Animation Properties window.*

**Attributes**

The right side of the 3D Animation Properties window shows the attributes of a selected object (e.g. position, orientation, scaling etc.). You can change the position or orientation to move an object.

**Manipulate**

You can move an object directly by pushing the *Manipulate* button.
Manipulate an object directly.

A set of locks will be shown below the Manipulate button. You can use them to lock one or more directions and orientations. After this you must put the 3D Animation window on front (click on it with the mouse) and select one of the following keys:

<table>
<thead>
<tr>
<th>Keys</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>right arrow</td>
<td>move right (positive x-direction)</td>
</tr>
<tr>
<td>left arrow</td>
<td>move left (negative x-direction)</td>
</tr>
<tr>
<td>up arrow</td>
<td>move up (positive z-direction)</td>
</tr>
<tr>
<td>down arrow</td>
<td>move down (negative z-direction)</td>
</tr>
<tr>
<td>Ctrl + up arrow</td>
<td>move forward (positive y-direction)</td>
</tr>
<tr>
<td>Ctrl + down arrow</td>
<td>move backward (negative y-direction)</td>
</tr>
<tr>
<td>Alt + right arrow</td>
<td>yaw right (positive z-axis rotation)</td>
</tr>
<tr>
<td>Alt + left arrow</td>
<td>yaw left (negative z-axis rotation)</td>
</tr>
<tr>
<td>Alt + up arrow</td>
<td>roll forward (negative x-axis rotation)</td>
</tr>
<tr>
<td>Alt + down arrow</td>
<td>roll back (positive x-axis rotation)</td>
</tr>
<tr>
<td>Ctrl + Alt + right arrow</td>
<td>pitch right (positive y-axis rotation)</td>
</tr>
<tr>
<td>Ctrl + Alt + left arrow</td>
<td>pitch left (negative y-axis rotation)</td>
</tr>
</tbody>
</table>
Key combinations:

- Keys above + Shift: Smaller steps (more accurate)
- Ctrl + A: Next Camera

9. Toolboxes

**Scenes**

In the 3D Animation Properties you can load and store scenes. Scenes are simply part of an object tree or a complete object tree. This option can be used to obtain scenes from other experiments or to create pre-defined environments.

**Save Scene**

The *Save Scene* command of the *File* menu, allows you to save a scene on file. Only the selected object and all object below will be saved.

**Load Scene**

The *Load Scene* command of the *File* menu, allows you to open a scene from file and insert it under the selected object of the object tree.

**Movies**

With a few mouse clicks you can create movies from an animation. *Right click* on the 3D animation window and select *Create Movie*.

![Movie file options](image)

**Target List**

You can create movies for various purposes:

- **YouTube**: Movies in mpg-format for placement on YouTube.
• **Avi**: Movies in avi format for use in movie editing software.
• **Windows Media Video**: Movies for the use in Microsoft programs (e.g. Powerpoint).
• **Flash**: Movies in flv format for the use on Internet sites.
• **Only Frames**: For the use in advanced movie editing programs that can handle collections of pictures

### Profiles

You can create movies with three profiles (low, medium, high). The corresponding sizes are shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>low</th>
<th>medium</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>YouTube</td>
<td>640 * 480</td>
<td>-</td>
<td>1280*720</td>
</tr>
<tr>
<td>Avi</td>
<td>640 * 480</td>
<td>1024*768</td>
<td>1920*1080</td>
</tr>
<tr>
<td>Windows Media Video</td>
<td>640 * 480</td>
<td>1024*768</td>
<td>1920*1080</td>
</tr>
<tr>
<td>Flash</td>
<td>640 * 360</td>
<td>1024*576</td>
<td>-</td>
</tr>
<tr>
<td>Only Frames</td>
<td>640 * 480</td>
<td>1024*768</td>
<td>1920*1080</td>
</tr>
</tbody>
</table>

Ray tracing will add shadows and mirror images to a 3D Animation. However ray tracing cost a lot of processing power. If you select the option Ray Tracing, the quality of your movie will be improved, but the time to create it will increase tremendously.

### More

Choose the **More** button if the standard profiles are not up to your demands. You can set the size of a movie, the frame rate and speed up or slow down the speed.

### Create Movie

Click the **Create Movie** button to create a movie. The movie will be stored in the output directory that you have specified using the filename that you have given.
General Properties

Using the General Properties command of the 3D Properties window helps you to select several options.

- **Background Color**: Change the background color to any desired color you like.
- **Background Image**: Use a bitmap image for the background.
- **Wireframe**: You can choose to show the animation as Wireframe.
- **Fogging**: Fog in any desired color can be added to the animation. The fog is minimal at a start plane and maximal at an end plane. You can set the distance of these planes.
- **Render Type**: Choose wireframe rendering or full rendering.
- **Grid**: You can choose to show a grid.
- **Frames**: Set the frame scaling and thickness.
- **General**: Show the number of frames per second and maximize the number of frames per second.
Objects

Reference Frames

All objects in a 3D Animation are be defined with respect to the top reference frame. The top reference frame is the reference frame on top of the objects tree. If you have multiple objects that move relative to the top reference frame but have a fixed position and orientation to with respect to each other, it is useful to introduce an additional reference frame. Define all the objects with fixed position and orientation with respect to an additional reference frame and give this frame a movement with respect to the top reference frame.

Relative reference frames.

In the objects tree frame hierarchy is shown by indentation. In the example above, the Earth Reference Frame describes the earth motion with respect to the Sun Reference frame. The Moon Reference Frame describes the moon motion with respect to the Earth Reference Frame.

Each Reference Frame has a specific position, orientation and scaling. The scaling is defined with respect to the frame one level higher in the hierarchy. In the example above, the sphere and circle describing the Earth and the Launch Site can directly be copied to form the Moon and the Lunar Landing Site. Only the scaling of the Moon Reference Frame has to be set to correct values.

Properties (Specific)
- Override Group Color: You can choose to give all objects that are defined in a frame the same color.

Properties (General)
- position
- orientation
- scaling
- duplication
Line

Properties (Specific)
You can set the start position and end position of the line, enter the line thickness and set the number of circle elements.

Properties (General)
- color
- mesh
- texture
- material
- duplication
Cube

Properties (Specific)
You can set the position of the origin and the rib length and choose to show the inside.

Properties (General)
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication
Sphere

**Properties (Specific)**
You can choose to **show the inside and outside**. The number of segments that are used to draw the circle is fixed.

**Properties (General)**
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication
Cylinder

Properties (Specific)
You can set the position of the origin, choose to show the inside and outside, set the number of circle elements. A cylinder can be shown with open or closed sides.

Properties (General)
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication
Cone

**Properties (Specific)**
You can set the number of circle elements and choose to show the cone with an open or closed side.

**Properties (General)**
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication

Torus

**Properties (Specific)**
A Torus has some specific options:
9. Toolboxes

- The Torus Radius denotes the length from the origin to the center of the tube.
- The Tube Radius denotes the tube thickness.
- With the Number of Segments you can set the total number of segments for one revolution.
- The Points Per Segment are the number of circle elements for each segment.

Properties (General)

- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication

Spiral

Properties (Specific)

- The Height is the length of the spiral.
- The Spiral Radius is the length from origin to the center of the tube.
- The Tube Radius denotes the tube thickness.
- The Number of Turns is the number of revolutions from bottom to top of the spiral. This may be a non-integer value.
- The Number of Segments is the total number of segments from bottom to the top of the spiral.
- The Points Per Segment are the number of circle elements for each segment.
You can set the position of the origin.

**Properties (General)**
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication

**3D-files**
You can import object from files, using the 3D-files object. As soon as you insert a 3D-files object, 20-sim will open a file browser. Three formats are supported:
- **STL-files (*.stl):** The STL file format or stereolithography format is another widely accepted interchange format between CAD packages.
- **DXF-files (*.dxf):** This is AutoCAD's drawing interchange format. The DXF file format was originally designed by AutoDesk® to represent 3D models built with AutoCAD®. Now they are generally accepted as an interchange format between CAD packages.
- **Lightwave Object files (*.lwo):** LightWave is a software package used for rendering 3D images, both animated and static.

**Properties (Specific)**
- Use the Browse button to load another file.
- Set the **Override Color** check box to give the object any desired color.
- You can set the position of the **origin**.

**Properties (General)**
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication
Square

Properties (Specific)
- You can set the position of the origin.

Properties (General)
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication
Circle

Properties (Specific)
- You can set the number of circle elements.

Properties (General)
- position
- orientation
- scaling
- color
- mesh
- texture
- material
- duplication

Camera

All objects in a 3D Animation are defined with respect to the Default Lights and Cameras frame. This frame coincides with the top Reference Frame. When you start up a 3D animation 5 default cameras are available showing several views of the origin of this frame.

Two cameras show the Default Lights and Cameras frame from a position of \( x = 5, y = 5 \) and \( z = 10 \). The cameras are pointed to the center of origin of the frame. The Camera Looking At Origin will keep looking at the origin, even if its position is changed. The Perspective Camera will not keep looking at the origin but keep its original orientation when its position is changed.
The Camera Looking At Origin and Perspective Camera.

Three *Front* cameras are positioned on top of each of the axes of the *Default Lights and Cameras* frame. The front cameras do not show perspective. I.e. they can be used for 2D-Animation.

**Properties (Specific)**

**Camera Properties**

- *Plane Distance*: A camera only shows objects that lie between a front plane and a back plane. You can set the distance of these planes (seen from the camera).
- *Projection*: You can show all objects in perspective (objects further away look smaller) or Orthographic (objects further away are shown equally large). You can choose to show right hand frames or left-hand frames.
- Use the slider bar to set the *Zooming*. 
LookAtProperties

- When you enable the \textit{Look at Position}, the camera will always look at a specific position, regardless the position of the camera itself.
- You can make the look at position \textit{static} or connect it to \textit{variables} of your model.
- Use the \textit{Always Look up Vector} to let the camera have a fixed angle of view.

Properties (General)

- position
- orientation

Vector

Properties (Specific)

The Vector object is a combination of a Cylinder object and a Cone object. The length of the Vector can be constant or determined by the value of the variable, the offset and the multiplication factor. You can set the vector diameter, the cone diameter and the cone height and set the number of circle elements. The color of the Cone and the Cylinder can be specified separately by the two color property pages. The first page is for the Cylinder and the second page is for the Cone.

Properties (General)

- position
- orientation
- mesh
- texture
- material
- duplication
**Ambient Light**

An Ambient Light source illuminates everything with a predefined color, regardless of the orientation, position, and surface characteristics of the objects available. It is constructed by making a spot light shine everywhere.

**Spot Light**

A Spotlight emits a cone of light of a certain color. The cone starts at a given position and the direction is given by the orientation. Only objects within the cone are illuminated.

**Color**

- Ambient color: This is the main color of point light. For a spot light this option is turned off.
- Diffuse color: This is color of point light when it shines on matt surfaces.
- Specular color: This is color of point light when it is reflected in shiny surfaces.

**Direction**

You can select the shape of the light bundle.

- Parallel: Select this option to make the light a parallel bundle (e.g. the sun light). For a spot light this option is turned off.
- Spot Exponent [Wide-Narrow]: Select this option to make the light intensity equal in all directions (Wide) or more intensive in the center beam of the spot light (Narrow)
- Spot Angle [0..90]: Select the angle of the cone from 0 degrees (very thin bundle) to 90 degrees (light in all directions).

**Attenuation**

Light attenuation defines how the intensity of the light weakens as it travels away from the source. The attenuation is computed based on the following formula:

\[
\text{att} = \frac{1}{k_0 + k_1d + k_2d^2}
\]

where \(k0\) is the constant attenuation, \(k1\) is the linear attenuation, \(k2\) is the quadratic attenuation and \(d\) is the distance from the light's position to an object.

**Directional Light**

A Directional Light illuminate all objects with light of equal intensity, as if it were at an infinite distance from the objects. The directional source is commonly used to simulate distant light sources, such as the sun. It is constructed by making a spot light shine in parallel bundles.
9. Toolboxes

Properties

Position
Most objects in a 20-sim Animation can be positioned with respect to the frame one level up in the object tree. This position can be fixed (using fixed values) or change (using model variables) during simulation.

Orientation
All objects in a 3D Animation have an orientation. This orientation can be made visible by showing the object attached reference frame. This orientation can be fixed (using fixed values) or changed (using model variables) during simulation.

The orientation of an object is defined as the transformation of the frame one level up the object tree \( \{A\} \) to the object attached reference frame \( \{B\} \). Several methods can be used in 20-sim to define this transformation.

DirectX
Using the DirectX method you have to specify the Y-axis and Z-axis of the frame \( \{B\} \) in coordinates of frame \( \{A\} \).

Bryant angles
Start with the frame \( \{B\} \) coincident with a known frame \( \{A\} \). First rotate \( \{B\} \) about the X-axis of \( \{B\} \) by an angle of X (rad), then rotate about the Y-axis of \( \{B\} \) by an angle of Y (rad) and then rotate \( \{B\} \) about the Z-axis of \( \{B\} \) by an angle of Z (rad). \textbf{Note:} Bryant angles are also known as X-Y-Z Euler angles or Cardan angles.

X-Y-X-Euler
Start with the frame \( \{B\} \) coincident with a known frame \( \{A\} \). First rotate \( \{B\} \) about the X-axis of \( \{B\} \) by an angle of \( x \) (rad), then rotate about the Y-axis of \( \{B\} \) by an angle of \( y \) (rad) and then rotate \( \{B\} \) about the X-axis of \( \{B\} \) by an angle of \( z \) (rad).

Euler Parameters
Start with a frame \( \{A\} \). Rotate this frame about a vector \( K [X,Y,Z]^T \) about an angle theta to get to the frame \( \{B\} \).

Scaling
Most objects in a 20-sim Animation can be scaled in size. This scaling can be fixed (using fixed values) or change (using model variables) during simulation.

Color
Most objects in a 20-sim Animation can be shown with a preset color. The colors can be user defined or defined with respect to a color map.

User Defined
The additive primary colors are red \( (R) \), green \( (G) \), and blue \( (B) \). By mixing these colors in different percentages, any other color can be created. When blue and green are mixed, the resulting color is cyan. When blue and red are mixed, the resulting color is magenta. If all three primary colors are mixed together, the resulting color is white.
Color ranges can be set from 0 to 1 or 0 to 255. Constant values or model variables can be chosen for each primary color. Use the multiplication and addition terms for scaling and offset.

**Color Map**

The color that is chosen is defined by a color map. Color ranges can be set from 0 to 1 or 0 to 255. A constant value or a model variable can be chosen. Use the multiplication and addition term for scaling and offset.
Mesh

The rendering option defined in the General Properties can be overridden for each object. The options are: WireFrame, Unlit Flat, Flat and Gouraud.
Texture

Using the Texture attribute, you can wrap a bitmap file around an object. Using the browse button, you can easily select the desired bitmap file (bmp, jpg, gif, tif, etc.). Using the transparency option you can select a color in the bitmap that should be transparent.

Texture Origin

A texture is defined in generalized coordinates \((u,v)\). The bottom right of the texture has coordinates \((0,0)\) and the top left \((1,1)\). The offset parameters define how much offset is used to project the bitmap. This is shown in the figure below. At the left an offset of \((0,0)\) is shown and at the right an offset \((0.2,0.2)\) is shown.

Depending on the type of texture wrapping (Flat, Cylinder, Sphere or Chrome) the three wrapping vectors \((\mathbf{X}, \mathbf{Y}, \mathbf{Z})\) have a different meaning. This is explained in the next sections. To facilitate the explanation in the pictures below the origin vector equals \((0,0,0)\), the Y-vector equals \((0,1,0)\) and the Z-vector equals \((0,0,1)\).
Vectors

Using three vectors (Origin, Y-Axis and Z-Axis) and Offset parameters (X, Y) you can define how the texture should be wrapped around an object. The vectors are defined with reference to the object attached reference frame. The object attached reference frame can be made visible by selecting Show Frame. The vectors use generalized coordinates. I.e. the length, width and height of the object are defined as 1 and the vectors are scaled accordingly.

Flat

The flat wrap conforms to the faces of an object as if the texture were a piece of rubber that was stretched over the object. For a flat texture wrap, the effects of the various vectors are shown in the following illustration.

- The *Origin* vector defines the base from which the texture wrapping is performed.
- The *Y-vector* equals the v axis of the texture wrap.
- The *Z-vector* is always perpendicular to the texture wrap.

Cylindrical

The cylindrical wrap treats the texture as if it were a piece of paper that is wrapped around a cylinder so that the left edge is joined to the right edge. The object is then placed in the middle of the cylinder and the texture is deformed inward onto the surface of the object. For a cylindrical texture wrap, the effects of the various vectors are shown in the following illustration.
9. Toolboxes

- The **Origin** vector defines the base from which the texture wrapping is performed.
- The **Y-vector** specifies the point on the outside of the cylinder where \( u \) equals 0.
- The **Z-vector** specifies the axis of the cylinder.

**Spherical**

For a spherical wrap, the \( u \)-coordinate is derived from the angle that the vector \([x \ y \ 0]\) makes with the x-axis (as in the cylindrical map) and the \( v \)-coordinate from the angle that the vector \([x \ y \ z]\) makes with the z-axis. Note that this mapping causes distortion of the texture at the z-axis.

- The **Origin** vector defines the base from which the texture wrapping is performed.
- The **Y-vector** specifies the point on the outside of the sphere where \( u \) equals 0.
- The **Z-vector** specifies the point on the outside of the sphere where \( v \) equals 0.

**Chrome**

A chrome wrap allocates texture coordinates so that the texture appears to be reflected onto the objects. The chrome wrap takes the reference frame position and uses the vertex normals in the mesh to calculate reflected vectors. The texture \( u \)- and \( v \)-coordinates are then calculated from the intersection of these reflected vectors with an imaginary sphere that surrounds the mesh. This gives the effect of the mesh reflecting whatever is wrapped on the sphere.
**Material**

A material defines how a surface reflects light. A material has two components: an emissive property (background color) and a specular property (reflected light), whose brightness is determined by a power setting. Using the Material tab you can set these options.

![](image)

**Closed Shapes**

Some objects in a 20-sim Animation can be shown as a closed shape (sides closed) or open shape (sides open).

**Circle Elements**

All objects in a 20-sim Animation are built out of a set of planar surface elements. Curved objects have to be build up out of a lot of surface elements to give the impression of a smooth surface. For some objects you can set the amount of surface elements used to create circular surfaces.

**Attenuation**

The Animation Engine in 20-sim is based on the Microsoft® Direct3D. Direct3D uses the following formula to normalize the distance from a light source to the object surface into a value from 0.0 to 1.0, inclusive:

\[ D_n = \frac{R - D}{R} \]
In the preceding formula, $D_n$ is the normalized distance, $R$ is the light’s range, and $D$ is the distance, in world space, from the light source to the object surface. A normalized distance is 1.0 at the light’s source, and 0.0 at the light’s range.

With the normalized distance in hand, Direct3D then applies the following formula to calculate light attenuation over distance for point lights and spotlights:

$$ A = \text{Attenuation}_{\text{constant}} + D_n \cdot \text{Attenuation}_{\text{linear}} + D_n^2 \cdot \text{Attenuation}_{\text{quadratic}} $$

In this attenuation formula, $A$ is the calculated total attenuation and $D_n$ is the normalized distance from the light source to the object. The constant, linear and quadratic attenuation factors act as coefficients in the formula. You can produce a wide variety of attenuation curves by making simple adjustments to them. Most applications will set the linear attenuation factor to 1.0 and set the remaining factors to 0.0 to produce a light that steadily falls off over distance. Similarly, you could apply a constant attenuation factor of 1.0 by itself to make a light that doesn’t attenuate (but will still be limited by range). The following illustration shows the three most common attenuation curves.
Duplication

All objects in a 20-sim Animation can be duplicated. This property is useful when drawing a lot of the same objects.

You can choose several options:

- **Number of Duplicates**: Select the number of duplicates of the object.
- **Position Offsets**: Select the position offset of the first duplicate from the original object. This offset is repeated for every next duplicate.
- **Orientation Offset**: Select the orientation offset of the first duplicate from the original object. This offset is repeated for every next duplicate.
- **Scaling Offset**: Select the scaling of the first duplicate compared to the original object. This scaling is repeated for every next duplicate.

The example below shows a cube that is duplicated according to the specifications given in the figure above. As shown, the first duplicate is a little larger than the original object. The second duplicate is a little larger than the first duplicate etc.
9.2.2  Graph Animation

Graph Animation

To animate the results of a simulation in the graphical model select the Graph Animation command from the Tools menu (Simulator). During simulation, the thickness and color of bonds and signals will correspond with the values they carry.

The color of a bond or signal always corresponds with the sign, red for negative values and green for positive values. The thickness of signals corresponds with the value. For signals that is obvious but for bonds or connections carry two variables: effort and flow (also known as across and through). For bonds and connections you can choose to let the thickness correspond with the effort, flow or power (effort*flow), depending on the Animation command that was chosen.
You can start Animation in the Simulator:

1. Run a simulation until you are satisfied with the results.
2. From the Tools menu, select Animation Toolbox then Graph Animation.
3. A menu pops up. Choose the options you like and click OK to start Animation.
Graph Animation Menu

![Graph Animation Menu]

**Items**

- *Animation Kind*: For signals, the thickness always corresponds with their value. For bonds and connections you can choose. Select here to what the thickness of bonds and connections should represent: effort, flow or power (effort*flow).

- *Animation Ranges*: The thickness of bonds and signals can vary from 1 to 5 pixels. Select here the range that should correspond with a thickness of 5 pixels.
9.3 Control Toolbox

9.3.1 Controller Design Editor

Controller Design Editor

The 20-sim Controller Design Editor allows you to enter or edit linear time-invariant models of a plant with control loop. The control loop is separated in a compensator, prefilter and measurement. You can open the Controller Design Editor from the Tools menu of the 20-sim Editor or by clicking Go Down on a ControlledLinearSystem model that was inserted in the Editor.

Sub System

- You can choose to show a single element in the loop:
  - **Plant (P)**, **Compensator (C)**, **Prefilter (F)** or **Measurement (M)**
- or view the response of the system:
  - **Response (H)**, **Loop Transfer (L)**, **Sensitivity (S)**, **Compl. Sensitivity (T)**, **Plant Sensitivity (PS)** or **Control Sensitivity (CS)**.
The corresponding transfer function is shown in the editor.

**Additional Ports**
Select one of the radio buttons *Input Disturbance*, *Output Disturbance*, *Measurement Dist.*, or *Feedforward*. The first three options allow you to use external disturbance in your model. The last option allows you to use an external feedforward controller (e.g., a B-Spline network). The selected inputs are shown in the picture.

**System Description**
- Pressing the *Edit* button will open a dialog for editing the linear system. Each description (State Space, Transfer Function, Zeros Poles Gain or Eigen Frequency) has a special dialog and can be used to specify continuous-time and discrete-time systems.
- In the 20-sim Simulator, out of an existing (non-linear) model a symbolic linear-system can be derived by means of linearization. This means that the relevant model parameters are preserved in the Linear System and the parameters button can be used to change parameters.

**Import/Export**
- Pressing the $s \leftrightarrow z$ button will transform a continuous-time linear system into a discrete-time linear system and back.
- Pressing the *Filter* button opens the Filter Editor, where a filter can be designed. This filter can then be combined with the current linear system or replace the current linear system. If the linear system is a discrete-time system, the designed analog filter is automatically transferred into its digital equivalent.
- Pressing the *From Matlab* button and the *To Matlab* button allows for an instant exchange of the linear system with the Matlab workspace. Information is transferred numerically (no parameter relations are preserved).
- The button is only active when a Linear System has been imported through linearization. Clicking the button will import parameters from the simulation.
- The button is only active when a Linear System has been imported through linearization. Clicking the button will export the current parameters to the simulation.

**Plots**
You can inspect the time- and frequency responses of the selected transfer function using:
- Step Response
- Bode Plot
- Nyquist Plot
- Nichols Chart
- Poles and Zeros (including root locus)

**Output**
- Clicking the *20-sim* button will export the linear system as a new 20-sim submodel.
- Clicking the *Matlab* button will export the 20-sim Linear System to a Matlab m-file. If the Linear System is symbolic, all parameter relations are preserved.
State Space Models

State space models use linear differential equations (continuous) or difference equations (discrete) to describe system dynamics. They are of the form:

\[
\frac{dx}{dt} = A \cdot x + B \cdot u \\
y = C \cdot x + D \cdot u
\]

(continuous)  (discrete)

with for example:

\[
A = \begin{bmatrix} 0 & 0.5 \\ -1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -0.1 \\ 0.1 \end{bmatrix} \\
C = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix}
\]

where \(x\) is the state vector and \(u\) and \(y\) are the input and output vectors. These models may arise from the equation of physics, from state space identification or as the result of linearization.

You can enter state space models by selecting the State Space button and clicking the Edit button.
This opens an editor in which you can enter the A, B, C and D matrices. Depending on the selection of the Discrete Linear System check box (and Sample Time) the system is a continuous-time or discrete-time system. You can enter the matrix elements in the white space areas. Separate column elements with Spaces or Commas. Enter new rows by clicking the Enter key (new line) or using a semicolon. Brackets (e.g. \[ ... \]) may be used to denote the a matrix or vector.

The A-matrix, shown in the figure above can for example be entered as:

\[
\begin{pmatrix}
0 & 1 \\
-0.5 & -1
\end{pmatrix}
\]

or

\[0,1;-0.5,-1\]

or

\[[0,1; \\
-0.5,-1]\]

**Output Delay**

To inspect the effects of time delay in your model, you can add output delay. The result will be visible in the various plots that you can show of a linear system. The unit of the output delay is seconds.

**Discrete Sample Time**

If you want to transfer a linear system from continuous time to discrete time directly (i.e. replace the \( s \) by a \( z \)), select Discrete Sample time and fill in the sample time value. You can also transfer back directly by deselecting Discrete Sample time.

**Commands**

- **Help**: Open the help file.
- **Apply**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero).
- **OK**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero) and close the editor.
- **Cancel**: Do not apply any changes to the system and close the editor.
Transfer Functions

A continuous time or discrete time SISO transfer function:

\[ h(s) = \frac{n(s)}{d(s)} \quad h(z) = \frac{n(z)}{d(z)} \]

(continuous) \hspace{1cm} (discrete)

is characterized by its numerator \( n \) and denominator \( d \), both polynomials of the variable \( s \) or \( z \).

You can enter transfer functions by selecting the Transfer Function button and clicking the Edit button.

![Transfer Function Editor](image)
This opens an editor in which you can enter the coefficients of the numerator and denominator polynomials. You can enter the elements in the white space areas. Separate the elements with Spaces. Polynomials should be entered in descending powers of s or z. The Steady State Gain, Root Locus Gain and System Gain are parameters, that are automatically derived from the transfer function.

In the editor shown above the transfer function

\[ \frac{0.1 \cdot s + 0.1}{s^2 + s + 0.5} \]

was given. You can enter the coefficients as:

0.1 0.1

and

1 1 0.5

or

0.1,0.1

and

1,1,0.5

**Output Delay**

To inspect the effects of time delay in your model, you can add output delay. The result will be visible in the various plots that you can show of a linear system. The unit of the output delay is seconds.

**Discrete Sample Time**

If you want to transfer a linear system from continuous time to discrete time directly (i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value. You can also transfer back directly by deselecting Discrete Sample time.
9. Toolboxes

Commands

- **Help**: Open the help file.
- **Apply**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero).
- **OK**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero) and close the editor.
- **Cancel**: Do not apply any changes to the system and close the editor.

Zeros and Poles

A continuous-time SISO transfer function can be described by the transfer function:

\[
\mathcal{h}(s) = \frac{n(s)}{d(s)} = \frac{n_1 \cdot s^1 + n_2 \cdot s^{i-1} + \ldots + n_0 \cdot s^0}{d_j \cdot s^j + d_{j-1} \cdot s^{j-1} + \ldots + d_0 \cdot s^0}
\]

This transfer function can be rewritten in pole zero notation with

\[
\mathcal{h}(s) = K_{RL} \frac{(s - z_1)(s - z_{i-1})\ldots(s - z_0)}{(s - p_j)(s - p_{j-1})\ldots(s - p_0)}
\]

where \( p_i \ldots p_1 \) are the poles and \( z_i \ldots z_1 \) are the zeros and \( K_{RL} \) is the Root Locus Gain of the system. The same can be done for a discrete-time SISO transfer function.
You can enter zeros and poles by selecting the Zeros & Poles button and clicking the Edit button.
This opens an editor in which you can enter the real and imaginary parts of the zeros and poles as well as the Root Locus Gain. If preferred, you can also enter the System Gain. Note that zeros and poles always have conjugate when the imaginary part is non-zero. I.e. when you enter a pole with imaginary part 0.5 an extra pole is added with imaginary part -0.5.

Output Delay
To inspect the effects of time delay in your model, you can add output delay. The result will be visible in the various plots that you can show of a linear system. The unit of the output delay is seconds.

Discrete Sample Time
If you want to transfer a linear system from continuous time to discrete time directly (i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value. You can also transfer back directly by deselecting Discrete Sample time.

Commands
- Add/Delete: Add or delete selected poles or zeros.
- Help: Open the help file.
- Apply: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero).
- OK: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero) and close the editor.
- Cancel: Do not apply any changes to the system and close the editor.
**Eigen Frequencies**

The Eigen Frequencies view is closely related to the pole zero notation and bode plot. It shows the resonance frequencies and anti-resonance frequencies that result from the given poles and zeros as well as some characteristic parameters from the bode plot.

You can enter transfer functions by selecting the *Eigen Freqs.* button and clicking the *Edit* button.
Step Response

The Step Response command calculates the systems response $y$ on a unit step input:

\[
  u = 0 \text{ (time } < 0 \text{ )} \\
  u = 1 \text{ (time } \geq 0 \text{ )}
\]

20-sim automatically generates an appropriate range for the time response, based on the system dynamics. With the Plot Properties command (right mouse menu), you can change this horizon and recalculate the step response (click the Step command again).

**Plot Options**

Using the right mouse menu, you can use several options:

- **Plot Properties**: Set the general plot properties for the step response and specify the curve properties.
- **Numerical Values**: Inspect numerical values.
- **Step Characteristics**: Display rise time, overshoot, settling time and the steady state value of the step response.
- **Copy to Clipboard**: Copy the plot to the windows clipboard.
- **Print**: Print the plot.
- **Zoom in**: Show a detail of the plot.
- **Zoom out**: Show a larger portion of the plot.
- **Zoom Normal**: Show the complete plot.
Bode Plots

Bode Plots show the amplitude and phase of a linear system as function of the frequency. Bode plots can be shown for every 20-sim model through Linearization. During Linearization you are asked to enter the input variable and output variable for which linearization should be performed. After that the linear system is calculated and shown in the Linear System Editor. From the Linear System Editor you can generate a bode plot. These actions can also be predefined using the Frequency Response command of the Properties menu.

20-sim automatically generates a range of logarithmically displayed frequencies, based on the system dynamics. With the Plot Properties command (right mouse menu), you can change this horizon and recalculate the bode response (click the Bode command again).

The magnitude part of the plot can be displayed in dB or in absolute values. The phase part can be displayed in radians or degrees. The frequency can be displayed in radians per second or in Hz.

Plot Options
Using the toolbar or the right mouse menu, you can use various options:

- **Plot Properties**: Set the plot properties.
- **Numerical Values**: Inspect numerical values.
- **Magnitude (dB)**: Display magnitude in decibels.
- **Magnitude (-)**: Display magnitude in absolute values.
- **Phase (rad)**: Display phase in radians.
- **Phase (deg)**: Display phase in degrees.
- **Frequency (rad/sec)**: Display frequency in radians per second.
9. Toolboxes

- **Frequency (Hz):** Display frequency in Hz.
- **Phase/Gain Margins:** Display the gain and phase margins.
- **Modulus Margin:** Display the Modulus Margin.
- **Unwrap Phase:** Display the phase plot as a continuous plot by selecting this option or as a folded plot between -180 and 180 deg. by deselecting this option.
- **Peak Response:** Display the peak response.
- **Copy to Clipboard:** Copy the plot to the windows clipboard.
- **Print:** Print the plot.
- **Zoom in:** Show a detail of the plot.
- **Zoom out:** Show a larger portion of the plot.
- **Zoom Normal:** Show the complete plot.

**Pole Zero Diagram**

The **Pole Zero** command plot the poles and zeros of a system and computes the root locus plot.

20-sim automatically generates a range of real and imaginary parts, based on the system dynamics. With the **Plot Properties** command (right mouse menu), you can change this horizon and recalculate the pole zero diagram (click the **Pole Zero** command again).

**Root Locus**

You can show the root locus plot by selecting **Root Locus** from the right mouse menu. Inspect the root locus gain by selecting **Numerical Values** from the right mouse menu.
Plot Options
Using the right mouse menu, you can use several options:

- **Plot Properties**: Set the plot properties.
- **Numerical Values**: Inspect numerical values.
- **Root Locus**: Show or hide the root locus plot.
- **Copy to Clipboard**: Copy the plot to the windows clipboard.
- **Print**: Print the plot.
- **Zoom in**: Show a detail of the plot.
- **Zoom out**: Show a larger portion of the plot.
- **Zoom Normal**: Show the complete plot.

Nichols Chart
The Nichols command computes the Nichols chart of a system.

20-sim automatically generates a range of logarithmically displayed frequencies, based on the system dynamics. With the **Plot Properties** command (right mouse menu), you can change this horizon and recalculate the Nichols chart (click the **Nichols** command again). The magnitude part of the plot can be displayed in decibels (dB) or in absolute values. The phase part can be displayed in radians or degrees.

Plot Options
Using the right mouse menu, you can use several options:

- **Plot Properties**: Set the plot properties.
Nyquist Diagram

The **Nyquist** command computes the Nyquist plot of a system.

![Nyquist Plot](image)

20-sim automatically generates a range of real and imaginary parts, based on the system dynamics. With the **Plot Properties** command (right mouse menu), you can change this horizon and recalculate the Nyquist diagram (click the **Nyquist** command again).

**Plot Options**

Using the right mouse menu, you can use several options:

- **Numerical Values**: Inspect numerical values.
- **Magnitude (dB)**: Display magnitude in decibels.
- **Magnitude (-)**: Display magnitude in absolute values.
- **Phase (rad)**: Display phase in radians.
- **Phase (deg)**: Display phase in degrees.
- **Frequency (rad/sec)**: Display frequency in radians per second.
- **Frequency (Hz)**: Display frequency in Hz.
- **Phase/Gain Margins**: Display the gain and phase margins.
- **Modulus Margin**: Display the Modulus Margin.
- **Copy to Clipboard**: Copy the plot to the windows clipboard.
- **Print**: Print the plot.
- **Zoom in**: Show a detail of the plot.
- **Zoom out**: Show a larger portion of the plot.
- **Zoom Normal**: Show the complete plot.
Human brains consist of billions of neurons that continually process information. Each neuron is like a tiny computer of limited capability that processes input information from other neurons into output information to other neurons. Connected together, these neurons form the most intelligent system known.

For some years now, researchers have been developing models that mimic the activity of neurons to produce a form of artificial intelligence. These "Neural Networks" are formed from tens or hundreds of simulated neurons connected together in much the same way as the brain's neurons. Just like the neurons of the brain, artificial neurons can change their response to a given set of inputs, or "learn".

In the past many learning algorithms have been developed, mostly with limited success. The introduction of the backpropagation paradigm, however, appeared a turning point. It is an extremely effective learning tool that can be applied to a wide variety of problems.

The backpropagation paradigm require supervised training. This means neural networks must be trained by repeatedly presenting examples to the network. Each example includes both inputs (information you would use to make a decision) and desired outputs (the resulting decision, prediction, or response). Based on a calculation on the inputs, the desired outputs and the networks own response to the inputs, the backpropagation paradigms tries to adapt the response of each neuron to achieve an improved neural network behavior. This trial-and-error process continues until the network reaches a specified level of accuracy.

Once a network is trained and tested it's neurons can be "frozen". This means the neurons ability to learn" or adapt is stopped. The network can then be used to perform the task it was trained for.
BackPropagation Networks

In backpropagation type neural networks, the neurons or "nodes" are grouped in layers. We can distinguish three groups of layers in a backpropagation type neural network: one input layer, one or more hidden layers and one output layer. The nodes between two adjacent layers are interconnected. Fully connected networks occur when each node of a layer is connected with each node of the adjacent layer.

As the figure shows, information (i.e. input signals) enters the network through the input layer. The sole purpose of the input layer is to distribute the information to the hidden layers. The nodes of the hidden layers do the actual processing. The processed information is captured by the nodes of the output layer, and transported as output signals to the world outside.

\[ y = f \left( \sum w_i i_i \right) \]

The nodes of the hidden layers process information by applying factors (weights) to each input. This is shown in the figure above. The sum of the weighted input information (S) is applied to an output function. The result is distributed to the nodes of the next layer.

When the network is in being trained, the weights of each node are adapted according to the backpropagation paradigm. When the network is in operation, the weights are constant.

Depending on the kind neural network, various topologies can be discerned. The 20-sim Neural Network Editor supports two well-known networks:

1. Adaptive B-spline networks
2. Multi-layer Perceptron networks
Introduction to MLP Networks

The basic element of the Multi Layer Perceptron (MLP) neural network, is the artificial neuron. An artificial neuron, is a unit that performs a simple mathematical operation on its inputs. In the figure below, the neuron is graphically presented.

The input, $x$, of the neuron consists of the variables $x_1 ... x_n$ and a bias term, known as the momentum constant, which is equal to 1. Each of the input values is multiplied by a weight, $w_i$, after which the results are added. On the result, a simple mathematical function, $f(x)$, is performed. This function is also known as the activation function. The calculations the neuron performs are thus given by:

$$ y = f \left( w_0 + x_1 w_1 + ... + x_n w_n \right) $$

Numerous choices for the functions exist. Frequently used implementations are the Sigmoid functions:

$$ f(u) = \frac{1}{1 + e^{-u}} $$

$$ f(u) = c_1 \tanh \left( c_2 u \right) $$
An MLP network, as any type of back-propagation network can consist of many neurons, which are ordered in layers. The neurons in the hidden layers do the actual processing, while the neurons in the input and output layer merely distribute and collect the signals. Although many hidden layers can be used, it has been shown that an MLP with one hidden layer can approximate any continuous function. Therefore in 20-sim, the MLP networks only have one hidden layer.

**Training the MLP network**

The MLP network is trained by adapting the weights. During training the network output is compared with a desired output. The error between these two signals is used to adapt the weights. This rate of adaptation is controlled by the **learning rate**. A high learning rate will make the network adapt its weights quickly, but will make it potentially unstable. Setting the learning rate to zero, will make the network keep its weights constant.
How to use the MLP Editor

The MLP Editor can be used to define a 20-sim Multi Layer Perceptron (MLP) network. The editor is opened when you try to edit this submodel (using the Go Down command).

General Settings

- **Network Name**: this is the local name of the submodel representing the MLP network (this option is not yet supported).
- **Number Hidden Neurons**: The MLP network specified by this editor has one layer of hidden neurons. You can specify here the number of neurons that should be used.
- **Learning Rate**: Specify the learning rate that should be used during training. If you do not want the network to learn, enter a zero value here.
- **Initial Weights Fill Scale**: To start proper learning of the network, all initial weights will be given a random value (unequal to zero!) between -scale and +scale. You can enter the scale factor here.
- **Activation Function Type**: Select one of the following activation functions
  - Unipolar Sigmoid: \( act = \frac{1}{1 + \exp(-v)} \)
  - Bipolar Sigmoid: \( act = \text{const2} \cdot \tanh(\text{const1} \cdot v) \)
- **Bipolar Sigmoid Activation Function Scale**: If a Bipolar Sigmoid was chosen as the activation function, you can enter here the values of const1 and const2.
- **Momentum Constant**: Select the momentum constant here.
- **Load Weights at Start of Simulation**: Select this option, if you want to use predefined weights stored on file (saved in a previous run). Before each simulation run, you will be asked to enter the filename of this weights file.
- **Save Weights at Start of Simulation**: Select this option, if you want to store the weights on file. After each simulation run, you will be asked to enter the filename of this weights file.
- **Network is Discrete**: Select this option if the B-spline network is connected with discrete-time models. Deselect this option if the network is connected with continuous models.
Human brains consist of billions of neurons that continually process information. Each neuron is like a tiny computer of limited capability that processes input information from other neurons into output information to other neurons. Connected together, these neurons form the most intelligent system known.

For some years now, researchers have been developing models that mimic the activity of neurons to produce a form of artificial intelligence. These "Neural Networks" are formed from tens or hundreds of simulated neurons connected together in much the same way as the brain's neurons. Just like the neurons of the brain, artificial neurons can change their response to a given set of inputs, or "learn".

In the past many learning algorithms have been developed, mostly with limited success. The introduction of the backpropagation paradigm, however, appeared a turning point. It is an extremely effective learning tool that can be applied to a wide variety of problems.

The backpropagation paradigm require supervised training. This means neural networks must be trained by repeatedly presenting examples to the network. Each example includes both inputs (information you would use to make a decision) and desired outputs (the resulting decision, prediction, or response). Based on a calculation on the inputs, the desired outputs and the networks own response to the inputs, the backpropagation paradigms tries to adapt the response of each neuron to achieve an improved neural network behavior. This trial-and-error process continues until the network reaches a specified level of accuracy.

Once a network is trained and tested it's neurons can be "frozen". This means the neurons ability to learn" or adapt is stopped. The network can then be used to perform the task it was trained for.

**Introduction to B-Spline Networks**

**One-dimensional B-spline network**

An adaptive B-spline network can be used to relate k inputs and a single output y on a restricted domain of the input space. The following network shows a realization with one input:
The network is shown with two hidden layers. Some authors prefer to show a B-spline network with only one hidden layer. For a proper understanding of multi-dimensional B-spline networks we prefer to show the network with two hidden layers.

The first hidden layer distributes the inputs over several nodes. In the figure above input 1 is distributed over n nodes. Each node of this layer has only one input. To this input a "basis function" $F$ is applied. As basis functions, B-splines are used of any desired order. An N-th order B-spline function consists of pieces of (N-1)th order polynomials, such that the resulting function is (N-1) times differentiable. The figure below shows examples of B-spline functions of different order. A spline function differs from zero on a finite interval.

The second hidden layer also consists of n nodes. Each node of this layer has only one input. To this input a function $G$ is applied which is merely a multiplication by a weight: $G = w * i$

The output node sums the results of all second hidden layer nodes. When the spline functions of the various nodes are properly spaced, every one dimensional function can be approximated. This is shown in the figure below where the various splines ($F_1$ to $F_n$) combined with the various weights ($w_1$ to $w_n$), together form an output function.
Two-dimensional B-spline network

Two-dimensional B-spline networks have two input nodes. The first hidden layer, as with the one-dimensional network, consists of nodes, to which a basis function $F$ is applied. This is shown in the figure below. To the first input a group of $n$ nodes are applied, and to the second input a group of $m$ nodes are applied.

\[ G = w \times i_1 \times i_2 \]

The second hidden layer now consists of nodes which each have two inputs. For every combination of a node from one group and and a node from the second group, a node exists. To each node of the second hidden layer, a function $G$ is applied which is merely a multiplication of the two inputs multiplied by a weight: $G = w \times i_1 \times i_2$

Again the output node sums the results of all second hidden layer nodes. When the spline functions of the various nodes are properly spaced, every two dimensional function can be approximated. The figure below shows the spacing of various spline functions of the two inputs and one output of a node of the second hidden layer.
More-dimensional B-spline networks

In a same way more dimensional B-spline networks can be created, using more inputs. The 20-sim B-spline Editor supports networks with up to 256 inputs and one output.

Training the B-spline network

The B-spline network is trained by adapting the weights. During training the network output is compared with a desired output. The error between these two signals is used to adapt the weights. This rate of adaptation is controlled by the learning rate. A high learning rate will make the network adapt its weights quickly, but will make it potentially unstable. Setting the learning rate to zero, will make the network keep its weights constant. Learning of B-spline networks can either be done after each sample (learn at each sample), or after series of samples (learn after leaving spline).
Learn at each Sample
When learning at each sample, after every sample the weights are adapted according to:

\[
\Delta w_j = \gamma \cdot (y_d - y) \cdot F_j(x)
\]

with

\[
\Delta w_j : \text{adaptation of the weight } w_j
\]

\[
\gamma : \text{learning rate}
\]

\[
F_j(x) : \text{B-spline function number } j
\]

\[
x : \text{input}
\]

\[
y_d : \text{desired output}
\]

\[
y : \text{network output}
\]

Given a certain input \(x\), only a limited number of splines \(F_i(x)\) are nonzero. Therefore only a few weights are adapted each sample.

Learn after Leaving Spline
When learning after leaving a spline, the network will keep track of the input \(x\) and the corresponding nonzero splines \(F_i(x)\). For each nonzero spline, a sample will be stored consisting of the input \(x\), the output \(y\) and desired output \(y_d\). Only after the input has left the region where a spline is nonzero, its weight is updated according to:

\[
\Delta w_j = \gamma \cdot \frac{\sum_{i=1}^{n} (y_{d,i} - y_i) \cdot F_j(x_i)}{\sum_{i=1}^{n} F_j(x_i)}
\]

Here \(n\) is the number of samples that have been taken.
How to use the BSpline Editor

The BSpline Editor can be used to define a 20-sim BSpline network. The editor is opened when you try to edit this submodel (using the Go Down command).

General Settings

- **Network Name**: this is the local name of the submodel representing the BSpline network (this option is not yet supported).
- **Order**: Enter the order of the BSplines that must be used.
- **Learn at Each Sample**: Select this option if you want the network to adapt the weights after every simulation step.
- **Learn after leaving Spline**: Select this option if you want the network to adapt the weights only leaving the spline region.
- **Learning Rate**: Specify the learning rate that should be used during training. If you do not want the network to learn, enter a zero value here.
- **Apply Regularization**: This option is not yet supported.
- **Load Weights at Start of Simulation**: Select this option, if you want to use predefined weights stored on file (saved in a previous run). Before each simulation run, you will be asked to enter the filename of this weights file.
- **Save Weights at End of Simulation**: Select this option, if you want to store the weights on file. After each simulation run, you will be asked to enter the filename of this weights file.
9. Toolboxes

- **Network is Discrete**: Select this option if the B-spline network is connected with discrete-time models. Deselect this option if the network is connected with continuous models.

**Input Settings**

The tabs shown in the editor is used to specify the inputs of the network. Each tab shows the specific settings of that input.

- **Add Input**: Add a new input to the network. A new tab will be added with default settings.
- **Delete Input**: Delete the input defined in the selected tab (the tab that is in front).

Each input is associated with a certain number of splines. To give the user more flexibility, each input can be divided in certain regions that each have their own density of splines.

- **Add**: Add a new region of splines.
- **Delete**: Delete the selected region of splines.
- **Split**: Split the selected region into two regions.

Each region can be edited. Just select it from the Regions list and use the following options:

- **Upper / Lower**: The upper and lower bound of a region.
- **Number of Splines**: The number of splines. The more splines you choose, the more accurate will the network output be, for this region of inputs.

**Running a 1-D B-Spline Network**

Now we have trained the B-spline network and saved the weights. We can run the network with every desired input. We only have to keep in mind that the network was defined for input signals between 0 and 10.

1. In the Editor from the **File** menu select **Open**.
2. In the model library choose Examples\Control\Neural Networks
3. Select the model 1DBSplineNetwork-Run.emx. Now the predefined model will be opened.
As you can see, this is exactly the same model as used for training, but now a ramp input is used.

4. From the menu select **Model** and **Start Simulator**. Now a Simulator will be opened with the predefined experiment loaded.

5. From Simulator menu click **Simulation** and **Run**. Do **not save** the weights file at the end of the run! The results will look like:
As you can see, the B-Spline Network still has its training settings and still prompts for a weight file at the end of the simulation. Now we are going to change the settings of the B-Spline Network.

6. Open the B-Spline Editor (select the model, Go Down). To create a normal run with the network, we have to set the learning rate to zero, and load the weights file before simulation. Change the settings of the network, until it looks like:
7. Click **OK** to close the B-Spline Editor. From the Editor menu click **Model** and **Check Complete Model**. This will implement the changed settings.

8. Return to the Simulator and click **Simulation** and **Run**. Before the run, an Open dialog will asking you to enter the name of the Weights File. This is a file that contains all the weights of the trained B-Spline network. Use the file that you saved during training, or the predefined weights file `1DBSplineNetwork.wgt`. The simulation results will look like:

As you can see the function is approximated by the B-Spline network by 10 first order splines.
Training a 1-D B-Spline Network

Non Linear Function

In this lesson we will use a B-spline network with one input to approximate the simple non-linear function:

\[ F = \text{input2} \]

The input, x, of this function ranges from 0 to 10. It will be approximated by a B-Spline network with one input. As is shown in the figure below (left), 10 first order B-splines are used. The tenth B-spline is indicated with fat lines. The output of the B-spline network is a combination of all ten B-Splines. In other words, the non-linear function will be approximated by 10 intervals of constant value.
At the start the B-spline has undefined weights. They can either be chosen at random values or all set to zero. A normal session should therefore start with training the network to adjust the weights to give a best approximation of the non-linear function. With these weights we can run the network with any desired input signal.

**Defining the B-Spline Network**

We will use the model below to train the B-spline network. It has already been prepared for you.
1. In the Editor from the **File** menu select **Open**.

2. In the model library choose Examples\Control\Neural Networks

3. Select the model **1DxBDsplineNetwork-Train.emx**. Now the predefined model will be opened.

4. From the menu select **Model** and **Start Simulator**. Now a Simulator will be opened with the predefined experiment loaded.

5. From Simulator menu click **Simulation** and **Run**. The results will look like:

   ![Graph Showing B-Spline Network](image)

   As you can see, the B-Spline output is zero and there is no learning. Now we are going to change the settings of the B-Spline Network.

**Training the Network**

6. Return to the Editor. Select the **BSplineNetwork** model and click **GoDown** from the **Model** menu. Now the B-Spline Editor will pop-up. Change the settings (Network Order, Learning Rate, Input Upper Limit, Save Weights) until it looks like:
7. Click **OK** to close the B-Spline Editor. Note that the icon of the BSplineNetwork model has changed to correspond with the first order splines that are used. From the Editor menu click **Model** and **Check Complete Model**. This will implement the changes in settings.

8. Return to the Simulator and click **Simulation** and **Run**. The results will look like:

As you can see the error rapidly descents due to the network learning. After the Simulation Run, Save dialog opens, asking you to enter a name for the Weights File. This is a file that contains all the weights of the trained B-Spline network. We can use these weights for normal runs with the network.
9. Enter file name (do not use the predefined weights file!), e.g. test.wgt and click **Save**.

10. Close the **Simulator**.

Now all is prepared to perform a normal run with the Network.

### 9.3.4 Filter Editor

**Filter Editor**

The Filter Editor of 20-sim allows you to create continuous-time filters and controllers. The result is a linear system presented in the Linear System Editor of 20-sim. The filter can also be applied to an existing linear system.

You can open the Controller Design Editor from the Tools menu of the 20-sim Editor or by clicking Go Down on a Filter model.

![Filter Editor](image)

**Procedure**

1. Select a filter or controller of your choice from the list of available filters and controllers.

**Filters**

- Generic Filter
- Lead Filter
- Lag Filter
- Low Pass First Order Filter
- Low Pass Second Order Filter
9. Toolboxes

- High Pass First Order Filter
- High Pass Second Order Filter
- Notch Filter
- Universal Notch Filter

Controllers

- P Controller
- I Controller
- D Controller
- PI Controller
- PD Controller
- PID Controller
- PID-1 Controller
- PID-2 Controller
- PID Compensator

A short description of the selected filter will be given in the description field. Depending on the filter that was chosen three or more parameters will be shown.

2. The second step is to fill in the desired parameters.

3. Choose the desired output:

4. Select the Linear System Editor button to export the filter to the Linear System Editor.

5. Select the OK button to store the filter model on file or update the filter model in the Editor.

Controllers

P-Controller

The P Controller can be used to create an additional gain for a linear system.

- Gain $K_p$: The controller gain $K_p$ determines the amount of gain the controller adds for each frequency.

Transfer function of the controller:

$$H_p(s) = K_p$$
**I-Controller**

The I Controller can be used to create an almost ideal integrator (when the frequency goes to zero).

- **Gain** $K_i$: The filter gain $K_i$ determines the frequency gain of the controller at frequency $w = 1 \text{ [rad/s]}$.
- **Frequency** $f_i$: The integration behavior of the controller stops at frequency $f_i$ in Hz. A decrease of this frequency corresponds to a more pure integration behavior.

**Transfer function of the controller**

$$H_I(s) = \frac{K_i}{2\pi f_i s + s}$$

**D-Controller**

The D Controller can be used to create an almost ideal derivative (when the frequency goes to infinity).

- **Gain** $K_d$: The controller gain $K_d$ determines the frequency gain of the controller at frequency $w = 1 \text{ [rad/s]}$.
- **Frequency** $f_d$: The differentiation behavior of the controller stops at frequency $f_d$ in Hz. An increase of this frequency corresponds to a more pure differentiation behavior, reducing the tameness of the controller.

**Transfer function of the controller**

$$H_D(s) = K_d \frac{2\pi f_d s}{s + 2\pi f_d}$$

**PD-Controller**

The PD Controller consists of a differentiator with proportional gain.

- **Gain** $K_p$: The controller gain $K_p$ determines the low frequency gain of the controller.
- **Gain** $K_d$: The controller gain $K_d$ determines the gain of the controller at frequency $w = 1 \text{ [rad/s]}$.
- **Frequency** $f_d$: The differentiation behavior of the controller stops at frequency $f_d$ in Hz. An increase of this frequency corresponds to a more pure differentiation behavior, reducing the tameness of the controller.

**Transfer function of the controller:**

$$H_{PD} = H_P + H_D$$

that equals
9. Toolboxes

\[ H_{PD} = \frac{(K_p + K_d 2\pi f_d) s + K_p 2\pi f_d}{s + 2\pi f_d} \]

**PI-Controller**

The PI Controller consists of an integrator with a proportional gain.

- **Gain \( K_p \):** The controller gain \( K_p \) determines the high frequency gain of the controller.
- **Gain \( K_i \):** The controller gain \( K_i \) determines the frequency gain of the controller at frequency \( w = 1 \) [rad/s].
- **Frequency \( f_i \):** The integration behavior of the controller stops after frequency \( f_i \) in Hz. A decrease of this frequency corresponds to a more pure integration behavior.

**Transfer function of the controller:**

\[ H_{PI} = H_p + H_i \]

that equals

\[ H_{PI} = \frac{K_p s + K_p 2\pi f_i^* + K_i}{s + 2\pi f_i^*} \]

**PID1-Controller**

The PID-1 Controller consists of an integrator and differentiator with proportional gain. It resembles a PID Controller, but has different input parameters.

- **Gain \( K_p \):** The controller gain \( K_p \) determines the frequency gain of the controller in the pass band (where integration and differentiation are of no interest).
- **Length \( L_i \):** The length \( L_i \) determines the frequency at which integration starts, that is \( f_i / L_i \) in Hz. A decrease of this frequency corresponds to a more pure integration behavior.
- **Length \( L_d \):** The length \( L_d \) determines the frequency at which differentiation stops, that is \( f_d * L_d \) in Hz. An increase of this frequency corresponds to a more pure differentiation behavior, reducing the tameness of the controller.
- **Frequency \( f_i \):** The integration behavior of the controller stops at frequency \( f_i \) in Hz.
- **Frequency \( f_d \):** The differentiation behavior of the controller starts at frequency \( f_d \) in Hz.
Transfer function of the controller:

\[ H_{PID} = K_p \left( 1 + \frac{L_i - 1}{1 + \frac{L_i s}{2\pi f_i}} \right) \left( 1 + \frac{(L_d - 1)s}{L_d 2\pi f_d + s} \right) \]

that equals

\[ H_{PID} = \frac{K_p L_d L_i s^2 + K_p (-2\pi f_i + L_i L_d 2\pi f_d + (L_i + L_d)2\pi f_i) s + K_p L_i L_d 4\pi^2 f_i f_d}{L_i s^2 + (2\pi f_i + L_i L_d 2\pi f_d) s + L_i L_d 4\pi^2 f_i f_d} \]

**PID2-Controller**

The PID-2 Controller consists of an integrator and differentiator with proportional gain. It resembles a serial PID Controller, but has different input parameters.

- **Gain \( K_p \):** The controller gain \( K_p \) determines the frequency gain of the controller in the pass band (where integration and differentiation are of no interest).
- **Length \( L_i \):** The length \( L_i \) determines the frequency at which integration starts, that is \( fi / L_i \) in Hz. A decrease of this frequency corresponds to a more pure integration behavior.
- **Length \( L_d \):** The length \( L_d \) determines the frequency at which differentiation stops, that is \( fd * L_d \) in Hz. An increase of this frequency corresponds to a more pure differentiation behavior, reducing the tameness of the controller.
- **Frequency \( fi \):** The integration behavior of the controller stops at frequency \( fi \) in Hz.
- **Frequency \( fd \):** The differentiation behavior of the controller starts at frequency \( fd \) in Hz.

Transfer function of the controller:

\[ H_{PID} = K_p L_i \left( \frac{s}{2\pi f_i} + 1 \right) \left( \frac{s}{2\pi f_d} + 1 \right) \]

that equals

\[ H_{PID} = \frac{K_p L_d L_i s^2 + K_p L_i L_d 2\pi (f_i + f_d) s + K_p L_i L_d 4\pi^2 f_i f_d}{L_i s^2 + (2\pi f_i + L_i L_d 2\pi f_d) s + L_i L_d 4\pi^2 f_i f_d} \]
**PID-Compensator**

The PID Compensator consists of an integrator and differentiator with proportional gain (PID Controller) together with a high-frequency roll-off filter.

- **Gain** $K$: The controller gain $K$ determines the frequency gain of the controller in the pass band (where integration and differentiation are of no interest).
- **Integration** $\tau_i$: The integration time constant $\tau_i$ determines the frequency $f_i = 1 / \tau_i$ [rad/s] after which the integrating behavior stops.
- **Differentiation** $\tau_d$: The differentiation time constant $\tau_d$ determines the frequency $f_d = 1 / \tau_d$ [rad/s] after which the differentiation behavior starts.
- **HF roll-off** $\tau_h$: The filter time constant $\tau_h$ determines the frequency $f_h = 1 / \tau_h$ [rad/s] of the high-frequency roll-off filter. Frequencies higher than $f_h$ are filtered out.
- **Tameness** $\beta$: The tameness factor $\beta$ influences the differentiating behavior. After frequency $f_{db} = f_d / \beta$ the differentiation behavior stops. Decreasing $\beta$ increases this frequency $f_{db}$, resulting in a more pure differentiating behavior and therefore in a reduce of differentiation tameness.

**Transfer function of the controller:**

$$H_{\text{PID}} = H_p \cdot H_D \cdot H_H$$

that equals

$$H_{\text{PID}} = K \left( \frac{\tau_i s + 1}{\tau_i s} \right) \cdot \left( \frac{\tau_d s + 1}{\tau_d \beta s + 1} \right) \cdot \left( \frac{1}{\tau_h s + 1} \right)$$

---

**PID-Controller**

The PID Controller consists of an integrator and differentiator with proportional gain.

- **Gain** $K_p$: The controller gain $K_p$ determines the frequency gain of the controller in the pass band (where integration and differentiation are of no interest).
- **Gain** $K_i$: The controller gain $K_i$ determines the shape of the frequency response at low frequencies.
- **Gain** $K_d$: The controller gain $K_p$ determines the shape of the frequency response at high frequencies.
- **Frequency** $f_i$: The integration behavior of the controller starts at frequency $f_i$ in Hz. A decrease of this frequency corresponds to a more pure integration behavior.
- **Frequency** $f_d$: The differentiation behavior of the controller stops at frequency $f_d$ in Hz. An increase of this frequency corresponds to a more pure differentiation behavior, reducing the tameness of the controller.

**Transfer function of the controller:**

$$H_{\text{PID}} = H_p + H_f + H_D$$

that equals
Filters

Generic Filter

The Generic Filter can be used to design a filter of a specific order, type and characteristic shape.

Filter Characteristics

The filter can have a Bessel, Butterworth or Chebychev characteristic shape. Each characteristic has its own advantages and disadvantages; it depends on the purpose of the filter what to choose here:

A **Bessel** filter is maximal flat in both the pass band and the stop band. It is used when the phase response should be nearly linear throughout the pass band, i.e. the group delay is almost constant throughout the pass band. This preserves the wave shape of filtered signals in the pass band. A disadvantage is the low roll-off steepness. Often a high filter order is required to obtain the desired roll-off.

A **Butterworth** filter is maximally flat in the pass band and monotonic overall. As a consequence of this smoothness, the roll-off steepness is rather low. As with Bessel filters, a rather high filter order is required to obtain the desired roll-off.

A **Chebychev 1** filter has a ripple in the pass band and is monotonic in the stop band. This filter rolls off faster than Bessel, Butterworth and Chebychev 2 filters at the same filter order. A disadvantage is the greater deviation and discontinuous phase response in the pass band.

A **Chebychev 2** filter is monotonic in the pass band and has a ripple in the stop band. This filter rolls off faster than Bessel and Butterworth filters at the same filter order. Not as fast as a Chebychev 1 filter, but it is free of a pass band ripple. A disadvantage is the ripple and discontinuous phase response in the stop band.

Filter Type

- A **low pass** filter will filter out high frequencies and let low frequencies pass the filter.
- A **high pass** filter does the opposite; it will filter out low frequencies and let high frequencies pass the filter.
- A **band pass** filter will filter out low and high frequencies and let middle frequencies pass the filter.
- A **band stop** filter does the opposite; it will filter out the middle frequencies and let low and high frequencies pass the filter.

Filter Order

The filter order specifies how steep the filter will roll off at a specified filter frequency. The higher the order, the steeper the roll off will be. Note that the filter order also has a large influence on the phase response of the filter.
9. Toolboxes

**Frequency f1**
For a low pass filter $f_1$ is the frequency in Hz where the roll off starts. For a high pass filter it is the frequency where the roll off ends. For a band pass or band stop filter $f_1$ is the start frequency of the band.

**Frequency f2**
For a band pass or band stop filter $f_2$ is the stop frequency in Hz of the band. It is disabled for low pass and high pass filters.

**Max. Ripple R**
Only available when a Chebychev 1 filter is selected. $R$ specifies the maximum allowed ripple in dB for the filter in the pass band.

**Stop Band R**
Only available when a Chebychev 2 filter is selected. $R$ specifies the distance of the stop band to the unity gain axis in dB. This is the amount of attenuation in dB of the filter in the stop band (the absolute value is used).

**High-Pass First Order Filter**
The high pass filter can be used to filter out undesired low frequencies.
- **Gain $K$**: The filter gain $K$ determines the high frequency gain of the filter.
- **Frequency $f$**: The filter roll off stops at frequency $f$ in Hz. Higher frequencies will pass the filter, lower frequencies will be filtered out.

**Transfer function of the filter:**

$$H(s) = K \frac{s}{s + 2\pi f}$$

**High-Pass Second Order Filter**
The high pass filter can be used to filter out undesired low frequencies.
- **Gain $K$**: The filter gain $K$ determines the high frequency gain of the filter.
- **Frequency $f$**: The filter roll off stops at frequency $f$ in Hz. Higher frequencies will pass the filter, lower frequencies will be filtered out.
- **Quality $Q$**: The filter quality indicates how steep the phase response will increase up to the frequency $f$. A quality $Q > 0.707$ results in a peak in the magnitude response at frequency $f$.

**Transfer function of the filter:**

$$H(s) = K \frac{s^2}{s^2 + 2\pi f^2 \frac{s}{Q} + (2\pi f)^2}$$
Lag Filter

The Lag Filter can be used to add a lag in the phase response of a system.

- **Gain $K$:** The filter gain $K$ determines the low frequency gain of the filter.
- **Frequency $f_1$:** The lag in the phase response of the filter starts at frequency $f_1$ in Hz. This corresponds to an integrating behavior in the magnitude response from frequency $f_1$.
- **Frequency $f_2$:** The lag in the phase response of the filter stops at frequency $f_2$ in Hz. This corresponds to a constant attenuation in the magnitude response of the filter after frequency $f_2$.

**Transfer function of the filter**

\[
H_{\text{lag}}(s) = K \left( \frac{s}{2\pi f_2} + 1 \right) \frac{1}{\frac{s}{2\pi f_1} + 1}
\]

Lead Filter

The Lead Filter can be used to add a lead in the phase response of a linear system.

- **Gain $K$:** The filter gain $K$ determines the low frequency gain of the filter.
- **Frequency $f_1$:** The lead in the phase response of the filter starts at frequency $f_1$ in Hz. This corresponds to a differentiating behavior in the magnitude response from frequency $f_1$.
- **Frequency $f_2$:** The lead in the phase response of the filter stops at frequency $f_2$ in Hz. This corresponds to a constant gain in the magnitude response of the filter after frequency $f_2$.

**Transfer function of the controller**

\[
H_{\text{lead}}(s) = K \left( \frac{s}{2\pi f_2} + 1 \right) \frac{1}{\frac{s}{2\pi f_1} + 1}
\]
Low-Pass First Order Filter

The low pass filter can be used to filter out undesired high frequencies.

- **Gain $K$:** The filter gain $K$ determines the low frequency gain of the filter.
- **Frequency $f$:** The filter roll off starts at frequency $f$ in Hz. Lower frequencies will pass the filter, higher frequencies will be filtered out.

Transfer function of the filter

$$H(s) = \frac{K}{\frac{s}{2\pi f} + 1}$$

Low-Pass Second Order Filter

The low pass filter can be used to filter out undesired high frequencies.

- **Gain $K$:** The filter gain $K$ determines the low frequency gain of the filter.
- **Frequency $f$:** The filter roll off starts at frequency $f$ in Hz. Lower frequencies will pass the filter, higher frequencies will be filtered out.
- **Quality $Q$:** The filter quality indicates how steep the phase response will decrease at the frequency $f$. A quality $Q > 0.707$ results in a peak in the magnitude response at frequency $f$.

Transfer function of the filter

$$H(s) = \frac{K(2\pi f)^2}{s^2 + 2\pi f \frac{s}{Q} + (2\pi f)^2}$$

Notch Filter

The notch filter can be used to filter out an undesired frequency.

- **Gain $K$:** The filter gain $K$ determines the frequency gain of the filter.
- **Frequency $f$:** The filter attenuates at frequency $f$ in Hz. Lower and higher frequencies will pass the filter.
- **Quality $Q$:** The filter quality indicates how steep the magnitude response will be at the frequency $f$.

Transfer function of the filter:

$$H(s) = K \frac{s^2 + (2\pi f)^2}{s^2 + 2\pi f \frac{s}{Q} + (2\pi f)^2}$$
Universal Notch Filter

The universal notch filter can be used to filter out an undesired frequencies.

- **Gain** $K$: The filter gain $K$ determines the low frequency gain of the filter.
- **Frequency** $f_z$: The filter attenuates at the zero frequency $f_z$ in Hz. Lower and higher frequencies will pass the filter. A lead in the phase response will start at this zero frequency $f_z$.
- **Frequency** $f_p$: The filter amplifies at the pole frequency $f_p$ in Hz. The phase lead will stop at this pole frequency $f_p$.
- **Damping** $d_z$: The filter damping of the zero $d_z$ indicates how steep the magnitude response will be at the frequency $f_z$. More damping will result in a less steep behavior.
- **Damping** $d_p$: The filter damping of the pole $d_p$ indicates how steep the magnitude response will be at the frequency $f_p$. Again, more damping will result in a less steep behavior.

Transfer function of the filter:

$$H(s) = K \frac{\frac{1}{(2\pi f_z)^2} s^2 + \frac{2d_z}{2\pi f_z} s + 1}{\frac{1}{(2\pi f_p)^2} s^2 + \frac{2d_p}{2\pi f_p} s + 1}$$

9.4 Frequency Domain Toolbox

9.4.1 FFT Analysis

FFT Analysis

In FFT-Analysis, the Fast Fourier Transform is used to calculate the frequency contents of simulation signal. Three representations are supported:

- **Amplitude and Phase**: This representation shows the amplitude and phase of the signal as function of the frequency, similar to a bode plot. If you want show the transfer function of a system, you have to choose the option *Pair-wise transfer function*, which is explained below in the FFT Settings.
- **Frequency Plot**: This representation shows the frequency contents of the signal. Summation of the peak values yields the average power of the original time signal.
- **Power Spectral Density**: This representation shows the frequency contents of the signal. Integration over the frequency range yields the average power of the original time signal.
FFT analysis can be performed in the Simulator by choosing the **FFT Analysis** command from the **Tools** menu. You can also choose to add an **FFT plot** in the Simulator tree. In both cases a new FFT plot is shown.

### Plot Properties

You can define the FFT plot by opening the plot properties (from the menu choose **Properties - Plot**). Four tabs are shown: **Plot Properties**, **X-Axis**, **Y-Axis** and **FFT Settings**.

- The Plot Properties tab shows the general settings of the plot, similar to every standard plot.
- The X-axis tab shows the X-Axis variable of the FFT input. The default value is time and should not be changed.
- The Y-axis tab shows the variables that are selected to be shown as FFT curves, similar to every standard plot.
- The FFT-Settings tab shows the options that you can choose for the FFT plot.
9. Toolboxes

**FFT Settings**

![FFT Settings Dialog Box](image)

**Items**

- **Plot Properties**
  - *Pair-wise transfer function*: Shows an FFT with the frequency contents of the first plot variable subtracted from the second plot variable. Select this option if you want to show the FFT of a transfer function. The first plot variable is the input of the transfer function and the second plot variable is the output of the transfer function.
  - *Show Peaks*: Choose this option to show the peak values in the FFT plot.
- **Filter**
  - *Subtract DC-component*: If your signal contains a DC-component, the resulting Spectral Density plot will show a high peak at 0 Hz, which may obscure all other frequencies. Choose Subtract DC-component, to remove this peak from the Spectral Density plot.
  - *Integrate Data*: You can integrate the FFT data to inspect the energy contents of each frequency. This option is useful for analyzing resonance frequencies. Integrated FFT-data will usually show a sudden increase exactly at these frequencies.
  - *Anti-Leakage Window*: You can choose a Hamming, Hann or Quadratic window to prevent leakage caused by windowing.
- **Frequency**: Show the results in Herz or radians per second.
- **Output**: select the desired representation of the frequency data:
  - *Amplitude and Phase*
  - *Frequency Spectrum*
Power Spectral Density

Status Window: The bottom part of the window shows the number of simulation points and the chosen frequency range.

Quality
The quality of an FFT plot depends on the contents of the time domain simulation:

- The number of simulation points per second, determine the frequency range of the FFT. If you want to increase the frequency range to higher frequencies, choose a smaller step size or a smaller maximum step size of the integration method.
- The quality of the FFT depends on the total time of the simulation. Increase the finish time of the simulation to get a better FFT plot.
- Make sure that your system is excited properly. If you give an input signal that does not contain higher frequencies, the FFT plot will not show them.

FFT Window
The Fast Fourier Transform is an approximation of the standard Fourier Transform, using a time limited set of data. The beginning and end parts of this limited data set may lead to spectral leakage effects (i.e. yielding not existing frequency peaks). Especially when using small data sets leakage may lead to unwanted results.

To reduce spectral leakage, the data set can be preprocessed using special windowing functions. These windowing functions reduce the values at the beginning and end of the data set and thus reduce the leakage effects. Given an input array A[i] and an output array B[i], with i = 1, 2, ..., N.

20-sim supports the following windows:
- **None**: no preprocessing; B == A
- **Hamming Window**: B(i) = (0.54 + 0.46*cos(pi*(i-1)/(N-1)))*A(i), i = 1, 2, ..., N.
- **Hann Window**: B(i) = 0.5*(1 + cos(pi*(i-1)/(N-1)))*A(i), i = 1, 2, ..., N.
- **Quadratic Window**: B(i) = (1 - 2*((i-1)/(N-1))**2)*(1 - (i-1)/(N-1))*A(i), i = 1, 2, ..., (N-1)/2 + 1; B(i) = 2*(1 - ((i-1)/(N-1))**3)*A(i), i = (N-1)/2 + 2, ..., N.

9.4.2 Model Linearization

Linearize

In the Simulator, select the Tools menu and then click the Linearize Model to start linearization. Linearization will generate a linear, state-space description (linear system) out of any 20-sim model:

\[
dx/dt = Ax + Bu \\
\ y = Cx + Du \\
x(0)
\]

Where:
\[ x = \text{state vector} \]
\[ x(0) = \text{state vector initial value} \]
\[ \frac{dx}{dt} = \text{state vector derivative} \]
\[ y = \text{output} \]
\[ u = \text{input} \]

And:

\[ A = \text{system matrix} \]
\[ B = \text{input gain matrix} \]
\[ C = \text{output gain matrix} \]
\[ D = \text{direct link gain matrix} \]

This linear system shows an input-output behavior that is closely related to the input-output behavior of the original model.

The result is shown in the Linear System Editor. In the Linear System Editor you can choose out of several plot options to show the response of the linear system, such as step responses and Bode plots.

**Working Point**

Non-linear models can show variable behaviour. Think for example of an arm. When you stretch it and push against a wall, it is very stiff. When your arm is bent and you push it against a wall, it will be more compliant. Depending on which state it is in, linearization of a non-linear system will therefore result in different linear systems.

To get the correct linear system, we have to bring the non-linear system into the correct state. This can be done by giving it the proper inputs and simulate the system for a while until the desired state is reached. This is called the working point. When the working point is reached, the simulation must be stopped to perform linearization.

When linearization is performed without simulation, the working point is the initial state of the non-linear system.

**Symbolic and Numeric**

In the 20-sim Simulator, out of an existing (non-linear) model, a symbolic linear-system can be derived. This means that states, rates and matrix elements are related to the parameters of the original model:

As a result you will get a linear system with the original model parameters that can be changed at will, without having to linearize again.

Symbolic linearization is not possible if the original model contains functions that cannot be differentiated. For such models linearization has to be performed numerically. The resulting linear system has to be recalculated through linearization for different model parameters.
9. Toolboxes

Procedure

1. Run a simulation until the working point is reached.
2. Stop the simulation at operating point an select the Linearize command from the Tools menu.
3. Enter your options in the Linearization Dialog.

![Image of Linearization Toolbox]

*The Linearization Toolbox.*

Items

- **Input**: Use the button to select the input (u).
- **Output**: Use the button to select the output (y).
- **Linearization Kind**: Choose between open loop and closed loop linearization.
- **Linearize Type**: Choose between Symbolic and Numeric linearization.
- **Additional Settings**: When you are performing numeric linearization, select *At current time* when you want to linearize at the operating point where the simulation was stopped. Select *At start of simulation* when you want to linearize at the start of the simulation.
- **Tolerances**: 20-sim calculates a numerical linear state space model by small deviations of the complete model from the chosen setpoint. The deviations are based on the given absolute and relative tolerances. For most models the default values are sufficient. For stiff models you can change these values by hand.
- **OK**: click the OK button to start Linearization.
Linearization Explained

During linearization you are asked to enter an input signal and an output signal of your (non-linear) model. During linearization, 20-sim will derive a corresponding linear system. It is important to understand that 20-sim will **cut** the model at the input. This will be explained with the example model below. It shows a linear system with feedback.

**Closed Loop**
Suppose we would choose the following settings:

```
input u: WaveGenerator\output
output y: Monitor\input
kind: Closed Loop
```

This means that 20-sim will **add an input u** and linearize the model between this variable and the variable `Monitor\output` (equal to `y` in the figure below). 20-sim will thus linearize the system between `u` and `y` and (in this example) and yield the **closed loop system**.

**Open Loop**
Suppose we would choose the following settings:

```
input u: PlusMinus\output
output y: Monitor\input
kind: Open Loop
```

This means that 20-sim will **cut** the model at the variable `PlusMinus\output` (equal to `u` in the figure below) and linearize the model between this variable and the variable `Monitor \input` (equal to `y` in the figure below). 20-sim will thus linearize the system between `u` and `y` and (in this example) and yield the **open loop system**.
Bode plots originate from linear systems theory. A bode plot shows the amplitude and phase response (as a function of the frequency) of a linear system. In 20-sim linear systems can be derived in the Simulator out of any linear or non-linear model (model linearization). The resulting linear system is shown in the Linear System Editor. In this editor you can generate Bode plots. The generation of Bode plots can be automated in the Frequency Response dialog. In this dialog you can define the linearization settings and desired linearization output (Linear System Editor or Bode plot).

Procedure

1. Select the **Frequency Response** from the command from the **Properties** menu.
2. Enter your options in the Frequency Response Dialog.
9. Toolboxes

The Frequency Response dialog.

**Items**

- **Input Probes**: Enter possible input signals for linearization here.
- **Output Probes**: Enter possible output signals for linearization here.
- **Frequency Response**: With the Add Frequency Response you can add new input/output pairs. For every input/output pair linearization will be performed with a corresponding linear system as result.
- **Symbolic/Numeric**: Select the desired linearization method.
- **Closed Loop**: By default all linearization is open loop. Select the Closed Loop option to perform closed loop linearization.
- **At start of simulation/At current time**: Select the time of the linearization.
- **Tolerances**: For numeric linearization you can enter the absolute and relative tolerances.
- **Output**: Select the desired output of the linearization.
- **Frequency Range**: Select the desired frequency range.
- **OK**: click the OK button to close the dialog.
Linearization Tolerances

When using numerical linearization, absolute and relative tolerances can be set. In this section is explained how 20-sim uses these tolerances to derive a linear system for the model equations.

Algorithm

Suppose you have chosen the following tolerance values.

\[ \alpha = \text{absolute tolerance (e.g. 1e-6)} \]
\[ \beta = \text{relative tolerance (e.g. 1e-3)} \]

Suppose we have the following model:

\[ \begin{align*}
\frac{d}{dt}(x) &= 4 \cdot x + 2 \cdot u; \quad \text{// with } u = 1 \\
y &= 1 \cdot x + 3 \cdot u; \quad \text{// with } x = 2
\end{align*} \]

During the linearization procedure (suppose linearization from \( u \) to \( y \)) 20-sim will vary the input variable and state variables. First we will show the variation for the input \( u \):

\[ \begin{align*}
u' &= (1 + \beta)u + \alpha \\
u'' &= (1 - \beta)u - \alpha \\
\delta_u &= \beta u + \alpha
\end{align*} \]

this will yield

\[ \begin{align*}
x_{\text{dot}}' &= 10.002002 \text{ and } y' = 5.003003 \\
x_{\text{dot}}'' &= 9.997998 \text{ en } y'' = 4.996997
\end{align*} \]

Out of this 20-sim will calculate the B and D vectors of the state-space ABCD representation:
\[ B = \frac{(x_{\cdot\cdot} - x_{\cdot\cdot\cdot})}{2 \cdot \delta_u} = 2 \]
\[ D = \frac{(y' - y'')}{2 \cdot \delta} = 3 \]

The variation of state variables is done accordingly:

\[ x' = (1 + \beta)x + \alpha \]
\[ x'' = (1 - \beta)x - \alpha \]
\[ \delta_x = \beta x + \alpha \]

this will yield

\[ x_{\cdot\cdot} = 10.008004 \quad \text{en} \quad y' = 5.002001 \]
\[ x_{\cdot\cdot\cdot} = 9.991996 \quad \text{en} \quad y'' = 4.997999 \]

Out of this 20-sim will calculate the A matrix and C vector of the state-space ABCD representation:

\[ A = \frac{(x_{\cdot\cdot} - x_{\cdot\cdot\cdot})}{2 \cdot \delta_x} = 4 \]
\[ C = \frac{(y' - y'')}{2 \cdot \delta_x} = 1 \]

The example system is linear, so the corresponding ABCD representation will give an equal system. The shown algorithm works equivalent for non-linear models. Suppose we have the following non-linear model:

\[ \frac{d}{dt} (x) = 4 \cdot \sin(x) + 2 \cdot u; \quad \text{with} \quad u = 1 \]
\[ y = 1 \cdot x + 3 \cdot u; \quad \text{with} \quad x = 2 \]

This will yield:

\[ B = 2, \quad D = 3, \quad A = -1.668445, \quad C = 1; \]

**Tolerance Values**

The absolute tolerance is necessary only if the input or state is zero. In that case the contribution of the relative tolerance is zero and will not give a contribution to the algorithm. There is however a problem with the absolute tolerance. Suppose the input = 1e-12 and the state = 1e+6 (ill-scaled model). For the input an absolute tolerance of 1e-6 will yield a far too large deviation, while the same absolute tolerance is negligible compared to the state. Only if both the state and input are nonzero the absolute tolerance can be made non-zero to yield good results.
9.4.3 Linear System Editor

The Linear System Editor of 20-sim allows you to enter or edit linear time-invariant models. It supports continuous and discrete-time single input / single output (SISO) systems with and without time delay. You can open the Linear System Editor from the Tools menu of the 20-sim Editor or by clicking Go Down on the Linear System model. A linear system can also be the result of a linearization operation in the 20-sim Simulator.

Menu
Some menu items are of particular importance.

- **File**: You can use the file menu to open, import and export linear systems.
- **Edit - Tolerance**: You can specify the tolerance for transforming between state-space and transfer functions.
- **Edit - Reduce System**: You can reduce the system order by pole-zero cancelation. The distance between poles and zeros to match for cancelation is given by the **Reduction Tolerance**.
- **View**: The view menu can be used for holding, clearing and refreshing plots.
System Description

- Pressing the **Edit** button will open a dialog for editing the linear system. Each description (State Space, Transfer Function, Zeros Poles Gain or Eigen Frequency) has a special dialog and can be used to specify continuous-time and discrete-time systems.
- In the 20-sim Simulator, out of an existing (non-linear) model a symbolic linear-system can be derived by means of linearization. This means that the relevant model parameters are preserved in the Linear System and the parameters button can be used to change parameters.

Import/Export

- Pressing the $s<->z$ button will transform a continuous-time linear system into a discrete-time linear system and back.
- Pressing the **Filter** button opens the Filter Editor, where a filter can be designed. This filter can then be combined with the current linear system or replace the current linear system. If the linear system is a discrete-time system, the designed analog filter is automatically transferred into its digital equivalent.
- Pressing the **From Matlab** button and the **To Matlab** button allows for an instant exchange of the linear system with the Matlab workspace. Information is transferred numerically (no parameter relations are preserved)
- The button is only active when a Linear System has been imported through linearization. Clicking the button will import parameters from the simulation.
- The button is only active when a Linear System has been imported through linearization. Clicking the button will export the current parameters to the simulation.

Plots

You can inspect the time- and frequency responses of the linear system using:

- Step Response
- Bode Plot
- Nyquist Plot
- Nichols Chart
- Poles and Zeros (including root locus)

Output

- Clicking the **20-sim** button will export the linear system as a new 20-sim submodel.
- Clicking the **Matlab** button will export the 20-sim Linear System to a Matlab m-file. If the Linear System is symbolic, all parameter relations are preserved.
Symbolic Linear Systems

In the 20-sim Simulator, out of an existing (non-linear) model a symbolic linear-system can be derived by means of linearization. This means that the relevant model parameters are preserved in the Linear System.

The relation between the original model parameters and the linear system elements is always shown in the white square of Linear System editor, just below the system description. An example is shown in the first figure below:

As you can see, the some elements of the A, B, C and D matrix are related to the spring constant and masses of the original model.

Editing

A symbolic linear system can be edited by changing the original model parameters. Click the Edit Parameters button and a Parameters Editor pops-up. Change the desired parameters, close the Parameters Editor and the linear system will updated.
Updating Parameters

When the parameters have been changed in the Linear System Editor you can update the parameters in the Simulator by clicking the **Update to Simulator** button. Click the **Update from Simulator** button to do it the other way.

Exporting

You can export a symbolic Linear System to Matlab, with preservation of the parameter relations, by clicking the **Matlab** button or selecting Export to Matlab command from the **File** menu. This will generate an m-file that you can use in Matlab.

Continuous and Discrete Linear Systems

The Linear System Editor works on continuous time as well as discrete time system. Pressing the **s<->z** button will transform a continuous-time linear system into a discrete-time linear system and back. You can choose between a Bilinear transformation (Tustin), a Forward Euler transformation and a Backward Difference transformation. When a continuous-time system is transferred, the user is asked to specify the sample time of the discrete-time system.

If you want to transfer a linear system directly (i.e. replace the z by and s or vice versa), click the **Edit** button and select or deselect the Discrete Sample time.

Output Delay

In the Linear System Editor you can add an output delay. Open the editor and click the **Edit** button to edit the system. Now a editor will open where you can set the output delay. The effects of this output delay is shown in the various plots that you can show of a linear system. The unit of the output delay is seconds.

The output delay is shown as an exponential added to the transfer function.

Editor

State Space Models

State space models use linear differential equations (continuous) or difference equations (discrete) to describe system dynamics. They are of the form:

$$\frac{dx}{dt} = A \cdot x + B \cdot u$$

$$y = C \cdot x + D \cdot u$$

$$x_{n+1} = A \cdot x_n + B \cdot u_n$$

$$y_n = C \cdot x_n + D \cdot u_n$$
with for example:

\[ A = \begin{bmatrix} 0 & 0.5 \\ -1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -0.1 \\ 0.1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix} \]

where \( x \) is the state vector and \( u \) and \( y \) are the input and output vectors. These models may arise from the equation of physics, from state space identification or as the result of linearization.

You can enter state space models by selecting the **State Space** button and clicking the **Edit** button.

This opens an editor in which you can enter the \( A, B, C \) and \( D \) matrices. Depending on the selection of the Discrete Linear System check box (and Sample Time) the system is a continuous-time or discrete-time system. You can enter the matrix elements in the white space areas. Separate column elements with Spaces or Commas. Enter new rows by clicking the Enter key (new line) or using a semicolon. Brackets ( e.g. \( [ \ldots ] \) ) may be used to denote the a matrix or vector.
The A-matrix, shown in the figure above can for example be entered as:

\[
\begin{bmatrix}
0 & 1 \\
-0.5 & -1
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
0,1 \\
-0.5,-1
\end{bmatrix}
\]

**Output Delay**

To inspect the effects of time delay in your model, you can add output delay. The result will be visible in the various plots that you can show of a linear system. The unit of the output delay is seconds.

**Discrete Sample Time**

If you want to transfer a linear system from continuous time to discrete time directly (i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value. You can also transfer back directly by deselecting Discrete Sample time.

**Commands**

- **Help**: Open the help file.
- **Apply**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero).
- **OK**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero) and close the editor.
- **Cancel**: Do not apply any changes to the system and close the editor.

**Transfer Functions**

A continuous time or discrete time SISO transfer function:

\[
h(s) = \frac{n(s)}{d(s)} \quad h(z) = \frac{n(z)}{d(z)}
\]

(continuous) \hspace{1cm} (discrete)

is characterized by its numerator \( n \) and denominator \( d \), both polynomials of the variable \( s \) or \( z \).
You can enter transfer functions by selecting the *Transfer Function* button and clicking the *Edit* button.

This opens an editor in which you can enter the coefficients of the numerator and denominator polynomials. You can enter the elements in the white space areas. Separate the elements with Spaces. Polynomials should be entered in descending powers of s or z. The Steady State Gain, Root Locus Gain and System Gain are parameters, that are automatically derived from the transfer function.

In the editor shown above the transfer function
was given. You can enter the coefficients as:

0.1 0.1
and
1 1 0.5
or
0.1,0.1
and
1,1,0.5

**Output Delay**

To inspect the effects of time delay in your model, you can add output delay. The result will be visible in the various plots that you can show of a linear system. The unit of the output delay is seconds.

**Discrete Sample Time**

If you want to transfer a linear system from continuous time to discrete time directly (i.e. replace the \( s \) by a \( z \)), select Discrete Sample time and fill in the sample time value. You can also transfer back directly by deselecting Discrete Sample time.

**Commands**

- **Help**: Open the help file.
- **Apply**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero).
- **OK**: Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero) and close the editor.
- **Cancel**: Do not apply any changes to the system and close the editor.

**Gains**

**Steady State Gain**

Given the transfer function:

\[
\frac{0.1 \cdot s + 0.1}{s^2 + s + 0.5}
\]

the **Steady State Gain** is defined as:
Note that the steady state gain can be zero or infinite depending on the element values of the numerator and denominator!

**Root Locus Gain**

Given a system described by the transfer function:

$$h(s) = \frac{n(s)}{d(s)} = \frac{n_i \cdot s^j + n_{i-1} \cdot s^{i-1} + \ldots + n_0 \cdot s^0}{d_j \cdot s^j + d_{j-1} \cdot s^{j-1} + \ldots + d_0 \cdot s^0}$$

This transfer function can be rewritten in pole zero notation with:

$$h(s) = K_{RL} \frac{(s - z_j)(s - z_{j-1}) \ldots (s - z_0)}{(s - p_j)(s - p_{j-1}) \ldots (s - p_0)}$$

where $p_1, \ldots, p_1$ are the poles and $z_1, \ldots, z_1$ are the zeros of the system. The gain $K_{RL}$ is known as the Root Locus Gain. Note that it can easily be derived from the transfer function as:

$$K_{RL} = \frac{\text{first element of } n(s)}{\text{first element of } d(s)} = \frac{n_i}{d_j}$$

**System Gain**

Given the transfer function:

$$h(s) = \frac{n(s)}{d(s)} = \frac{n_i \cdot s^j + n_{i-1} \cdot s^{i-1} + \ldots + n_0 \cdot s^0}{d_j \cdot s^j + d_{j-1} \cdot s^{j-1} + \ldots + d_0 \cdot s^0}$$

If $n0$ and $d0$ are unequal to zero, this transfer function can be rewritten in pole zero notation with:

$$h(s) = K_S \frac{(z_1's + 1)(z_{1-1}s + 1) \ldots (z_0's + 1)}{(p_j's + 1)(p_{j-1}s + 1) \ldots (p_0's + 1)}$$

The gain $K_S$ is known as the System Gain. If $n0$ is zero and $n1$ is nonzero an equivalent notation can be found with an extra $s$ multiplied:

$$h(s) = K_S \frac{(z_1's + 1)(z_{1-1}s + 1) \ldots (z_0's + 1) \cdot s}{(p_j's + 1)(p_{j-1}s + 1) \ldots (p_0's + 1)}$$

If more numerator element are zero, extra multiplications with $s$ are added. The same goes for denominator elements equal to zero. In general the System Gain can be derived from the transfer function as:
9. Toolboxes

\[ K_s = \frac{\text{last nonzero element of } n(s)}{\text{last nonzero element of } d(s)} \]

Relating the Gains

The elements of the System Gain are related to the poles and zeros of the Root Locus Gain as:

\[ z'_i = \frac{-1}{z_i}, \quad p'_j = \frac{-1}{p_j} \text{ etc.} \]

If \( z0 \) and \( p0 \) are unequal to zero, the following equation holds:

\[ K_{RL} = K_s \frac{z'_1 \cdot z'_1 \cdot \ldots \cdot z'_0}{p'_j \cdot p'_j \cdot \ldots \cdot p'_0} \]

The Root Locus Gain and the Steady State Gain are related as:

\[ K_{SS} = K_{RL} \frac{-z'_1 \cdot -z'_1 \cdot \ldots \cdot -z'_0}{-p'_j \cdot -p'_j \cdot \ldots \cdot -p'_0} \]

Zeros and Poles

A continuous-time SISO transfer function can be described by the transfer function:

\[ h(s) = \frac{n(s)}{d(s)} = \frac{n_1 \cdot s^1 + n_{i-1} \cdot s^{i-1} + \ldots + n_0 \cdot s^0}{d_j \cdot s^j + d_{j-1} \cdot s^{j-1} + \ldots + d_0 \cdot s^0} \]

This transfer function can be rewritten in pole zero notation with

\[ h(s) = K_{RL} \frac{(s - z_1)(s - z_{i-1}) \ldots (s - z_0)}{(s - p_j)(s - p_{j-1}) \ldots (s - p_0)} \]

where \( pi .. p1 \) are the poles and \( zi .. z1 \) are the zeros and \( KRL \) is the Root Locus Gain of the system. The same can be done for a discrete-time SISO transfer function.
You can enter zeros and poles by selecting the Zeros & Poles button and clicking the Edit button.
This opens an editor in which you can enter the real and imaginary parts of the zeros and poles as well as the Root Locus Gain. If preferred, you can also enter the System Gain. Note that zeros and poles always have a conjugate when the imaginary part is non-zero. I.e. when you enter a pole with imaginary part 0.5 an extra pole is added with imaginary part -0.5.

**Output Delay**

To inspect the effects of time delay in your model, you can add output delay. The result will be visible in the various plots that you can show of a linear system. The unit of the output delay is seconds.

**Discrete Sample Time**

If you want to transfer a linear system from continuous time to discrete time directly (i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value. You can also transfer back directly by deselecting Discrete Sample time.

**Commands**

- **Add/Delete:** Add or delete selected poles or zeros.
- **Help:** Open the help file.
- **Apply:** Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero).
- **OK:** Apply the current changes of the system, recalculate each plot that is active (step, Bode, Nyquist, Nichols, pole zero) and close the editor.
- **Cancel:** Do not apply any changes to the system and close the editor.
Eigen Frequencies

The Eigen Frequencies view is closely related to the pole zero notation and bode plot. It shows the resonance frequencies and anti-resonance frequencies that result from the given poles and zeros as well as some characteristic parameters from the bode plot.

You can enter transfer functions by selecting the *Eigen Freqs.* button and clicking the *Edit* button.
Step Response

The *Step Response* command calculates the system's response \( y \) on a unit step input:

\[
\begin{align*}
  u &= 0 \text{ (time < 0)} \\
  u &= 1 \text{ (time >= 0)}
\end{align*}
\]

20-sim automatically generates an appropriate range for the time response, based on the system dynamics. With the Plot Properties command (right mouse menu), you can change this horizon and recalculate the step response (click the Step command again).

**Plot Options**

Using the right mouse menu, you can use several options:

- *Plot Properties*: Set the general plot properties for the step response and specify the curve properties.
- *Numerical Values*: Inspect numerical values.
- *Step Characteristics*: Display rise time, overshoot, settling time and the steady state value of the step response.
- *Copy to Clipboard*: Copy the plot to the windows clipboard.
- *Print*: Print the plot.
- *Zoom in*: Show a detail of the plot.
- *Zoom out*: Show a larger portion of the plot.
- *Zoom Normal*: Show the complete plot.
Bode Plots

Bode Plots show the amplitude and phase of a linear system as function of the frequency. Bode plots can be shown for every 20-sim model through Linearization. During Linearization you are asked to enter the input variable and output variable for which linearization should be performed. After that the linear system is calculated and shown in the Linear System Editor. From the Linear System Editor you can generate a bode plot. These actions can also be predefined using the Frequency Response command of the Properties menu.

20-sim automatically generates a range of logarithmically displayed frequencies, based on the system dynamics. With the Plot Properties command (right mouse menu), you can change this horizon and recalculate the bode response (click the Bode command again).

The magnitude part of the plot can be displayed in dB or in absolute values. The phase part can be displayed in radians or degrees. The frequency can be displayed in radians per second or in Hz.

Plot Options

Using the toolbar or the right mouse menu, you can use various options:

- **Plot Properties**: Set the plot properties.
- **Numerical Values**: Inspect numerical values.
- **Magnitude (dB)**: Display magnitude in decibels
- **Magnitude (-)**: Display magnitude in absolute values.
- **Phase (rad)**: Display phase in radians.
- **Phase (deg)**: Display phase in degrees.
- **Frequency (rad/sec)**: Display frequency in radians per second.
- **Frequency (Hz)**: Display frequency in Hz.
9. Toolboxes

- **Phase/Gain Margins**: Display the gain and phase margins.
- **Modulus Margin**: Display the Modulus Margin.
- **Unwrap Phase**: Display the phase plot as a continuous plot by selecting this option or as a folded plot between -180 and 180 deg. by deselecting this option.
- **Peak Response**: Display the peak response.
- **Copy to Clipboard**: Copy the plot to the windows clipboard.
- **Print**: Print the plot.
- **Zoom in**: Show a detail of the plot.
- **Zoom out**: Show a larger portion of the plot.
- **Zoom Normal**: Show the complete plot.

**Nyquist Diagram**

The **Nyquist** command computes the Nyquist plot of a system.

20-sim automatically generates a range of real and imaginary parts, based on the system dynamics. With the **Plot Properties** command (right mouse menu), you can change this horizon and recalculate the Nyquist diagram (click the **Nyquist** command again).

**Plot Options**

Using the right mouse menu, you can use several options:

- **Plot Properties**: Set the plot properties.
- **Numerical Values**: Inspect numerical values.
- **Phase/Gain Margins**: Display the gain and phase margins.
- **Modulus Margin**: Display the Modulus Margin.
9. Toolboxes

- **Copy to Clipboard**: Copy the plot to the windows clipboard.
- **Print**: Print the plot.
- **Zoom in**: Show a detail of the plot.
- **Zoom out**: Show a larger portion of the plot.
- **Zoom Normal**: Show the complete plot.

**Nichols Chart**

The *Nichols* command computes the Nichols chart of a system.

20-sim automatically generates a range of logarithmically displayed frequencies, based on the system dynamics. With the **Plot Properties** command (right mouse menu), you can change this horizon and recalculate the Nichols chart (click the *Nichols* command again). The magnitude part of the plot can be displayed in decibels (dB) or in absolute values. The phase part can be displayed in radians or degrees.

**Plot Options**

Using the right mouse menu, you can use several options:

- **Plot Properties**: Set the plot properties.
- **Numerical Values**: Inspect numerical values.
- **Magnitude (dB)**: Display magnitude in decibels
- **Magnitude (-)**: Display magnitude in absolute values.
- **Phase (rad)**: Display phase in radians.
- **Phase (deg)**: Display phase in degrees.
- **Frequency (rad/sec)**: Display frequency in radians per second.
- **Frequency (Hz)**: Display frequency in Hz.
- **Phase/Gain Margins**: Display the gain and phase margins.
- **Modulus Margin**: Display the Modulus Margin.
- **Copy to Clipboard**: Copy the plot to the windows clipboard.
- **Print**: Print the plot.
- **Zoom in**: Show a detail of the plot.
- **Zoom out**: Show a larger portion of the plot.
- **Zoom Normal**: Show the complete plot.

**Pole Zero Diagram**

The **Pole Zero** command plot the poles and zeros of a system and computes the root locus plot.

20-sim automatically generates a range of real and imaginary parts, based on the system dynamics. With the **Plot Properties** command (right mouse menu), you can change this horizon and recalculate the pole zero diagram (click the **Pole Zero** command again).

**Root Locus**

You can show the root locus plot by selecting **Root Locus** from the right mouse menu. Inspect the root locus gain by selecting **Numerical Values** from the right mouse menu.

**Plot Options**

Using the right mouse menu, you can use several options:

- **Plot Properties**: Set the plot properties.
• **Numerical Values**: Inspect numerical values.
• **Root Locus**: Show or hide the root locus plot.
• **Copy to Clipboard**: Copy the plot to the windows clipboard.
• **Print**: Print the plot.
• **Zoom in**: Show a detail of the plot.
• **Zoom out**: Show a larger portion of the plot.
• **Zoom Normal**: Show the complete plot.
Import Data

You can import data from measurements or other software tools to compare it with the response of your model. 20-sim accepts data in two formats:

- **Gain-Phase**: The data should be stored in a text-file with three columns. The first column should contain the frequency and the second and third column, the corresponding gain and phase data.
- **Real-Imag**: The data should be stored in a text-file with three columns. The first column should contain the frequency and the second and third column, the corresponding real and imaginary data.

1. Open the Linear System Editor with your linear system.
2. Open the plot (e.g. Bode, Nyquist) in which you want to show the data.
3. Set the Magnitude (- or dB), Phase (rad or deg) and Frequency (rad/s or Hz) according to the data you want to import.
4. In the Linear System Editor from the **File** menu select **Import**.
5. Select Import **Gain-Phase** or **Import Real-Imag**.

Now a file dialog opens helping you to select the file to import. When you have selected a file and closed the dialog, the data should be visible in your plot. An example is shown in the figure above.
9.4.4 Dynamic Error Budgeting

Dynamic Error Budgeting

The performance of precision machines is mostly limited by the disturbances that are injected in these machines. These disturbances are often stochastic in nature. Dynamic Error Budgeting is a method whereby the effect of these disturbances on the final performance can be calculated. The advantage of this method is that it enables the designer to enter the contributions of the individual disturbances and view and optimize the overall machine performance.

The Dynamic Error Budgeting toolbox shows the total error as a result of injected disturbances.

Running the Toolbox

1. Open the example model Dynamic Error Budgetting from the Getting Started/Frequency Domain Toolbox.

You can open the Dynamic Error Budgeting tool in the Simulator:

2. From the Tools menu select Frequency Domain Toolbox and Dynamic Error Budgeting.
The Dynamic Error Budgeting tool.

The tool allows you to enter disturbances (as power spectral density) in the Input Noises section.

3. For each disturbance you have to select a corresponding variable by clicking the Add input noise button.

Each disturbance is effectively a summation to the chosen variable, just like closed loop linearization. You can inspect each disturbance in the graph on the top right.

Next you have to select an output variable, where the result of the disturbances is calculated.

4. Select the output by clicking the Add Output button.

In the graph on the bottom right you can see the resulting error at the selected output as a result of the disturbances. The error is given in the form of a power spectral density (PSD) and cumulative power spectral density (CPS). The square root of the final value of the CPS is equal to the standard deviation of the output error. The standard deviations are shown in the Output Sigma tab.
9.5 Mechatronics Toolbox

9.5.1 Cam Wizard

How to use the Cam Wizard

Cams and mechanisms are all based on the same principle. The motion of an input axis is transformed to an output axis or translation. The transformation is a function of the input angle. This function is called the **cam motion profile**.

The 20-sim cam wizard helps you to generate cam and mechanism models. You can use various types of motion profiles which are continuous in velocity, acceleration or even in jerk! An example of a mechanism that can be generated by the Cam wizard is the crank-rod mechanism, where a rotary input motion is transformed to a translating output motion.

The models that are generated by the 20-sim Cam wizard are fully dynamic! This means:

- The models describe the output velocity as function of the input velocity but also the input torque as function of the output load.
- The speed of the input axis does not have to be constant nor does the output load.
- No inertia, stiffness or other dynamic behavior is included, but this can be easily incorporated by coupling elements from the 20-sim library (inertias, springs etc.) to the input or output of the model.

To generate a cam or mechanism model in 20-sim, follow the next steps.

1. Open the model library and drag the model *CamManipulator.emx* to the editor.
2. Make an input connection (rotation) and an output connection (rotation/translation) to the model.

3. Select the camwizard model and click Go Down. Now the wizard will be opened.

4. Choose the desired motion profile, the profile parameters and type of output (translation/rotation):

5. Select the type of cam motion profile:
6. Enter the parameters values (Stroke, Start Angle Stop Angle). If you have chosen a continuous pulse as output, you must also enter the values for the Return Angle and End Angle:
7. In the last page, the resulting values are shown:
Note

1. If you have changed the settings of this wizard, you have to process the model first (from the Model menu, choose Check Complete Model) before the changes become effective.

2. You can change parameter values during simulation (from the Properties menu select Parameters).

3. This is a masked model that uses the dll-file MotionProfile.dll to open the wizard. This dll-function must be stored in the bin directory of 20-sim. To see the SIDOPS code of a masked model press the shift-key, while clicking the Go Down command.
Cam Motion Profiles

Motion Types
Two types of motion profiles can be generated by the Cam wizard: **intermittent steps** and **continuous pulses**. The intermittent step motion does not return to its starting position, but gradually moves further away. It is characterized by the parameters stroke, start_angle and stop_angle.

The **continuous pulse** motion output returns at the end of each cycle returns to the starting position. It is characterized by the parameters stroke, start_angle, stop_angle, return_angle and end_angle.

Motion Profiles
In mechanical engineering an important part of design is the reduction of vibrations. Every time a construction is in motion, vibrations are induced. When cams or mechanisms are used, the amount of vibrations, depend on the kind of motion that is induced. E.g. a sudden step change will induce violent vibrations in comparison with with a fluent motion. An important parameter to characterize motions, is the order:

1. **Zero Order**: Motions that are discontinuous in the position (e.g. a step).

2. **First Order**: Motions that are continuous in the position but discontinuous in the velocity (e.g. a ramp).

3. **Second Order**: Motions that are continuous in the position and velocity but discontinuous in the acceleration.

4. **Third Order**: Motions that are continuous in the position, velocity and acceleration.
5. **Fourth Order**: Motions that are continuous in the position, velocity, acceleration and jerk.

The specific shape of a motion profile can have a significant influence on the dynamic behavior. Some profiles minimize the maximum velocity, some profile minimize acceleration, while other profiles tend to make a tradeoff between the maximum velocity and acceleration. If we take a standard motion with stroke 1 and motion time 1 sec., the following table can be generated:

<table>
<thead>
<tr>
<th>profile</th>
<th>order</th>
<th>(v_{\text{max}})</th>
<th>(a_{\text{max}})</th>
<th>(y(0))</th>
<th>(y(1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp</td>
<td>1</td>
<td>1</td>
<td>infinite</td>
<td>infinite</td>
<td>0</td>
</tr>
<tr>
<td>Crank-Rod(^2)</td>
<td>2</td>
<td>&gt; 1.57</td>
<td>&gt; 4.93</td>
<td>infinite</td>
<td>&lt; -15.5</td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>infinite</td>
<td>-infinite</td>
</tr>
<tr>
<td>Partial Trapezoidal(^1)</td>
<td>2</td>
<td>1.67</td>
<td>4.17</td>
<td>infinite</td>
<td>0</td>
</tr>
<tr>
<td>Geneva Mechanism</td>
<td>2</td>
<td>2.41</td>
<td>8.49</td>
<td>infinite</td>
<td>-118.5</td>
</tr>
<tr>
<td>Sine</td>
<td>2</td>
<td>1.57</td>
<td>4.93</td>
<td>infinite</td>
<td>-15.5</td>
</tr>
<tr>
<td>Cubic</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>32</td>
<td>-32</td>
</tr>
<tr>
<td>Partial Cubic(^3)</td>
<td>3</td>
<td>1.67</td>
<td>5.55</td>
<td>55.6</td>
<td>0</td>
</tr>
<tr>
<td>Cycloidal</td>
<td>3</td>
<td>2</td>
<td>6.28</td>
<td>39.5</td>
<td>-39.5</td>
</tr>
<tr>
<td>Modified Sine</td>
<td>3</td>
<td>1.76</td>
<td>5.53</td>
<td>69.4</td>
<td>-23.2</td>
</tr>
<tr>
<td>Modified Trapezoidal</td>
<td>3</td>
<td>2</td>
<td>4.88</td>
<td>61.4</td>
<td>-61.4</td>
</tr>
<tr>
<td>MSC50</td>
<td>3</td>
<td>1.26</td>
<td>9.20</td>
<td>173.6</td>
<td>0</td>
</tr>
<tr>
<td>MSC(^%)(^4)</td>
<td>3</td>
<td>1.37</td>
<td>7.20</td>
<td>113.1</td>
<td>0</td>
</tr>
<tr>
<td>3-4-5 Polynomial</td>
<td>3</td>
<td>1.88</td>
<td>5.77</td>
<td>60</td>
<td>-30</td>
</tr>
<tr>
<td>1-3-5-7-9 Polynomial(^5)</td>
<td>3/4</td>
<td>2.05</td>
<td>10.25</td>
<td>BB</td>
<td>BM</td>
</tr>
</tbody>
</table>

1: Parameter CV = 20%
2: For \(lw >> lc\) the Crank Rod profile equals the sine profile, for \(lw > lc\) performance deteriorates.
3: Parameter CV = 20%, CA = 20%
4: Parameter n = 30%, alpha = 10%
5: Parameter BB = 30%, BM = 10%
Here $y(0)$ is the initial jerk (derivative of acceleration) and $y(1/2)$ the crossover (halftime) jerk.

**Ramp**

The ramp profile is a first order profile. It has a constant velocity and acceleration peaks at the start and end of the motion.

![Ramp Profile Graph]

**Crank Rod Mechanism**

A Crank Rod mechanism converts a rotary motion into a repeating translation and

![Crank Rod Mechanism Diagram]

If the rod is much longer than the crank, the resulting motion profile will approach the sine profile. Below the motion profile is shown for half a rotation of the crank (angle from 0 to 180 degrees in 1 sec.).
If the rod gets smaller, the maximum velocity and acceleration increase.

Note: A real crank-rod mechanism will not suddenly stop at half a rotation and therefore not show a discontinuous acceleration.

Trapezoidal
The trapezoidal profile is a second order profile. It has a constant acceleration at the start of the motion and a constant deceleration at the end of the motion.
This profile is most widely used in early servo systems. Because of the discontinuity in the acceleration this motion profile can still induce a lot of vibrations. Therefore in modern servo systems third order profiles are preferred.

**Partial Trapezoidal**

The partial trapezoidal profile is a second order profile. It has equal to the trapezoidal motion, but has a constant velocity part, during a fraction \( CV \) (%) of the motion.

**Geneva Mechanism**

A Geneva mechanism is an old motion profile generation mechanism. A continuously rotating crankshaft (a) generates an intermittent motion of a second shaft (b). The result is a second order profile.

The motion profile generator yields the motion of the second shaft (b). It is shown below:
Sine
The sine profile is a second order profile of which the displacement can be described as:

\[ x = 0.5 - \cos(p \cdot t) / 2. \]

Cubic
The cubic profile is a third order profile of which the acceleration is constantly increasing and decreasing.

Partial Cubic
The partial cubic profile (3rd order) is a modified cubic profile with a constant velocity during a fraction \( CV \) (%) of the motion and a constant acceleration during a fraction \( CA \) (%) of the motion.
Cycloidal
The cycloidal profile is a third order profile, of which the velocity can be described as:

\[ v = \text{stroke} \cdot (1 - \cos(t \cdot a)) \]

Modified Sine
The modified sine profile is also a third order profile. It is a modification of the cycloidal profile to get a lower maximum velocity and a lower maximum acceleration.

Modified Trapezoidal
The modified trapezoidal profile is a modification of the trapezoidal profile (to make it a third order profile). This profile yields a very low maximum acceleration.
9. Toolboxes

**Modified Sine with Constant Velocity (MSC50)**

The modified sine with constant velocity profile (3rd order) is a modification of the modified sine profile. It has a constant velocity during 50% of the motion.

**General Modified Sine with Constant Velocity (MSC%)**

The modified sine with constant velocity profile (3rd order) is a modification of the modified sine profile. It has a constant velocity during a user definable part of the motion. The non-zero acceleration part is defined by two parameters which are both defined as a fraction of the motion. The first parameter $\alpha$ (%) defines the start of the acceleration and the second parameter $n$ (%) defines the end of the acceleration.

**3-4-5 Polynomial**

The is a third profile described by a 5th order polynomial.
The is a third/fourth order profile described by a 9th order polynomial. The profile is characterized by two parameters that denote the initial jerk, $BB$, and the crossover jerk, $BM$. If $BB$ is chosen zero, this is a a fourth order profile. If $BB$ is chosen non-zero, this is a third order profile.

### 9.5.2 Motion Profile Wizard

#### Motion Profile Wizard

The 20-sim Motion Profile Wizard helps you to define motion profiles. To generate such a profile, follow the next steps.

1. Open the 20-sim model library an go to the section Signal\Sources.
2. Drag and drop the model MotionProfileWizard.emx to the editor.
3. Select the model and click Go Down.
4. Select the inputs and outputs:
A number of inputs and outputs are available:

- **External Input:** Normally the time will be used for the x-axis of the profile. You can however use an external input as x-axis variable.
- **On/Off:** Use this input signal to start (onoff = TRUE) and stop (onoff = FALSE) the profile.
- **Reset:** When the reset signal gets high (reset = TRUE) the profile will be started.
- **Reference:** The motion profile reference signal, e.g. position.
- **First Derivative:** The first derivative of the motion profile reference signal, e.g. velocity.
- **Second Derivative:** The second derivative of the motion profile reference signal, e.g. velocity.
- **Profile Counter:** Gives the number of profiles that have been generated.
- **Ready Signal:** Gets high (ready = TRUE) when the profile is completely generated.

5. Click **Next** to enter the desired profile.

6. You can enter as many profiles as needed to design the complete motion. You can choose out of a number of predefined profiles.
7. Choose the number of times the motion should be repeated.

8. Click **Next** to go to the last page.

In the last page, you can choose to generate Time Events and what to show the next time (the wizard or the generated code). Use the default settings if you are not sure what to use.
9. Click **Next** to go to close the Wizard.

10. In the Editor from the **Model** menu Check Complete Model to make the changes effective.

**Motion Profile Wizard (Old Style)**

If you select the model `MotionProfile.emx` and click **Go Down**, the old style Motion Profile Wizard will open. This wizard is kept in 20-sim to allow you to run old models. The wizard has been replaced by a new wizard which is far more powerful.

**Description**

The 20-sim Motion Profile Wizard helps you to define motion profiles. To generate such a profile, follow the next steps.

1. Open the 20-sim model library an go to the section `Signal\Sources`.
2. Drag and drop the model `MotionProfile.emx` to the editor.
3. Select the model and click Go Down. Now the wizard will be opened.
4. Select the type of motion.
5. Choose the desired profile and output signals.
6. Enter the profile parameters.

7. Close the wizard.

During simulation the parameter values are used that you have selected in the wizard. These parameters are available in the Parameters Editor where you can change them as you would do with any other model. If you have changed the settings of this wizard, you have to process the model first (from the Model menu, choose Check Complete Model) before the changes become effective.

**Motion Profiles**

You can choose out of a number of predefined motion profiles in the Motion Profile Wizard.

- Flat
- Ramp
- Trapezoidal
- Partial Trapezoidal
- Geneva Mechanism
- Sine
- Cubic
- Partial Cubic
- Cycloidal
- Standard Modified Sine
- Modified Trapezoidal
- Modified Sine with Constant Velocity (MSC50)
- General Modified Sine with Constant Velocity (MSC%)
- 3-4-5 Polynomial
- 1-3-5-7-9 Polynomial

**Flat**

The flat profile is a zero order profile. It has a constant position, zero velocity and acceleration.

**Ramp**

The ramp profile is a first order profile. It has a constant velocity and acceleration peaks at the start and end of the motion.


**Trapezoidal**

The trapezoidal profile is a second order profile. It has a constant acceleration at the start of the motion and a constant deceleration at the end of the motion.

This profile is most widely used in early servo systems. Because of the discontinuity in the acceleration this motion profile can still induce a lot of vibrations. Therefore in modern servo systems third order profiles are preferred.

**Partial Trapezoidal**

The partial trapezoidal profile is a second order profile. It has is equal to the trapezoidal motion, but has a constant velocity part, during a fraction $CV$ (%) of the motion.
Geneva Mechanism

A Geneva mechanism is an old motion profile generation mechanism. A continuously rotating crankshaft (a) generates an intermittent motion of a second shaft (b). The result is a second order profile.

![Geneva mechanism diagram](image)

The motion profile generator yields the motion of the second shaft (b). It is shown below:

![Geneva mechanism profile](image)

Sine

The sine profile is a second order profile of which the displacement can be described as:
The sine profile.

The cubic profile is a third order profile of which the acceleration is constantly increasing and decreasing.

The partial cubic profile (3rd order) is a modified cubic profile with a constant velocity during a fraction $CV$ (%) of the motion and a constant acceleration during a fraction $CA$ (%) of the motion.
Cycloidal
The cycloidal profile is a third order profile, of which the velocity can be described as:

\[ v = \text{stroke} \times (1 - \cos(t \times a)) \]

Modified Sine
The modified sine profile is also a third order profile. It is a modification of the cycloidal profile to get a lower maximum velocity and a lower maximum acceleration.
The modified sine profile.

**Modified Trapezoidal**

The modified trapezoidal profile is a modification of the trapezoidal profile (to make it a third order profile). This profile yields a very low maximum acceleration.

The modified trapezoidal profile.

**Modified Sine with Constant Velocity (MSC50)**

The modified sine with constant velocity profile (3rd order) is a modification of the modified sine profile. It has a constant velocity during 50% of the motion.

The modified sine with constant velocity profile.
General Modified Sine with Constant Velocity (MSC\%)
The modified sine with constant velocity profile (3rd order) is a modification of the modified sine profile. It has a constant velocity during a user definable part of the motion. The non-zero acceleration part is defined by two parameters which are both defined as a fraction of the motion. The first parameters $\alpha$ (%) defines the start of the acceleration and the second parameters $n$ (%) defines the end of the acceleration.

The general modified sine with constant velocity profile.

3-4-5 Polynomial
The is a third profile described by a 5th order polynomial.

1-3-5-7-9 Polynomial
The is a third/fourth order profile described by a 9th order polynomial. The profile is characterized by two parameters that denote the initial jerk, $BB$, and the crossover jerk, $BM$. If $BB$ is chosen zero, this is a fourth order profile. If $BB$ is chosen non-zero, this is a third order profile.
To keep the polynomial consistent, i.e. the polynomial does not change when the amplitude is changed, the initial jerk (BB) and the crossover jerk (BM) are defined for a standard motion with:

- stroke = 1
- start_time = 0
- stop_time = 1

**Comparison of Profiles**

The specific shape of a motion profile can have a significant influence on the dynamic behavior. Some profiles minimize the maximum velocity, some profile minimize acceleration, while other profiles tend to make a tradeoff between the maximum velocity and acceleration. If we take a standard motion with stroke 1 and motion time 1 sec., the following table can be generated:

<table>
<thead>
<tr>
<th>profile</th>
<th>order</th>
<th>vmax</th>
<th>amax</th>
<th>j(0)</th>
<th>j(1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ramp</td>
<td>1</td>
<td>1</td>
<td>infinite</td>
<td>infinite</td>
<td>0</td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>infinite</td>
<td>-infinite</td>
</tr>
<tr>
<td>Partial Trapezoidal</td>
<td>2</td>
<td>1.67</td>
<td>4.17</td>
<td>infinite</td>
<td>0</td>
</tr>
<tr>
<td>Geneva Mechanism</td>
<td>2</td>
<td>2.41</td>
<td>8.49</td>
<td>infinite</td>
<td>-118.5</td>
</tr>
<tr>
<td>Sine</td>
<td>2</td>
<td>1.57</td>
<td>4.93</td>
<td>infinite</td>
<td>-15.5</td>
</tr>
<tr>
<td>Cubic</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>32</td>
<td>-32</td>
</tr>
<tr>
<td>Partial Cubic3</td>
<td>3</td>
<td>1.67</td>
<td>5.55</td>
<td>55.6</td>
<td>0</td>
</tr>
<tr>
<td>Cycloidal</td>
<td>3</td>
<td>2</td>
<td>6.28</td>
<td>39.5</td>
<td>-39.5</td>
</tr>
<tr>
<td>Modified Sine</td>
<td>3</td>
<td>1.76</td>
<td>5.53</td>
<td>69.4</td>
<td>-23.2</td>
</tr>
<tr>
<td>Modified Trapezoidal</td>
<td>3</td>
<td>2</td>
<td>4.88</td>
<td>61.4</td>
<td>-61.4</td>
</tr>
<tr>
<td>MSC50</td>
<td>3</td>
<td>1.26</td>
<td>9.20</td>
<td>173.6</td>
<td>0</td>
</tr>
<tr>
<td>MSC%4</td>
<td>3</td>
<td>1.37</td>
<td>7.20</td>
<td>113.1</td>
<td>0</td>
</tr>
<tr>
<td>3-4-5 Polynomial</td>
<td>3</td>
<td>1.88</td>
<td>5.77</td>
<td>60</td>
<td>-30</td>
</tr>
</tbody>
</table>
9. Toolboxes

| 1-3-5-7-9 Polynomial5 | 3/4 | 2.05 | 10.25 | BB | BM |

1: Parameter CV = 20%

2: For lw >> lc the Crank Rod profile equals the sine profile, for lw > lc performance deteriorates.

3: Parameter CV = 20%, CA = 20%

4: Parameter n = 30%, alpha = 10%

5: Parameter BB = 30%, BM = 10%

Here j(0) is the initial jerk yerk (derivative of acceleration) and j(1/2) the crossover (halftime) jerk.

9.5.3 Servo Motor Editor

Servo Motor Editor

Introduction

The 20-sim Servo Motor Editor is a tool to generate dynamic models of servo motors for the use in 20-sim. These models describe the complete dynamic behaviour of servo motors, including the electrical, mechanical and thermal behaviour. The following classes of motors are supported in the editor:

1. Brush DC
2. Brushless DC (trapezoidal EMC and square wave currents)
3. AC synchronous (sinusoidal EMC and sinusoidal currents)
4. AC synchronous linear (sinusoidal EMC and sinusoidal currents)

The dynamic models are generated automatically from data files containing commercially available motors, but you can also enter your own motor parameters. The following motors are available on data files:

2. The complete Tecnotion 2006 program.
3. The Faulhaber 2006 program.

In the first part of these help files, the use of the 20-sim Servo Motor Editor is explained. The Editor uses a data table with motor parameters of commercial servo motors. You can select any motor from the table, inspect the corresponding torque speed curve and let the Servo Motor Editor generate a 20-sim dynamic model from the parameters.
The second part of these help files, explains the operating principles of the motors. A good indication of the performance of permanent magnet motors can be given by the torque speed plot. Various curves of the torque speed plot and how this can be used to choose the proper motor for a given task. An important part of the torque speed plot is the maximum continuous torque. It is the maximum torque that a motor can deliver without overheating. This curve is based on a thermal model of the motor, which is also explained.

**Use**

The 20-sim Servo Motor Editor is part of the Mechatronics Toolbox of 20-sim. You can open the editor by selecting the **Servo Motor Editor** command (**Tools - Mechatronics Toolbox**). If you have a valid license, a servo motor model will be inserted:

![Servo Motor Editor](image)

Normally the editor will be opened automatically. If this does not happen, force the editor to open by clicking the Go Down button. This Editor looks like:
The top of the editor shows a list of motors. You can select one of the motors from the list by selecting it with your mouse pointer. The selected motor is shown with the blue line. The parameters of the selected motor are shown below the list.

To see the torque speed plot of the selected motor, click the Plot tab at the bottom of the editor. To find a motor based on specific searching conditions, click the Search tab. By clicking the OK button, a dynamic model will be created automatically, based on the selected motor in the list.

Using the Edit menu, new motors can be added to the list or deleted. By double clicking the mouse pointer on a parameter value, it can be changed.
Data Files

If you open the Servo motor Editor, default data from file ServoMotor.csv is shown. You can open other data files by using the file menu.

Currently the following data files are available:

1. ServoMotor.csv: A selection of various motors to show the capabilities of the Servo Motor Editor.

Parameters

Unfortunately not all motor suppliers use the same parameters in the data sheets. Therefore the Servo Motor Editor uses the most common parameters as described in this section. All parameters are defined using a motor temperature and ambient temperature of 25°C.

General Data

This general section contains the unique identifier of the motor (Keyname) and some additional data, which can be filled in freely.

<table>
<thead>
<tr>
<th>Name</th>
<th>The name of the motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Additional Info</td>
</tr>
<tr>
<td>Keyname</td>
<td>A unique name (no duplicates allowed in the motor list) to identify the motor.</td>
</tr>
<tr>
<td>Type</td>
<td>The motor type:</td>
</tr>
<tr>
<td></td>
<td>1. AC Synchronous</td>
</tr>
</tbody>
</table>
In the Editor, you can select from a drop down list. In the data file (see next section, the corresponding numbers are used).

- Date
  - Date at which the motor info was entered

- Price
  - The price of the motor

- Delivery Time
  - Delivery Time

- Library
  - The name of the data file that is used

**Nominal Data**

Many data sheets describe the nominal operating point of a motor. The nominal operation point is characterized by a fixed current that is supplied to a motor with an initial temperature of 25°C that will result in a heating up of the coils to the exactly the maximum temperature. Because a current alone is not enough to describe the state of a motor, the operating point is always given at a certain speed. Although the other parameters (torque and power) can be derived from the current and speed they are usually printed in most data sheets.

- Torque [N.m] or Force [N]
  - Torque or force at nominal operation.

- Current [A] or [Arms]
  - Current at nominal operation.

- Speed [rpm] or [m/s]
  - Speed at nominal operation.

- Voltage [V] or [Vrms]
  - Voltage at nominal operation.

- Power [W]
  - The output power at nominal operation.

- Life [hour]
  - Expected Lifetime of the motor under normal operation.

As described, the definition of current and voltage depends on the selected motor:

<table>
<thead>
<tr>
<th>motor</th>
<th>current</th>
<th>voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AC Synchronous</td>
<td>rms phase current (A)</td>
<td>rms phase to phase voltage (V)</td>
</tr>
<tr>
<td>2. Brush DC Iron</td>
<td>current (A)</td>
<td>voltage (V)</td>
</tr>
<tr>
<td>3. Brush DC moving coil</td>
<td>current (A)</td>
<td>voltage (V)</td>
</tr>
<tr>
<td>4. Brush DC Disc Rotor</td>
<td>current (A)</td>
<td>voltage (V)</td>
</tr>
<tr>
<td>5. AC Synchronous Linear</td>
<td>rms phase current (A)</td>
<td>rms phase to phase voltage (V)</td>
</tr>
</tbody>
</table>
Max/Peak Values
The maximum parameters indicate the maximum performance of the motor and are used to show the limits in the torque speed plot as explained in chapter 3. The parameters do not indicate an operating point on the torque speed curve. The maximum parameters are preferably measured at a temperature of 25º C.

Torque [N.m] or Force[N] The maximum short-time or torque or force (also known as stall torque).
Speed [rpm] or [m/s] The maximum speed.
Power [W] The maximum short time power.

The currents and voltages are defined the same as for the nominal parameters.

Electrical Data

R [ohm] The resistance at 25º C.
L [H] The terminal inductance.
alpha_c [1/degC] The temperature dependency of the coil resistance.
ktc [1/degC ] The temperature dependency of the magnets.
poles [-] or pitch[m] The number of poles (always an even number) or pole pitch (distance N-N poles).

As described, the definition of resistance and inductance depends on the selected motor:

<table>
<thead>
<tr>
<th>Motor</th>
<th>Resistance</th>
<th>Inductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AC Synchronous</td>
<td>phase to phase to phase inductance (H)</td>
<td></td>
</tr>
<tr>
<td>2. Brush DC Iron</td>
<td>resistance (ohm)</td>
<td>inductance (H)</td>
</tr>
<tr>
<td>3. Brush DC moving coil</td>
<td>resistance (ohm)</td>
<td>inductance (H)</td>
</tr>
<tr>
<td>4. Brush DC Disc Rotor</td>
<td>resistance (ohm)</td>
<td>inductance (H)</td>
</tr>
<tr>
<td>5. AC Synchronous Linear</td>
<td>phase to phase to phase inductance (H)</td>
<td></td>
</tr>
<tr>
<td>6. Brushless DC</td>
<td>phase to phase to phase inductance (H)</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Data
The mechanical data describes the motor inertia and losses.
9. Toolboxes

\[ J_{\text{rotor}} \text{[kg.m}^2\text{]} \text{ or } m_{\text{motor}} \text{[kg]} \]
The rotor inertia or the moving mass of the motor.

\[ d \text{[N.m.s/rad]} \text{ or } [\text{N.s/m}] \]
Mechanical damping and eddy current losses.

\[ T_{\text{fric}} \text{[N.m]} \text{ or } [\text{N}] \]
Mechanical friction and hysteresis losses.

\[ T_{\text{cog}} \text{[N.m]} \text{ or } [\text{N}] \]
The amplitude of the cogging torque.

**Thermal Data**
The thermal data is used for the thermal model as explained in chapter 4. Zero values for the thermal resistances are replace by a small value (1e-2) to prevent division by zero.

\[ \text{Temp}_{\text{amb}} \text{[degC]} \]
The ambient temperature.

\[ \text{Temp}_{\text{initial}} \text{[degC]} \]
The initial temperature of the coils and housing.

\[ \text{Temp}_{\text{max}} \text{[degC]} \]
The maximum coil temperature.

\[ RT1 \text{[degC/W]} \]
The thermal resistance between rotor and stator.

\[ RT2 \text{[degC/W]} \]
The thermal resistance between stator and environment.

\[ CT1 \text{[J/degC]} \]
Thermal capacity of the rotor.

\[ CT2 \text{[J/degC]} \]
Thermal capacity of the stator.

**Physical Data**
This section describes the motor dimensions and maximal load.

\[ F_{\text{axial}} \text{[N]} \]
The maximum axial force applied to the motor shaft.

\[ F_{\text{radial}} \text{[N]} \]
The maximum radial force applied to the motor shaft.

\[ m \text{[kg]} \]
The motor weight.

\[ D_{\text{motor}} \text{[m]} \]
The motor diameter.

\[ L_{\text{motor}} \text{[m]} \]
The motor length.

\[ D_{\text{shaft}} \text{[m]} \]
The shaft diameter.

\[ L_{\text{shaft}} \text{[m]} \]
The shaft length.

**Derived Data**
These are values that can be found in many data sheets. They are useful for selection criteria when searching for motors.
### Additional Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-sim model []</td>
<td>Not implemented yet.</td>
</tr>
</tbody>
</table>

### How to use the Parameters

When you enter a new motor, not all parameters have to be filled in. In this section the critical and non critical parameters are listed.

#### Critical

Only a few parameters are critical. I.e. they are necessary to generate a 20-sim dynamic model.

- **Keyname**: A unique name to identify the motor.
- **Type**: The motor type.
- **Maximum Torque or Force**: The maximum short-time or torque or force.
- **Maximum Current**: The maximum short-time current.
- **R**: The resistance at 25° C.
- **L**: The terminal inductance.
- **J_rotor or m_motor**: The rotor inertia or the the moving mass of the motor.

#### Desired

Some parameters are desired. I.e. they add more detail to the model:
### Nominal Torque or Force
Torque or force at nominal operation.

### Nominal Current
Current at nominal operation.

### Nominal Speed
Speed at nominal operation.

### alpha_c
The temperature dependency of the coil resistance.

### ktc
The temperature dependency of the magnets.

### poles or pitch
The number of poles (always an even number) or pole pitch (distance N-N poles).

### d
Mechanical damping and eddy current losses.

### T_fric
Mechanical friction and hysteresis losses.

### T_cog
The amplitude of the cogging torque.

### Temp_amb
The ambient temperature.

### Temp_initial
The initial temperature of the coils and housing.

### Temp_max
The maximum coil temperature.

### RT1
The thermal resistance between rotor and stator.

### RT2
The thermal resistance between stator and environment.

### CT1
Thermal capacity of the rotor.

### CT2
Thermal capacity of the stator.

If you do not know the values of these parameters, fill in zero. 20-sim will automatically change some into small numbers to prevent division by zero. Because the nominal torque and current are used to derive the torque constant at nominal operation, they will be replaced by the maximum current and torque if you fill in a zero value.

#### Torque Speed Plot
Some parameters will add more detail to the torque speed plot:

- **Speed**: The maximum speed.
- **Voltage**: Maximum short-time voltage.
- **Power**: The maximum short time power.
Additional
The remaining parameters are not used in the torque speed plot or the 20-sim model. They are useful for selection criteria when searching motors. If you do not know the values of these parameters, fill in zero.

Dynamic Model
If you have selected a motor, clicking the OK button will close the editor and generate a dynamic model. The model will be filled with the parameters from the selected motor and is ready for the use in a simulation. The model contains a number of variables that may be useful to show in a simulation plot.

General Part

- **R**: resistance at simulated (fluctuating) temperature
- **K**: torque constant at simulated (fluctuating) temperature
- **u_eff**: effective terminal (phase-phase) voltage
- **u_max**: maximum terminal (phase-phase)
- **i_max**: maximum phase current
- **phi**: shaft angle

Thermal part

- **Temp_coil**: coil temperature
- **Temp_housing**: housing temperature

Torque speed plot

- **omega_range**: speed ranging from zero to over 5% of maximum speed
- **T_range**: torque ranging from zero to over 5% of maximum torque
- **Torquemax**: maximum torque
- **Speedmax**: maximum speed
- **T_max_power**: torque at maximum power
- **T_max_current**: torque at maximum current
- **T_max_outputpower**: line of maximum output torque
- **T_max_voltage**: torque at maximum voltage
- **T_max_efficiency**: line of torque at maximum efficiency
- **T_100**: maximum allowable continuous torque, (i.e. a 100% duty cycle)
Creating your own data files

The motor parameters are visible in the Grid tab. These parameters are stored in a comma separated data file (extension .csv) or in an encrypted comma separated data file (extension .cse).

By default, the file ServoMotor.csv is shown. Using the File menu you can store and open csv files. The csv files can be edited with the Servo Motor Editor or an external spreadsheet program like OpenOffice. In OpenOffice Calc the file looks like:

![Image of OpenOffice Calc spreadsheet]

The top 5 rows contain the description of the motor parameters and the corresponding units. The first and second row are used for rotation motors and the third and fourth row are used for linear (translation) motors. The fifth row contains the parameter names.

The other rows contain the motor parameters. The meaning of these parameters is described in the previous sections. Please use the following guidelines when editing data files:

1. Never change the first five lines
2. Do no use duplicate names in the first column (keyname)
3. Do use commas
4. Do no use strange formatting (in Excel use the General format)
5. Do no enter extra columns
6. Do net enter other information in additional rows or columns. The Servo Motor Editor will try to read all cells and halt if the content is not according the specifications.
7. Do no add comment.
8. The last column entry (20-sim) should contain one white space character.

**Data Files**

**Maxon 2005 / 2006**

**File**
20-sim 3.6\Tools\Servo Motor Dynamics\Maxon 2006.cse

**Date**
November 2005

**More information**
www.maxonmotors.com

**Description**
The data file Maxon 2006.cse contains the complete set of Maxon motors, program 2005 / 2006. Most of the data has been extracted from the Maxon data sheets. The tables below shows the 20-sim names and the corresponding data sheet names. Some parameters were not available in the data sheets and have been given by the Maxon motor company. These parameters are indicated as *Given by Maxon*. Some parameters were calculated. These are indicated as *Calculated*.

**DC motors**

<table>
<thead>
<tr>
<th>Servo Motor Editor</th>
<th>Maxon Data Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General Data</strong></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Motor Series</td>
</tr>
<tr>
<td>Keyname</td>
<td>Maxon Order Number</td>
</tr>
<tr>
<td>Info</td>
<td>Additional Information</td>
</tr>
<tr>
<td>Type</td>
<td>DC</td>
</tr>
<tr>
<td>Date</td>
<td>21 October 2005</td>
</tr>
<tr>
<td>Price</td>
<td>-</td>
</tr>
<tr>
<td>Delivery Time</td>
<td>stock / standard / special</td>
</tr>
<tr>
<td>Library</td>
<td>Maxon 2006.cse</td>
</tr>
<tr>
<td><strong>Nominal Data</strong></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Max. continuous torque</td>
</tr>
<tr>
<td>Current</td>
<td>Max. continuous current</td>
</tr>
<tr>
<td>Speed</td>
<td>No load speed divided by 2</td>
</tr>
<tr>
<td>Voltage</td>
<td>Calculated</td>
</tr>
</tbody>
</table>
9. Toolboxes

<table>
<thead>
<tr>
<th>Power</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Max/Peak Data</strong></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Stall torque</td>
</tr>
<tr>
<td>Current</td>
<td>Starting current</td>
</tr>
<tr>
<td>Power</td>
<td>Assigned Power Rating</td>
</tr>
<tr>
<td>Voltage</td>
<td>Calculated*</td>
</tr>
<tr>
<td>Speed</td>
<td>Max. permissible speed</td>
</tr>
<tr>
<td><strong>Thermal Data</strong></td>
<td></td>
</tr>
<tr>
<td>Temp_amb</td>
<td>Set to 25</td>
</tr>
<tr>
<td>Temp_initial</td>
<td>Set to 25</td>
</tr>
<tr>
<td>Temp_max</td>
<td>Maximum rotor temperature</td>
</tr>
<tr>
<td>RT1</td>
<td>Thermal resistance rotor-housing</td>
</tr>
<tr>
<td>RT2</td>
<td>Thermal resistance housing-ambient</td>
</tr>
<tr>
<td>CT1</td>
<td>Calculated</td>
</tr>
<tr>
<td>CT2</td>
<td>Given by Maxon</td>
</tr>
<tr>
<td><strong>Physical Data</strong></td>
<td></td>
</tr>
<tr>
<td>F_axial</td>
<td>Maximum Axial load</td>
</tr>
<tr>
<td>F_Radial</td>
<td>Maximum radial load</td>
</tr>
<tr>
<td>m</td>
<td>Weight of motor</td>
</tr>
<tr>
<td>D_motor</td>
<td>Diameter of motor</td>
</tr>
<tr>
<td>L_motor</td>
<td>Length of motor</td>
</tr>
<tr>
<td>D_shaft</td>
<td>Diameter shaft</td>
</tr>
<tr>
<td>L_shaft</td>
<td>Length Shaft</td>
</tr>
<tr>
<td><strong>Electrical Data</strong></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Terminal resistance</td>
</tr>
<tr>
<td>L</td>
<td>Terminal inductance</td>
</tr>
<tr>
<td>alpha_c</td>
<td>Given by Maxon</td>
</tr>
<tr>
<td>Ktc</td>
<td>Given by Maxon</td>
</tr>
<tr>
<td>Poles</td>
<td>Number of poles</td>
</tr>
<tr>
<td><strong>Mechanical Data</strong></td>
<td></td>
</tr>
<tr>
<td>J_rotor</td>
<td>Rotor inertia</td>
</tr>
<tr>
<td>d</td>
<td>Given by Maxon</td>
</tr>
<tr>
<td>T_fric</td>
<td>Given by Maxon</td>
</tr>
<tr>
<td>T_cog</td>
<td>0</td>
</tr>
<tr>
<td><strong>Derived Data</strong></td>
<td></td>
</tr>
<tr>
<td>K_nom</td>
<td>Calculated</td>
</tr>
<tr>
<td>K_max</td>
<td>Calculated</td>
</tr>
<tr>
<td>S_nom</td>
<td>Calculated</td>
</tr>
<tr>
<td>P_dis</td>
<td>Calculated</td>
</tr>
</tbody>
</table>

* In the data sheets Maxon only gives a nominal voltage. According to Maxon higher operating voltages are permissible provided that other limits are not exceeded. Therefore the maximum voltage is chosen equal to the voltage that is needed to run a motor with zero load at maximum speed.

**EC motors with block commutation**

Maxon EC motors can be driven by block commutation and sine commutation. The Maxon data sheets give the parameters for block commutation. To distinguish between block commutation and sine commutation the character `b` or `s` is added to the keyname.
### Servo Motor Editor

#### General Data
- **Name**: Motor Series
- **Keyname**: Maxon Order Number + b
- **Info**: Additional Information
- **Type**: Brushless DC
- **Date**: 21 October 2005
- **Price**: -
- **Delivery Time**: stock / standard / special
- **Library**: Maxon 2006.csv

#### Nominal Data
- **Torque**: Calculated
- **Current**: Max. continuous current
- **Speed**: Nominal speed
- **Voltage**: Calculated
- **Power**: Calculated

#### Max/Peak Data
- **Torque**: Stall torque
- **Current**: Calculated
- **Power**: Assigned Power Rating
- **Voltage**: Calculated*
- **Speed**: Max. permissible speed

#### Thermal Data
- **Temp_amb**: Set to 25
- **Temp_initial**: Set to 25
- **Temp_max**: Maximum rotor temperature
- **RT1**: Thermal resistance rotor-housing
- **RT2**: Thermal resistance housing-ambient
- **CT1**: Calculated
- **CT2**: Calculated

#### Physical Data
- **F_axial**: Maximum Axial load
- **F_Radial**: Maximum radial load
- **m**: Weight of motor
- **D_motor**: Diameter of motor
- **L_motor**: Length of motor
- **D_shaft**: Diameter shaft
- **L_shaft**: Length Shaft

#### Electrical Data
- **R**: Terminal resistance phase to phase
- **L**: Terminal inductance phase to phase
- **alpha_c**: Given by Maxon
- **Ktc**: Given by Maxon
- **Poles**: Number of poles

#### Mechanical Data
- **J_rotor**: Rotor inertia
- **d**: Given by Maxon
- **T_fric**: Given by Maxon
- **T_cog**: 0

#### Derived Data
- **K_nom**: Calculated
* In the data sheets Maxon only gives a nominal voltage. According to Maxon higher operating voltages are permissible provided that other limits are not exceeded. Therefore the maximum voltage is chosen equal to the voltage that is needed to run a motor with zero load at maximum speed.

**EC motors with sine commutation**

Maxon EC motors can be driven by block commutation and sine commutation. The Maxon data sheets give the parameters for block commutation. The parameters for sine commutation can be calculated from the block commutation parameters. To distinguish between block commutation and sine commutation the character \( b \) or \( s \) is added to the keyname.

### Servo Motor Editor

<table>
<thead>
<tr>
<th>Servo Motor Editor</th>
<th>Maxon Data Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General Data</strong></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Motor Series</td>
</tr>
<tr>
<td>Keyname</td>
<td>Maxon Order Number + s</td>
</tr>
<tr>
<td>Info</td>
<td>Additional Information</td>
</tr>
<tr>
<td>Type</td>
<td>AC Synchronous</td>
</tr>
<tr>
<td>Date</td>
<td>21 October 2005</td>
</tr>
<tr>
<td>Price</td>
<td>-</td>
</tr>
<tr>
<td>Delivery Time</td>
<td>stock / standard / special</td>
</tr>
<tr>
<td>Library</td>
<td>Maxon 2006.csv</td>
</tr>
<tr>
<td><strong>Nominal Data</strong></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Calculated</td>
</tr>
<tr>
<td>Current</td>
<td>Calculated</td>
</tr>
<tr>
<td>Speed</td>
<td>Nominal speed</td>
</tr>
<tr>
<td>Voltage</td>
<td>Calculated</td>
</tr>
<tr>
<td>Power</td>
<td>Calculated</td>
</tr>
<tr>
<td><strong>Max/Peak Data</strong></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Calculated</td>
</tr>
<tr>
<td>Current</td>
<td>Calculated</td>
</tr>
<tr>
<td>Power</td>
<td>Assigned Power Rating</td>
</tr>
<tr>
<td>Voltage</td>
<td>Calculated*</td>
</tr>
<tr>
<td>Speed</td>
<td>Calculated</td>
</tr>
<tr>
<td><strong>Thermal Data</strong></td>
<td></td>
</tr>
<tr>
<td>Temp_amb</td>
<td>Set to 25</td>
</tr>
<tr>
<td>Temp_initial</td>
<td>Set to 25</td>
</tr>
<tr>
<td>Temp_max</td>
<td>Maximum rotor temperature</td>
</tr>
<tr>
<td>RT1</td>
<td>Thermal resistance rotor-housing</td>
</tr>
<tr>
<td>RT2</td>
<td>Thermal resistance housing-ambient</td>
</tr>
<tr>
<td>CT1</td>
<td>Calculated</td>
</tr>
<tr>
<td>CT2</td>
<td>Calculated</td>
</tr>
<tr>
<td><strong>Physical Data</strong></td>
<td></td>
</tr>
<tr>
<td>F_axial</td>
<td>Maximum Axial load</td>
</tr>
<tr>
<td>F_Radial</td>
<td>Maximum radial load</td>
</tr>
<tr>
<td>m</td>
<td>Weight of motor</td>
</tr>
<tr>
<td>D_motor</td>
<td>Diameter of motor</td>
</tr>
</tbody>
</table>

20-sim 4.7 Reference Manual 443
L\_motor \quad \text{Length of motor} \\
D\_shaft \quad \text{Diameter shaft} \\
L\_shaft \quad \text{Length Shaft} \\

**Electrical Data**

- R \quad \text{Terminal resistance phase to phase}
- L \quad \text{Terminal inductance phase to phase}
- alpha\_c \quad \text{Given by Maxon}
- Ktc \quad \text{Given by Maxon}
- Poles \quad \text{Number of poles}

**Mechanical Data**

- J\_rotor \quad \text{Rotor inertia}
- d \quad \text{Given by Maxon}
- T\_fric \quad \text{Given by Maxon}
- T\_cog \quad 0

**Derived Data**

- K\_nom \quad \text{Calculated}
- K\_max \quad \text{Calculated}
- S\_nom \quad \text{Calculated}
- P\_dis \quad \text{Calculated}

* In the data sheets Maxon only gives a nominal voltage. According to Maxon higher operating voltages are permissible provided that other limits are not exceeded. Therefore the maximum voltage is chosen equal to the voltage that is needed to run a motor with zero load at maximum speed.

### Tecnotion 2006

**File**

20-sim 3.6\Tools\Servo Motor Dynamics\Tecnotion 2006.cse

**Date**

November 2006

**More information**

www.tecnotion.com

**Description**

The data file Tecnotion 2006.cse contains the complete set of Tecnotion motors, program 2006. Most of the data has been extracted from the Tecnotion data sheets. The tables below shows the 20-sim names and the corresponding data sheet names. Some parameters were not available in the data sheets and have been given by the Tecnotion motor company. These parameters are indicated as Given by Tecnotion. Some parameters were calculated. These are indicated as Calculated.

**Important:** The nominal data and the default value of the thermal resistance RT2 are calculated for air cooling. The value for RT2 can be changed using a slider. **If water cooling is used, change the value of RT2 to its minimum value.**
9. Toolboxes

<table>
<thead>
<tr>
<th>Name</th>
<th>Motor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyname</td>
<td>Order Number</td>
</tr>
<tr>
<td>Info</td>
<td>Additional Information</td>
</tr>
<tr>
<td>Type</td>
<td>AC Synchronous Linear</td>
</tr>
<tr>
<td>Date</td>
<td>21 October 2005</td>
</tr>
<tr>
<td>Price</td>
<td>-</td>
</tr>
<tr>
<td>Delivery Time</td>
<td>-</td>
</tr>
<tr>
<td>Library</td>
<td>Tecnotion 2006.cse</td>
</tr>
</tbody>
</table>

**Nominal Data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>Continuous Force (air cooled*)</td>
</tr>
<tr>
<td>Current</td>
<td>Continuous Current (air cooled*)</td>
</tr>
<tr>
<td>Speed</td>
<td>0 m/s</td>
</tr>
<tr>
<td>Voltage</td>
<td>Calculated</td>
</tr>
<tr>
<td>Power</td>
<td>-</td>
</tr>
</tbody>
</table>

**Max/Peak Data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>Ultimate Force / Peak Force</td>
</tr>
<tr>
<td>Current</td>
<td>Ultimate Current / Peak Current</td>
</tr>
<tr>
<td>Power</td>
<td>Calculated</td>
</tr>
<tr>
<td>Voltage</td>
<td>Max. voltage ph-ph</td>
</tr>
<tr>
<td>Speed</td>
<td>Maximum speed</td>
</tr>
</tbody>
</table>

**Thermal Data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp_amb</td>
<td>Set to 25</td>
</tr>
<tr>
<td>Temp_initial</td>
<td>Set to 25</td>
</tr>
<tr>
<td>Temp_max</td>
<td>Maximum Temperature</td>
</tr>
<tr>
<td>RT1</td>
<td>Thermal Resistance coil - housing</td>
</tr>
<tr>
<td>RT2</td>
<td>Calculated*</td>
</tr>
<tr>
<td>CT1</td>
<td>Given by Tecnotion</td>
</tr>
<tr>
<td>CT2</td>
<td>Given by Tecnotion</td>
</tr>
</tbody>
</table>

**Physical Data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_axial</td>
<td>-</td>
</tr>
<tr>
<td>F_Radial</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>D_motor</td>
<td>-</td>
</tr>
<tr>
<td>L_motor</td>
<td>-</td>
</tr>
<tr>
<td>D_shaft</td>
<td>-</td>
</tr>
<tr>
<td>L_shaft</td>
<td>-</td>
</tr>
</tbody>
</table>

**Electrical Data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2 * Resistance per phase</td>
</tr>
<tr>
<td>L</td>
<td>2 * Induction per phase</td>
</tr>
<tr>
<td>alpha_c</td>
<td>0.004</td>
</tr>
<tr>
<td>Ktc</td>
<td>0</td>
</tr>
<tr>
<td>Pitch</td>
<td>Magnet Pitch NN</td>
</tr>
</tbody>
</table>

**Mechanical Data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_motor</td>
<td>Weight of Coilunit</td>
</tr>
<tr>
<td>d</td>
<td>Given by Tecnotion</td>
</tr>
<tr>
<td>F_fric</td>
<td>-</td>
</tr>
<tr>
<td>F_cog</td>
<td>0</td>
</tr>
</tbody>
</table>

**Derived Data**
9. Toolboxes

<table>
<thead>
<tr>
<th></th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_nom</td>
<td>Calculated</td>
</tr>
<tr>
<td>K_max</td>
<td>Calculated</td>
</tr>
<tr>
<td>S_nom</td>
<td>Calculated</td>
</tr>
<tr>
<td>P_dis</td>
<td>Calculated</td>
</tr>
</tbody>
</table>

* Note: The nominal data and the default value of the thermal resistance RT2 are calculated for *air cooling*. The value for RT2 can be changed using a slider. **If water cooling is used, change the value of RT2 to its minimum value.**

**Faulhaber 2006**

**File**

20-sim 3.6\Tools\Servo Motor Dynamics\Faulhaber 2006.cse

**Date**

February 2006

**More information**

www.faulhaber-group.com or www.minimotor.ch

**Description**

The data file Faulhaber 2006.cse contains the most of the Faulhaber servo motors, program 2006. Most of the data has been extracted from the Faulhaber data sheets. The tables below shows the 20-sim names and the corresponding data sheet names. Some parameters were not available in the data sheets and have been given by Faulhaber. These parameters are indicated as *Given by Faulhaber*. Some parameters were calculated. These are indicated as *Calculated*.

**DC motors**

<table>
<thead>
<tr>
<th>Servo Motor Editor</th>
<th>Faulhaber Data Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General Data</strong></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Motor Name</td>
</tr>
<tr>
<td>Keyname</td>
<td>Faulhaber Order Number</td>
</tr>
<tr>
<td>Info</td>
<td>Additional Information</td>
</tr>
<tr>
<td>Type</td>
<td>DC</td>
</tr>
<tr>
<td>Date</td>
<td>23 February 2006</td>
</tr>
<tr>
<td>Price</td>
<td>-</td>
</tr>
<tr>
<td>Delivery Time</td>
<td>-</td>
</tr>
<tr>
<td>Library</td>
<td>Faulhaber 2006.cse</td>
</tr>
<tr>
<td><strong>Nominal Data</strong></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Calculated</td>
</tr>
<tr>
<td>Current</td>
<td>Current up to</td>
</tr>
<tr>
<td>Speed</td>
<td>No load speed divided by 2</td>
</tr>
<tr>
<td>Voltage</td>
<td>Calculated</td>
</tr>
<tr>
<td>Power</td>
<td>Calculated</td>
</tr>
<tr>
<td><strong>Max/Peak Data</strong></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Stall torque</td>
</tr>
<tr>
<td>Current</td>
<td>Calculated</td>
</tr>
</tbody>
</table>

20-sim 4.7 Reference Manual
Power
Voltage
Speed

**Output Power**
**Nominal Voltage**
**No-load speed**

**Thermal Data**
Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

**Set to 25**
**Maximum coil temperature**
**Thermal resistance rotor – housing Rth1**
**Thermal resistance housing-ambient Rth1**
**Calculated**

**Physical Data**
F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

**Maximum Axial load**
**Maximum radial load**
**Weight of motor**
**Diameter of motor**
**Length of motor**
**Diameter shaft**
**Length Shaft**

**Electrical Data**
R
L
alpha_c
Ktc

**Terminal resistance**
**Rotor Inductance**
**Temperature coefficient of resistance of copper**
**Given by Faulhaber**

**Mechanical Data**
J_rotor
d
T_fric
T_cog

**Rotor inertia**
**Friction torque, dynamic**
**Friction torque, static**

**Derived Data**
K_nom
K_max
S_nom
P_dis

**Calculated**

**DC Brushless motors with block commutation**

**Servo Motor Editor**

**Faulhaber Data Sheets**

**General Data**
Name
Keyname
Info
Type
Date
Price
Delivery Time
Library

**Motor Name**
**Faulhaber Order Number**
**Additional Information**
**DC Brushless**
**23 February 2006**

**Faulhaber 2006.cse**
### Nominal Data
- Torque: Torque up to
- Current: Current up to
- Speed: At speed
- Voltage: Calculated
- Power: Calculated

### Max/Peak Data
- Torque: Stall torque
- Current: Calculated
- Power: Output Power
- Voltage: Nominal Voltage
- Speed: No-load speed

### Thermal Data
- Temp_amb: Set to 25
- Temp_initial: Set to 25
- Temp_max: Maximum coil temperature
- RT1: Thermal resistance rotor – housing $R_{th1}$
- RT2: Thermal resistance housing-ambient $R_{th1}$
- CT1: Calculated
- CT2: Calculated

### Physical Data
- $F_{axial}$: Maximum Axial load
- $F_{Radial}$: Maximum radial load
- $m$: Weight of motor
- $D_{motor}$: Diameter of motor
- $L_{motor}$: Length of motor
- $D_{shaft}$: Diameter shaft
- $L_{shaft}$: Length Shaft

### Electrical Data
- $R$: Terminal resistance
- $L$: Rotor Inductance
- $\alpha_c$: Temperature coefficient of resistance of copper
- $K_{tc}$: Given by Faulhaber
- Poles: Given by Faulhaber

### Mechanical Data
- $J_{rotor}$: Rotor inertia
- $d$: Friction torque, dynamic
- $T_{fric}$: Friction torque, static
- $T_{cog}$: 0

### Derived Data
- $K_{nom}$: Calculated
- $K_{max}$: Calculated
- $S_{nom}$: Calculated
- $P_{dis}$: Calculated
Theory

Basic Principles

Permanent Magnet Motors

When permanent magnets are used in a motor, a magnetic field will be present with a magnetic flux density $B$. Suppose an electric coil is placed in this magnetic field. When an electric current $i$ is forced to flow through this coil, a force acting on the coil will occur.

The resulting torque can be found as:

$$T = K_{tc}(\theta) \cdot i$$

where $K_{tc}(\theta)$ denotes the transfer of current to torque. It is a function of the angle, shape of the coil, magnetic field density, current distribution etc. When the current is kept equal to zero and we start to rotate the coil, a voltage will be induced. This voltage is called the electromotive force (EMF) and can be found as:

$$EMF = K_{ec}(\theta) \cdot \omega$$

where $K_{ec}(\theta)$ denotes the transfer of speed to voltage. It is also function of the angle, shape of the coil, magnetic field density, current distribution etc. For an ideal coil the input power should be equal to the output power

$$P_{in} = EMF \cdot i = K_{ec}(\theta) \cdot \omega \cdot \frac{T}{K_{tc}(\theta)} = \omega \cdot T = P_{out}$$

and thus
In most literature the $K_c(q)$ is calculated out of the magnetic field and coil distribution. Here it is simply assumed to be given and is called the **torque function**.

In normal operation a coil will have a resistance and inductance. A basic coil model is thus equal to:

\[
K_{tc}(\theta) = K_{ec}(\theta) = K_c(\theta)
\]

By a proper design of the motor, i.e. geometry of the coil windings, magnets etc., the torque function $K_c(q)$ can be given a particular shape. Then by proper manipulation of the current a positive torque can be created during the whole rotation of the coil. All permanent magnet motors are based on this principle.

**Brush DC Motors**

In DC motors, the torque function $Kc(q)$ is sinusoidal:

\[
K_c(\theta) = \hat{K}_c \cdot \sin(\theta)
\]

In DC motors a constant current is supplied. Through a process called commutation, the coil is connected the other way around (i.e. the current changes sign) when the coil function crosses zero. The resulting torque will then always be positive but will vary between zero and maximum:

\[
T = i(\theta) \cdot \hat{K}_c \cdot \sin(\theta) = \hat{i} \cdot \hat{K}_c \cdot \text{abs}(\sin(\theta))
\]

By combining coils, the resulting torque variation or **ripple** will decrease. The graph below shows the resulting torque when three coils are used.
The more coils are used the more the torque ripple decreases.

<table>
<thead>
<tr>
<th>number of coils</th>
<th>torque ripple (top-top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>5</td>
<td>5%</td>
</tr>
<tr>
<td>7</td>
<td>2.5%</td>
</tr>
<tr>
<td>9</td>
<td>1.5%</td>
</tr>
<tr>
<td>11</td>
<td>1%</td>
</tr>
</tbody>
</table>

If we neglect the torque ripple, we get the common DC motor equations:

\[
T = K \cdot i
\]

\[
EMF = K \cdot \omega
\]

**Commutation**

In practical motors, the rotor is equipped with a commutator. A commutator consists of insulated collector bars that are connected with the coils. Each coil is connected with one end to a collector and the next end to the neighboring collector. A pair of brushes is used to connect an outside current source to the collectors.
Every rotation the current changes sign twice, resulting in a continuous positive torque addition of every coil.

**Limits**

Commutation is the largest limiting factor in DC motor performance. Sparks between the brushes and the collectors are the main causes for brush wear. There are several causes for sparking, which limit the maximum speed, current, voltage and power of a brush DC motor.

When the brush leaves a collector, the current has to be reversed. The time that is needed to reverse the current depends directly on the current amplitude and thus on the generated torque. Because the time that is available depends on the motor speed, the result is a limit on the power that can be generated.

Another limitation of the motor speed is due to imperfect dimensions of the collectors. Differences in height of a few microns may cause the brushes to jump at high speeds.

Just a small part of the contact area of a brush and collector is actually used for the current transfer. As a result highly localized, short time "hot spots" develop. When the currents get greater than permitted, local temperatures occur that lead to material evaporation.

Above a voltage of 15 to 18V experience shows that the air will experience ionization phenomena, which leads to arcing. This arc extends from one collector bar to another. When enough voltage is applied, the arc will extend several collector bars and reach the other brush, leading to serious damage. The maximum motor voltage is therefore the result of multiplying the number of collector bars between the brushes and the maximum collector bar voltage.

Permanent magnets can lose their strength when operating above temperatures of 60 °C and suppressed by a high external magnetic field. Such a field can occur when large current changes occur. Therefore the maximum current of a motor should be limited.
**Brushless DC Motors**

Given motor with three coils, where the coils are mounted in the stator with a spatial displacement of 120°. The coils are connected in a star-formation as shown in the figure below.

In Brushless DC motors, the coils and magnets are designed so that a trapezoidal torque function $K_c(q)$ is found as shown below:

To get a constant torque each coil current is a block wave as shown in the figure below. Although the current is thus alternating, the term DC is used to distinguish this type of motor from motors that used a sinusoidal current. The block wave current is provided through "electronic commutation". The current is generated by a three phase amplifier that gets the exact switching points from a motor controller.
As can easily be seen from the graphs, the resulting torque is constant and twice the current times the amplitude of the coil function:

\[ T = 2 \cdot \overline{i} \cdot K_c \]

To get an equivalent of the coil model we can write this equation as:

\[ T = K \cdot i_{\text{phase,max}} \]

We have to realize that here \( i \) is not a constant current anymore but the maximum coil current! Because the coil current is the current of one of the three phases, in literature \( i \) is mostly written as the maximum phase current. It is the maximum current that can be measured at each of the three terminals of the motor.

In a derivation that goes beyond the scope of this introduction (see Compter, 2004), it can be shown that the electromotive force can be found as:

\[ EMF_{\text{phase-phase,max}} = K \cdot \omega \]

Here the electromotive force is defined as the maximum induced voltage between two phases. The resulting motor model is shown below:
The voltage of the motor model is commonly known as the **maximum phase to phase voltage**. It is the maximum voltage that can be measured between any pair of two terminals. The **phase to phase resistance** and **phase to phase inductance** are defined equivalent as the resistance and inductance that can be measured between any pair of two terminals.

### Limits

Brushless DC motors have no mechanical commutation, and therefore do not suffer from the limits caused by mechanical commutation. Consequently Brushless DC motors can run at much higher speeds and are not limited by a maximum voltage. The speed of Brushless DC motors is only limited by the bearings.

Just like brush DC motors the magnets impose an upper limit for the current and torque in a Brushless DC motor.

### AC synchronous motor

AC synchronous motors use the same principle as Brushless DC-motors. The coils are also mounted in the stator with a spatial displacement of $120^\circ$.

The coils and magnets are designed so that a sinusoidal torque function $Kc(q)$ is found as shown below:
To get a constant torque each coil current is a sinusoidal wave as shown in the figure below.

As can be seen from the graph, the resulting torque is constant and one and a half times the current times the amplitude of the coil function:

\[ T_a = \frac{3}{2} \cdot \hat{K}_c \cdot \hat{i}_c \]

To get an equivalent of the coil model we can write this equation as:

\[ T = K \cdot i_{\text{rms,phase}} \]

We have to realize that here \( i \) is not a constant current anymore but the root mean square coil current! Because the coil current is the current of one phase in literature \( i \) is mostly denoted as the \textbf{rms phase current}. It is the rms current that can be measured at each of the three terminals of the motor.
In a derivation that goes beyond the scope of this introduction (see Compter, 2004), it can be shown that the electromotive force can be found as:

\[ \text{EMF}_{\text{rms, phase-phase}} = \frac{K}{\sqrt{3}} \cdot \omega \]

Here the electromotive force is defined as the induced rms voltage between two phases. The resulting motor model is shown below:

The voltage of the motor model is mostly denoted as the \textbf{rms phase to phase voltage}. It is the rms voltage that can be measured between any pair of two terminals. The \textbf{phase to phase resistance} and \textbf{phase to phase inductance} are defined equivalent as the resistance and inductance that could be measured between any pair of two terminals.

**Limits**

AC synchronous motors have no mechanical commutation, and therefore do not suffer from the limits caused by mechanical commutation. Consequently AC synchronous motors can run at much higher speeds and are not limited by a maximum voltage. The speed of AC synchronous motors is only limited by the bearings.

Just like brush DC motors the magnets impose an upper limit for the current and torque in a AC synchronous motor.

**Linear Motors**

The working principle of linear motors is exactly the same as for rotary motors. Magnets are place on a flat surface, as shown in the figure below. A carriage holding the coils can run over the magnets.

When the carriage runs over the magnets an electromotive voltage will be induced:
with $K_c(x)$ the **force function** of the coil. It is a function of the carriage position, shape of the coil, magnetic field density, current distribution etc. The force function in a linear motor is equivalent to the torque function of a rotary motor. When a current runs through the coil a force results:

$$ F = K_c(x) \cdot i $$

The principle for linear motor is the same as the principle of rotary motors. By a proper design of the motor, i.e. geometry of the coil windings, magnets etc., the force function $K_c(x)$ can be given a particular shape. By proper manipulation of the current a positive force can be created during the movement of the carriage. Because mechanical commutation is not very useful for linear movements, linear motors use electronic commutation. Like their rotary counterparts, linear motors can be driven by block shape currents (Brushless DC Linear) and sinusoidal currents (AC Synchronous Linear).

**Limits**

The limits for linear motors are equal to the Brushless DC and AC synchronous motors when torque is replaced by force and angular speed by linear speed.

**Star and Delta Networks**

Brushless DC motors and AC synchronous motors use three phase currents to connect to three groups of coils. The connection can be made use a star network or a delta network. Compared to star networks, in a delta network less voltage and more current is needed to produce the same amount of torque. For amplifiers the maximum current is directly related to the costs. That is why delta networks are only used in special cases where higher speeds than normal are required.

In 20-sim the electrical resistance and inductance are measured between the terminals (e.g. between 1 and 2 or 2 and 3 or 3 an 1). This is known as the **terminal resistance** and **inductance** or as the **phase to phase resistance** and **inductance**. There are two reasons for using terminal values. Most motor suppliers give the terminal values in their data sheet and by using terminal values the same dynamic model can be used for star networks and delta networks.
If the motor supplier gives coil values instead of terminal values, you have to calculate them by hand. The relation between the terminal values and the coil values is:

\[ R_y = 2 \cdot R_{coil} \quad R_A = \frac{2}{3} \cdot R_{coil} \]
\[ L_y = 2 \cdot R_{coil} \quad L_A = \frac{2}{3} \cdot R_{coil} \]

**Torque Speed Plot**

**General Model**

The DC motor model can serve as a prototype model for all permanent magnet motors.

Although the models for DC Brushless and AC synchronous motors are slightly different, the DC motor model is still very useful to explain their operation. In this chapter the DC motor model will be used to derive the torque speed plot of a motor and show the use of the torque speed plot for motor selection.

The working principle for all permanent magnet motors is the same: get a constant torque by manipulation of the coil function and the current. The relation between the torque and current is:

\[ T = K_T \cdot i \]

The constant \( K_T \) is generally known as the **torque constant**. The relation between the induced current and the rotational speed is:

\[ EMF = K_e \cdot \omega \]

The constant \( K_e \) is generally known as the **voltage constant**. For DC motors the torque constant and voltage constant have the same value. Therefore the subscripts \( T \) and \( e \) are usually omitted. The total voltage can be described as:

\[ u = i \cdot R + L \cdot \frac{di}{dt} + K \cdot \omega \]

If we assume the current is changing only very slowly, the current derivative can be neglected:
9. Toolboxes

\[ i = \frac{u - K \cdot \omega}{R} \]

With the torque equation:

\[ T = K \cdot i \]

this leads to

\[ T = \frac{K \cdot (u - K \cdot \omega)}{R} \]

The torque at zero speed (stall torque) is found as

\[ T_{\text{stall}} = \frac{K \cdot u}{R} \]

which enables us to write the torque as:

\[ T = T_{\text{stall}} - \frac{K^2}{R} \cdot \omega = T_{\text{stall}} - S \cdot \omega \]

where \( S \) is commonly know as the steepness. The steepness has many definitions:

\[ S = \frac{T^2}{i^2 \cdot R} = \frac{K^2}{R} = \frac{\Delta T}{\Delta \omega} \]

The speed where the current is zero (no load speed) is equal to

\[ \omega_0 = \frac{u}{K} \]

The relation between stall torque and no load speed is obvious:

\[ T_{\text{stall}} = S \cdot \omega_0 \]

which leads to the general torque equation:

\[ T = S \cdot (\omega_0 - \omega) \]

This equation can be displayed graphically and is commonly known as the torque speed plot. The graph shows the generated torque as a function of the speed. For constant voltages a straight line from the stall torque to the no load speed is found. The slope of the line is equal to the steepness \( S \).
The torque speed plot is a useful representation of a motor because we can draw the desired load torque in this plot and to see if the motor is able to produce this torque. In the figure below the load curve is shown in red. It is a constant torque applied to a load, which makes it accelerate until a certain velocity is reached and the torque gets zero.

The red dot indicates the point of maximum load power. This point is important because it indicates the maximum power that the motor has to deliver.

**Limits**

To find out if a motor is sufficient, we have to plot the motor limits in the torque speed plot. In the previous chapter we have described the following limits:

<table>
<thead>
<tr>
<th>Limit</th>
<th>Brush DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>torque / current</td>
<td>V</td>
</tr>
<tr>
<td>speed</td>
<td>V</td>
</tr>
<tr>
<td>power</td>
<td>V</td>
</tr>
</tbody>
</table>
Maximum Voltage
For higher voltages, a higher stall torque and no load speed is found but the steepness does not change.

Maximum Torque / Maximum Current
In many data sheets a maximum torque is given. This is directly connected with a maximum current limit through the equation:

\[ i = \frac{T}{K} \]

So both the maximum current and the maximum torque appear as horizontal lines in the torque speed plot.

Maximum Velocity
The maximum velocity can be directly indicated in the torque speed plot as a vertical line.
Maximum Power
The line of maximum power can be indicated as a parabola in the torque speed plot.
**Safe Operating Area**

If the limits are plotted in the torque speed plot, an Area of Safe Operation is found. For a proper motor, the torque speed curve of the load should be inside the **Safe Operating Area (SOA)**. The figures below show the safe operating areas for the various motor types. Brush DC-motors (left figure) have a safe operating area that is more limited than Brushless DC motors and AC synchronous motor (right figure).

In practice motor suppliers of Brushless DC motors and AC synchronous motors may impose limits on the maximum voltage and power. This is mostly done to prevent heating up the motor too quickly during continuous operation, or material limits. This makes the Safe Operating Area of these motors look like that of a DC motor. Compared to DC motors, Brushless DC motors and AC synchronous motors will always allow higher torques and speeds because of the absence of mechanical commutation.

**Losses**

Every motor will experience losses, which results in a temperature rise. The maximum allowed temperature is limited by the magnets, the oil in the bearings and the mechanical behaviour of the brushes. Analysis of the cause of losses is therefore important for the correct choice of a motor.

**Electric Dissipation**

All motor coils have resistance and will therefore generate heat. The heat flow generated is equal to:

\[
\frac{dQ}{dT} = \left[ \frac{1}{\Delta T} \int \left( i^2 \cdot R \right) dt \right] \frac{\Delta T}{\Delta T} = \left[ \frac{R}{\Delta T} \int \left( i^2 \cdot dt \right) \right] \frac{\Delta T}{\Delta T}
\]

which can also be written as:

\[
dQ = i_{rms}^2 \cdot R
\]

with \(i_{rms}\) the **root mean square** current:
For constant DC currents the root mean square value is equal to the current itself. For sinusoidal currents, the root mean square value is equal to the amplitude of the current times the square root of 2.

**Hysteresis losses**

In all motors except from hollow rotor motors, the magnets move with respect to the iron core of the motor. This results in a reversing magnetic field in the iron which leads to hysteresis.

Each rotation produces an energy loss proportional to the area of the hysteresis curve (B/H). The power loss due to hysteresis is proportional to the motor speed and can therefore be represented as a friction torque. Due to this friction torque the motor can produce less output torque. This friction torque can therefore be represented in the torque speed plot as a drop down of all curves.

**Eddy Current losses**

A reversing magnetic field in iron also leads to an induce voltage. The resistance of the iron determines the resulting currents in the iron. These currents are named eddy currents.
Eddy currents heat up the iron because of its resistance. If a massive iron return is used large eddy currents will be induced with high power losses. Therefore in most motors laminated is applied, which reduce eddy currents by decreasing the path length and thus lead to smaller small power losses. The power loss due to eddy currents is proportional to the square of the motor speed and can therefore be modeled as mechanical damping. Damping will decrease the performance of the motor. It can be represented in the torque speed plot as a falling down of curves that increases with the speed.

\[ T_{\text{cog}} = \hat{T}_{\text{cog}} \cdot \sin \left( \frac{p \cdot \theta}{2} \right) \]

where \( \theta \) is the motor angle and \( p \) the number of poles. Although cogging does not consume power and is not visible in the torque speed plot, under dynamic conditions it may cause undesirable speed pulsation and also may induce vibrations and acoustic noise.

**Mechanical Losses**

Mechanical losses in motors are caused by bearings, brushes and air friction. Only when an air fan is mounted air friction becomes significant. The effects of brushes and bearings can be represented by coulomb friction and damping.
Temperature

As a result of the heat flow, the motor will warm up leading to two major effects. First of all the coil resistance will increase. Because all coils are made of copper, the temperature dependency of the coil resistance can be written as:

\[ R_T = R_{25} \cdot (1 + 0.004 \cdot (T_{coil} - 25)) \]

where \( R_{25} \) is the coil resistance at room temperature (25 degrees centigrade) and \( T_{coil} \) the actual coil temperature in degrees centigrade. As a result of the increase of motor temperature, the performance of the magnets will decrease. The result is a decrease of the torque constant:

\[ K_T = K_{25} \cdot (1 + ktc \cdot (T_{magnet} - 25)) \]

where \( K_{25} \) is the torque constant at room temperature (25 degrees centigrade), \( T_{magnet} \) the actual magnet temperature in degrees centigrade and \( ktc \) the temperature dependency of the used magnet.

<table>
<thead>
<tr>
<th>Magnets</th>
<th>ktc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrites</td>
<td>-0.002</td>
</tr>
<tr>
<td>( \text{Nd}<em>2\text{Fe}</em>{14}\text{B} )</td>
<td>-0.0013</td>
</tr>
<tr>
<td>SmCo</td>
<td>-0.0005</td>
</tr>
<tr>
<td>AlNiCo</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

Because the steepness is directly dependent of the torque constant and motor resistance

\[ S = \frac{K^2}{R} \]

an increase of temperature will lead to a decrease of the steepness. The results of a temperature increase can therefore be shown in the torque speed plot indirectly through the decrease of the maximum torque and steepness.
Thermal Duty Cycle

Motor losses result in an increase of the temperature. During short term operation the temperature increase will be limited. During long-term operation, the generated heat and the amount of heat that can be removed via the air and motor mounting determine the temperature increase.

In most motors, the largest portion of the generated heat is cause by electric dissipation. The generated heat is therefore directly proportional to the current and thus the torque. Imagine a motor in long-term operation generating a constant torque. A small torque will lead to only a moderate increase of the motor temperature, but there will be a certain torque where the generated heat leads to an increase of the maximum motor temperature. This is called the **maximum continuous torque** or the **100% Thermal Duty Cycle (TDC)**. The line of the maximum continuous torque can be shown in the torque speed plot and is often denoted as $T_{100}$. For lower speeds the $T_{100}$ curve will be straight because the heat generation mainly depends on electric dissipation. For higher speeds the $T_{100}$ curve will decrease because eddy current losses start to become significant.

If the motor is in continuous operation, but a constant torque is just delivered 50% of the time, a higher torque is permissible. This torque is denoted as $T_{50}$ and sometimes called the 50% thermal duty cycle. In a similar way $T_{25}$ and $T_{10}$ are defined.
**Nominal Operating Point**

Many motor manufacturers give in their data sheets a nominal or continuous current at a certain speed. This indicates an operating point on the T100 curve. The nominal or continuous current is the current that continuously be continuously be supplied to the motor at the given speed, which will result in a heating up of the coils to the maximum temperature.

The nominal operating point is always based on a certain ambient temperature. In the 20-sim Servo Motor Editor an ambient temperature of 25 ºC is used.

The choice of the speed for the nominal operation point is arbitrary. Some motor suppliers use the speed that results in a maximum power output at the motor shaft. Some motor suppliers use a speed that is half of the maximum allowed speed.

**Maximum Power and Maximum Efficiency**

The purpose of a motor is to deliver power to a load. Given a certain voltage $u$, the delivered power is equal to the torque times the speed:

$$ P = S \cdot \left( \frac{u}{K} - \omega \right) \cdot \omega $$

The maximum delivered power $P_{out,\max}$ for a given voltage can be found by differentiating this function and setting it to zero. The result will be a specific torque and speed. If this process is repeated for other voltages, a line of points where maximum power is delivered will result.

The efficiency $h$ of a motor is defined as the net output power divided by the input power. For a given voltage, the maximum efficiency can be found just like the maximum power and will lead to a certain torque and speed. By repeating this procedure for other voltages, a line of points where maximum efficiency is obtained will result.
Choosing a Motor

If we combine the results of the previous sections, a torque speed plot results as shown below. The arrows indicate the load curve with the circle as point of maximum load power. The **Safe Operating Area** shows the limits of operation due to motor specific parameters such as the maximum torque and speed.

The lines of maximum output power and maximum efficiency are the edges of the **Desired Operating Area**. The procedure for choosing a proper motor is:

1. Determine the load curve and the point of maximum load power.
2. Determine the duty cycle $d$ (the percentage of the time that torque is required) and estimate the corresponding $Td$ line with help of the shown $T100$, $T50$, $T25$ and $T10$ lines.
3. Select a motor such that the following demands are satisfied:
The load curve is completely beneath the Td line (no overheating).
- The complete load curve is in the Save Operating Area.
- The point of maximum load power is in the Desired Operating Area.
- The point of maximum load power is as close to maximum voltage line as possible (we want to choose the smallest motor that can do the job).
- The load curve is as much in the Desired Operating Area as possible.

Thermal Behaviour

DC Motors

Every motor generates heat, even when at zero speed, and this will lead to an increase of the motor temperature. Especially when running in continuous operation, there is a good chance that a motor, which is perfectly capable of generating the needed output power, will heat up beyond its thermal limit and break down.

As explained in the previous section the thermal limit is indicated in the torque speed curve by the maximum continuous torque line. To generate such a line, a thermal model is used. This thermal model is also part of the dynamic model that is used in 20-sim. This section describes the thermal model of permanent magnets motors.

In standard brush DC motors the coils are part of the rotor. To create a thermal model, various components will be identified first.

Heat Generation

Heat is generated in the motor at every place where energy is lost: coils, bearings, iron etc. Because the main source of energy loss is in the coils due to the coil resistance, we start at the coils. The coils act as a heat source and generate a heat flow equal to:

$$\frac{dQ}{dt} = i^2 \cdot R$$

Thermal Capacity

The rotor package, consisting of the coils and possibly iron and other material, will heat up due to the generated heat. The temperature increase depends on the generated heat $dQ$, the heat capacity of the rotor $C_{coil}$ and the transfer of heat to the stationary housing of the motor $dQ_{coil-housing}$:

$$T_{coil} = \frac{1}{C_{coil}} \cdot \int dQ - dQ_{coil-housing} \, dt$$

Thermal Resistance

The heat flow from the coils to the housing $dQ_{coil-housing}$ depends on the temperature difference between the rotor and the housing and the thermal resistance $R_{coil-housing}$:
Like the rotor, the housing will also heat up. The temperature increase depends on the heat coming from the rotor $dQ_{rotor-stator}$, the heat capacity of the housing $C_{housing}$ and the transfer of heat to the environment $dQ_{housing-amb}$:

$$dQ_{coil-housing} = \frac{(T_{coil} - T_{housing})}{R_{coil-housing}}$$

**Thermal Capacity**

The heat flow from the stator to the environment stator $dQ_{housing-amb}$ depends on the temperature difference between the housing and the environment and the thermal resistance $R_{housing-amb}$:

$$T_{stator} = \frac{1}{C_{housing}} \cdot \int dQ_{coil-housing} - dQ_{housing-amb} dt$$

**Thermal Resistance**

The thermal resistance $R_{housing-amb}$ depends on the motor mounting and external cooling. In most data sheets, a value for the thermal resistance can be found based on standard motor mounting.

**Environment**

The environment is supposed to have a fixed temperature $T_{amb}$.

**Other Motors**

The same components as found for the DC brush motor can be found for other motor types. We only have to realize that for Brushless DC motors and AC Synchronous motors the coils are mounted on the housing. This means the thermal resistance $R_{coil-housing}$ is relatively small and excess heat can be transferred relatively easy. Therefore these motors are very robust for overheating.

In AC synchronous linear motors, the coils are mounted are part of a platform, on which the load can be attached. To get the same thermal model we consider the platform to be the housing. Depending on the type of motor the housing can have a medium thermal capacity (iron core motors) or a very small thermal capacity (ironless motors). Because the all excess heat has to be removed through the air, linear motors will heat up easily. That is why sometimes forced cooling (water) is applied.
**Thermal Model**

If we combine all components we get the complete thermal model. It can be represented as shown in the figure below.

![Thermal Model Diagram](image)

The values for thermal capacities and resistances can be found in most data sheets. These values are, however, based on general conditions. The value of the thermal resistance $R_{housing-amb}$ can vary considerably, based on the specific mounting of the motor and use of passive or active cooling. Most motor suppliers will indicate how the thermal parameters were derived and how the motor should be mounted to meet the general conditions.

### 9.6 Real-Time Toolbox

#### 9.6.1 Introduction

**Real Time Toolbox**

The Real Time toolbox of 20-sim allows you to create C-code out of any 20-sim model for the use in real-time applications:

1. Create ANSI-C code for use in a real-time environment.

The generation of Matlab / Simulink code is can be performed using the Export command of the Editor File menu. You can also use the C-code generation command of the Simulator **Tools** menu.

The generation of C-code can be done with the C-code generation command of the Simulator **Tools** menu.
9.6.2 C-Code Generation

C-Code Generation

20-sim has a C-Code Generator which automatically converts a complete 20-sim model or submodel into C-Code. The application can be used to generate Matlab™/Simulink™ S-Functions, to generate Stand-Alone executables or to generate input/output functions for use in other C and C++ programs. The ANSI C-Code Generator can be opened from the Simulator (Tools menu, C-Code Generation command).

- Depending on the target selected, 20-sim will generate specific C-code.
- You can add more targets by adding paths in the General Properties.

By default, the following targets are supported:

1. **20-sim Dynamic DLL**: Generate C-code of a 20-sim submodel and compile the code into a DLL-call for use inside 20-sim.

2. **20-sim submodel for Arduino/AVR**: Generate C-code for the use on a Arduino/AVR. Note: not all functions (e.g. matrix) are supported!

3. **C-Code for 20-sim submodel**: Generate C-code of a 20-sim submodel.

4. **C++ class for 20-sim submodel**: Generate object oriented C-code of a 20-sim submodel.

5. **Simulink S-function**: Generate C-code of a 20-sim submodel in the Simulink format and compile it into an S-function. Note: this option requires the Matlab mex-compiler.

6. **Stand-alone C-code**: Generate C-code of a 20-sim main model including integration method.
7. **FMU 1.0 export for 20-sim submodel**: Export a 20-sim submodel using the FMI 1.0 standard.

8. **FMU 2.0 export for 20-sim submodel**: Export a 20-sim submodel using the FMI 2.0 standard.

---

### Generating ANSI C-Code

**Overview**

The modeling and simulation package 20-sim is capable of generating ANSI C-Code for several targets. Possible targets are Stand-Alone C, a C-Function, or a Simulink S-Function. Since 20-sim generates well-documented ANSI C-Code, it is easy for a user to make modifications or extensions to the generated code by hand. However it is also possible to fully define your own code target using C-Code templates, and to make modifications in these templates, so the resulting source code is tailor made for your application.

**General Structure**

The code generation process of 20-sim typically has the following structure:

1. **Step 1**
   1. The process starts with a model and simulation in 20-sim.
   2. In the 20-sim Simulator, the user selects the **C-Code Generation** command from the **Tools** menu.
   3. 20-sim collects information about the current model.
   4. A target configuration file is read that specifies the different code generation targets that exist.
   5. The **C-code generation dialog** is opened, allowing the user to specify the target to use.

2. **Step 2**
   1. The selected target refers to specific template files (source files) in a target specific subdirectory.
   2. 20-sim adapts these template files with the model information and generated code for the model.
Step 3

1. The resulting files are placed in a destination directory.
2. These files are now specific for the target and the model.
3. If desired, 20-sim can call additional commands for further processing (f.i. make, run etc).

Code Generation Dialog

After 20-sim reads the target configuration file, the code generation dialog is shown with the information of this file:

The target list shows the names of the available targets. When a selection is made, the description of the selected target is given at the right. A submodel can be selected when the target requires this. The output directory can be overruled.

Targets

The user can create own targets. All targets are defined in the target definition file Targets.ini. This file has a typical INI-file structure and starts with a section that simply enumerates which targets exist. Each target then has its own section that holds the remaining information, like a short description of the target, the name of the template directory, the names of the template source files, additional commands to perform, etc. The following keywords may appear in a target section:
Templates
Each target can point to a set of template files that are used to create C-Code with. Own template files can be created by the user, with the help of the most powerful feature of 20-sim C-Code generation: the use of tokens! A token is a placeholder for model-dependent information. For instance in the C-Code Generation Dialog, the target destination directory contains the name of the selected submodel (e.g. c:	emp\%SUBMODEL_NAME%) by default. Since this information is not yet known when the targets.ini file is created, a specific token that refers to this name is used instead. A complete description of predefined tokens is described in the section about Available 20-sim Tokens.

Generation Result
After the tokens in the target template files are replaced, the resulting target and model specific files will be placed in the destination directory. If commands are specified in the Targets.ini file, these commands are performed. This allows the user to call scripts automatically. E.g. for automatic compilation, linking and running of the code in a certain target environment.

Target.Ini File
The user can create own targets. All targets are defined in the target definition file Targets.ini. This file has a typical INI-file structure and starts with a section that simply enumerates which targets exist. Each target then has its own section that holds the remaining information, like a short description of the target, the name of the template directory, the names of the template source files, additional commands to perform, etc. The following keywords may appear in a target section:

targetName
="string"
The name that will appear in the 20-sim C-Code Generation Dialog.

iconFile
="string"
The name of an icon file (.ico) that contains an icon to appear in the 20-sim C-Code Generation Dialog.

description
="string"
The string that will appear in the description field in the 20-sim C-Code Generation Dialog.

templateDirectory
="string"
Here the path name where the template files for the c-code can be found can be specified. The default name is the target name in the CCode directory of 20-sim. If no full path is specified, the Ccode directory in 20-sim is taken as a starting point.
templateFiles
=filename1; filename2; filename3...
A list of files, semicolon-separated, that specify the files that are generated in the targetDirectory.

targetDirectory
="string"
This holds the default target directory where the files will be generated. This directory name will appear in the 20-sim dialog box when C-Code is generated and can be overruled by the user.

submodelSelection
=TRUE (default)
FALSE
Determines whether C-Code is generated for the complete 20-sim model, or that a submodel selection is required.

preCommand
="string"
A command which will be executed in the target directory before that the C-Code will be generated.

postCommand
="string"
A command which will be executed in the target directory after that the C-Code has been generated. For example a "make" command can be given to automatically compile the generated code for the specific target.

newLineCharacter

=0 CRLF (0x0d0a = DOS Standard)
=1 CR (0x0d = Macintosh Standard)
=2 LF (0x0a = Unix Standard)
Enter a number for the kind of newline character that should be used.

%KEYWORD%
=value
This (re)defines the keyword "KEYWORD" and gives it the contents "value". Own keywords can be defined in this manner as well.
example:
%XX_TIME%=someTime
will redefine the time variable with the value "someTime"
Example

A valid Targets.ini file (defining three targets) may look like below. The file may also contain specific 20-sim tokens (%MODEL_NAME%) that are described later on.

; Possible targets for 20-sim C-Code Generation
;
[targets]
StandAloneC
CFunCtion
20simDLL
Simulink

; Generate Stand-Alone C-Code for the complete 20-sim model
;
[StandAloneC]
targetName="Stand-Alone C-Code"
iconFile="20sim.ico"
description="Use this target when testing the complete 20-sim model as a single process."
SubmodelSelection=FALSE
templateDirectory="StandAloneC"
templateFiles=xxfuncs.c;xxfuncs.h;xxinteg.c;xxinteg.h;xxinverse.c
templateFiles=xxmain.c;xxmatrix.c;xxmatrix.h;xxmodel.c;xxmodel.h
templateFiles=xxtypes.h;%MODEL_NAME%.dsp;%MODEL_NAME%.dsw
targetDirectory="c:\temp\%MODEL_NAME%"

; Generate C-Code for a selected Submodel
;
[CFunCtion]
targetName="C-Code for 20-sim submodel"
iconFile="20sim.ico"
description="This is the C-Code as it was generated for a submodel in 20-sim version 3.1"
templateDirectory="CFunction"
templateFiles=xxfuncs.c;xxfuncs.h;xxinteg.c;xxinteg.h;xxinverse.c
templateFiles=xxmain.c;xxmatrix.c;xxmatrix.h;xxmodel.c;xxmodel.h
templateFiles=xxsubmod.c;xxsubmod.h;xxtypes.h;%SUBMODEL_NAME%.dsp;%SUBMODEL_NAME%.dsw
targetDirectory="c:\temp\%SUBMODEL_NAME%"

; Generate C-Code for a dynamic DLL-call to be used in 20-sim
;
[20simDLL]
targetName="20sim Dynamic Dll"
iconFile="20sim.ico"
description="Generate C-Code for a dynamic DLL-call to be used in 20-sim"
templateDirectory="20simDLL"
templateFiles=xxfuncs.c;xxfuncs.h;xxinverse.c
templateFiles=xxmatrix.c;xxmatrix.h;xxmodel.c;xxmodel.h
templateFiles=xxtypes.h;%SUBMODEL_NAME%.c
Available 20-sim Tokens

Both the target configuration file and the code generation dialog revealed the most important part of the 20-sim code generation process, the use of tokens!

A token is a placeholder for model-dependent information. For instance in the code generation dialog, the target destination directory contains the name of the selected submodel by default. Since this information is not yet known when the targets.ini file is created, a specific token that refers to this name is used instead.

The idea is to create targets from template source files that contain tokens instead of actual model-dependent information (like equations, names, parameters, inputs etc). The files that are specified in a target section will be scanned for these tokens and tokens will be replaced by the corresponding model-dependent information.

Predefined variable names

The following variables should be declared in the C-Code template, because 20-sim uses these names in the generation of the equations:

- c: constant array
- P: parameters array
- V: variables array
- s: states array
- R: rates array
- M: matrix array
- U: unnamed variables array
- F: favorite variables array
- f: favorite parameters array

Note that these parameters are case-sensitive!

Model Data

The following tokens will be replaced by numbers indicating the number of model parameters etc., typically used in memory allocation parts and loops.
The number of constants in the model
\%NUMBER_CONSTANTS
The number of parameters in the model
\%
The number of variables in the model
\%
The number of states in the model
\%
The number of inputs of the model
\%NUMBER_PARAMETERS
The number of outputs of the model
\%
The number of matrices used in the model
\%NUMBER_VARIABLES
The number of unnamed variables in the model
\%
The number of favorite parameters in the model
\%NUMBER_STATES
The number of favorite variables in the model
\%NUMBER_INPUTS
The size of the largest workarray necessary in calculating
\%NUMBER_OUTPUTS
some matrix functions
\%
\%NUMBER_UNNAMED
\%
\%

\%NUMBER_FAVORITE_PARAMETERS
\%
\%NUMBER_FAVORITE_VARIABLES
\%
\%WORK_ARRAY_SIZE
\%

The following tokens are already reserved for future use:

\%NUMBER_DEPSTATES
The number of dependent states in the model
\%
The number of algebraic loop variables pairs in the model
\%NUMBER_ALGLOOPS
The number of constraint variable pairs in the model
\%
The number of import variables in the model
\%
The number of export variables in the model
\%NUMBER_CONSTRAINTS
\%NUMBERIMPORTS
\%NUMBEREXPORTS

Example

Variable name arrays

If you want to use parameters etc. that are specific to a model you can use arrays of names using the following tokens:
%CONSTANT_NAMES% All the constants used in the model.
%PARAMETER_NAMES% All the parameters used in the model.
%VARIABLE_NAMES% All the variables used in the model.
%STATE_NAMES% All the states used in the model.
%RATE_NAMES% All the rates used in the model.
%DEPSTATE_NAMES% All the dependent states used in the model.
%DEPRATE_NAMES% All the dependent rates used in the model.
%ALGLOOP_NAMES% All the algebraic loop variables used in the model.
%CONSTRAINT_NAMES% All the constraint variables used in the model.
%INPUT_NAMES% All the inputs used in the model.
%OUTPUT_NAMES% All the outputs used in the model.
%MATRIX_NAMES% All the matrices used in the model.
%FAVORITE_PARAMETER_NAMES% All the favorite parameters used in the model.
%FAVORITE_VARIABLE_NAMES% All the favorite variables used in the model.

Example

Initialization code
An important part of a model are the parameters, initial values states etc. To match these with the generated model code and use the correct values the following tokens can be used:

%INITIALIZE_CONSTANTS%
%INITIALIZE_PARAMETERS%
%INITIALIZE_MATRICES%
%INITIALIZE_STATES%
%INITIALIZE_DEPSTATES%
%INITIALIZE_ALGLOOPS%
%INITIALIZE_CONSTRAINTS%
%INITIALIZE_INPUTS%
%INITIALIZE_OUTPUTS%
%INITIALIZE_FAVORITE_PARS%
%INITIALIZE_FAVORITE_VARS%

Example

Equations
The following tokens can be used to place 20-sim simulation model equations into the C-Code:
%INITIAL_EQUATIONS Equations that should be calculated once for initialization of the model

%STATIC_EQUATIONS Equations that should be calculated once

%INPUT_EQUATIONS Equations that should be calculated once at the beginning of every simulation step

%DYNAMIC_EQUATIONS Equations that calculates the dynamic part of the model, calculates the rates

%OUTPUT_EQUATIONS Equations that should be calculated once at the end of every simulation step

OUTPUT2_EQUATIONS Reduced set of equations that should be calculated at the end of every simulation step

%FINAL_EQUATIONS Equations that should be calculated once for termination of the model

Inputs/Outputs
To match model inputs and model outputs to for example sensor signals and actuator signals you can use:

%INPUT_TO_VARIABLE_EQUATIONS%
%VARIABLE_TO_OUTPUT_EQUATIONS%
%ALIAS_EQUATIONS%
%FAVORITE_PARS_EQUATIONS%
%FAVORITE_VARS_EQUATIONS%

Example

Additional tokens

%INTEGRATIONMETHOD% A string representing the name of the selected integration method, for now only Euler, RungeKutta4 and Discrete are available.

%XX_TIME% The name of the simulation time variable (combined with %VARPREFIX%)

%XX_INITIALIZE% The name of the variable that indicates the initialization phase(combined with %VARPREFIX%).

%START_TIME% Start time of the simulation (floating point notation).

%FINISH_TIME% Finish time of the simulation (floating point notation).

%TIME_STEP_SIZE% Step size of the simulation (floating point notation).

Either TRUE or FALSE, depending if the model is discrete in time or continuous in time.
% MODEL_IS_DISCRETE 
%

**Experiment Tokens**

Tokens which hold information about the model, experiment, user and system:

- `%FILE_NAME%` The file name of the generated C-Code.
- `%MODEL_FILE%` The complete path and file name of the original 20-sim model.
- `%MODEL_NAME%` The name of the 20-sim model out of which C-Code was generated.
- `%SUBMODEL_NAME%` The name of the 20-sim submodel out of which C-Code was generated.
- `%EXPERIMENT_NAME%` The experiment name accompanying the 20-sim (sub)model.
- `%GENERATION_TIME%` The time of C-Code generation.
- `%GENERATION_DATE%` The date of C-Code generation.
- `%GENERATION_BUILD%` The 20-sim version and build number.
- `%GENERATION_DIR%` The directory where the generated C-Code files are stored.
- `%USER_NAME%` The user name given in the 20-sim license.
- `%COMPANY_NAME%` The company name given in the 20-sim license.
- `%20SIM_DIR%` The directory where 20-sim is installed.

### 9.7 Time Domain Toolbox

#### 9.7.1 Time Domain Toolbox

The Time Domain Toolbox contains powerful tools to inspect the behaviour of your model using time domain simulation.

- **Parameter sweep**: Perform a number of simulation runs, while changing model parameters.
- **Optimization**: Optimize a given result by changing parameters.
- **Curve Fitting**: Fit your model to a given result by changing parameters.
- **Tolerance Analysis**
  - **Sensitivity**: Change parameters by a given percentage and monitor results.
  - **Monte Carlo**: Change parameters statistically and monitor results.
9. Toolboxes

- **Variation Analysis**: Find the statistical range of parameters to yield a given result.
- **External DLL**: Let the multiple run be controlled by a user-defined function in a DLL.

**Procedure**

1. From the **Toolbox** menu select the **Time Domain Toolbox** and then the tool that you want to use.
2. This will open the **Multiple Run Wizard**. Follow the instructions and after all settings have been entered, close the wizard.
3. Select the **Multiple Run** command from the **Simulation** menu to perform the specified analysis.
4. After simulation is completed a special window will open to showing the results. If it is not available, you can always open this window, by selecting the **Multiple Run Results** command of the **View** menu.

**Multiple Run Wizard**

All tools of the Time Domain Toolbox are started use the Multiple Run Wizard. You can open this Wizard directly by selecting the **Multiple Run** command from the **Properties** menu.

**9.7.2 Parameter Sweep**

Using the Parameter Sweep option of the **Time Domain Toolbox**, you can perform a predefined number of simulation runs with variation of parameters / initial values.

**Parameters / Initial Values**

1. From the **Tools** menu select the **Time Domain Toolbox** and then **Parameter Sweep**.

A window will open, asking you which parameters / initial values should be changed during the multiple simulations:
2. Add the parameters / initial values of your choice:

3. Click the **Next** button.

**Result**

A window opens asking you which result (optional) should be shown after the simulations:
4. If you do not want to use a result after simulation, enter nothing here. If you like to present a result after the simulation, enter it here using the various options of the window.

5. Click the **Next** button.

**Run options**

A window will open, asking some simulation run options:
You can select the following items:

- **Steps**: Number of simulations runs.
- **Copy from States**: Use the result of the previous simulation runs as the starting value numerical output of the parameter sweep.
- **Join Parameter Variation**: Change all parameters simultaneously.
- **Clear After Every Run**: Clear the simulation plot when a new simulation run starts.
- **Redraw After Every Run**: Update the scaling after every run.

6. Select the desired run options and click the **Next** button.

A window will open with a summary of the chosen options. If your are not satisfied you can use the **Back** button to go to a previous window and change settings.

7. Click the **Finish** button to close the **Multiple Run Wizard**.

8. From the **Simulation** menu click the **Multiple Run** command to perform the Parameter Sweep.

**Parameter Sweep Results**

After simulation has been done, a Multiple Run Results window will open, showing the minimum and maximum value of the result and chosen parameters:
You can select the following items:

- **Values**: Choose this button to open the list that shows the numerical output of the parameter sweep.
- **Matlab**: Export the results to Matlab.
- **OK**: Close the Multiple Run Results Window.

You can always re-open the Multiple Run Results window, by selecting the **Multiple Run Results** command of the **View** Menu.

9. By choosing the Values button, a new window is opened, showing the numerical results of the parameter sweep.

In the **Results** list of this window the subsequent runs are shown and (if available) the value of the chosen result:
You can select the following items:

- **Set Values**: Choose the values of the selected run, as new parameter values of your model.
- **Create Datafile**: Use this button to store the values of the selected variables on file. Use the control-key and shift-key to make multiple selections.

### 9.7.3 Optimization

Using the Optimization option of the *Time Domain Toolbox*, you can optimize a given result using variation of parameters / initial values.

**Optimization Method**

1. From the **Tools** menu select the **Time Domain Toolbox** and then Optimization.

A window opens asking you which optimization method should used:
2. Select the Optimization method that should be used.

3. Select the Tolerance (accuracy of the found optimum) that should be used and click Next.

**Parameters / Initial Values**

A window opens asking you which parameters / initial values should be varied during optimization:
4. Add the parameters / initial values of your choice:

5. Click the **Next** button.

**Result**

A window opens asking you which result should optimized:
6. Enter the result here using the various options of the window.
7. Click the **Next** button.

**Run options**

A window opens asking some simulation run options:
8. Select the desired run options and click the **Next** button.

A window opens with a summary of the chosen options. If you are not satisfied you can use the **Back** button to go to a previous window and change settings.

9. Click the **Finish** button to close the **Multiple Run** Wizard.

10. From the **Simulation** menu click the **Multiple Run** command to perform the Optimization.

**Optimization Results**

After simulation has been done, an Optimization Results window will open, showing the optimum value of the result and corresponding parameters:
You can select the following items:

- **Values**: Choose this button to open the list that shows the numerical output of the optimization runs.
- **Matlab**: Export the results to Matlab.
- **OK**: Close the Optimization Results Window.

You can always re-open the Multiple Run Results window, by selecting the **Multiple Run Results** command of the **View** Menu.

11. By choosing the **Values** button, a new window is opened, showing the numerical results of the parameter sweep.

In the **Results list** of this window the subsequent runs are shown and (if available) the value of the chosen result:
You can select the following items:

- **Set Values**: Choose the values of the selected run, as new parameter values of your model.
- **Create Datafile**: Use this button to store the values of the selected variables on file. Use the control-key and shift-key to make multiple selections.

### 9.7.4 Optimization Methods

In the Multiple Run Wizard you have to specify a result which will be optimized. The result is a function of model variables and the simulation run:

\[
result = f(i,v_1,v_2,\ldots)
\]

with \(i\) the number of the simulation run. You also have to specify the parameters that should be varied to find the optimum result. We can group these parameters in a parameter vector:

\[
\text{parameter vector} = p(i)
\]

with again \(i\) the number of the simulation run. All methods in 20-sim for finding an optimum of the result use the same iterative process:

1. The initial parameter vector is determined, e.g. \(p(1)\) and the corresponding function value \(f(1)\).
2. A search direction \(r(1)\) and a stepsize \(s(1)\) are determined.
3. Perform a new simulation run to find the parameter vector \(p(2) = p(1) + s(1)\cdot r(1)\).
4. Calculate \( f(2) \).

5. When the \( f(2) \) is smaller than \( f(1) \) and the difference between the two is smaller than a given tolerance, stop the process. The optimum has been found.

6. When the \( f(2) \) is smaller than \( f(1) \) and the difference between the two is larger than a given tolerance, proceed the process at step 2.

7. Otherwise a new stepsize and/or a new search direction are determined and the process is proceeded at step 3.

The choice of the stepsize is of importance for the speed an accuracy of the search process. A small stepsize will make the optimization process last very long. A large stepsize will make it less accurate. Most methods will therefore use a variable stepsize.

Of equal importance is the proper choice of the search direction. Methods for finding the search direction, can be divided in two groups: direct search methods and gradient search methods. The gradient of a function, is its slope at a certain point. Gradient search methods use this slope to find the optimal direction of search.

**Methods**

The optimization methods that are supported in 20-sim will now be explained. The pictures at the right visualize the methods with two varying parameters \( x \) (horizontal) and \( y \) (horizontal) and the corresponding result (vertical).

1. **Perpendicular Search (direct search)**

The perpendicular search method uses a search direction that is always perpendicular to the parameter axis. This means that only one parameter at a time is varied. All other parameters keep the same value. After one step, a next parameter is taken and the process continues.
2. Line Climber (direct search)
The line climber method uses a search direction that is always perpendicular to the parameter axis. This means that only one parameter at a time is varied. All other parameters keep the same value. After a minimum has been found the next parameter is varied and the process continues.

3. Steepest Descent (gradient search)
The steepest descent method starts its search in the direction of the steepest slope. This direction is kept for each new step until a minimum has been found. Then a new search direction is determined and the process continues.
4. Continuous Descent (gradient search)

The continuous descent method starts its search in the direction of the steepest slope. After each new step a new search direction is determined and the process continues.

5. Newton Raphson (gradient search)

The Newton Raphson method not only uses the gradient of a function, but also the second order gradient to determine the search direction. This direction is kept for each new step until a minimum has been found. Then a new search direction is determined and the process continues. Note: The method only converges for a positive second order gradient, i.e. near the minimum. This is shown in the figure to the right. For $x = -0.7$ and $y = -0.9$ the method does not converge. For $x = -0.5$ and $y = -0.3$ the method does converge.
6. Polack Ribiere (gradient search)

The Polack Ribiere method not only uses the gradient of a function, but also the second order gradient to determine the search direction. The second order gradient is estimated based on previous search directions. The search direction is kept for each new step until a minimum has been found. Then a new search direction is determined and the process continues.

---

7. Davidson Fletcher Powel (gradient search)

The Davidson Fletcher Powel method not only uses the gradient of a function, but also the second order gradient to determine the search direction. The second order gradient is estimated based on previous search directions. The search direction is kept for each new step until a minimum has been found. Then a new search direction is determined and the process continues.
8. Broydon Fletcher Goldfarb Shanno (gradient search)

The Broydon Fletcher Goldfarb Shanno method not only uses the gradient of a function, but also the second order gradient to determine the search direction. The second order gradient is estimated based on previous search directions. The search direction is kept for each new step until a minimum has been found. Then a new search direction is determined and the process continues.

What method should be used?

There is no general answer to this question. Some remarks can however be made:

1. Gradient search methods (3 to 8), need more steps (note that each step means a simulation run) to determine the gradient. The Newton Raphson methods needs the most steps, because this method also needs additional steps for the determination of the second order gradient.

2. When the direction of the slope is not exactly the same as the search direction, direct search methods (1 and 2) may start to bounce, i.e. continuously change direction while making little progress. This is shown in the figure below:
Users are therefore advised to use methods 1 and 2 only for optimizations with one parameter, and use the methods 7 and 8 for optimizations with more parameters. Use the other methods for checking the results or educational purposes.

More information on these methods can be found in:


### 9.7.5 Curve Fitting

Using the Parameter Sweep option of the Time Domain Toolbox, you can fit your model to a given result using variation of parameters / initial values.

**Optimization Method**

1. From the Tools menu select the Time Domain Toolbox and then Curve Fitting.

A window opens asking you which optimization method should used for curve fitting:

2. Select the Optimization method that should be used.

3. Select the Tolerance (accuracy of the found fit) that should be used and click Next.

**Parameters / Initial Values**

A window opens asking you which parameters / initial values should be varied during curve fitting:
4. Add the parameters / initial values of your choice:

5. Click the **Next** button.

**Result**

A window opens asking you which result should minimized to fit your model (variable 1) to a given result (variable 2):
6. Enter the result here using the various options of the window.
7. Click the **Next** button.

**Run options**

A window opens asking some simulation run options:
8. Select the desired run options and click the **Next** button.

A window opens with a summary of the chosen options. If your are not satisfied you can use the Back button to go to a previous window and change settings.

9. Click the **Finish** button to close the **Multiple Run Wizard**.

10. From the **Simulation** menu click the **Multiple Run** command to perform the Curve Fitting.

**Optimization Results**

After simulation has been done, the Optimization Results window will open, showing the minimum value of the result and corresponding parameters:
You can select the following items:

- **Values**: Choose this button to open the list that shows the numerical output of the curve fitting runs.
- **Matlab**: Export the results to Matlab.
- **OK**: Close the Optimization Results Window.

You can always re-open the **Multiple Run Results** window, by selecting the **Multiple Run Results** command of the **View** Menu.

11. By choosing the **Values** button, a new window is opened, showing the numerical results of the parameter sweep.

In the **Results list** of this window the subsequent runs are shown and the value of the chosen result:
You can select the following items:

- **Set Values**: Choose the values of the selected run, as new parameter values of your model.
- **Create Datafile**: Use this button to store the values of the selected variables on file. Use the control-key and shift-key to make multiple selections.

### 9.7.6 Sensitivity Analysis

Using the Tolerance Analysis option of the Multiple Run Wizard, you can analyze the effects of variation of parameters / initial values on the performance of your model. Three methods of Tolerance analysis are supported in the Multiple Run Wizard. One of these methods is Sensitivity analysis.

Sensitivity analysis starts with a simulation run with nominal parameter values. After the run a given result is monitored \((r)\). Then, one by one, each parameter \((p_i)\) is changed with a given percentage \((\text{to } p_i + d p_i)\) and a simulation run is performed. After the simulation run the changed result is monitored \((r + d r)\). After all the runs, the results are displayed as sensitivities, where sensitivity is defined as the change in result divided by the change in parameter:

\[
S_i = \frac{d r_i}{d p_i}
\]

A large sensitivity means that the result is highly dependant of the parameter value. This can be used for optimization (change the parameter value) or design (change the design to make it less dependant of the parameter).
Parameters / Initial Values

1. From the **Tools** menu select the **Time Domain Toolbox** and then **Sensitivity Analysis**.

A window opens asking you which parameters / initial values should be changed for the Sensitivity analysis:

3. Add the parameters / initial values of your choice:

4. Click the **Next** button.

**Result**

A window opens asking you which result should be monitored for the sensitivity:
5. Enter the result here using the various options of the window.

6. Click the **Next** button.

**Run options**

A window opens asking some simulation run options:
7. Select the desired run options and click the **Next** button.

A window opens with a summary of the chosen options. If you are not satisfied you can use the **Back** button to go to a previous window and change settings.

8. Click the **Finish** button to close the Multiple Run Wizard.

9. From the **Simulation** menu click the **Multiple Run** command to perform the Sensitivity Analysis.

**Sensitivity Analysis Results**

After simulation has been done, a Sensitivity Analysis Results window will open, showing the sensitivities:
You can select the following items:

- **Multiple Run Values**: Choose this button to open the list that shows the output of the various runs performed during the sensitivity analysis.
- **Close**: Close the Sensitivity Analysis Results Window.

You can always re-open the **Multiple Run Results** window, by selecting the **Multiple Run Results** command of the View Menu.

10. By choosing the **Multiple Run Values** button, a new window is opened, showing output of the various runs performed during the sensitivity analysis:

In the **Results list** of this window the subsequent runs are shown and the corresponding sensitivities.
You can select the following items:

- **Set Values**: Choose the values of the selected run, as new parameter values of your model.
- **Create Datafile**: Use this button to store the values of the selected variables on file. Use the control-key and shift-key to make multiple selections.

### 9.7.7 Monte Carlo Analysis

Using the Tolerance Analysis option of the Multiple Run Wizard, you can analyze the effects of variation of parameters / initial values on the performance of your model. Three methods of Tolerance analysis are supported in the Multiple Run Wizard. One of these methods is Monte Carlo Analysis. Using Monte Carlo analysis, you can perform a predefined number of simulation runs with variation of parameter values according to a predefined distribution function.

#### Parameters / Initial Values

1. From the **Tools** menu select the **Time Domain Toolbox** and then **Monte Carlo Analysis**.

A window opens asking you which parameters / initial values should be varied for the Monte Carlo analysis:
2. Add the parameters / initial values of your choice:

3. Click the **Next** button.

**Result**

A window opens asking you which result should be monitored during the Monte Carlo Analysis:
4. Enter the result here using the various options of the window.
5. Click the Next button.

**Run options**
A window opens asking some simulation run options:
6. Select the desired run options and click the **Next** button.

A window opens with a summary of the chosen options. If you are not satisfied you can use the **Back** button to go to a previous window and change settings.

7. Click the **Finish** button to close the Multiple Run Wizard.

8. From the **Simulation menu** click the **Multiple Run** command to perform the Monte Carlo Analysis.

**Monte Carlo Analysis Results**

After simulation has been done, a Monte Carlo Analysis Results window will open, showing the results:
You can select the following items:

- **Values**: Choose this button to open the list that shows the output of the various runs performed during the Monte Carlo analysis.
- **Histogram**: Choose this button to open a histogram of the selected item.
- **Matlab**: Export the results to Matlab.
- **OK**: Close the Multiple Run Results Window.

You can always re-open the **Multiple Run Results** window, by selecting the **Multiple Run Results** command of the **View** Menu.

9. By choosing the **Multiple Run Values** button, a new window is opened, showing output of the various runs performed during the Monte Carlo analysis.
You can select the following items:

- **Set Values**: Choose the values of the selected run, as new parameter values of your model.

- **Create Datafile**: Use this button to store the values of the selected variables on file. Use the control-key and shift-key to make multiple selections.

By choosing the **Histogram** button, a new window is opened, showing distribution of the result variable:
9.7.8 Variation Analysis

Using the Tolerance Analysis option of the Multiple Run Wizard, you can analyze the effects of variation of parameters / initial values on the performance of your model. Three methods of Tolerance analysis are supported in the Multiple Run Wizard. One of these methods is Variation Analysis.

Using Variation analysis, you can perform a predefined number of simulation runs with variation of parameter values according to a predefined distribution function. During the runs a given result is monitored. After the runs the statistical range of the result is presented. You can restrict the parameter distributions to get the result between desired bounds.

Parameters / Initial Values

1. From the Tools menu select the Time Domain Toolbox and then Variation Analysis.

A window opens asking you which parameters / initial values should be varied for the Variation analysis:
2. Add the parameters / initial values of your choice:

3. Click the **Next** button.

**Result**

A window opens asking you which result should be monitored during the Variation Analysis:
4. Enter the result here using the various options of the window.

5. Click the **Next** button.

**Run options**

A window opens asking some simulation run options:
6. Select the desired run options and click the **Next** button.

A window opens with a summary of the chosen options. If you are not satisfied you can use the **Back** button to go to a previous window and change settings.

7. Click the **Finish** button to close the **Multiple Run Wizard**.

8. From the **Simulation menu** click the **Multiple Run command** to perform the Variation Analysis.

**Variation Analysis Results**

After simulation has been done, a Variation Analysis Results window will open, showing the results. A histogram shows the distribution of the result. Using the slider bar you can see how restraining the distribution of the parameters effects the distribution of the result.
You can select the following items:

- **Slider Bar**: Select a parameter and restrict its distribution with the slider bar. You will see the histogram showing the result change.

- **Multiple Run Values**: Choose this button to open the list that shows the output of the various runs performed during the Variation Analysis.

- **OK**: Close the Multiple Run Results Window.

You can always re-open the Multiple Run Results window, by selecting the **Multiple Run Results** command of the **View** Menu.

9. By choosing the **Multiple Run Values** button, a new window is opened, showing output of the various runs performed during the Variation analysis:
You can select the following items:

- **Set Values:** Choose the values of the selected run, as new parameter values of your model.
- **Create Datafile:** Use this button to store the values of the selected variables on file. Use the control-key and shift-key to make multiple selections.

### 9.7.9 Multiple Run Wizard - External DLL

You can analyze the effects of variation of parameters / initial values using your own method with the use of an external DLL-function.

Ask Controllab Products for details.

**Deprecation warning**

20-sim provides a Scripting toolbox since 20-sim 4.4 that allows you to write your own automation scripts around a 20-sim model. It is strongly advised to implement new customized multiple run experiments is by means of a script in either Octave/Matlab or Python. The multiple run external DLL feature will be removed in a future version of 20-sim.
9.7.10 Cost Function

In the Multiple Run Wizard, the Result window allows you to define a result (the Cost Function) that will be used during simulations (Optimization, Curve Fitting) and displayed after the simulations runs (Parameter sweep, Optimization, Curve Fitting, Sensitivity, Monte Carlo, Variation Analysis, External DLL).

The result can be a function of one or two variables. Instead of the second variable an (offset) value can be entered.

**Items**

- **Choose Variable**: Select this button to select a model variable
- **Clear**: Use this button the remove a chosen model variable.
- **Function**:
  - *End value*: The value at the end of the simulation run.
  - *Sum Absolute Value*: The sum of all absolute values during a simulation run.
  - *Sum Square Value*: The sum of all values squared during a simulation run.
  - *Integral Absolute Value*: The integral of all absolute values during a simulation run (uses Euler integration).
  - *Integral Square Value*: The integral of all values squared during a simulation run (uses Euler integration).

**User Defined Cost Function**

You can easily use your own Cost Function for the result variable:

1. Create your own cost function in the model.
2. Use the Choose button to select as var1 the output of your function.
9.8 Scripting Toolbox

9.8.1 Introduction

20-sim scripting allows you to run tasks in 20-sim automatically using specialized scripting functions. With these functions you can open models, run simulations, change parameters, store results and much more. Scripting support was introduced in 20-sim 4.4.

These scripting functions are not very useful stand-alone, but you can use them to write scripts to automate various tasks in 20-sim.

20-sim provides a set of script functions for numerical computation environments like Octave and Matlab and for the Python programming language (since 20-sim 4.6).

The 20-sim scripting functions are based on XML-RPC calls, so any other programming language with support for XML-RPC can be used to automate various 20-sim steps.

In this chapter you will learn how to run basic scripts and make scripts on your own.

The next sections explain:

- **Installation for scripting:**
  - 20-sim: enabling the XML-RPC scripting interface in 20-sim
  - Octave: installing Octave as scripting environment
  - Matlab: installing Matlab as scripting environment
  - Python: installing Python as scripting environment

- **Prepare Scripting Folder:** extract the 20-sim scripting functions and documentation to your work directory.

- **Basic Script:** run your first script and see how a basic script is made in Octave/Matlab or Python.

- **Advanced Scripts:** see how you can expand the basic script to perform more advanced tasks in Octave/Matlab.

- **Writing your own Scripts:** How to write your own scripts in Octave/Matlab or Python.
Note: Scripting is not supported in the 20-sim Viewer/Demonstration Version. If you would like to try the scripting functionality, you will need licensed 20-sim version or a trial license.

9.8.2 Installation for Scripting: 20-sim

20-sim uses XML-RPC as a protocol to communicate scripting functions with external packages. By default the XML-RPC interface is turned on only for your local computer.

To enable/disable and configure the 20-sim scripting support:

1. Open 20-sim.
2. Go to Tools/Options and select the Scripting Interface tab.

![Scripting Interface settings tab.]

3. To enable the 20-sim scripting support, make sure that the HTTP and TCP checkboxes under XMLRPC Interface are enabled.

By default, 20-sim will only accept scripting connections from your local computer (Localhost only option is enabled).

Your firewall may generate a warning message and ask you to allow network communication for 20-sim.

4. Set the firewall to allow communication.
9.8.3 Scripting in Octave/Matlab

Installation for Scripting: Octave

What is Octave?
GNU Octave is a high-level language, primarily intended for numerical computations. The package is open source and can be freely distributed. GNU Octave offers functionality similar to Matlab users. If you have experience with Matlab, running Octave will be very easy. Users with no experience with Octave nor Matlab are advised to read a proper introduction to GNU Octave first. You will find lot of pages and videos on the Internet.

Installation
The Windows versions of Octave 4.4.0, 4.2.x, Octave-4.0.x, Octave-3.8.x, Octave-3.6.x have been tested with 20-sim scripting at the time of this release.
Note that for most versions of Octave only the 32-bit Octave is supported. 64-bit versions of Octave are supported since Octave 4.2.1.

1. Go to: https://www.20sim.com/product/octave.html and follow the latest instructions.

If this web page is unavailable, you can follow the instructions below:

First choose the Octave version you wish to install and go to the corresponding section below:

Octave 4.4.x / 4.2.x / Octave 4.0.x

1. Go to: https://www.gnu.org/software/octave/
2. Go to the download page and download the Windows installer (direct link: https://ftp.gnu.org/gnu/octave/windows/octave-4.4.0-w32-installer.exe)
3. Run the installer and follow the wizard. The steps below assume default installation settings.
4. **Octave 4.0.x only:** Unfortunately Octave 4.0.x has a Windows specific bug in its internal run() function. This bug is resolved in Octave 4.2. For Octave 4.0.x you will need to manually replace the default run() implementation with a corrected version. **Copy** the file:

   ```bash
 C:\Program Files (x86)\20-sim 4.7\Scripting\Octave-patch\4.0.0\run.m
   ```

   or on 32-bit versions of Windows:

   ```bash
 C:\Program Files\20-sim 4.7\Scripting\Octave-patch\4.0.0\run.m
   ```

to:

   ```bash
 C:\Octave\Octave-4.0.0\share\octave\4.0.0\m\miscellaneous\run.m
   ```
5. **Launch Octave** from the Start menu or using the script: `C:\Octave\Octave-4.x.x\octave.bat`

6. **Execute** the following commands to install packages io, control and signal:
   - `pkg install -forge io`
   - `pkg install -forge control`
   - `pkg install -forge signal`

---

The Octave GUI.

Your Octave installation is now ready to use.

**Octave 3.8.x**


2. **Run** the installer and follow the wizard.

3. **Launch Octave** using the script: `C:\Octave\Octave-3.8.2\octave.bat`

4. **Execute** the following commands to install packages io, control and signal:
   - `pkg install -forge io`
   - `pkg install -forge control`
   - `pkg install -forge signal`
Your Octave installation is now ready to use.

**Octave 3.6.x**

1. Go to the Octave download site (http://sourceforge.net/projects/octave/).
2. Click on the **Files** tab and click on **Octave Windows Binaries**.
3. Select the **Octave 3.6.4 for Windows MinGW installer**.
4. Now you can **download** the files *Octave3.6.4_gcc4.6.2_yyyyxxxx.7z* (Octave Installation) and *Octave3.6.4_gcc4.6.2_pkgs_yyyyxxxx.7z* (Octaveforge Packages).
5. Create an installation directory which doesn't have space chars (i.e. C:\Octave).
6. **Unzip** the file *Octave3.6.4_gcc4.6.2_yyyyxxxx.7z* and **copy** it to the installation directory.
7. Copy the **shortcut link** `C:\Octave\Octave3.6.4_gcc4.6.2.lnk` to your **desktop**. This is a shortcut to start Octave.exe.

*Note:* Unzipping can be done with programs like 7-zip (http://www.7-zip.org/)

*Note:* There is a bug with Windows 8 and running Octave. In order to use Octave start Octave with `octave.exe -i --line-editing`. See the Octave wiki webpage for more information.

8. **Unzip** the file *Octave3.6.4_gcc4.6.2_pkgs_yyyyxxxx.7z* and **copy** it to the installation directory.
9. **Launch Octave** (e.g. the link to Octave.exe).
10. **Execute** the following five rebuild commands from the Octave console (e.g. re-type every line followed by ENTER):

    pkg rebuild -auto

    pkg rebuild -noauto ad
    pkg rebuild -noauto nan % shadows many statistics functions
    pkg rebuild -noauto gsl % shadows some core functions
    pkg rebuild -auto java
11. Close and **restart Octave**.

### Installation for Scripting: Matlab

**What is Matlab?**

Matlab is a high-level language, primarily intended for numerical computations. The package is commercially distributed by the Mathworks. If you don't have the resources to purchase Matlab, you can run use Octave, which offers similar functionality.

**Versions**

Matlab R2011, R2012, R2013, R2014, R2015, R2016 and R2017 have been tested with 20-sim scripting but older and newer versions may also work fine.

**Installation**

See the Matlab documentation from the Mathworks for information on installing Matlab. No special (additional) installation is needed to use 20-sim scripting from Matlab.

**Note:** Scripting in Matlab is similar to Octave. You can type exactly the same commands as given for Octave in the next sections.

### Prepare Scripting Folder

20-sim comes with a **Scripting Folder** that contains documentation of all scripting functions, the function library and example scripts. You have to install this folder to use scripting.

**Installation**

1. Open the **Install Scripting** program from the Windows Start menu (located under **20-sim 4.7**)
   - or -
   Go to the folder where 20-sim is installed (e.g. **C:\Program Files\20-sim 4.7\Scripting** or **C:\Program Files (x86)\20-sim 4.7\Scripting**) and open **20simScripting.exe**
2. This will open a dialog where you can choose where to extract the 20-sim scripting files. Change the path to a local working folder of your choice (for example: C: \Users\yourusername\Documents\20simscripting)

![20-sim Scripts extraction](image)

Note: To write/modify scripts, the scripting folder should be accessible and writable by the user. Do not install the scripting folder on C:\Program Files (x86) or C:\Program Files.

For the remainder of this chapter, we use the name **scripting working folder** when we refer to the folder where you just extracted the 20-sim scripting files.

**Contents**

Your newly created **scripting working folder** contains a number of subfolders:

1. **Models:** This folder contains the 20-sim models and data files that are used for the example and tutorial scripts.

2. **Octave:** This folder contains all Octave/Matlab scripting functionality and documentation

   a. **documentation:** This folder contains the scripting API documentation: a list of supported functions and their syntax. It is a copy of the help file that you can open in the 20-sim **Editor** by selecting **Help - Octave Scripting API**.

   Note: the API documentation is also accessible from the Windows **Start** menu under **20-sim 4.7\Scripting API documentation**

   b. **library:** This folder contains the core scripting functions.

   c. **tutorials:** This folder contains basis scripts with a step by step explanation. You can use these scripts as a base for your own scripts.

   d. **examples:** This folder contains some more advanced scripts.

3. **Octave-patch:** This folder contains modified Octave scripts for certain Octave versions to fix bugs in the core Octave scripts that are not yet fixed in the latest release (currently 4.0.3)

4. **Python:** This folder contains all Python scripting functionality and documentation (see the Scripting in Python section for more information).
Basic Script

When the scripting files are properly installed in your scripting working folder, we can run some tutorial scripts. Tutorial scripts are a step by step demonstrations of usage of the scripting functionality in 20-sim. These scripts are found in the tutorials subfolder of the scripting working folder. We will start with a basic script that opens and runs a 20-sim model.

1. Open 20-sim.
2. Open Octave (or Matlab).
3. In Octave/Matlab, change the local working directory to the tutorial folder inside your scripting working folder. E.g. type:
   ```
 cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'
   ```
   **Note:** 20-sim should be open before running the script!
4. In Octave/Matlab, execute the following command (e.g. type the following case sensitive command followed by ENTER):
   ```
 runSimulation
   ```
   **Note:** Octave may give a cryptic "undefined near line x column 1" message, if you type the command as `runsimulation` instead of `runSimulation`!
5. Now Octave / Matlab will give a message and ask you to press **ENTER** to continue.
The model ControlledSystem.emx is loaded into 20-sim and simulated.
6. Again Octave/Matlab will give a message and ask you to press **ENTER** to continue.

Now the simulation and model will be unloaded.

Inspecting the script

To see how the script is made, you can inspect it with a text editor.

1. Open a file browser and go to the tutorials folder (e.g. C:\Users\yourusername \Documents\20simscripting\Octave\tutorials)
2. Open the file runSimulation.m with a text editor like **Notepad**.

**Core Functions**

The core functions of the *runSimulation* script are:

- **addpath**: The script starts with the command `addpath('../library/xxsim');` This will enable Octave / Matlab to use the 20-sim scripting functions that are stored in the library subfolder of your scripting working folder.
- **xxsimConnect**: This command opens a connection to 20-sim.
- **xxSimOpenModel**: This command opens a model in 20-sim by giving the filename including the full path.
- **xxsimProcessModel**: This command will process the model.
- **xxsimRun**: This command will run a simulation.
- **xxsimCloseModel**: This command will remove the simulation model from 20-sim.

These functions are the basis of scripting in 20-sim and will be present in this order in most scripts. Therefore you can use the script *runSimulation.m* as a template for any new script that you create.

**Advanced Scripts**

Now that we have seen the core functions of a script we will run and check some more advanced scripts.

1. Open **20-sim**.
2. Open **Octave** (or **Matlab**).
3. In Octave/Matlab, change the local working directory to the tutorial folder inside your scripting working folder. E.g. type:

   `cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'`

**Set Parameter Values**

4. In Octave/Matlab, execute the following script (e.g. type the command followed by ENTER):

   ```
 SetParameterAndRun
   ```

   This script will open the model *ControlledSystem.emx* and run a simulation. Then a model parameter is changed and a second simulation run is performed. As explained in the previous topic, you can inspect the script in a text editor.

   Compared to the basic script you will find a new function:

   - **xxsimSetParameters**: This function is used to set the parameter in the model with the new value.
Multiple Runs

5. In Octave/Matlab, execute the following script (e.g. type the command followed by ENTER):

   multipleRun

This script will open the model *ControlledSystem.emx* and run a simulation multiple times while changing a parameter. Then a model parameter is changed and a second simulation run is performed.

Read Parameter Values

6. In Octave/Matlab, execute the following script (e.g. type the command followed by ENTER):

   readAndSetParameters

This script will open the model *ControlledSystem.emx* and run a simulation. Then a model parameter is read from file and changed accordingly in the model, followed by a second simulation run.

You will find these new functions:
- **addpath**: An additional path is given (../library/xxlib) to allow additional (user defined) functions.
- **xxlibReadCsv**: This function is used to read a parameter name and value from a spreadsheet file.

Store Simulation Results

7. In Octave/Matlab, execute the following script (e.g. type the command followed by ENTER):

   modelVerification

This script will open the model *ControlledSystem.emx* and run a simulation. After the run the simulation results are stored and plotted in Octave/Matlab. You will find these new functions:
- **xxsimSetLogVariables**: Define which variables are going to be logged during the simulation run.
- **xxsimGetLogVariables**: Export the logged variables after the simulation run to Octave/Matlab.

Examples

8. In Octave/Matlab, change the local working directory to the tutorial folder. E.g. type:

   cd 'C:\Users\yourusername\Documents\20simscripting\examples'

here you can find more example scripts.
Writing your own Scripts

Example
We will show you how to write your own scripts using a simple example. We assume that you have installed a scripting folder and its location is:

'C:\Users\yourusername\Documents\20simscripting'

of course you can use own location. We will copy a 20-sim model to the scripting folder and write a script that will open this model in 20-sim and run a simulation.

1. **Copy** the example model **FastManipulator.emx** to the Octave\tutorials folder. E.g copy:

'C:\Program Files (x86)\20-sim 4.7\Models\Examples\Drivetrains\FastManipulator.emx'

to

'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials\FastManipulator.emx'

2. Open a text editor (e.g. notepad) and enter the following lines:

   ```
 run('./library/xxsim/xxsimAddToPath.m');
 xxsimConnect();
 xxsimOpenModel('FastManipulator.emx');
 xxsimProcessModel();
 xxsimRun();
 xxsimDisconnect();
   ```

3. **Save** the text file as:

   'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials\MyScript.m'

4. Open **20-sim**.
5. Open **Octave** (or **Matlab**).
6. In Octave/Matlab, change the local working directory. Type in the command line:

   ```
 cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'
   ```

7. In Octave/Matlab, run your own script. Type in the command line:
Now you will see the model being loaded in 20-sim and a simulation being run.

**Writing your own scripts**
In the tutorial folder there are more scripts. Use these as a template for writing your own scripts and follow the guidelines below:

**Location**
Create your own subfolder inside your scripting working folder. This allows you to update the 20-sim scripting files when new versions of 20-sim are released.

**Functions**
You can find help on scripting functions in the 20-sim Editor by selecting Help - Octave Scripting API.

### 9.8.4 Scripting in Python

#### Installation for Scripting: Python

**What is Python**
Python is a general-purpose high-level programming language with an emphasis on code readability and writing algorithms in fewer lines of code than other programming languages. Python is open-source and managed by the Python Software Foundation. It has an extensive standard library and can be extended with many external libraries including a rapidly growing set of scientific and mathematical libraries such as SciPy, NumPy and Sympy and an extensive plotting library Matplotlib. 20-sim scripting has been tested with the following versions of Python: Python 2.7.x, Python 3.4.x and Python 3.5.x (32-bit and 64-bit).

**Installation**
During installation of 20-sim, you are asked to install the (optional) **Python 3.4 package**. We advise to keep the default setting (**Yes**) which will install the Python 3.4 installation that includes 20-sim scripting support and the following packages: NumPy, Matplotlib and IPython. This installation provides just enough support to get started with 20-sim scripting. However, it does not provide a development IDE or an extensive set of scientific and mathematical libraries.
Prepare Scripting Folder

20-sim comes with a Scripting Folder that contains documentation of all scripting functions, the function library and example scripts. You have to install this folder to use scripting.

Installation

1. Open the Install Scripting program from the Windows Start menu (located under 20-sim 4.7)
   - or -
   Go to the folder where 20-sim is installed (e.g. C:\Program Files (x86)\20-sim 4.7\Scripting or C:\Program Files (x86)\20-sim 4.7\Scripting) and open 20simScripting.exe

2. This will open a dialog where you can choose where to extract the 20-sim scripting files. Change the path to a local working folder of your choice (for example: C:\Users\yourusername\Documents\20simscripting)

Note: To write/modify scripts, the scripting folder should be accessible and writable by the user. Do not install the scripting folder on C:\Program Files (x86) or C:\Program Files.

For the remainder of this chapter, we use the name scripting working folder when we refer to the folder where you just extracted the 20-sim scripting files.

Contents

Your newly created scripting working folder contains a number of subfolders:

1. Models: This folder contains the 20-sim models and data files that are used for the example and tutorial scripts.

2. Octave and Octave-patch: These folders contain Octave/Matlab scripting functionality and documentation (see the Scripting in Octave/Matlab section for more information)

3. Python: This folder contains all Python scripting functionality and documentation:

   a. controlab: Folder containing the Python classes that allow communication with 20-sim.

   b. documentation: This folder contains the scripting API documentation: a list of supported functions and their syntax. It is a copy of the help file that you can open in the 20-sim Editor by selecting Help - Python Scripting API.

   c. examples: This folder contains some more advanced scripts.
d. **tutorials**: This folder contains basis scripts with a step by step explanation. You can use these scripts as a base for your own scripts.

---

**Basic Script**

When the scripting files are properly installed in your *scripting working folder*, we can run some tutorial scripts. Tutorial scripts are step by step demonstrations of usage of the scripting functionality in 20-sim. These scripts can be found in the *tutorials* subfolder of the *scripting working folder*. We will start with a basic script that opens and runs a 20-sim model.

1. Open **20-sim**.
2. Open **IPython** (Interactive Python shell) from the Start menu (under 20-sim 4.7).
3. In IPython, **change** the local *working directory* to the tutorial folder inside your *scripting working folder*. E.g. type:

   ```
 cd 'C:\Users\yourusername\Documents\20simscripting\Python'
   ```

4. In IPython, execute the following **command** (e.g. type the following **case sensitive** command followed by ENTER):

   ```
 run main_menu
   ```

   Note that the *run* command is specific for IPython. For a standard Python session, you can start this script on the command line using: `python.exe menu.py`. This command will show a menu with several options including T for Tutorials.

---

*IPython session for the tutorials*
5. Select option **T** - Tutorials (**press t, ENTER**) to show the tutorial menu:

   - Tutorial menu -
   Select a tutorial:
   1 - Run a simulation.
   2 - Set a parameter in 20-sim, then run a simulation.
   3 - Execute multiple runs with a changing parameter.
   4 - Basic simulation result analysis.
   5 - Read a parameter from a CSV file and set it in 20-sim.
   6 - Retrieve 20-sim model variables and their properties.

Or choose a menu option:
   Q - Quit
   I - Show the introduction text again.
Your choice > 1

6. Press **ENTER** again to show the available tutorials and choose option 1 *Run a simulation* followed by **ENTER**.

   In this tutorial the scripting interface will:
   - Open a 20-sim model (starting 20-sim if necessary)
   - Process and run the model
   - Close the 20-sim model

7. Press **ENTER**

   The Python scripting interface will now connect to 20-sim.  
   If 20-sim is not running it will be started automatically.

8. Press **ENTER**

   Connecting, please wait...

   The scripting interface has successfully connected to 20-sim.  
   The tutorial model will be opened.  
   If you still have an open model. SAVE YOUR MODEL, unsaved changes will be overwritten.

9. Press **ENTER**

   The model ControlledSystem.emx has been opened in 20-sim.  
   The model will be processed and simulated.  
   The 20-sim plot window will open.

10. Press **ENTER** to load the model *ControlledSystem.emx* in 20-sim and to simulate it.

    The tutorial will now close the 20-sim model and exit.

11. Press **ENTER** to close the simulation and this 20-sim model
Inspecting the script

Tutorial completed!
Do you want to see the source code? [y/N]

To see how the script is made, you can inspect it by choosing y. This will print the relevant script lines on the Python console. You can also open the real script in a text editor like Notepad by opening the file: C:\Users\yourusername\Documents\20simscripting\Python\tutorials\run_simulation.py.

Important Functions

The important functions / lines of the runSimulation script are:

- **import controllab**: Tell Python to load the Controllab package with the 20-sim scripting functions in the XXSim() class.
- **my20sim = controllab.XXSim()**: create a 20-sim scripting object
- **my20sim.connect()**: This command opens a connection to 20-sim.
- **my20sim.set_scriptmode()**: Tell 20-sim that we are in scripting mode (does not show confirmation dialogs)
- **my20sim.open_model()**: This command opens a model in 20-sim by giving the file name including the full path.
- **my20sim.process_model()**: This command will process the model.
- **my20sim.run()**: This command will run a simulation.
- **my20sim.close_model()**: This command will remove the simulation model from 20-sim.

These functions are the basis of scripting in 20-sim and will be present in this order in most scripts.

Writing your own Scripts

Example

We will show you how to write your own scripts using a simple example. We assume that you have installed a scripting folder and its location is:

'C:\Users\yourusername\Documents\20simscripting'

Of course you can use own location. We will copy a 20-sim model to the scripting folder and write a script that will open this model in 20-sim and run a simulation.

1. **Copy** the example model FastManipulator.emx to the Octave\tutorials folder. E.g copy:
9. Toolboxes

'C:\Program Files (x86)\20-sim 4.7\Models\Examples\Drivetrains \FastManipulator.emx'

to

'C:\Users\yourusername\Documents\20simscripting\Python\tutorials \FastManipulator.emx'

2. Open a text editor (e.g. notepad) and enter the following lines:
   import controllab
   xxsim = controllab.XXSim()
   xxsim.connect()
   xxsim.open_model('FastManipulator.emx')
   xxsim.process_model()
   xxsim.run()
   xxsim.disconnect()

3. **Save** the text file as:

   'C:\Users\yourusername\Documents\20simscripting\Python\tutorials \myscript.py'

4. Open **20-sim**.
5. Open **IPython**.
6. In IPython, change the local working directory. Type in the command line:
   
   `cd 'C:\Users\yourusername\Documents\20simscripting\Python\tutorials'

7. In IPython, run your own script. Type in the command line:

   `run myscript`

Now you will see the model being loaded in 20-sim and a simulation being run.

**Writing your own scripts**

In the tutorial folder there are more scripts. Use these as a template for writing your own scripts and follow the guidelines below:

**Location**

Create your own subfolder inside your scripting working folder. This allows you to update the 20-sim scripting files when new versions of 20-sim are released.
Functions

You can find help on scripting functions in the 20-sim Editor by selecting Help - Python Scripting API.

Advanced Functionality

Python Distributions

When you need more functionality or prefer to use an IDE with syntax highlighting and debugging support, it is strongly advised to install one of the following external Python distributions or IDEs:

- PyZo: a free and open-source Python distribution that comes with many scientific packages and the powerful IEP IDE.
- Spyder: the Scientific PYthon Development EnviRonment with a powerful IDE for the Python language with advanced editing, interactive testing, debugging and introspection features and a numerical computing environment based on SciPy, NumPy, Matplotlib and IPython.

Running 20-sim scripts in Python distributions

To add the 20-sim scripting support to your Python distribution, you can use the Python pip command (installed by default since Python 2.7.10 and 3.4.x) to install the Controllab package.

1. Open a Windows command prompt (cmd.exe) and type:

```
cd YOUR_PYTHON_INSTALLATION_DIR\npython -m pip install --no-cache-dir --upgrade "C:\Program Files (x86)\20-sim 4.7\Scripting\Python\whl\controllab-1.0.0-py2.py3-none-any.whl"
```

Note: use C:\Program Files\20-sim 4.7\ on 32-bit Windows systems.
10 Library

10.1 Bond Graph

10.1.1 Bond Graph Models

Bond graphs are a network-like description of physical systems in terms of ideal physical processes. With the bond graph method we split up the system characteristics into an (imaginary) set of separate elements. Each element describes an idealized physical process. To facilitate drawing of bond graphs, the common elements are denoted by special symbols. This library contains all kind of bond graph elements. If you want to know more about modeling with bond graphs, please have a look at the modeling tutorial.


10.1.2 C

Library
Bond Graph

Use

Description
This model represents a power continuous storage element. The element has a preferred effort out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred flow out causality. The constitutive equations then contain a derivation.

effort out causality (preferred):

\[
\begin{align*}
\text{state} &= \text{int}(p.f) + \text{state}(0); \\
p.e &= \text{state}/c; \\
output &= \text{state};
\end{align*}
\]

flow out causality:

\[
\begin{align*}
\text{state} &= c*p.e; \\
p.f &= \frac{d \text{state}}{dt}; \\
output &= \text{state};
\end{align*}
\]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Input port of the storage element.</td>
</tr>
</tbody>
</table>
**Causality**

preferred effort out  
A flow out causality results in a derivative constitutive equation.

**Outputs**

output  
The output signal is equal to the state.

**Parameters**

c  
The storage element constant.

**Initial Values**

state(0)  
The initial value of the storage element.

---

**10.1.3 CC**

**Library**
Bond Graph

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Block Diagrams, Bond Graphs.

**Description**

This model represents a two port C-element. Normally the equation of a two port C-element is written in vector notation as:

\[ p.e = \frac{1}{C} \times \text{int}(p.f) \]

When the C matrix is singular simulation will not be possible. Therefore the element is described in a safer notation as:

\[ p.e = A \times \text{int}(p.f) \text{, with } A = \frac{1}{C}; \]

Both ports have a preferred effort out causality:

\[
\begin{align*}
\text{state1} &= \text{int}(p1.f); \\
\text{state2} &= \text{int}(p2.f); \\
p1.e &= a11*\text{state1} + a12*\text{state2}; \\
p2.e &= a21*\text{state1} + a22*\text{state2};
\end{align*}
\]

**Interface**

**Ports**

p1,p2  
Input ports of the storage element.

**Causality**
preferred effort out p1
preferred effort out p2

A flow out causality results in a derivative constitutive equation.

**Outputs**
state1
state2

**Parameters**
a11, a12, a21, a22

The storage element constants.

**Initial Values**
state1_initial
state2_initial

The initial values of the storage element.

### 10.1.4 EffortSensor

**Library**
System, Bond Graph

**Use**
Domains: Continuous. Size: \([n,m]\). Kind: Bond Graphs.

**Description**
This model can be inserted in any bond to yield the effort of that bond as an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of the bond. As a result the model will be automatically connected.

**Interface**

**Ports**
p1, p2

Input and output port of the effort sensor.

**Outputs**
effort

Effort of the bond.
### 10.1.5 EnergySensor

**Library**
System , Bond Graph

**Use**
**Domains:** Continuous. **Size:** \([n,m]\). **Kind:** Bond Graphs.

**Description**
This model can be inserted in any bond to yield the energy that is carried through that bond as an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of the bond. As a result the model will be automatically connected.

**Interface**

**Ports**
p1, p2 Input and output port of the energy sensor.

**Outputs**
E Energy carried through the bond.

### 10.1.6 FlowSensor

**Library**
System , Bond Graph

**Use**
**Domains:** Continuous. **Size:** \([n,m]\). **Kind:** Bond Graphs.

**Description**
This model can be inserted in any bond to yield the flow of that bond as an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of the bond. As a result the model will be automatically connected.
Interface

Ports
p1, p2  Input and output port of the flow sensor.

Outputs
flow  Flow of the bond.

10.1.7 GY

Library
Bond Graph

Use

Description
This model represents an ideal gyrator, a power continuous relation between the effort of one port and the flow of the other port and vice-versa. The model can have both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

\[ p1.e = r \times p2.f; \]
\[ p2.e = r \times p1.f; \]

flow out causality:

\[ p1.f = \frac{1}{r} \times p2.e; \]
\[ p2.f = \frac{1}{r} \times p1.e; \]

Interface

Ports
p1, p2  Description
Input and output port of the gyrator.

Causality
p1 equal p2  The causality of both ports must be equal.

Parameters
r  Gyration ratio.
10.1.8 I

Library
Bond Graph

Use

Description
This model represents a power continuous storage element. The element has a preferred flow out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred effort out causality. The constitutive equations then contain a derivation.

flow out causality (preferred):

\[
\begin{align*}
\text{state} &= \text{int}(p.e) + \text{state}(0); \\
p.f &= \text{state}/i; \\
\text{output} &= \text{state};
\end{align*}
\]

effort out causality:

\[
\begin{align*}
\text{state} &= i*p.f; \\
p.e &= d\text{state}/dt; \\
\text{output} &= \text{state};
\end{align*}
\]

Interface

Ports
p

Description
Input port of the storage element.

Causality
preferred flow out

An effort out causality results in a derivative constitutive equation.

Outputs
output

The output signal is equal to the state.

Parameters
i

The storage element constant.

Initial Values
state(0)

The initial value of the storage element.
10.1.9 II

Library
Bond Graph

Use

Description
This model represents a two port I-element. Normally the equation of a two port I-
element is written in vector notation as:

\[ p.f = (1/I) \times \text{int}(p.e) \]

When the I matrix is singular simulation will not be possible. Therefore the element is
described in a safer notation as:

\[ p.f = A \times \text{int}(p.e), \text{ with } A = (1/I); \]

Both ports have a preferred effort out causality:

\[
\begin{align*}
\text{state1} &= \text{int}(p1.e); \\
\text{state2} &= \text{int}(p2.e); \\
p1.f &= a11*\text{state1} + a12*\text{state2}; \\
p2.f &= a21*\text{state1} + a22*\text{state2};
\end{align*}
\]

Interface

Ports
p1, p2

Description
Input ports of the storage element.

Causality
preferred effort out p1
preferred effort out p2

A flow out causality results in a derivative
constitutive equation.

Outputs
state1
state2

Parameters
a11, a12, a21, a22

The storage element constants.

Initial Values
state1_initial
state2_initial

The initial values of the storage element.
10.1.1 IC 0

Library
Bond Graph

Use

Description
This model is a combination of an I storage element and a C storage element. Consequently the constitutive equation must be written as a matrix-vector multiplication. The constitutive equation of this element is given below:

\[
\begin{align*}
\text{state1} &= \text{int}(p1.f); \\
\text{state2} &= \text{int}(p2.e); \\
p1.e &= \text{state1}a11 + \text{state2}a21; \\
p2.f &= \text{state1}a21 + \text{state2}a22; \\
\text{output2} &= \text{state1}; \\
\text{output2} &= \text{state2};
\end{align*}
\]

The Maxwell reciprocity demands \(a_{12} = a_{21}\). Therefore only 3 matrix parameters are necessary.

Interface

Ports
p1,p2

Description
Input ports of the storage element.

Causality
fixed effort out p1
fixed flow out p2

Outputs
output1, output2

The output signals are equal to the states.

Parameters
a11,a21,a22

The storage element constants.

Initial Values
state1(0), state2(0)

The initial values of the storage element.
10.1.1 MGY
1

Library
Bond Graph

Use

Description
This model represents an ideal modulated gyrator, a power continuous relation between
the effort of one port and the flow of the other port and vice-versa. The gyration ratio
can be set to a certain (fluctuating) value, given by an input signal. The model can have
both ports with an effort causality or both ports with a flow causality:

effort out causality:

\[
p1.e = \text{input} \times p2.f; \\
p2.e = \text{input} \times p1.f;
\]

flow out causality:

\[
p1.f = \frac{1}{\text{input}} \times p2.e; \\
p2.f = \frac{1}{\text{input}} \times p1.e;
\]

Interface

Ports
p1, p2

Description
Input and output port of gyrator.

Causality
p1 equal p2

Description
The causality of both ports must be equal.

Inputs
input

Description
Modulated gyration ratio.

10.1.1 MR
2

Library
Bond Graph

Use
Description
This model represents a linear friction/resistor equation. It can have an effort as well as a flow causality. In that case the constitutive equation, as shown below, is simply inverted. The friction/resistor parameter can be set to a (fluctuating) value, given by an input signal.

effort out causality:

\[ p.e = \text{input} \times p.f \]

flow out causality:

\[ p.f = \frac{p.e}{\text{input}} \]

Interface

Ports
p

Description
Input port of the R-element.

Causality
indifferent

Inputs
input

Description
The (modulated) friction/resistor parameter.

10.1.1 MSe 3

Library
Bond Graph

Use


Description
This model represents an ideal modulated effort source. The effort can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

\[ p.e = \text{input}; \]

Interface

Ports
p

Description
Output port of the effort source.

Causality
fixed effort out
Inputs
input Modulation signal.

10.1.1 MSf
4
Library
Bond Graph
Use
Description
This model represents an ideal modulated flow source. The flow can be set to a (fluctuating) value given by an input signal. The effort is indifferent.

\[ p.f = \text{input} \]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Output port of the flow source.</td>
</tr>
</tbody>
</table>

Causality
fixed flow out

Inputs
input Modulation signal.

10.1.1 MTF
5
Library
Bond Graph
Use
Description
This model represents an ideal modulated transformer. The model represents a power continuous relation between the efforts and flows of both its ports. The transform ratio can be set to a certain (fluctuating) value, given by an input signal. The causality is always mixed: one port has an effort out causality while the other has a flow out causality:
\[ p1.e = \text{input} \times p2.e; \]
\[ p2.f = \text{input} \times p1.f; \]

or:

\[ p2.e = 1/\text{input} \times p1.e; \]
\[ p1.f = 1/\text{input} \times p2.f; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2</td>
<td>Input and output port of the transformer.</td>
</tr>
</tbody>
</table>

**Causality**

p1 notequal p2

**Inputs**

| input     | Modulated transform ratio. |

### 10.1.1 OneJunction

6

**Library**

Bond Graph

**Use**

Domains: Continuous. Size: \([n,m]\). Kind: Bond Graphs.

**Description**

This junction represents a power continuous (no energy storage, dissipation or generation) connection of elements. The sum of the efforts on all ports is zero and the flows on all ports are equal. The constitutive equations are for example:

\[ p1.e + p2.e - p3.e - p4.e = 0; \]
\[ p1.f = p2.f = p3.f = p4.f; \]
\[ \text{flow} = p4.f; \]

A one junction has only one initial port p defined. Because any number of bonds may be connected, successive connected bonds are named p1, p2, p3 etc.
The plus or minus signs of the effort equation depend on the direction of the bonds. A bond pointing towards the one junction results in a plus sign and vice-versa. Only one port of a one junction may determine the flow. In the example port p4 determines the flow.

**Multi Bonds**

Bonds with a size larger than one (multi bonds) can also be connected to a one junction. All connected bonds, however, must have the same size.

\[
p1.e + p2.e - p3.e + p4.e = 0;
\]

\[
p1.f = p2.f = p3.f = p4.f;
\]

\[
flow = p4.f;
\]

Naming conventions are equal to those of the single bond (size 1) junctions. Successive connected bonds are named p1, p2, p3 etc. To denote single elements of a multibond, matrix notation is used. E.g. the effort of bond number 3 of a multibond p2 can be denoted as \( p2.e[3] \) (columnvector notation) or \( p2.e[3,1] \) (matrix notation).

**Interface**

<table>
<thead>
<tr>
<th><strong>Ports</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of ports may be connected.</td>
</tr>
</tbody>
</table>

**Causality**

1_effort p

Only one port may have an effort out causality (as seen from the element).

**Outputs**

flow

The output signal is equal to the flow of the ports.

**Limitations**

All connected bonds must have the same size.
### 10.1.1 OneJunction-Activity

**Library**
Bond Graph

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Bond Graphs.

**Description**
This junction is equal to a normal one junction but monitors the powerflows through the connected bonds. If you use this junction and connect some bonds, it could look like the figure below. The bond numbers are important for identification. You can see them by clicking **Port Names** from the **View** menu.

![Diagram of OneJunction-Activity](image)

The constitutive equations for this example are:

\[
\begin{align*}
p1.e - p2.e - p3.e - p4.e &= 0; \\
p1.f &= p2.f = p3.f = p4.f; \\
flow &= p4.f;
\end{align*}
\]

The powerflows through the junction are monitored:

\[
\text{power} = p.e .* p.f;
\]

Note that power is a vector with a size equal to the number of bonds that are attached to the junction. The first element of the vector is the power of the first bond \(p1\) in the example figure), the second element is the power of the second bond \(p2\) in the example figure) and so on. To see which bonds are active and which bonds are not, the activity is calculated:

\[
\text{activity} = \text{int} (\text{abs} (\text{power}));
\]

To get an easy comparison, the relative activity is calculated:
\begin{verbatim}
maximum_activity = max (activity);
relative_activity = activity ./ maximum_activity
\end{verbatim}

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of ports may be connected.</td>
</tr>
</tbody>
</table>

**Causality**

| 1_effort p     | Only one port may have a effort out causality (as seen from the element). |

**Outputs**

| flow           | The output signal is equal to the effort of the ports. |

**Variables**

power	Vector of which the elements are the powers of the connected bonds.
activity	Vector of which the elements are the integrated absolute powers of the connected bonds.
relative_activity	Vector of which the elements are the relative activities of the connected bonds.

**Limitations**

All connected bonds must have size 1.

### 10.1.1 PowerSensor

**Library**

System, Bond Graph

**Use**

Domains: Continuous. Size: \([n,m]\). Kind: Bond Graphs.

**Description**

This model can be inserted in any bond to yield the power that is carried through that bond as an output signal.
To ensure success, use drag and drop to place the sensor exactly on top in the middle of the bond. As a result the model will be automatically connected.

**Interface**

**Ports**
- p1, p2 Input and output port of the power sensor.

**Outputs**
- E Power carried through the bond.

### 10.1.1 Power Splitter

**Library**
System, Bond Graph

**Use**
- **Domains**: Continuous. **Size**: n-D. **Kind**: Bond Graphs.

**Description**
This model can be used to split a multi-bond into single bonds or vice versa. Default 2 bonds can be connected. Use the right mouse menu and choose *Edit Implementation* to change the number of bonds.

**Interface**

**Inputs/Outputs**
- P(any) Multi-bond (dimension [n,m]).
- p single bonds (a total of n*m)

**Note**
The multi-bond and corresponding single bonds must have opposite orientations. I.e. when the multi-bond is pointing **towards** the the power-splitter, all single bonds must point **from** the power splitter and when the multi-bond is pointing **from** the the power-splitter, all single bonds must point towards the signal splitter.
10.1.2 PSensor

Library
System, Bond Graph

Use
Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description
This model can be inserted in any bond to yield the integral of the effort of that bond as an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of the bond. As a result the model will be automatically connected.

Interface

Ports
p1, p2 Input and output port of the flow sensor.

Outputs
p Integral of the effort of the bond.

10.1.2 Qsensor

Library
System, Bond Graph

Use
Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description
This model can be inserted in any bond to yield the integral of the flow of that bond as an output signal.
To ensure success, use drag and drop to place the sensor exactly on top in the middle of the bond. As a result the model will be automatically connected.

**Interface**

**Ports**

p1, p2

Input and output port of the flow sensor.

**Outputs**

q

Integral of the flow of the bond.

**10.1.2 R 2**

**Library**

Bond Graph

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Bond Graphs.

**Description**

This model represents a linear friction/resistor equation. It can have an effort out as well as a flow out causality. In the last case the constitutive equation, as shown below, is simply inverted.

effort out causality:

\[ p.e = r*p.f; \]

flow out causality:

\[ p.f = p.e/r; \]

**Interface**

**Ports**

p

Input port of the R-element.

**Causality**

indifferent
10. Library

Parameters

\( r \)  
The friction/resistor parameter.

10.1.2 Se

3

Library

Bond Graph

Use


Description

This model represents an ideal effort source. The effort can be set to a certain constant value, the flow is indifferent.

\[ p.e = s; \]

Ports

\( p \)  
Output port of the effort source.

Causality

fixed effort out

Parameters

\( s \)  
The constant value of the generated effort

10.1.2 Sf

4

Library

Bond Graph

Use


Description

This model represents an ideal flow source. The flow can be set to a certain constant value, the effort is indifferent.
10. Library

\[ p.f = s; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Output port of the flow source.</td>
</tr>
</tbody>
</table>

**Causality**

fixed flow out

**Parameters**

| s | The constant value of the generated flow. |

10.1.2 SGY 5

**Library**

Bond Graph

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Bond Graphs.

**Description**

This model represents an ideal gyrator with gyration ratio 1. The model represents a one to one power continuous relation between the effort of one port and the flow of the other port and vice-versa. The model can be used to transform a C element into a I element etc. The model can have both ports with an effort causality or both ports with a flow causality:

**effort out causality**:

\[
\begin{align*}
p1.e &= p2.f; \\
p2.e &= p1.f;
\end{align*}
\]

**flow out causality**:

\[
\begin{align*}
p1.f &= p2.e; \\
p2.f &= p1.e;
\end{align*}
\]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2</td>
<td>Input and output port of the gyrator.</td>
</tr>
</tbody>
</table>

**Causality**

p1 equal p2
10.1.2 STF

Library
Bond Graph

Use

Description
This model represents an ideal transformer with transform ratio 1. The model has no real effect but allows for domain changes (one port having another domain as the other). The model represents a power continuous relation between the efforts and flows of both its ports. The causality is always mixed: one port has an effort causality while the other has a flow causality:

\[
\begin{align*}
    p1.e &= p2.e \\
    p2.f &= p1.f
\end{align*}
\]

or:

\[
\begin{align*}
    p2.e &= p1.e \\
    p1.f &= p2.f
\end{align*}
\]

Interface

Ports
p1, p2

Description
Input and output port of the simple transformer.

Causality
p1 notequal p2

The causality of both ports must be different.

10.1.2 SwitchingOneJunction

Library
Bond Graph

Use
Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description
This junction represents a switching 1 junction. Depending on the condition value it can connect / disconnect additional elements to / from the bond graph.
The \textit{p12} junction port is connected when \textit{condition} \texttt{<>} 0. The sum of the efforts on all three ports is zero and the flows on all ports are equal. When disconnected (\textit{condition} \texttt{==} 0), the effort and flow of port \textit{p12} are both zero. Ports \textit{p1} and \textit{p2} are still connected (flow = zero, efforts are equal).

\textbf{Interface}

\textbf{Ports}
\begin{itemize}
  \item \textit{p1}, \textit{p2} \quad Input and output port of the 1 junction.
  \item \textit{p12} \quad Conditional port (only connected when \textit{condition} evaluates to a non-zero value)
\end{itemize}

\textbf{Inputs}
\begin{itemize}
  \item \textit{condition} \quad Switching condition (non-zero value = connected)
\end{itemize}

\textbf{Limitations}
All connected bonds must have the same size.
10.1.2 TF

Use


Description

This model represents an ideal transformer. The model represents a power continuous relation between the efforts and flows of both its ports. The causality is always mixed: one port has an effort causality while the other has a flow causality:

\[ p1.e = r \times p2.e \]
\[ p2.f = r \times p1.f \]

or:

\[ p2.e = \frac{1}{r} \times p1.e \]
\[ p1.f = \frac{1}{r} \times p2.f \]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2</td>
<td>Input and output port of the transformer.</td>
</tr>
</tbody>
</table>

Causality

p1 notequal p2

The causality of both ports must be different.

Parameters

r

Transform ratio
### 10.1.3 ZeroJunction

**Library**
Bond Graph

**Use**
Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

**Description**
This junction represents a power continuous (no energy storage, dissipation or generation) connection of elements. The sum of the flows on all ports is zero and the efforts on all ports are equal. The constitutive equations are for example:

\[
\begin{align*}
    p1.f + p2.f - p3.f - p4.f &= 0; \\
    p1.e = p2.e = p3.e = p4.e; \\
    \text{effort} &= p1.e;
\end{align*}
\]

A zero junction has only one initial port \( p \) defined. Because any number of bonds may be connected, successive connected bonds are named \( p1, p2, p3 \) etc. The plus or minus signs of the flow equation depend on the direction of the bonds. A bond pointing towards the zero junction results in a plus sign and vice-versa. Only one port of a zero junction may determine the effort. In the example port \( p1 \) determines the effort.

**Multi Bonds**
Bonds with a size larger than one (multi bonds) can also be connected to a zero junction. All connected bonds, however, must have the same size.

\[
\begin{align*}
    p1.f + p2.f - p3.f + p4.f &= 0; \\
    p1.e = p2.e = p3.e = p4.e; \\
    \text{effort} &= p1.e;
\end{align*}
\]
Naming conventions are equal to those of the single bond (size 1) junctions. Successive connected bonds are named p1, p2, p3 etc. To denote single elements of a multibond, matrix notation is used. E.g the effort of bond number 3 of a multibond p2 can be denoted as p2.e[3] (columnvector notation) or p2.e[3,1] (matrix notation).

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of ports may be connected.</td>
</tr>
</tbody>
</table>

**Causality**

1_flow p

Only one port may have a flow out causality (as seen from the element).

**Outputs**

effort

The output signal is equal to the effort of the ports.

**Limitations**

All connected bonds must have the same size.

### 10.1.3 ZeroJunction-Activity

This junction is equal to a normal zero junction but monitors the powerflows through the connected bonds. If you use this junction and connect some bonds, it could look like the figure below. The bond numbers are important for identification. You can see them by clicking Port Names from the View menu.

The constitutive equations for this example are:
The powerflows through the junction are monitored:

\[ p1.f - p2.f - p3.f - p4.f = 0; \]
\[ p1.e = p2.e = p3.e = p4.e; \]
\[ output = p2.e; \]

Note that power is a vector with a size equal to the number of bonds that are attached to the junction. The first element of the vector is the power of the first bond (p1 in the example figure), the second element is the power of the second bond (p2 in the example figure) and so on. To see which bonds are active and which bonds are not, the activity is calculated:

\[ activity = \text{int} (\text{abs} (power)); \]

To get an easy comparison, the relative activity is calculated:

\[ \text{maximum}\_\text{activity} = \text{max} (activity); \]
\[ \text{relative}\_\text{activity} = \text{activity} ./ \text{maximum}\_\text{activity} \]

**Interface**

**Ports**

| p[any] | Any number of ports may be connected. |

**Causality**

| 1\_flow p | Only one port may have a flow out causality (as seen from the element). |

**Outputs**

| effort | The output signal is equal to the effort of the ports. |

**Variables**

power	Vector of which the elements are the powers of the connected bonds.
activity	Vector of which the elements are the integrated absolute powers of the connected bonds.
relative\_activity	Vector of which the elements are the relative activities of the connected bonds.

**Limitations**

All connected bonds must have size 1.
10.1.3 3d
2
C-3

Library
Bond Graph

Use
Domains: Continuous. Size: 3-D. Kind: Block Diagrams, Bond Graphs.

Description
This model is the multiport equivalent of the single C storage element. Consequently the constitutive equation must be written as a matrix-vector multiplication. The element has a preferred effort out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred flow out causality. The constitutive equations then contain a derivation, which can only be simulated when the Backward Differentiation Formula integration algorithm is available:

effort out causality (preferred):

\[
\begin{align*}
    state &= \text{int}(p.f) + \text{state}(0); \\
    p.e &= \text{inverse}(C)\times\text{state}; \\
    \text{outp} &= \text{state};
\end{align*}
\]

flow out causality:

\[
\begin{align*}
    state &= C\times p.e; \\
    p.f &= d\ state / dt; \\
    output &= state;
\end{align*}
\]

Interface

Ports
p[3]  Description
Input port of the storage element (columnvector with size 3).

Causality
preferred effort out
A flow out causality results in a derivative constitutive equation.

Outputs
output[3]
The output signal is equal to the state (columnvector with size 3).

Parameters
C[3,3] The storage element constants (matrix of size [3,3]).

Initial Values
state(0)[3] The initial values of the storage element (columnvector with size 3).

Limitations
The preferred equation contains an inverted C matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

GY-3

Library Bond Graph

Use
Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description
This model is the multiport equivalent of the single gyrator. Consequently the constitutive equation must be written as a matrix-vector multiplication. The model can have both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

\[ p1.e = \text{transpose}(R) \times p2.f; \]
\[ p2.e = R \times p1.f; \]

flow out causality:

\[ p1.f = \text{inverse(\text{transpose}(R))} \times p2.e; \]
\[ p2.f = \text{inverse}(R) \times p1.e; \]

Interface

Ports p1[3], p2[3] Description Input and output port of the gyrator (columnvectors with size 3).

Causality p1 equal p2 The causality of both ports must be equal.

Parameters
Gyration ratio (matrix of size $[3,3]$).

**Limitations**
The flow out equations contain an inverted $R$ matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

**I-3**

**Library**
Bond Graph

**Use**
**Domains:** Continuous. **Size:** 3-D. **Kind:** Block Diagrams, Bond Graphs.

**Description**
This model is the multiport equivalent of the single $I$ storage element. Consequently the constitutive equation must be written as a matrix-vector multiplication. The element has a preferred flow out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred effort out causality. The constitutive equations then contain a derivation, which can only be simulated when the Backward Differentiation Formula integration algorithm is available:

flow out causality (preferred):

\[
\text{state} = \text{int}(p.e) + \text{state}(0); \\
p.f = \text{inverse}(I) \ast \text{state}; \\
\text{output} = \text{state};
\]

effort out causality:

\[
\text{state} = I \ast p.f; \\
p.e = d\text{state} / dt; \\
\text{output} = \text{state};
\]
Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input port of the storage element</td>
<td>p[3]</td>
</tr>
<tr>
<td>(columnvector with size 3).</td>
<td></td>
</tr>
</tbody>
</table>

Causality

<table>
<thead>
<tr>
<th>Preferred effort out</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A flow out causality results in a</td>
<td></td>
</tr>
<tr>
<td>derivative constitutive equation.</td>
<td></td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Output signal is equal to the state</th>
<th>output[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(columnvector with size 3).</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

| Storage element constants (matrix | I[3,3] |
| of size [3,3]).                  |         |

Initial Values

Initial values of the storage	state(0)[3]
element (columnvector with size	
3).	

Limitations

The preferred equation contains an inverted I matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

MGY-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated gyrator. Consequently the constitutive equation must be written as a matrix-vector multiplication. The gyration ratio can be set to a certain (fluctuating) value, given by an input signal. The model can have both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

\[
p1.e = transpose(r) * p2.f;
p2.e = r * p2.f;
\]
flow out causality:

\[ p1.f = \text{inverse}(\text{transpose}(r)) \times p2.e; \]
\[ p2.f = \text{inverse}(r) \times p1.e; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1[3], p2[3]</td>
<td>Input and output port of the gyrator (columnvectors with size 3).</td>
</tr>
</tbody>
</table>

**Causality**

p1 equal p2

The causality of both ports must be equal.

**Inputs**

r[3,3]

Modulated gyration ratio (size [3,3]).

**Limitations**

The flow out equations contain a matrix inversion of the modulation signal. The elements of this input signal should always have non-singular values.

---

**MR-3**

**Library**

Bond Graph

**Use**

Domains: Continuous. **Size**: 3-D. **Kind**: Bond Graphs.

**Description**

This model is the multiport equivalent of the single dissipative element. Consequently the constitutive equation must be written as a matrix-vector multiplication. This model can have an effort out as well as a flow out causality. In the last case the constitutive equation, as shown below, is simply inverted. The friction/resistor parameter can be set to a (fluctuating) value, given by an input signal.

effort out causality:
\[ p.e = r*p.f; \]

flow out causality:

\[ p.f = \text{inverse}(r)*p.e; \]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

**Causality**

indifferent

**Input**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r[3,3]</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

**Limitations**

The flow out equation contains an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

---

**MSe-3**

**Library**

Bond Graph

**Use**

Domains: Continuous. **Size:** 3-D. **Kind:** Bond Graphs.

**Description**

This model is the multiport equivalent of the single modulated effort source. The effort can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

\[ p.e = \text{input}; \]
**MSf-3**

**Library**
Bond Graph

**Use**
**Domains:** Continuous. **Size:** 3-D. **Kind:** Bond Graphs.

**Description**
This model is the multiport equivalent of the single modulated flow source. The flow can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

\[ p.f = \text{input}; \]

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>p[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output port of the flow source (columnvector with size 3).</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**
fixed flow out

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>input[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation signal (columnvector with size 3).</td>
<td></td>
</tr>
</tbody>
</table>
MTF-3

Library
Bond Graph

Use
Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description
This model is the multiport equivalent of the single modulated transformer. Consequently the constitutive equation must be written as a matrix-vector multiplication. The transform ratio can be set to a certain (fluctuating) value, given by an input signal. The causality is always mixed: one port has an effort out causality while the other has a flow out causality:

\[
p1.e = \text{transpose}(r) \times p2.e; \\
p2.f = r \times p1.f;
\]

or:

\[
p2.e = \text{inverse}(\text{transpose}(r)) \times p1.e; \\
p1.f = \text{inverse}(r) \times p2.f;
\]

Interface

Ports
p1[3], p2[3]

Description
Input and output port of the gyrator (columnvectors with size 3).

Causality
p1 notequal p2

Inputs
r[3,3]

Description
Modulated transform ratio (size [3,3]).

Limitations
The second set of equations contain a matrix inversion of the modulation signal. The elements of this input signal should always have non-singular values.
Library
Bond Graph

Use
Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description
This model is the multiport equivalent of the single dissipative element. Consequently the constitutive equation must be written as a matrix-vector multiplication. This model can have an effort out as well as a flow out causality. In the last case the constitutive equation, as shown below, is simply inverted.

effort out causality:

\[ p.e = R*p.f; \]

flow out causality:

\[ p.f = inverse(R)*p.e; \]

Interface

Ports
p[3]

Description
Input port of the R-element (columnvector with size 3).

Causality
indifferent

Parameters
R

Description
The friction parameters (matrix of size [3,3]).

Limitations
The flow out equation contains an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.
### Se-3

**Library**
Bond Graph

**Use**
**Domains**: Continuous. **Size**: 3-D. **Kind**: Block Diagrams, Bond Graphs.

**Description**
This model is the multiport equivalent of the single effort source. The effort can be set to a certain constant value, the flow is indifferent.

\[ p.e = S; \]

**Ports**

**Causality**
fixed effort out

**Parameters**
- `S[3]`: The constant value of the generated effort (columnvector with size 3).

### Sf-3

**Library**
Bond Graph

**Use**
**Domains**: Continuous. **Size**: 3-D. **Kind**: Block Diagrams, Bond Graphs.

**Description**
This model is the multiport equivalent of the single flow source. The effort can be set to a certain constant value, the flow is indifferent.

\[ p.f = S; \]

**Ports**

**Causality**
fixed flow out
Parameters

s[3] The constant value of the generated flow (columnvector with size 3).

SGY-3

Library
Bond Graph

Use
Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description
This model is the multiport equivalent of the single symplectic gyrator. Consequently the constitutive equation must be written as a matrix-vector multiplication. This model represents an ideal gyrator with gyration ratio equal to the identity matrix. The model represents a one to one power continuous relation between the effort of one port and the flow of the other port and vice-versa. The model can be used to transform a C-3 element into a I-3 element etc. The model can have both ports with an effort causality or both ports with a flow causality:

effort out causality:

\[ p1.e = p2.f; \]
\[ p2.e = p1.f; \]

flow out causality:

\[ p1.f = p2.e; \]
\[ p2.f = p1.e; \]

Interface

Ports
p1[3], p2[3] Description
Input and output port of the gyrator (columnvectors with size 3).

Causality
p1 equal p2 The causality of both ports must be equal.
**STF-3**

**Library**
Bond Graph

**Use**

**Domains**: Continuous. **Size**: 3-D. **Kind**: Bond Graphs.

**Description**
This model is the multiport equivalent of the single symplectic transformer. This model represents an ideal transformer with a transform ratio equal to the identity matrix. The model represents a one to one power continuous relation between the effort of one port and the flow of the other port and vice-versa. The causality is always mixed: one port has an effort causality while the other has a flow causality:

\[
\begin{align*}
  p1.e &= p2.e; \\
  p2.f &= p1.f;
\end{align*}
\]

or:

\[
\begin{align*}
  p2.e &= p1.e \\
  p1.f &= p2.f
\end{align*}
\]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>p1[3], p2[3]</th>
</tr>
</thead>
</table>

**Description**
Input and output port of the transformer (columnvectors with size 3).

**Causality**

| p1 notequal p2 |

**Description**
The causality of both ports must be different.

---

**TF-3**

**Library**
Bond Graph

**Use**

**Domains**: Continuous. **Size**: 3-D. **Kind**: Bond Graphs.

**Description**
This model is the multiport equivalent of the single transformer. Consequently the constitutive equation must be written as a matrix-vector multiplication. The causality is always mixed: one port has an effort causality while the other has a flow causality:
\[ p1.e = \text{transpose}(R) * p2.e; \]
\[ p2.f = R * p1.f; \]

or:

\[ p2.e = \text{inverse}(\text{transpose}(R)) * p1.e \]
\[ p1.f = \text{inverse}(R) * p2.f \]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1[3], p2[3]</td>
</tr>
</tbody>
</table>

**Causality**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1 notequal p2</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R[3,3]</td>
</tr>
</tbody>
</table>

**Limitations**

The lower set of equations contain an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

**10.1.3 2d 3**

**C-2**

**Library**

Bond Graph

**Use**

**Domains**: Continuous. **Size**: 2-D. **Kind**: Block Diagrams, Bond Graphs.

**Description**

This model is the multiport equivalent of the single C storage element. Consequently the constitutive equation must be written as a matrix-vector multiplication. The element has a preferred effort out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred flow out causality. The constitutive equations then contain a derivation, which can only be simulated when the Backward Differentiation Formula integration algorithm is available:

effort out causality (preferred):
\[ state = \text{int}(p.f) + \text{state}(0); \]
\[ p.e = \text{inverse}(C) \ast \text{state}; \]
\[ outp = \text{state}; \]

flow out causality:

\[ state = C \ast p.e; \]
\[ p.f = \frac{d \text{state}}{dt}; \]
\[ output = \text{state}; \]

**Interface**

**Ports**

- **p[2]**
  - Input port of the storage element (columnvector with size 2).

**Causality**

- preferred effort out
  - A flow out causality results in a derivative constitutive equation.

**Outputs**

- **output[2]**
  - The output signal is equal to the state (columnvector with size 2).

**Parameters**

- **C[2,2]**
  - The storage element constants (matrix of size [2,2]).

**Initial Values**

- **state(0)[2]**
  - The initial values of the storage element (columnvector with size 2).

**Limitations**

The preferred equation contains an inverted C matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.
GY-2

Library
Bond Graph

Use
Domains: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

Description
This model is the multiport equivalent of the single gyrator. Consequently the constitutive equation must be written as a matrix-vector multiplication. The model can have both ports with an effort out causality or both ports with a flow out causality:

**effort out causality:**

\[
\begin{align*}
    p1.e &= \text{transpose}(R) \times p2.f; \\
    p2.e &= R \times p1.f;
\end{align*}
\]

**flow out causality:**

\[
\begin{align*}
    p1.f &= \text{inverse(transpose}(R)) \times p2.e; \\
    p2.f &= \text{inverse}(R) \times p1.e;
\end{align*}
\]

Interface

**Ports**

- p1[2], p2[2]
  
  Input and output port of the gyrator (columnvectors with size 2).

**Causality**

- p1 equal p2
  
  The causality of both ports must be equal.

**Parameters**

- R[2]
  
  Gyration ratio (matrix of size [2,2]).

**Limitations**

The flow out equations contain an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.
Library Bond Graph

Use


Description

This model is the multiport equivalent of the single I storage element. Consequently the constitutive equation must be written as a matrix-vector multiplication. The element has a preferred flow out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred effort out causality. The constitutive equations then contain a derivation, which can only be simulated when the Backward Differentiation Formula integration algorithm is available:

flow out causality (preferred):

\[
state = \text{int}(p.e) + state(0);
\]
\[
p.f = \text{inverse}(I) \times state;
\]
\[
output = state;
\]

effort out causality:

\[
state = I \times p.f;
\]
\[
p.e = \frac{d \text{state}}{dt};
\]
\[
output = state;
\]

Interface

Ports

p[2] Input port of the storage element (columnvector with size 2).

Causality

preferred effort out A flow out causality results in a derivative constitutive equation.

Outputs

output[2] The output signal is equal to the state (columnvector with size 2).

Parameters

I[2,2] The storage element constants (matrix of size [2,2]).

Initial Values
state(0)[2] The initial values of the storage element (columnvector with size 2).

Limitations
The preferred equation contains an inverted I matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

MGY-2

Library
Bond Graph

Use

Description
This model is the multiport equivalent of the single modulated gyrator. Consequently the constitutive equation must be written as a matrix-vector multiplication. The gyration ratio can be set to a certain (fluctuating) value, given by an input signal. The model can have both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

\[
p1.e = \text{transpose}(r) \ast p2.f; \\
p2.e = r \ast p2.f;
\]

flow out causality:

\[
p1.f = \text{inverse(\text{transpose}(r))} \ast p2.e; \\
p2.f = \text{inverse}(r) \ast p1.e;
\]

Interface

Ports
p1[2], p2[2] Input and output port of the gyrator (columnvectors with size 2).

Causality
p1 equal p2 The causality of both ports must be equal.

Inputs
r[2,2] Modulated gyration ratio (size [2,2]).
Limitations
The flow out equations contain a matrix inversion of the modulation signal. The elements of this input signal should always have non-singular values.

MR-2

Library
Bond Graph

Use

Description
This model is the multiport equivalent of the single dissipative element. Consequently the constitutive equation must be written as a matrix-vector multiplication. This model can have an effort out as well as a flow out causality. In the last case the constitutive equation, as shown below, is simply inverted. The friction/resistor parameter can be set to a (fluctuating) value, given by an input signal.

effort out causality:
\[ p.e = r*p.f; \]

flow out causality:
\[ p.f = inverse(r)*p.e; \]

Interface

Ports
\[ p[2] \]

Description
Input port of the R-element (column vector with size 2).

Causality
indifferent

Input
The (modulated) friction/resistor parameter (size \([2,2]\)).

**Parameters**

- **R**
  - The friction parameters (matrix of size \([2,2]\)).

**Limitations**

The flow out equation contains an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

---

### MSe-2

**Library**
Bond Graph

**Use**

- **Domains**: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

**Description**

This model is the multiport equivalent of the single modulated effort source. The effort can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

\[
p.e = \text{input};
\]

**Ports**

- **p[2]**
  - Output port of the effort source (columnvector with size 2).

**Causality**

- fixed effort out

**Inputs**

- **input[2]**
  - Modulation signal (columnvector with size 2).
**MSf-2**

**Library**
Bond Graph

**Use**
Domains: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

**Description**
This model is the multiport equivalent of the single modulated flow source. The flow can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

\[
p.f = \text{input};
\]

**Ports**

<table>
<thead>
<tr>
<th>p[2]</th>
</tr>
</thead>
</table>

**Description**
Output port of the flow source (columnvector with size 2).

**Causality**
fixed flow out

**Inputs**

<table>
<thead>
<tr>
<th>input[2]</th>
</tr>
</thead>
</table>

**Description**
Modulation signal (columnvector with size 2).

**MTF-2**

**Library**
Bond Graph

**Use**
Domains: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

**Description**
This model is the multiport equivalent of the single modulated transformer. Consequently the constitutive equation must be written as a matrix-vector multiplication. The transform ratio can be set to a certain (fluctuating) value, given by an input signal. The causality is always mixed: one port has an effort out causality while the other has a flow out causality:

\[
p1.e = \text{transpose}(r) \times p2.e;
p2.f = r \times p1.f;
\]

or:

\[
p2.e = \text{inverse}(\text{transpose}(r)) \times p1.e;
\]
\( p1.f = \text{inverse}(r) \times p2.f; \)

**Interface**

**Ports**

- \(p1[2], p2[2]\)

**Description**

Input and output port of the gyrator (columnvectors with size 2).

**Causality**

- \(p1 \neq p2\)

**Inputs**

- \(r[2,2]\)

**Description**

Modulated transform ratio (size [2,2]).

**Limitations**

The second set of equations contain a matrix inversion of the modulation signal. The elements of this input signal should always have non-singular values.

---

**R-2**

**Library**

Bond Graph

**Use**

**Domains**: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

**Description**

This model is the multiport equivalent of the single dissipative element. Consequently the constitutive equation must be written as a matrix-vector multiplication. This model can have an effort out as well as a flow out causality. In the last case the constitutive equation, as shown below, is simply inverted.

**Effort out causality**:

\[ p.e = R \times p.f; \]

**Flow out causality**:

\[ p.f = \text{inverse}(R) \times p.e; \]
### Interface

**Ports**

- **p[2]**
  
  Input port of the R-element (columnvector with size 2).

**Causality**

indifferent

**Parameters**

- **R**
  
  The friction parameters (matrix of size [2,2]).

**Limitations**

The flow out equation contains an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.

### Se-2

**Library**

Bond Graph

**Use**

Domains: Continuous. **Size**: 2-D. **Kind**: Block Diagrams, Bond Graphs.

**Description**

This model is the multiport equivalent of the single effort source. The effort can be set to a certain constant value, the flow is indifferent.

\[ p.e = S; \]

**Ports**

- **p[2]**
  
  Output port of the effort source (columnvector with size 2).

**Causality**

fixed effort out

**Parameters**

- **S[2]**
  
  The constant value of the generated effort (columnvector with size 2).
**Sf-2**

**Library**
Bond Graph

**Use**
Domains: Continuous. **Size**: 2-D. **Kind**: Block Diagrams, Bond Graphs.

**Description**
This model is the multiport equivalent of the single flow source. The effort can be set to a certain constant value, the flow is indifferent.

\[ p.f = S; \]

**Ports**

- **p[2]**
  Output port of the flow source (columnvector with size 2).

**Causality**
fixed flow out

**Parameters**

- **s[2]**
  The constant value of the generated flow (columnvector with size 2).

---

**SGY-2**

**Library**
Bond Graph

**Use**
Domains: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

**Description**
This model is the multiport equivalent of the single symplectic gyrator. Consequently the constitutive equation must be written as a matrix-vector multiplication. This model represents an ideal gyrator with gyration ratio equal to the identity matrix. The model represents a one to one power continuous relation between the effort of one port and the flow of the other port and vice-versa. The model can be used to transform a C-2 element into a I-2 element etc. The model can have both ports with an effort causality or both ports with a flow causality:

effort out causality:

\[
\begin{align*}
    p1.e &= p2.f; \\
    p2.e &= p1.f;
\end{align*}
\]
flow out causality:

\[ p1.f = p2.e; \]
\[ p2.f = p1.e; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1[2], p2[2]</td>
<td>Input and output port of the gyrator (columnvectors with size 2).</td>
</tr>
</tbody>
</table>

**Causality**

p1 equal p2

The causality of both ports must be equal.

---

**STF-2**

**Library**

Bond Graph

**Use**


**Description**

This model is the multiport equivalent of the single simple transformer. This model represents an ideal transformer with a transform ratio equal to the identity matrix. The model has no real effect but allows for domain changes (one port having another domain as the other). The model represents a power continuous relation between the efforts and flows of both its ports. The causality is always mixed: one port has an effort causality while the other has a flow causality:

\[ p1.e = p2.e; \]
\[ p2.f = p1.f; \]

or:

\[ p2.e = p1.e \]
\[ p1.f = p2.f \]
p1[2], p2[2]  Input and output port of the transformer (columnvectors with size 2).

**Causality**

p1 notequal p2  The causality of both ports must be different.

**TF-2**

**Library**
Bond Graph

**Use**
**Domains**: Continuous. **Size**: 2-D. **Kind**: Bond Graphs.

**Description**
This model is the multiport equivalent of the single transformer. Consequently the constitutive equation must be written as a matrix-vector multiplication. The causality is always mixed: one port has an effort causality while the other has a flow causality:

\[
p1.e = \text{transpose}(R) \ast p2.e;
\]
\[
p2.f = R \ast p1.f;
\]

or:

\[
p2.e = \text{inverse(transpose}(R)) \ast p1.e
\]
\[
p1.f = \text{inverse}(R) \ast p2.f
\]

**Interface**

**Ports**
p1[2], p2[2]  Input and output port of the transformer (columnvectors with size 2).

**Causality**
p1 notequal p2  The causality of both ports must be different.

**Parameters**
R[2,2]  Transform ratio (matrix of size [2,2]).

**Limitations**
The lower set of equations contain an inverted R matrix. The elements of this matrix should be chosen with care to prevent this matrix from becoming singular.
10.2 Iconic Diagrams

10.2.1 Iconic Diagrams

The Iconic Diagram library contains components which are very useful for modeling physical systems. The following libraries are available.

- Electric
- Hydraulics
- Mechanical
- Thermal

10.2.2 Electric

Electric

The Electric library contains components which are very useful for modeling electrical systems. The library contains the following sections:

- Actuators
- Components
- Sources

Actuators

CMABender

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use


Description

This model represents a piezo actuator. The actuator translates a voltage difference at port \( p_1 \) to a mechanical position difference between the base at port \( p_2 \) and the end effector at port \( p_3 \).

Although the underlying equations of this model are equal to the equations of the CMAStrecher.emx model, the default parameter values are typical for bending.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

Causality
fixed force out

**Input**

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>[F]</td>
</tr>
<tr>
<td>Voltage to force conversion</td>
<td>[N/V]</td>
</tr>
<tr>
<td>Equivalent mass</td>
<td>[kg]</td>
</tr>
<tr>
<td>Stiffness</td>
<td>[N/m]</td>
</tr>
<tr>
<td>Relative damping ratio</td>
<td>[ ]</td>
</tr>
<tr>
<td>Force to voltage conversion</td>
<td>[V/N]</td>
</tr>
</tbody>
</table>

**CMAStretcher**

**Library**

- Iconic Diagrams\Electric\Actuators
- Iconic Diagrams\Mechanical\Translation\Actuators

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation), Block Diagrams.

**Description**

This model represents a piezo actuator. The actuator translates a voltage difference at port _p1_ to a mechanical position difference between the base at port _p2_ and the end effector at port _p3_.

Although the underlying equations of this model are equal to the equations of the CMABender.emx model, the default parameter values are typical for stretching.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

fixed force out

**Input**

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>[F]</td>
</tr>
<tr>
<td>Voltage to force conversion</td>
<td>[N/V]</td>
</tr>
<tr>
<td>Equivalent mass</td>
<td>[kg]</td>
</tr>
<tr>
<td>Stiffness</td>
<td>[N/m]</td>
</tr>
<tr>
<td>Relative damping ratio</td>
<td>[ ]</td>
</tr>
<tr>
<td>Force to voltage conversion</td>
<td>[V/N]</td>
</tr>
</tbody>
</table>
DCMotor

Library
Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Electric

Implementations
Default
IR

Use

Description - Default
This models represents an ideal DC-motor with no energy loss. The electric port has separate high and low terminals. The equations are

\[
\begin{align*}
p1.i &= p1\_high.i = p1\_low.i; \\
p1.u &= p1\_high.u - p1\_low.u;
\end{align*}
\]

The model can have mixed forms of causality

\[
\begin{align*}
p1.u &= k \times p2.\omega; \\
p2.T &= k \times p1.i;
\end{align*}
\]

or:

\[
\begin{align*}
p2.\omega &= p1.u / k; \\
p1.i &= p2.T / k;
\end{align*}
\]

Interface - Default

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1_high, p1_low</td>
<td>Both terminals of the Electric port p1.</td>
</tr>
<tr>
<td>p2</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

Causality
mixed

Parameters
k
motor constant [Nm/A]

Description - IR
This models represents an ideal DC-motor with inductance and resistance.
The electric port has separate high and low terminals. The equations are

\[
p1.i = p1_{high}.i = p1_{low}.i;
p1.u = p1_{high}.u - p1_{low}.u;
\]

**Interface - IR**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1_high, p1_low</td>
<td>Both terminals of the Electric port p1.</td>
</tr>
<tr>
<td>p2</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**

mixed  
See equations above.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>motor constant [Nm/A]</td>
</tr>
<tr>
<td>L</td>
<td>motor inductance [H]</td>
</tr>
<tr>
<td>R</td>
<td>motor resistance [Ohm]</td>
</tr>
</tbody>
</table>

**Components**

**Capacitor**

**Library**

Iconic Diagrams\Electric\Components

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric).

**Description**

This model represents an ideal capacitor. The element has a preferred voltage out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred current out causality. The constitutive equations then contain a derivation. The port p of the inductor model has separate high and low terminals. The equations are:

\[
p.i = p_{high}.i = p_{low}.i;
p.u = p_{high}.u - p_{low}.u;
\]
voltage out causality (preferred):

\[ p.u = \frac{1}{C} \int p.i; \]

current out causality:

\[ p.i = C \cdot ddt(p.u); \]

**Interface**

**Ports**

p_high, p_low

Both terminals of the Electric port p.

**Causality**

preferred voltage out

A current out causality results in a derivative constitutive equation.

**Parameters**

C

capacitance [F]

**Initial Values**

p.u_initial

The initial charge of the capacitor [V].

---

**CurrentSensor**

**Library**

Iconic Diagrams\Electric\Components

**Use**


**Description**

This model translates a current to an output signal. It has a voltage out causality. The port p of the model has separate high and low terminals. The equations are:

\[ p.i = p_{\text{high}}.i = p_{\text{low}}.i; \]
\[ p.u = p_{\text{high}}.u - p_{\text{low}}.u; \]
\[ p.u = 0; \]
\[ i = p.i; \]

**Interface**

**Ports**

p_high, p_low

Both terminals of the Electric port p.

**Causality**

fixed voltage out
Diode

Library
Iconic Diagrams\Electric\Components

Implementations
Default
Exponential

Use

Description - Default
This is an ideal electrical diode. The model is a switch which is open when the voltage drop \( v < 0 \) and closed when the voltage drop \( v > 0 \). The heart of the model consist of a resistance that is changed by the input voltage from almost zero (on) to a very large value (off). By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements. The port \( p \) of the diode model has separate high and low terminals. The equations are:

\[
\begin{align*}
    p.i &= p_{\text{high}}.i = p_{\text{low}}.i; \\
    p.u &= p_{\text{high}}.u - p_{\text{low}}.u;
\end{align*}
\]

voltage out causality:
\[
    R = \text{if } p.i > 0 \text{ then } Ron \text{ else } Roff \text{ end}; \\
    p.u = R * p.i;
\]

current out causality:
\[
    R = \text{if } p.u > 0 \text{ then } Ron \text{ else } Roff \text{ end}; \\
    p.i = p.u / R;
\]

Interface - Default

Ports
\( p_{\text{high}}, p_{\text{low}} \)
Both terminals of the Electric port \( p \).

Causality
indifferent \( p \)

Parameters
Ron
Resistance when diode is turned on [Ohm]
Roff
Resistance when diode is turned off [Ohm]
**Description - Exponential**

This is an electrical diode described by an exponential expression. The port p of the diode model has separate high and low terminals. The equations are:

\[
\begin{align*}
    p.i &= p\_high.i = p\_low.i \\
    p.u &= p\_high.u - p\_low.u \\
    uT &= (k * T) / e; \\
    p.i &= Is * (\exp (p.u / uT) - 1);
\end{align*}
\]

with \( k \) the Boltzmann constant \( k = 1.380658 \times 10^{-23} \, \text{J/K} \)

**Interface - Exponential**

**Ports**

- \( p\_high, p\_low \) Both terminals of the Electric port p.

**Causality**

- indifferent p

**Parameters**

- \( T \) operating temperature [K]
- \( Is \) reverse saturation current [A]

**DoubleSwitch**

**Library**

Iconic Diagrams\Electric\Components

**Implementations**

- Level
- Amplitude

**Use**

- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric).

**Description - Level**

This model represents an almost ideal switch. The switch connects port \( p1 \) with \( p2 \) when the input signal is larger than the threshold value \( vt \) and connects port \( p1 \) with \( p3 \) when the input signal is smaller or equal to the threshold value \( vt \).

The heart of the model consist of two resistances that can be changed by an input signal from almost zero (on) to a very large value (off). By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.
The equations of the resistances are:

\[
R = \text{if input} > \text{vt then } R_{on} \text{ else } R_{off} \text{ end;}
\]
\[
p.u = R * p.i;
\]

**Interface - Level**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2, p3</td>
<td>The electric ports (Electric).</td>
</tr>
<tr>
<td>input</td>
<td>The switching signal.</td>
</tr>
</tbody>
</table>

**Causality**

indifferent p1, p2, p3

**Parameters**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1\R</td>
<td>Ground resistance at port 1 [Ohm]</td>
</tr>
<tr>
<td>R2\R</td>
<td>Ground resistance at port 2 [Ohm]</td>
</tr>
<tr>
<td>R3\R</td>
<td>Ground resistance at port 3 [Ohm]</td>
</tr>
<tr>
<td>Resistance12\Ron</td>
<td>Resistance between p1 and p2 when switch is turned on [Ohm]</td>
</tr>
<tr>
<td>Resistance12\Roff</td>
<td>Resistance between p1 and p2 when switch is turned off [Ohm]</td>
</tr>
<tr>
<td>Resistance12\vt</td>
<td>Threshold value between p1 and p2, switch is turned on when input &gt;</td>
</tr>
<tr>
<td></td>
<td>Resistance12\vt</td>
</tr>
<tr>
<td>Resistance13\Ron</td>
<td>Resistance between p1 and p3 when switch is turned on [Ohm]</td>
</tr>
<tr>
<td>Resistance13\Roff</td>
<td>Resistance between p1 and p3 when switch is turned off [Ohm]</td>
</tr>
<tr>
<td>Resistance13\vt</td>
<td>Threshold value between p1 and p3, switch is turned on when input &gt;</td>
</tr>
<tr>
<td></td>
<td>Resistance13\vt</td>
</tr>
</tbody>
</table>
**Description - Amplitude**

This model represents an almost ideal switch. The switch connects port \( p1 \) with \( p2 \) when the absolute value of the input signal is larger than the threshold value \( \text{Resistance12} \) \( \text{vt} \) and connects port \( p1 \) with \( p3 \) when the absolute value of the input signal is smaller or equal to the threshold value \( \text{Resistance13} \) \( \text{vt} \).

The heart of the model consist of two resistances that can be changed by an input signal from almost zero (on) to a very large value (off). By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.

The equations of the resistances are:

\[
R = \text{if abs(input) > vt then Ron else Roff end};
\]

\[
p.u = R * p.i;
\]

**Interface - Amplitude**

**Ports**
- \( p1, p2, p3 \)  
  The electric ports (Electric).
- **input**  
  The switching signal.

**Causality**
- indifferent \( p1, p2, p3 \)

**Parameters**
- \( R1 \)  
  Ground resistance at port 1 [Ohm]
- \( R2 \)  
  Ground resistance at port 2 [Ohm]
- \( R3 \)  
  Ground resistance at port 3 [Ohm]
- \( \text{Resistance12} \) \( \text{Ron} \)  
  Resistance between \( p1 \) and \( p2 \) when switch is turned on [Ohm]
- \( \text{Resistance12} \) \( \text{Roff} \)  
  Resistance between \( p1 \) and \( p2 \) when switch is turned off [Ohm]
- \( \text{Resistance12} \) \( \text{vt} \)
Threshold value between p1 and p2, switch is turned on when $\text{abs}(\text{input}) > \text{Resistance}_{12}\\nu\text{t}$

Resistance$_{13}\text{Ron}$ Resistance between p1 and p3 when switch is turned on [Ohm]

Resistance$_{13}\text{Roff}$ Resistance between p1 and p3 when switch is turned off [Ohm]

Resistance$_{13}\\nu\text{t}$ Threshold value between p1 and p3, switch is turned on when $\text{abs}(\text{input}) > \text{Resistance}_{13}\\nu\text{t}$

**Note**

To get a simple switching behavior, pay attention to chose the parameters $\text{Resistance}_{12}\ \\nu\text{t}$ and $\text{Resistance}_{13}\\nu\text{t}$ equal. When these parameters are not chosen equal a more complex switching behavior can be obtained.

**Ground**

**Library**

Iconic Diagrams\Electric\Components

**Use**


**Description**

This model represents the ground (voltage = 0). The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. which gives the constitutive equations:

\[
p1.u = p2.u = .. = pn.u = 0; \\
p1.i = \text{free}; p2.i = \text{free}; ..; pn.i = \text{free};
\]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p [any]</td>
<td>Any number of connections can be made (Electric).</td>
</tr>
</tbody>
</table>

**Causality**

Fixed voltage out All ports have a fixed voltage out causality.
Inductor

Library
Iconic Diagrams\Electric\Components

Use

Description
This model represents an ideal electrical inductance. The element has a preferred current out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred voltage out causality. The constitutive equations then contain a derivation. The port p of the inductor model has separate high and low terminals. The equations are:

\[ p.i = p_{\text{high}}.i = p_{\text{low}}.i; \]
\[ p.u = p_{\text{high}}.u - p_{\text{low}}.u; \]

**current out causality (preferred):**

\[ p.i = (1/L)\int(p.u); \]

**voltage out causality:**

\[ p.u = L \cdot ddt(p.i); \]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Electric port p.</td>
</tr>
</tbody>
</table>

**Causality**

| preferred current out | An voltage out causality results in a derivative constitutive equation. |

**Parameters**

| L             | Inductance [H] |

**Initial Values**

| p\_i\_initial | The initial flux in the inductor. |
## Node

### Library
Iconic Diagrams\Electric\Components

### Use
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric).

### Description
This node model represents a structural connection between two or more branches of an electrical circuit. The model has only one initial port \( p \) defined. Because any number of connections can be made, successive ports are named \( p_1, p_2, p_3 \) etc.

### Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p ) [any]</td>
<td>Any number of connections can be made.</td>
</tr>
</tbody>
</table>

## OpAmp

### Library
Iconic Diagrams\Electric\Components

### Implementations
Default
Universal

### Use
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric).

### Description - Default
This model represents an ideal operational amplifier. The input resistance is infinite and the output resistance is zero. The port \( p_{in} \) of the OpAmp model has separate high and low terminals:

\[
\begin{align*}
  p_{in}.u &= p_{in\_high}.u - p_{in\_low}.u; \\
  p_{in\_high}.i &= p_{in\_low}.i = p_{in}.i = 0; \\
  p_{out}.u &= A*p_{in}.u;
\end{align*}
\]

### Interface - Default

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_{in_high} )</td>
<td>Both terminals of the input port ( p_{in} ) (Electric).</td>
</tr>
<tr>
<td>( p_{in_low} )</td>
<td>Output port (Electric).</td>
</tr>
<tr>
<td>( p_{out} )</td>
<td></td>
</tr>
</tbody>
</table>

### Causality
fixed current out
p_in
fixed voltage out
p_out

**Parameters**

A Amplification []

**Description - Universal**

This model represents an operational amplifier with a first order decreasing voltage amplification.

The amplification is parameterized by a DC-gain (A) and a cut-off frequency (f). This yields a unity gain frequency of:

\[ \text{unity gain frequency} = A \times f \]

The gain is limited to yield an output that is between the positive (VDD) and negative (VEE) supply voltage.
The input resistance is infinite and the output resistance is equal to the parameter \( R \). The port \( p_{\text{in}} \) of the OpAmp model has separate high and low terminals:

\[
\begin{align*}
    p_{\text{in}.u} &= p_{\text{in}_\text{high}.u} - p_{\text{in}_\text{low}.u} \\
    p_{\text{in}_\text{high}.i} &= p_{\text{in}_\text{low}.i} = p_{\text{in}.i} = 0; \\
    p_{\text{out}.u} &= \text{Adiff}*p_{\text{in}.u} - R*p_{\text{out}.u};
\end{align*}
\]

where \( \text{Adiff} \) is a dynamic gain according to the bode and gain plot.

**Interface - Universal**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_{\text{in}_\text{high}} )</td>
<td>Both terminals of the input port ( p_{\text{in}} ) (Electric).</td>
</tr>
<tr>
<td>( p_{\text{in}_\text{low}} )</td>
<td>Output port (Electric).</td>
</tr>
<tr>
<td>( p_{\text{out}} )</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

- fixed current out

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A )</td>
<td>DC gain or DC Amplification</td>
</tr>
<tr>
<td>( f )</td>
<td>Cut-off frequency [Hz]</td>
</tr>
<tr>
<td>( \text{VDD} )</td>
<td>Positive supply voltage [V], choose VDD &gt; VEE!</td>
</tr>
<tr>
<td>( \text{VEE} )</td>
<td>Negative supply voltage [V], choose VDD &gt; VEE!</td>
</tr>
<tr>
<td>( R )</td>
<td>Output impedance [Ohm]</td>
</tr>
</tbody>
</table>
**Potentiometer**

**Library**
Iconic Diagrams\Electric\Components

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Electric).

**Description**
This model represents an ideal potentiometer.

![Potentiometer Iconic Diagram](image)

It can have various forms of causality. The equations are:

\[
\begin{align*}
R1 &= (1 - \alpha) \times R; \\
R2 &= \alpha \times R; \\
p_{\text{high}}.u - p_{\text{var}}.u &= p_{\text{high}}.i \times R1; \\
p_{\text{var}}.u - p_{\text{low}}.u &= p_{\text{low}}.i \times R2; \\
p_{\text{high}}.i + p_{\text{var}}.i &= p_{\text{low}}.i;
\end{align*}
\]

where \( \alpha \) denotes the position of the indicator and can vary from zero to one.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the resistor.</td>
</tr>
<tr>
<td>p_var</td>
<td>Indicator terminal.</td>
</tr>
</tbody>
</table>

**Causality**
indifferent

**Parameters**

<table>
<thead>
<tr>
<th>R</th>
<th>Resistance [Ohm].</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Indicator position (0 &lt;= alpha &lt;= 1).</td>
</tr>
</tbody>
</table>
Rectifier

Library
Iconic Diagrams\Electric\Components

Use

Description
This model represents an diode bridge rectifier consisting of a set four diodes. Given an alternating input current, the bridge produces an output current which is always positively oriented and has the same amplitude as the input current. The bridge behavior is ideal. No diode characteristics are implemented and no power is dissipated.

A circuit with a diode bridge rectifier.

Interface

Ports Description
p1_high, p1_low Both terminals of the Electric input port p1.
p2_high, p2_low Both terminals of the Electric output port p2.

Causality
p1 not equal p2

Resistor

Library
Iconic Diagrams\Electric\Components

Use

Description
This model represents an ideal electrical resistor. It can have an voltage out as well as a current out causality. In the last case the constitutive equation, as shown below, is simply inverted. The port p of the damper model has separate high and low terminals. The equations are:
p.i = p_high.i = p_low.i;

p.u = p_high.u - p_low.u;

Voltage out causality:

p.u = R * p.i;

Current out causality:

p.i = p.u / R;

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Electric port p.</td>
</tr>
</tbody>
</table>

**Causality**

indifferent

**Parameters**

| R        | Resistance [Ohm].             |

**Switch**

**Library**

Iconic Diagrams\Electric\Components

**Implementations**

Level
Amplitude

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric).

**Description - Level**

This model represents an almost ideal switch. The switch is turned on when the input signal is larger than the threshold value \(v_t\) and it is turned off when the input signal is smaller or equal to the threshold value \(v_t\).

The heart of the model consist of a resistance that can be changed by an input signal from almost zero (on) to a very large value (off). By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.
The equations of the resistance are:

\[
R = \text{if } \text{input} > \text{vt} \text{ then } \text{Ron} \text{ else } \text{Roff} \text{ end} ; \\
p . u = R \times p . i ;
\]

**Interface - Level**

**Ports**
- **p1, p2**: Both electric ports (Electric).
- **input**: The switching signal.

**Causality**
- Indifferent p1, p2

**Parameters**
- **R1\R**: Ground resistance at port 1 [Ohm]
- **R2\R**: Ground resistance at port 2 [Ohm]
- **Resistance12\Ron**: Resistance when switch is turned on [Ohm]
- **Resistance12\Roff**: Resistance when switch is turned off [Ohm]
- **Resistance12\vt**: Threshold value, switch is turned on when input > vt

**Description - Amplitude**

This model represents an almost ideal switch. The switch is turned on when the amplitude of the input signal is larger than the threshold value \(vt\) and it is turned off when the amplitude of the input signal is smaller or equal to the threshold value \(vt\).

The heart of the model consist of a resistance that can be changed by an input signal from almost zero (on) to a very large value (off). By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.
The equations of the resistance are:

\[ R = \text{if abs(input) > } vt \text{ then } R_{on} \text{ else } R_{off} \text{ end; } \]
\[ p.u = R * p.i; \]

**Interface - Amplitude**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2</td>
<td>Both electric ports (Electric).</td>
</tr>
<tr>
<td>input</td>
<td>The switching signal.</td>
</tr>
</tbody>
</table>

**Causality**

indifferent p1,p2

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R_1)</td>
<td>Ground resistance at port 1 [Ohm]</td>
</tr>
<tr>
<td>( R_2)</td>
<td>Ground resistance at port 2 [Ohm]</td>
</tr>
<tr>
<td>( R_{on})</td>
<td>Resistance when switch is turned on [Ohm]</td>
</tr>
<tr>
<td>( R_{off})</td>
<td>Resistance when switch is turned off [Ohm]</td>
</tr>
<tr>
<td>( vt)</td>
<td>Threshold value, switch is turned on when abs(input) &gt; vt</td>
</tr>
</tbody>
</table>

**Transformer**

**Library**

Iconic Diagrams\Electric\Components

**Implementations**

Default

Induction
Use

Description - Default
This models represents an ideal transformer. The transformer does not have internal resistors, capacitance or inductance. The causality of this model is always mixed: one port has a voltage causality while the other has a current out causality:

\[
P_1.u = n * P_2.u; \\
P_2.i = n * P_1.i;
\]

or:

\[
P_2.u = 1/n * P_1.u; \\
P_1.i = 1/n * P_2.i;
\]

Interface - Default

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1, P_2</td>
<td>Electrical ports</td>
</tr>
</tbody>
</table>

Causality
P_small notequal
P_large

Parameters
n turns ratio []

Description - Induction
This models represents a transformer with inductance and mutual inductance. The equations are:

\[
P_1.u = L_1 * ddt(P_1.i) + M * ddt(P_2.i); \\
P_2.u = M * ddt(P_1.i) + L_2 * ddt(P_2.i);
\]

Interface - Induction

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1, P_2</td>
<td>Electrical ports</td>
</tr>
</tbody>
</table>

Causality
indifferent

Parameters
L1 Primary inductance [H]
L2 Secondary Inductance [H]
M Coupling Inductance [H]
VoltageSensor

Library
Iconic Diagrams\Electric\Components

Use

Description
This model translates a voltage difference to an output signal. It has a current out causality. The port p of the model has separate high and low terminals. The equations are:

\[ p.i = p\textunderscore high.i = p\textunderscore low.i; \]
\[ p.u = p\textunderscore high.u - p\textunderscore low.u; \]
\[ p.i = 0; \]
\[ u = p.u; \]

Interface

Ports
p\textunderscore high, p\textunderscore low Both terminals of the Electric port p.

Causality
fixed current out

Output
u Voltage [V].

Sources

ControlledCurrentSource

Library
Iconic Diagrams\Electric\Sources

Implementations
Voltage
Current

Use

Description - Voltage
This model represents an ideal voltage controlled current source. Both ports of the model have separate high and low terminals:
```
p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;
```

The equations of this model are:

```
p_in.i = 0;
p_out.i = p_in.u;
p_out.u = indifferent;
```

**Interface - Voltage**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in_high</td>
<td>Both terminals of the input port p_in (Electric).</td>
</tr>
<tr>
<td>P_in_low</td>
<td>Both terminals of the output port p_out (Electric).</td>
</tr>
</tbody>
</table>

**Causality**

fixed current out

p_in
fixed current out

p_out

**Description - Current**

This model represents an ideal current controlled current source. Both ports of the model have separate high and low terminals:

```
p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;
```

The equations of this model are:

```
p_in.u = 0;
p_out.i = p_in.i;
p_out.u = indifferent;
```

**Interface - Current**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in_high</td>
<td>Both terminals of the input port p_in (Electric).</td>
</tr>
<tr>
<td>P_in_low</td>
<td>Both terminals of the output port p_out (Electric).</td>
</tr>
<tr>
<td>p_out_high,</td>
<td></td>
</tr>
<tr>
<td>P_out_low</td>
<td></td>
</tr>
</tbody>
</table>
Causality
fixed voltage out
p_in
fixed current out
p_out

ControlledVoltageSource

Library
Iconic Diagrams\Electric\Sources

Implementations
Voltage
Current
PI
KP

Use

Description - Voltage
This model represents an ideal voltage controlled voltage source. Both ports of the model have separate high and low terminals:

\[
P_{in}.u = P_{in\_high}.u - P_{in\_low}.u;
P_{in\_high}.i = P_{in\_low}.i = P_{in}.i;
P_{out}.u = P_{out\_high}.u - P_{out\_low}.u = 0;
P_{out\_high}.i = P_{out\_low}.i = P_{in}.i;
\]

The equations of this model are:

\[
P_{in}.i = 0;
P_{out}.u = P_{in}.u;
P_{out}.i = \text{indifferent};
\]

Interface - Voltage

Ports
p_in_high,
P_in_low
p_out_high,
P_out_low

Causality
fixed current out
p_in

Description
Both terminals of the input port p_in (Electric).
Both terminals of the output port p_out (Electric).
fixed voltage out
p_out

**Description - Current**

This model represents an ideal current controlled voltage source. Both ports of the model have separate high and low terminals:

\[
\begin{align*}
p_{in}.u &= p_{in\_high}.u - p_{in\_low}.u; \\
p_{in\_high}.i &= p_{in\_low}.i = p_{in}.i; \\
p_{out}.u &= p_{out\_high}.u - p_{out\_low}.u = 0 \\
p_{out\_high}.i &= p_{out\_low}.i = p_{in}.i;
\end{align*}
\]

The equations of this model are:

\[
\begin{align*}
p_{in}.u &= 0; \\
p_{out}.u &= p_{in}.i; \\
p_{out}.i &= \text{indifferent};
\end{align*}
\]

**Interface - Current**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in_high, P_in_low</td>
<td>Both terminals of the input port p_in (Electric).</td>
</tr>
<tr>
<td>p_out_high, P_out_low</td>
<td>Both terminals of the output port p_out (Electric).</td>
</tr>
</tbody>
</table>

**Causality**

fixed voltage out
p_in
fixed voltage out
p_out

**Description - PI**

This model represents a voltage controlled voltage source. The output voltage is connected to the input voltage through a PI-controller and limited to a maximum and minimum value of \(\pm V_{\text{max}}\). The output voltage is subjected to an output resistance \(R\).

Both ports of the model have separate high and low terminals:
\[ p_{in}.u = p_{in\_high}.u - p_{in\_low}.u; \]
\[ p_{in\_high}.i = p_{in\_low}.i = p_{in}.i; \]
\[ p_{out}.u = p_{out\_high}.u - p_{out\_low}.u = 0 \]
\[ p_{out\_high}.i = p_{out\_low}.i = p_{in}.i; \]

**Interface - PI**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{in_high}, p_{in}</td>
</tr>
<tr>
<td>Both terminals of the input port p_{in} (Electric).</td>
</tr>
<tr>
<td>p_{in_low}</td>
</tr>
<tr>
<td>p_{out_high}, p_{out}</td>
</tr>
<tr>
<td>Both terminals of the output port p_{out} (Electric).</td>
</tr>
<tr>
<td>p_{out_low}</td>
</tr>
</tbody>
</table>

**Causality**

fixed current out
p_{in}
fixed voltage out
p_{out}

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kp</td>
</tr>
<tr>
<td>Proportional gain []</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>Integration frequency [Hz]</td>
</tr>
<tr>
<td>Vmax</td>
</tr>
<tr>
<td>Maximum output voltage [V]</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Output resistance [Ohm]</td>
</tr>
</tbody>
</table>

**Description - KP**

This model represents a voltage controlled voltage source. The output voltage is proportional to the input voltage and is limited to a maximum and minimum value of \( \pm V_{max} \). The output voltage is subjected to an output resistance \( R \).

Both ports of the model have separate high and low terminals:

\[ p_{in}.u = p_{in\_high}.u - p_{in\_low}.u; \]
\[ p_{in\_high}.i = p_{in\_low}.i = p_{in}.i; \]
\[ p_{out}.u = p_{out\_high}.u - p_{out\_low}.u = 0 \]
\[ p_{out\_high}.i = p_{out\_low}.i = p_{in}.i; \]
**Interface - KP**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in_high</td>
<td>Both terminals of the input port p_in (Electric).</td>
</tr>
<tr>
<td>p_in_low</td>
<td></td>
</tr>
<tr>
<td>p_out_high</td>
<td>Both terminals of the output port p_out (Electric).</td>
</tr>
<tr>
<td>p_out_low</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

- fixed current out
- p_in
- fixed voltage out
- p_out

**Parameters**

- Kp: Proportional gain []
- Vmax: Maximum output voltage [V]
- R: Output resistance [Ohm]

---

**CurrentSource**

**Library**

Iconic Diagrams\Electric\Sources

**Use**

- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric).

**Description**

This model represents an ideal current source with a constant current. The current can be set to a certain constant value, the voltage is indifferent. The port p of the model has separate high and low terminals. The equations are:

\[
\begin{align*}
   p.i &= p_{\text{high}}.i = p_{\text{low}}.i; \\
   p.u &= p_{\text{high}}.u - p_{\text{low}}.u; \\
   p.u &= \text{indifferent}; \\
   p.i &= i;
\end{align*}
\]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_low, p_high</td>
<td>Both terminals of the Electric port p.</td>
</tr>
</tbody>
</table>

**Causality**

- fixed current out

**Parameters**

- i: Current [A].
**ModulatedCurrentSource**

**Library**
Iconic Diagrams\Electric\Sources

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric), Block Diagrams.

**Description**
This model represents an ideal current source with a variable current. The current can be set to a (fluctuating) value given by the input signal \( i \), the voltage is indifferent.

\[ p.i = i; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Electric port.</td>
</tr>
</tbody>
</table>

**Causality**
fixed current out

**Input**

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Current [A].</td>
</tr>
</tbody>
</table>

**ModulatedVoltageSource**

**Library**
Iconic Diagrams\Electric\Sources

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric), Block Diagrams.

**Description**
This model represents an ideal voltage source with a variable voltage. The voltage can be set to a (fluctuating) value given by the input signal \( u \), the current is indifferent.

\[ p.u = u; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Electric port.</td>
</tr>
</tbody>
</table>

**Causality**
**VoltageSource**

**Library**
Iconic Diagrams\Electric\Sources

**Implementations**
DC
AC

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Electric).

**Description - DC**
This model represents an ideal voltage source with a constant voltage. The voltage can be set to a certain constant value, the current is indifferent. The port p of the model has separate high and low terminals. The equations are:

\[
p.i = p._{\text{high}}.i = p._{\text{low}}.i;
p.u = p._{\text{high}}.u - p._{\text{low}}.u;
\]

\[
p.i = \text{indifferent};
p.u = u;
\]

**Interface - DC**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
</tr>
</tbody>
</table>

*Both terminals of the Electric port p.*

**Causality**

fixed voltage out

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
</tr>
</tbody>
</table>

*Voltage [V].*

**Description - AC**
This model represents an ideal voltage source with a sinusoidal voltage. The voltage can be set to a certain constant value, the current is indifferent. The port p of the model has separate high and low terminals. The equations are:
\[ p.i = p_{high}.i = p_{low}.i; \]
\[ p.u = p_{high}.u - p_{low}.u; \]
\[ p.i = \text{indifferent}; \]
\[ p.u = U \sin(2\pi f \times \text{time}); \]

**Interface - AC**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p )</td>
<td>Both terminals of the Electric port ( p ).</td>
</tr>
</tbody>
</table>

**Causality**

fixed voltage out

**Parameters**

| \( U \) | Voltage amplitude [V]. |
| \( f \) | Voltage frequency [Hz]. |

### 10.2.3 Hydraulics

**Hydraulics**

The 20-sim Hydraulics library contains components to model the dynamic behavior of hydraulic circuits. Most components have lumped volumes to ensure a seamless connection with other components. Therefore almost all components can be connected arbitrarily. Care has to be taken that physically relevant circuits are created.

The elementary components (without lumped volumes) are stored in the basic libraries. These models should only be used by experienced modelers who want to create their own library components.

Hydraulic components can easily be coupled to other library models. The pumps and motors have a rotation port that can be coupled to models of the Rotation library. The cylinder models have a translation port that can be coupled to models of the Translation library. Some models have a variable input that can be coupled to models of the Signal library.

To get a good impression of the use the components of this library, have a look at the example circuits.

**Ports**

Every library component has one or more hydraulic connectors, which are called ports in 20-sim. Ports always have two variables: pressure [Pa] and volume flow [m³/s]. The following ports \( a \) and \( b \) are usually provided:
a.p Pressure in [Pa] with respect to atmospheric pressure (p stands for pressure).

a.phi Volume flow [m3/s], positive if oil is entering the component at port a (phi stands for flow).

b

b.p Pressure in [Pa] with respect to atmospheric pressure (p stands for pressure).

b.phi Volume flow [m3/s], negative if oil is entering the component at port b (phi stands for flow).

Pressure

The 20-sim hydraulics library uses the common definition of pressure in Pa:

\[ 1 \text{ Pa} = 1 \text{ N/m}^2 = 1e^{-5} \text{ bar} \]

The air pressure at sea level is taken as the zero value:

\[ 0 \text{ Pa} = \text{air pressure} \]

Consequently the pressure for liquid oil that starts to vaporize is negative. In 20-sim the default value of the vapour pressure is:

\[ p_\text{vapour} = -0.999e5 \text{ Pa} \]

The vapour pressure is the minimum pressure. Some models have a safeguard on the pressure to prevent it to become smaller. You can change the value of the vapour pressure but take care that always a value is chosen that is smaller than zero. Otherwise some of the models will not work correctly.

Bulk modulus

No liquid is fully incompressible. The compliance characteristics of the oil in a hydraulic system is a vital parameters affecting the response. The effect of compressibility is incorporated by entering the bulk modulus of the fluid:

\[ dp = -B*dV/V \]

Here \( dp \) is the pressure, \( V \) the volume and \( B \) the bulk modulus. For small pressure variations the compressibility effect may be rewritten as:

\[ p = B/V*\text{int(flow)} \]

The bulk modulus is a very uncertain parameter. It depends on the percentage of air dissolved in the fluid, the pressure and the temperature. In most textbooks a values of 1.5 to 1.75 [GPa] is used. 20-sim uses a default value of 1.6 [GPa]. If fluid should be simulated at elevated temperatures or with a high percentage of air dissolved, you should use a smaller value for the bulk modulus.
Units
20-sim uses SI-units for the hydraulic components. If you want to use other units select them in the Parameters Editor or the Variables Chooser.

Laminar flow
Many hydraulic models have a laminar (leakage) flow:

\[ \text{flow} = G \times dp \]

with \(G\) the flow conductance and \(dp\) the pressure difference. The table below shows the flow rates for various conductance values and pressure differences of 10 [bar] and 400 [bar].

<table>
<thead>
<tr>
<th>(G) [m(^3)/s.Pa]</th>
<th>(P) [Pa]</th>
<th>(P) [bar]</th>
<th>flow [m(^3)/s]</th>
<th>flow [l/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e-14</td>
<td>1.0e6</td>
<td>10</td>
<td>2.89e-8</td>
<td>0.002</td>
</tr>
<tr>
<td>1.0e-14</td>
<td>4.0e7</td>
<td>400</td>
<td>1.82e-7</td>
<td>0.01</td>
</tr>
<tr>
<td>1.0e-12</td>
<td>1.0e6</td>
<td>10</td>
<td>1.44e-6</td>
<td>0.09</td>
</tr>
<tr>
<td>1.0e-12</td>
<td>4.0e7</td>
<td>400</td>
<td>9.12e-6</td>
<td>0.6</td>
</tr>
<tr>
<td>1.0e-10</td>
<td>1.0e6</td>
<td>10</td>
<td>1.44e-4</td>
<td>9</td>
</tr>
<tr>
<td>1.0e-10</td>
<td>4.0e7</td>
<td>400</td>
<td>9.12e-4</td>
<td>55</td>
</tr>
<tr>
<td>1.0e-8</td>
<td>1.0e6</td>
<td>10</td>
<td>2.89e-3</td>
<td>173</td>
</tr>
<tr>
<td>1.0e-8</td>
<td>4.0e7</td>
<td>400</td>
<td>1.82e-2</td>
<td>1095</td>
</tr>
</tbody>
</table>

If the flow rate is very small (leakage flow), choose \(G\) below 1.0e-14 [m\(^3\)/s.Pa]. If the flow rate is very large (open connection to a tank), choose \(G\) 1.0e-9 or higher if desired.

Turbulent flow
Some hydraulic models have a turbulent (orifice) flow described by:

\[ \text{flow} = Cd \times A \times \sqrt{\frac{2}{\rho} \times dp} \]

with \(Cd\) the discharge coefficient, \(A\) the orifice area, \(\rho\) the fluid density and \(dp\) the pressure difference. Except for small pressure around zero, the discharge coefficient is constant. In most textbooks a value of 0.6 is recommended. The table below shows the flow rates for various orifice areas and pressure differences of 10 [bar] and 400 [bar].

<table>
<thead>
<tr>
<th>(Cd) [m(^3)/s.Pa]</th>
<th>(A) [m(^2)]</th>
<th>(\rho) [kg/m(^3)]</th>
<th>(dp) [Pa]</th>
<th>(dp) [bar]</th>
<th>flow [m(^3)/s]</th>
<th>flow [l/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>1.0e-9</td>
<td>865</td>
<td>1.0e6</td>
<td>10</td>
<td>1.0e-8</td>
<td>0.0006</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0e-9</td>
<td>865</td>
<td>4.0e7</td>
<td>400</td>
<td>4.0e-7</td>
<td>0.024</td>
</tr>
</tbody>
</table>
If the flow rate is very small (leakage flow) choose A smaller than 1.0e-9 [m2]. If the flow rate should be very large (open connection) choose A equal to 1.0e-4 or higher if desired. For very small pressure differences the flow will become laminar and the discharge coefficient will drop. For such cases, specialized models should be applied. If they are not available, use a laminar flow model with a small conductance value.

**Simulation**

Hydraulic circuits can be simulated with all the available integration methods. In practice the default integration method (BDF) will give the most accurate and quickest response. Take care with hydraulic circuits that will give high pressure peaks and small flow rates. These circuits are sometimes hard to simulate. In practice high pressure peaks should be reduced with pressure relief valves to avoid damage. Fortunately adding pressure relief valves will in most cases improve the simulation response.

**Disclaimer**

All models have been tested with standard configurations. This will however not ensure that valid results will be found at all times. For example temperature effects are not included and certain parameter values will lead to unstable simulations. Therefore any application of the library without validation of the user is at its own risk!

**Literature**

The 20-sim hydraulic library has been based on the following literature:


The models have been designed as close as possible to the Modelica hydraulic library (www.modelica.org). To compare both libraries the example model Closed Circuit Drive Train.emx has been added.
Components

HydraulicInertia

Library
Iconic Diagrams\Hydraulics\Components

Use

Description
When a fluid flow changes speed, a force is needed to accelerate the fluid. This force is equal to the acceleration multiplied by the mass of the fluid.

\[ F = m \times \frac{dv}{dt} \]

The fluid mass is equal to the pipe area multiplied by the pipe length and the fluid density:

\[ m = A \times l \times \rho \]

The force will result in a pressure differential:

\[ F = A \times dp = A \times (p_a \cdot p - p_b \cdot p) \]

We can rewrite the formulas as

\[ dp = \rho \times l \times \frac{dv}{dt} \]

and by introducing the fluid flow \( \phi \):

\[ v = \frac{\phi}{A} \]

we get the formula for an hydraulic inertia:

\[ dp = \left( \rho \times l \times \frac{1}{A} \right) \times \frac{d\phi}{dt} \]

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
</tr>
<tr>
<td>Both terminals of the hydraulic inertia.</td>
</tr>
</tbody>
</table>

Causality

fixed pressure out
pa
fixed pressure out
pb

**Parameters**

- rho: Mass density of the fluid [kg/m³].
- d: pipe diameter [m]
- l: pipe length [m]

**Line**

**Library**

Iconic Diagrams\Hydraulics\Components

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Hydraulics).

**Description**

The line model represents a hydraulic pipe or hose with elasticity, inertia and pressure drop. It is assumed that the pipe or hose is round and has a certain length. The line model has two implementations: Default and MultipleCells.

**Default**

The default model of a line consists of two volumes for the compressibility of the fluid, a hydraulic inertia for the mass of the fluid and a friction element to model to friction of the fluid with the walls.

![Figure 1: Default line model](image)

The default line model contains the smallest number of elements to correctly represent the behaviour of a hydraulic line. A more detailed model is obtained by repeating these elements in cells. The more cells are used, the more detailed the fluid flow inside the line can be simulated.
MultipleCells

In general, the default line model will do fine for modelling hydraulic circuits. Only if long lines are used and the resonances, inside the line are important, the multiple cells line model should be applied.

1. Select the Line model in the 20-sim Editor
2. Make sure it has the MultipleCells implementation: select Right mouse menu – Edit Implementation – MultipleCells.
3. Click Go Down to inspect the equations.
4. Change the value of the constant \( n \) from 4 to the number of cells that you require \((n>1)\).

Volume
The pipe with length \( L \) [m], diameter \( D \) [m] and thickness \( th \) [m] will expand under if a pressure is applied by the fluid flowing in the pipe.
The expansion is modelled in the radial direction (pipe wall expanding) and in the length of the pipe (pipe extending). This expansion can be modelled by a reduction of the Bulk modulus:

\[ p = B \times \text{int}(Q/V) \]  

with \( B = \frac{4 \times \text{th} \times E \times B}{(4 \times \text{th} \times E + 5 \times D \times B)} \)

where \( E \) is Young’s modulus [Pa].

**Inertia**

The fluid in the pipe will oppose any change in velocity by a pressure drop. This is modelled by a hydraulic inertia. The equation for the inertia is:

\[ Q = \frac{A}{\rho L} \]

where \( A \) is the pipe cross sectional area [m\(^2\)] and \( \rho \) is the fluid density [kg/m\(^3\)].

**Friction**

Any fluid flowing through a pipe will experience friction resulting in a pressure drop. The pressure drop depends on the fluid velocity and flow conditions. The flow condition can be determined by the Reynolds number:

\[ Re = \frac{Q \times D}{A \times kv} \]

where \( Q \) is the fluid flow [m\(^3\)/s], \( D \) the pipe diameter [m], \( A \) the pipe cross sectional area [m\(^2\)] and \( kv \) the kinematic viscosity [m\(^2\)/s].

For low Reynolds numbers the flow is laminar and for high Reynolds numbers the flow is turbulent. According to Beater (1999), for a smooth pipe, the friction factor \( \lambda \) can be described as:

\[ \lambda = \frac{2 \times dp \times D}{v^2 \times \rho \times L} \]

with \( dp \) the pressure drop [Pa] over the line, \( \rho \) the density of the fluid [kg/m\(^3\)] and \( v \) the average flow velocity of the fluid.

The friction factor \( \lambda \) depends on the Reynolds number:

<table>
<thead>
<tr>
<th>Re</th>
<th>lambda</th>
<th>flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1404</td>
<td>64/Re</td>
<td>laminar (Hagen=Poiseuille)</td>
</tr>
<tr>
<td>1404-2320</td>
<td>0.0456</td>
<td>transition from laminar to turbulent</td>
</tr>
<tr>
<td>&gt; 2320</td>
<td>0.3164 / Re(^0.25)</td>
<td>turbulent (Blasius)</td>
</tr>
</tbody>
</table>
Interface

Ports
- pa, pb

Description
Both terminals of the hydraulic inertia.

Causality
- fixed pressure out pa
- fixed pressure out pb

Parameters
- rho: Mass density of the fluid [kg/m³]
- d: pipe diameter [m]
- l: pipe length [m]

Node

Library
Iconic Diagrams\Hydraulics\Components

Use

Description
This node model represents a connection between two or more lines of an hydraulic circuit. The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc.

Interface

Ports
- p [any]

Description
Any number of connections can be made.
Cylinders

Basic Cylinders

Cylinder

Library
Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

Use

Description

This is an ideal model of cylinder with no mass and no friction. The volume of the chambers is given by:

\[ V_a = V_{dead} + A_a \times (x + x_{initial}) \]
\[ V_b = V_{dead} + A_b \times (stroke - x - x_{initial}) \]

with \( A_a \) the piston area and \( A_b \) the effective area at the rod side. \( x \) is the piston position and \( V_{dead} \) the initial volume when piston position is zero. The piston areas \( A_a \) and \( A_b \) are related to the piston diameter \( dp \) and rod diameter \( dr \) by:

\[ A_a = \pi \times \frac{dp^2}{4} \]
\[ A_b = \pi \times \frac{dp^2}{4} - \pi \times \frac{dr^2}{4} \]

There is no restriction on the travel of the piston. Only a warning is given when the maximum stroke is exceeded or the piston position gets negative.

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
pa, pb  hydraulic port
pm  translation port

**Causality**
preferred pressure out pa
preferred force out pm

**Parameters**
Vdead  rest volume of oil in cylinder chamber when closed [N.s/m]
B  effective bulk modulus [Pa]
stroke  stroke length [m]
x_initial  starting position of piston [m]
dp  piston diameter [m]
dr  rod diameter [m]

**CylinderSpringReturn**

**Library**
Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics/Translational).

**Description**

This is an ideal model of a single acting cylinder with no mass and no friction and a return spring to drive the cylinder back when there is no pressure in the chamber. The volume of the chamber is given by:

\[ V = V_{\text{dead}} + A_a \times (x + x_{\text{initial}}) \]

with \( A_a \) the piston area, \( x \) the piston position and \( V_{\text{dead}} \) the initial volume when piston position is zero. The piston area \( A_a \) is related to the piston diameter \( dp \) by:
The driving force of the return spring is determined by two parameters: the force for piston position zero ($F_{spr\_min}$) and the force when the piston is at the other side ($F_{spr\_max}$). The spring constant ($k_{spr}$) and initial spring position ($x_0$) are calculated out of these parameters by:

\[
k_{spr} = \frac{(F_{spr\_max} - F_{spr\_min})}{\text{stroke}}
\]
\[
x_0 = \frac{-F_{spr\_min}}{k_{spr}}
\]

There is no restriction on the travel of the piston. Only a warning is given when the maximum stroke is exceeded or the piston position gets negative.

**Interface**

**Ports**

- **pa**: hydraulic port
- **pm**: translation port

**Causality**

- preferred pressure out pa
- preferred force out pm

**Parameters**

- **Vdead**: rest volume of oil in cylinder chamber when closed [N.s/m]
- **B**: effective bulk modulus [Pa]
- **stroke**: stroke length [m]
- **x_initial**: starting position of piston [m]
- **dp**: piston diameter [m]
- **F_{spr\_min}**: minimum return spring force (at x = 0) [N]
- **F_{spr\_max}**: maximum return spring force (at x = stroke) [N]
**CylinderChamberA**

**Library**
Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

**Use**

**Description**

This is an ideal model of a single acting cylinder with no mass and no friction. The volume of the chamber is given by:

\[ V = V_{dead} + A_a(x + x_{initial}) \]

with \( A_a \) the piston area, \( x \) the piston position and \( V_{dead} \) the initial volume when piston position is zero. The piston area \( A_a \) is related to the piston diameter \( dp \) by:

\[ A_a = \pi \times dp^2 / 4 \]

There is no restriction on the travel of the piston. Only a warning is given when the maximum stroke is exceeded or the piston position gets negative.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>hydraulic port</td>
</tr>
<tr>
<td>pm</td>
<td>translation port</td>
</tr>
</tbody>
</table>

**Causality**
preferred pressure out pa
preferred force out pm

**Parameters**
Vdead: rest volume of oil in cylinder chamber when closed [N.s/m]
B: effective bulk modulus [Pa]
stroke: stroke length [m]
x_initial: starting position of piston [m]
dp: piston diameter [m]

**CylinderChamberB**

**Library**
Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

**Use**

**Description**

This is an ideal model of a single acting cylinder with no mass and no friction. The volume of the chamber is given by:

\[ V = V_{dead} + A_a(x + x_{initial}) \]

with \( A_a \) the piston area, \( x \) the piston position and \( V_{dead} \) the initial volume when piston position is zero. The piston area \( A_a \) is related to the piston diameter \( dp \) by:

\[ A_a = \pi * dp^2 / 4 \]

There is no restriction on the travel of the piston. Only a warning is given when the maximum stroke is exceeded or the piston position gets negative.
**Interface**

**Ports**
- pa: hydraulic port
- pm: translation port

**Causality**
- preferred pressure out pa
- preferred force out pm

**Parameters**
- Vdead: rest volume of oil in cylinder chamber when closed [N.s/m]
- B: effective bulk modulus [Pa]
- stroke: stroke length [m]
- x_initial: starting position of piston [m]
- dp: piston diameter [m]

**CylinderDouble**

**Library**
Iconic Diagrams\Hydraulics\Cylinders

**Use**

**Description**

This is the extended model of a double acting cylinder with mass, friction and end stops.
The volume of the chambers is given by:

\[
Va = V_{\text{dead}} + Aa \times (x + x_{\text{initial}}) \\
Vb = V_{\text{dead}} + Ab \times (\text{stroke} - x - x_{\text{initial}})
\]

with \(Aa\) the piston area and \(Ab\) the effective area at the rod side. \(x\) is the piston position and \(V_{\text{dead}}\) the initial volume when piston position is zero. The piston areas \(Aa\) and \(Ab\) are related to the piston diameter \(dp\) and rod diameter \(dr\) by:

\[
Aa = \pi \times dp^2 / 4 \\
Ab = \pi \times dp^2 / 4 - \pi \times dr^2 / 4
\]

The travel of the piston is restricted. At the cylinder heads two collision models prevent the piston from traveling any further. The friction between the piston and the cylinder walls is modeled by static and viscous friction.

**Interface**

**Ports**
- \(pa, pb\)
- \(p_{\text{barrel}}, p_{\text{rod}}\)

**Description**
- hydraulic ports
- translation ports

**Causality**
- preferred pressure out \(pa\)
- preferred force out \(pm\)

**Parameters**
- \(V_{\text{dead}}\) rest volume of oil in cylinder chamber when closed, [m3]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>effective bulk modulus [Pa]</td>
</tr>
<tr>
<td>stroke</td>
<td>stroke length [m]</td>
</tr>
<tr>
<td>x_initial</td>
<td>starting position of piston [m]</td>
</tr>
<tr>
<td>dp</td>
<td>piston diameter [m]</td>
</tr>
<tr>
<td>dr</td>
<td>rod diameter [m]</td>
</tr>
<tr>
<td>m_barrel</td>
<td>barrel mass [kg]</td>
</tr>
<tr>
<td>m_rod</td>
<td>rod and piston mass [kg]</td>
</tr>
<tr>
<td>kc</td>
<td>stiffness during collision with cylinder heads [N/m]</td>
</tr>
<tr>
<td>dc</td>
<td>damping during collision with cylinder heads [N.s/m]</td>
</tr>
<tr>
<td>Fc</td>
<td>static friction [N]</td>
</tr>
<tr>
<td>dv</td>
<td>viscous friction coefficient [N.s/m]</td>
</tr>
<tr>
<td>slope</td>
<td>steepness of the static friction curve [ ]</td>
</tr>
</tbody>
</table>

**Note**

When the cylinder piston collides with the cylinder heads, simulation may get very slow or even become unstable. In these cases you are advised to use the BDF-method with default settings. Try to change the absolute integration error until a stable simulation is obtained!

**CylinderSingleSpringReturn**

**Library**

Iconic Diagrams\Hydraulics\Cylinders

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics/Translational).

**Description**

This is the extended model of a single acting cylinder with mass, friction, end stops and a return spring to drive the cylinder back when there is no pressure in the chamber.
The volume of the chamber is given by:

\[ V = V_{\text{dead}} + A_a \cdot (x + x_{\text{initial}}) \]

with \( A_a \) the piston area, \( x \) the piston position and \( V_{\text{dead}} \) the initial volume when piston position is zero. The piston area \( A_a \) is related to the piston diameter \( dp \) by:

\[ A_a = \pi \cdot dp^2 / 4 \]

The driving force of the return spring is determined by two parameters: the force for piston position zero (\( F_{\text{spr\_min}} \)) and the force when the piston is at the other side (\( F_{\text{spr\_max}} \)). The spring constant (\( k_{\text{spr}} \)) and initial spring position (\( x_0 \)) are calculated out of these parameters by:

\[ k_{\text{spr}} = (F_{\text{spr\_max}} - F_{\text{spr\_min}}) / \text{stroke} \]
\[ x_0 = -F_{\text{spr\_min}} / k_{\text{spr}} \]

The travel of the piston is restricted. At the cylinder heads two collision models prevent the piston from traveling any further. The friction between the piston and the cylinder walls is modeled by static and viscous friction.

### Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>hydraulic port</td>
</tr>
<tr>
<td>p_barrel, p_rod</td>
<td>translation ports</td>
</tr>
</tbody>
</table>

20-sim 4.7 Reference Manual
preferred pressure out pa
preferred force out pm

**Parameters**

- **Vdead**: rest volume of oil in cylinder chamber when closed [m$^3$]
- **B**: effective bulk modulus [Pa]
- **stroke**: stroke length [m]
- **x_initial**: starting position of piston [m]
- **dp**: piston diameter [m]
- **m_barrel**: barrel mass [kg]
- **m_rod**: rod and piston mass [kg]
- **kc**: stiffness during collision with cylinder heads [N/m]
- **dc**: damping during collision with cylinder heads [N.s/m]
- **Fc**: static friction [N]
- **dv**: viscous friction coefficient [N.s/m]
- **slope**: steepness of the static friction curve []

**Note**

When a the cylinder piston collides with the cylinder heads, simulation may get very slow or even become unstable. In these cases you are advised to use the BDF-method with default settings. Try to change the absolute integration error until a stable simulation is obtained!

**CylinderSingle**

**Library**

Iconic Diagrams\Hydraulics\Cylinders

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics/Translational).

**Description**

This is the extended model of a single acting cylinder with mass, friction and end stops.
The volume of the chamber is given by:

\[ V = V_{\text{dead}} + A_a(x + x_{\text{initial}}) \]

with \( A_a \) the piston area, \( x \) the piston position and \( V_{\text{dead}} \) the initial volume when piston position is zero. The piston area \( A_a \) is related to the piston diameter \( dp \) by:

\[ A_a = \pi * dp^2 / 4 \]

The travel of the piston is restricted. At the cylinder heads two collision models prevent the piston from traveling any further. The friction between the piston and the cylinder walls is modeled by static and viscous friction.

**Interface**

**Ports**
- \( p_a \) hydraulic port
- \( p_{\text{barrel}}, p_{\text{rod}} \) translation ports

**Causality**
- preferred pressure out \( p_a \)
- preferred force out \( p_m \)

**Parameters**
- \( V_{\text{dead}} \) rest volume of oil in cylinder chamber when closed [m³]
- \( B \) effective bulk modulus [Pa]
- \( \text{stroke} \) stroke length [m]
10. Library

x_initial starting position of piston [m]
dp piston diameter [m]
m_barrel barrel mass [kg]
m_rod rod and piston mass [kg]
kc stiffness during collision with cylinder heads [N/m]
dc damping during collision with cylinder heads [N.s/m]
Fc static friction [N]
dv viscous friction coefficient [N.s/m]
slope steepness of the static friction curve []

Note
When the cylinder piston collides with the cylinder heads, simulation may get very slow or even become unstable. In these cases you are advised to use the BDF-method with default settings. Try to change the absolute integration error until a stable simulation is obtained!

Pumps

Basic Pumps

DisplacementMotor

Library
Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Description
This model describes an ideal motor with an axial speed that is proportional to the input flow rate:

\[ \text{pa}.\phi = \text{pb}.\phi = i \times \text{p_rot.omega}; \]
\[ i = \frac{D}{(2\times\pi)}; \]

The torque is equal to:

\[ p.T = i*(\text{pa}.p - \text{pb}.p); \]

If the port pressure is smaller than the vapour pressure (\( p < p_{\text{vapour}} \)), the flow is zero. If the port pressure becomes larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure (\( p = 0 \)) is reached.

Interface

Ports Description
pa inlet port (hydraulic)
Causality
fixed volume flow
out pa
fixed volume flow
out pb
fixed torque out
p_rot

Parameters
D displacement per revolution [m3]

Displacement Pump

Library
Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Description
This model describes an ideal pump with a displacement that is proportional to the speed of the input axis:

\[ pa\.phi = pb\.phi = i \cdot p_rot\.omega; \]
\[ i = D / (2*\pi); \]

The torque is equal to:

\[ p.T = i*(pa.p - pb.p); \]

If the inlet pressure is smaller than the vapour pressure (\( p < p_vapour \)), the flow is zero. If the inlet pressure is larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure (\( p = 0 \)) is reached.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>inlet port (hydraulic)</td>
</tr>
<tr>
<td>pb</td>
<td>outlet port (hydraulic)</td>
</tr>
<tr>
<td>p_rot</td>
<td>axis (rotation)</td>
</tr>
</tbody>
</table>

Causality
fixed volume flow
out pa
fixed volume flow
out pb
preferred angular velocity out p_rot

**Parameters**

*D*

Displacement per revolution [m3]

---

**FlowSource**

**Library**

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**

This model represents an ideal flow source with a fixed flow given by the parameter phi:

\[
p.phi = phi;
\]

The model has no leakage.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

**Causality**

Fixed volume flow

out p

**Parameters**

*phi*

Volume flow [m3/s]

---

**ModulatedFlowSource**

**Library**

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**

This model represents an ideal flow source with a variable flow that is given by input signal *phi*:
\[ p.phi = phi; \]
The model has no leakage.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phi</td>
<td>Volume flow [m3/s]</td>
</tr>
</tbody>
</table>

**ModulatedPressureSource**

**Library**
Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

**Use**

**Description**
This model represents an ideal pressure source with a fixed pressure given by the parameter pressure:

\[ p.p = pressure; \]
The model has no leakage.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

fixed pressure out

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure</td>
<td>Pressure [Pa]</td>
</tr>
</tbody>
</table>
**PressureSource**

**Library**
Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

**Use**

**Description**
This model represents an ideal pressure source with a fixed pressure given by the parameter pressure:

\[ p.p = \text{pressure}; \]

The model has no leakage.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>fixed pressure out</td>
</tr>
</tbody>
</table>

**Causality**

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Pressure [Pa]</td>
</tr>
</tbody>
</table>

**VariableDisplacementMotor**

**Library**
Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

**Use**

**Description**
This model describes an ideal motor with an axial speed that is proportional to the input flow rate:

\[ pa.phi = pb.phi = i * p._\text{rot.omega}; \]
\[ i = D * c / (2*pi); \]

The torque is equal to:

\[ p.T = i*(pa.p - pb.p); \]

The displacement is controllable by the input signal \( c \). For a positive rotation of the driving axis the flow is:

\[ c >= 1 \quad \text{maximum flow from port 1 to port 2} \]
If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is zero. If the port pressure becomes larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure (p = 0) is reached.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>inlet port (hydraulic)</td>
</tr>
<tr>
<td>pb</td>
<td>outlet port (hydraulic)</td>
</tr>
<tr>
<td>p_rot</td>
<td>axis (rotation)</td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow

out pa

fixed volume flow

out pb

fixed torque out

p_rot

**Input**

c relative displacement

**Parameters**

D displacement per revolution [m3]

**Variable Displacement Pump**

**Library**

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**

This model describes an ideal pump with a displacement that is proportional to the speed of the input axis:

\[ pa.phi = pb.phi = i \times p_rot.omega; \]
\[
i = D \times c / (2*pi); \]

The torque is equal to:

\[ p.T = i*(pb.p - pa.p); \]
The displacement is controllable by the input signal \( c \). For a positive rotation of the driving axis the flow is:

\[
\begin{align*}
c &\geq 1 & \text{maximum flow from port 1 to port 2} \\
c &= 0 & \text{zero flow} \\
c &\leq -1 & \text{maximum flow from port 2 to port 1}
\end{align*}
\]

If the port pressure is smaller than the vapour pressure (\( p < p_{\text{vapour}} \)), the flow is zero. If the port pressure is larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure (\( p = 0 \)) is reached.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>inlet port (hydraulic)</td>
</tr>
<tr>
<td>pb</td>
<td>outlet port (hydraulic)</td>
</tr>
<tr>
<td>p_rot</td>
<td>axis (rotation)</td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow
out pa
fixed volume flow
out pb
fixed torque out
p_rot

**Input**

| c          | relative displacement              |

**Parameters**

| D          | displacement per revolution [m3]   |

**CentrifugalPump**

**Library**

Iconic Diagrams\Hydraulics\Pumps

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**

A centrifugal pump converts the input power of a rotating shaft into kinetic energy of a the liquid by accelerating the liquid through an impeller.
The pump is characterized by two curves:

1. The head \( (H) \) as function of the volume flow at a preset speed.
2. The efficiency \( (n) \) of the pump as a function of the fluid flow at a present speed. The efficiency is defined as the flow output power divided by rotational input power.

The pump curves are approximated by two second order polynomials:

\[
H = ha*q^2 + hb*q + hc \\
n = na*q^2 + nb*q + nc
\]

To fit the polynomial curves, the heads and efficiencies have to be specified at three different flows. The first flow \( (q0) \) is zero. The other two flows \( (q1 \) and \( q2) \) can be chosen arbitrary.

Note: some pump flows extrapolate the efficiency curves to zero at zero fluid flow. This would mean that at a zero fluid flow no power can be transmitted and the pump can
never start! Therefore in this model always use an efficiency that is non-zero at zero flow.

Some pump characteristics give multiple input speeds. This model automatically takes into account for varying input speeds of the input axis by transforming the pump curve using the affinity rules.

\[
H_a = H_b \times \left(\frac{v_b}{v_a}\right)^2 \\
Q_a = Q_b \times \left(\frac{v_b}{v_a}\right)
\]

Some pump characteristics give the efficiencies as regions. You have then have to estimate the efficiencies at the chosen flows \(q_0\), \(q_1\) and \(q_2\).

**Interface**

**Ports**
- \(p_t\): inlet port, tank (hydraulic)
- \(p_a\): outlet port (hydraulic)
- \(p_{\text{rot}}\): axis (rotation)

**Causality**
- velocity out \(p_{\text{rot}}\)

**Input**
- \(\phi\): Volume flow [m3/s]

**Parameters**
- \(q_1\): flow 1 (choose an arbitrary point between zero and nominal)
- \(q_2\): flow 2 (nominal flow)
- \(H_0\): head at zero flow
**Library**

Iconic Diagrams\Hydraulics\Pumps

**Use**


**Description**

This model describes an motor with internal and external leakage and an axial speed that is proportional to the input flow rate:
\[ pa.phi = pb.phi = i \cdot p_{\text{rot.omega}}; \]
\[ i = D / (2\pi); \]

The actual flows at the inlet and outlet port may be slightly different because of the flow into the lumped volumes and the leakage flows. The leakage flows are modeled by laminar resistances. The torque is equal to:

\[ p.T = i*(pa.p - pb.p); \]

If the port pressure is smaller than the vapour pressure \((p < p_{\text{vapour}})\), the flow is zero. If the port pressure is larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure \((p = 0)\) is reached.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>inlet port (hydraulic)</td>
</tr>
<tr>
<td>pb</td>
<td>outlet port (hydraulic)</td>
</tr>
<tr>
<td>p_rot</td>
<td>axis (rotation)</td>
</tr>
</tbody>
</table>

**Causality**

preferred pressure out pa
preferred pressure out pa
preferred angular velocity out p_rot

**Parameters**

- **ExternalLeakage1\p preload**
  - Tank pressure [Pa]
- **ExternalLeakage1\G**
  - Conductance of laminar resistance [m3/s.Pa]
- **ExternalLeakage2\p preload**
  - Tank pressure [Pa]
- **ExternalLeakage2\G**
  - Conductance of laminar resistance [m3/s.Pa]
- **InternalLeakage\G**
  - Conductance of laminar resistance [m3/s.Pa]
- **Va\V**
  - Volume of oil under pressure [m3]
- **Va\B**
  - Effective bulk modulus [Pa]
- **Va\p initial**
  - The starting pressure of the volume [Pa]
- **Vb\V**
  - Volume of oil under pressure [m3]
- **Vb\B**
  - Effective bulk modulus [Pa]
- **Vb\p initial**
  - The starting pressure of the volume [Pa]
- **Motor\D**
  - Displacement per revolution [m3]
- **Friction\d**
  - Damping [N.m.s/rad]
- **Inertia\J**
  - Moment of inertia [kg.m2]
**DisplacementPump-Leakage**

**Library**
Iconic Diagrams\Hydraulics\Pumps

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

![Iconic Diagram](Image)

**Description**

This model describes a pump with internal and external leakage and a displacement that is proportional to the speed of the input axis:

\[
i = D \cdot c / (2 \cdot \pi);
\]

\[
p_a.\phi = p_b.\phi = i \cdot p_{rot.\omega};
\]

The actual flows at the inlet and outlet port may be slightly different because of the flow into the lumped volumes and the leakage flows. The leakage flows are modeled by laminar resistances. The torque of the pump is equal to:

\[
p.T = i \cdot (p_a.p - p_b.p);
\]

If the inlet pressure is smaller than the vapour pressure \( p < p_{\text{vapour}} \), the flow is zero. If the inlet pressure becomes larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure \( p = 0 \) is reached.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>inlet port (hydraulic)</td>
</tr>
</tbody>
</table>
pb outlet port (hydraulic)
p_rot axis (rotation)

**Causality**
preferred pressure out pa
preferred pressure out pa
preferred angular velocity out
p_rot

**Parameters**
- `ExternalLeakage1\ppreload` Tank pressure [Pa]
- `ExternalLeakage1\G` Conductance of laminar resistance [m3/s.Pa]
- `ExternalLeakage2\ppreload` Tank pressure [Pa]
- `ExternalLeakage2\G` Conductance of laminar resistance [m3/s.Pa]
- `InternalLeakage\G` Conductance of laminar resistance [m3/s.Pa]
- `Va\V` Volume of oil under pressure [m3]
- `Va\B` Effective bulk modulus [Pa]
- `Va\p_initial` The starting pressure of the volume [Pa]
- `Vb\V` Volume of oil under pressure [m3]
- `Vb\B` Effective bulk modulus [Pa]
- `Vb\p_initial` The starting pressure of the volume [Pa]
- `Pump\D` Displacement per revolution [m3]
- `Friction\d` Damping [N.m.s/rad]
- `Inertia\J` Moment of inertia [kg.m2]

**FlowSource-Leakage**

**Library**
Iconic Diagrams\Hydraulics\Pumps

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).
Description
This model represents a flow source with a fixed flow and leakage. The flow is given by the parameter $\phi$:

$$p\cdot\phi = \phi - G\cdot p$$

At the output port of the flow source a parasitic volume is mounted. A parasitic volume is a tiny volume that can be added to elements to make them more easy to simulate.

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p$</td>
</tr>
<tr>
<td>Causality</td>
</tr>
<tr>
<td>fixed volume flow out</td>
</tr>
<tr>
<td>$p$</td>
</tr>
</tbody>
</table>

Input

| phi         |
| Volume flow [m3/s] |

Parameters

| FlowSource\$\phi |
| Volume flow [m3/s] |
| TankRes\$p\_preload |
| Tank pressure [Pa] |
| TankRes\$G         |
| Conductance of laminar resistance [m3/s.Pa] |
| $V\V$             |
| Volume of oil under pressure [m3] (hidden) |
| $V\B$             |
| Effective bulk modulus [Pa] (hidden) |
| $V\p\_initial$   |
| The starting pressure of the volume [Pa] (hidden) |
ModulatedFlowSource-Leakage

Library
Iconic Diagrams\Hydraulics\Pumps

Use

Description
This model represents a flow source with a variable flow and leakage. The variable flow is given by an input signal:

\[ p.phi = phi - G*p.p; \]

At the output port of the flow source a parasitic volume is mounted. A parasitic volume is a tiny volume that can be added to elements to make them more easy to simulate.

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
</tr>
<tr>
<td>phi</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TankRes\p_preload</td>
</tr>
<tr>
<td>TankRes\G</td>
</tr>
<tr>
<td>V\V</td>
</tr>
<tr>
<td>V\B</td>
</tr>
<tr>
<td>V\p_initial</td>
</tr>
</tbody>
</table>
VariableDisplacementMotor-Leakage

**Library**
Iconic Diagrams\Hydraulics\Pumps

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**
This model describes a motor with internal and external leakage and an axial speed that is proportional to input flow rate:

\[ \begin{align*}
    pa.\phi &= pb.\phi = i \times p.\omega; \\
    i &= D / (2\pi);
\end{align*} \]

The actual flows at the inlet and outlet port may be slightly different because of the flow into the lumped volumes and the leakage flows. The leakage flows are modeled by laminar resistances. The torque is equal to:

\[ p.T = i \times (pa.p - pb.p); \]

The displacement is controllable by the input signal \( c \). For a positive rotation of the driving axis the flow is:

\[ \begin{align*}
    c \geq 1 & \quad \text{maximum flow from port 1 to port 2} \\
    c = 0 & \quad \text{zero flow} \\
    c \leq -1 & \quad \text{maximum flow from port 2 to port 1}
\end{align*} \]

\[ \text{Variables: } p.\omega, \gamma, \omega, \phi, i, \tilde{\phi}, \omega_b, \omega_r, \omega_a, \omega_c, \phi_a, \phi_b, \phi_c, \phi_d, p.a, p.b, p.c; \]

\[ \text{Ports: } p.a, p.b, p.c, p.d; \]

\[ \text{Equations: } \]

\[ \text{Linearization: } \]

\[ \text{Dynamics: } \]

\[ \text{Initial Conditions: } \]

\[ \text{Simulation: } \]

\[ \text{Parameters: } \]

\[ \text{Properties: } \]

\[ \text{References: } \]

\[ \text{Plotting: } \]

\[ \text{Simulation: } \]

\[ \text{Documentation: } \]

\[ \text{API: } \]

\[ \text{Examples: } \]

\[ \text{Related: } \]

\[ \text{Contributors: } \]

\[ \text{History: } \]

\[ \text{Legacy: } \]

\[ \text{Support: } \]
If the port pressure is smaller than the vapour pressure \((p < p_{\text{vapour}})\), the flow is zero. If the port pressure is larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure \((p = 0)\) is reached.

**Interface**

**Ports**

- \(pa\): inlet port (hydraulic)
- \(pb\): outlet port (hydraulic)
- \(p_{\text{rot}}\): axis (rotation)

**Causality**

- preferred pressure out \(pa\)
- preferred pressure out \(pa\)
- preferred angular velocity out \(p_{\text{rot}}\)

**Input**

- \(c\): relative displacement

**Parameters**

- \(\text{ExternalLeakage1}\_p_{\text{preload}}\): Tank pressure [Pa]
- \(\text{ExternalLeakage1}\_G\): Conductance of laminar resistance [m³/s.Pa]
- \(\text{ExternalLeakage2}\_p_{\text{preload}}\): Tank pressure [Pa]
- \(\text{ExternalLeakage2}\_G\): Conductance of laminar resistance [m³/s.Pa]
- \(\text{InternalLeakage}\_G\): Conductance of laminar resistance [m³/s.Pa]
- \(Va\_V\): Volume of oil under pressure [m³]
- \(Va\_B\): Effective bulk modulus [Pa]
- \(Va\_p_{\text{initial}}\): The starting pressure of the volume [Pa]
- \(Vb\_V\): Volume of oil under pressure [m³]
- \(Vb\_B\): Effective bulk modulus [Pa]
- \(Vb\_p_{\text{initial}}\): The starting pressure of the volume [Pa]
- \(\text{Motor}\_D\): Displacement per revolution [m³]
- \(\text{Friction}\_d\): Damping [N.m.s/rad]
- \(\text{Inertia}\_J\): Moment of inertia [kg.m²]
VariableDisplacementPump-Leakage

Library
Iconic Diagrams\Hydraulics\Pumps

Use

Description
This model describes a pump with internal and external leakage and a displacement that is proportional to the speed of the input axis:

\[ i = D \times c / (2\times\pi); \]
\[ pa.phi = pb.phi = i \times p_rot.omega; \]

The actual flows at the inlet and outlet port may be slightly different because of the flow into the lumped volumes and the leakage flows. The leakage flows are modeled by laminar resistances. The torque of the pump is equal to:

\[ p.T = i*(pa.p - pb.p); \]

The displacement is controllable by the input signal c. For a positive rotation of the driving axis the flow is:

\[ c >= 1 \quad \text{maximum flow from port 1 to port 2} \]
c = 0  
zero flow

c <= -1  
maximum flow from port 2 to port 1

If the port pressure is smaller than the vapour pressure \( p < p_{\text{vapour}} \), the flow is zero. If the port pressure becomes larger than the vapour pressure the flow gradually grows to its normal value, until the atmospheric pressure \( p = 0 \) is reached.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>inlet port (hydraulic)</td>
<td>pa</td>
</tr>
<tr>
<td>outlet port (hydraulic)</td>
<td>pb</td>
</tr>
<tr>
<td>axis (rotation)</td>
<td>p_rot</td>
</tr>
</tbody>
</table>

**Causality**

preferred pressure out pa
preferred pressure out pa
preferred angular velocity out
p_rot

**Input**

<table>
<thead>
<tr>
<th>c relative displacement</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExternalLeakage1\p_preload</td>
<td>Tank pressure ([\text{Pa}])</td>
</tr>
<tr>
<td>ExternalLeakage1\G</td>
<td>Conductance of laminar resistance ([\text{m3/s.Pa}])</td>
</tr>
<tr>
<td>ExternalLeakage2\p_preload</td>
<td>Tank pressure ([\text{Pa}])</td>
</tr>
<tr>
<td>ExternalLeakage2\G</td>
<td>Conductance of laminar resistance ([\text{m3/s.Pa}])</td>
</tr>
<tr>
<td>InternalLeakage\G</td>
<td>Conductance of laminar resistance ([\text{m3/s.Pa}])</td>
</tr>
<tr>
<td>Va\V</td>
<td>Volume of oil under pressure ([\text{m3}])</td>
</tr>
<tr>
<td>Va\B</td>
<td>Effective bulk modulus ([\text{Pa}])</td>
</tr>
<tr>
<td>Va\p_initial</td>
<td>The starting pressure of the volume ([\text{Pa}])</td>
</tr>
<tr>
<td>Vb\V</td>
<td>Volume of oil under pressure ([\text{m3}])</td>
</tr>
<tr>
<td>Vb\B</td>
<td>Effective bulk modulus ([\text{Pa}])</td>
</tr>
<tr>
<td>Vb\p_initial</td>
<td>The starting pressure of the volume ([\text{Pa}])</td>
</tr>
<tr>
<td>Pump\D</td>
<td>Displacement per revolution ([\text{m3}])</td>
</tr>
<tr>
<td>Friction\d</td>
<td>Damping ([\text{N.m.s/rad}])</td>
</tr>
<tr>
<td>Inertia\J</td>
<td>Moment of inertia ([\text{kg.m2}])</td>
</tr>
</tbody>
</table>
Restrictions

LaminarResistance

Library
Iconic Diagrams\Hydraulics\Restrictions

Use

Description
This model describes the laminar flow through a component:

\[ pa.phi = pb.phi = G*(pa.p - pb.p); \]

The pressure at both ports has a lower limit which is equal to the vapour pressure. Therefore the actual equations used in this component are:

\[
\begin{align*}
   p1_{lim} &= \text{if } pa.p < p\_vapour \text{ then } p\_vapour \text{ else } pa.p \text{ end;} \\
   p2_{lim} &= \text{if } pb.p < p\_vapour \text{ then } p\_vapour \text{ else } pb.p \text{ end;} \\
   dp &= p1_{lim} - p2_{lim}; \\
   pa.phi &= G*dp; \\
   pb.phi &= pa.phi;
\end{align*}
\]

There is no check on the validity of laminar flow in this component!

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>pa, pb</th>
<th>Both terminals of the hydraulic component.</th>
</tr>
</thead>
</table>

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

G	Conductance of laminar resistance [m3/s.Pa], G >= 0!.

Orifice

Library
Iconic Diagrams\Hydraulics\Restrictions

Use
Description

This model describes the laminar/turbulent flow through an orifice if no cavitation occurs. The flow depends on the pressure difference:

\[
\begin{align*}
\Delta p &= p_a.p - p_b.p \\
\phi &= \text{sign}(\Delta p) \cdot C_d \cdot A \cdot \sqrt{(2/\rho) \cdot |\Delta p|} + G_{\text{Leak}} \cdot \Delta p;
\end{align*}
\]

Here \( C_d \) is the discharge coefficient which normally has a value between 0.55 and 0.7 and \( A \) is the area of the orifice opening. \( G_{\text{Leak}} \) is the conductance of laminar leakage flow when the valve is closed.

The pressure at both ports has a lower limit that is equal to the vapour pressure. Therefore the actual equations used in this component are:

\[
\begin{align*}
p_1_{\text{lim}} &= \text{if } p_a.p < p_{\text{vapour}} \text{ then } p_{\text{vapour}} \text{ else } p_a.p \text{ end;} \\
p_2_{\text{lim}} &= \text{if } p_b.p < p_{\text{vapour}} \text{ then } p_{\text{vapour}} \text{ else } p_b.p \text{ end;} \\
\Delta p &= p_1_{\text{lim}} - p_2_{\text{lim}};
\end{align*}
\]

Interface

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>pa, pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both terminals of the hydraulic component.</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow

out pa

fixed volume flow

out pb

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density of the fluid [kg/m³].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>GLeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductance of the laminar leakage flow [m³/s·Pa], GLeak ( \geq 0 )</td>
<td></td>
</tr>
</tbody>
</table>
VariableLaminarResistance

Library
Iconic Diagrams\Hydraulics\Restrictions

Use

Description
This model describes the laminar flow through a component:

\[ \text{pa.phi} = \text{pb.phi} = G \times (\text{pa.p} - \text{pb.p}) \; ; \]

The variable conductance G is given by an input signal. The pressure at both ports has a lower limit that is equal to the vapour pressure. Therefore the actual equations used in this component are:

\[
\begin{align*}
\text{p1_lim} &= \text{if pa.p} < \text{p_vapour} \text{ then } \text{p_vapour} \text{ else } \text{pa.p} \text{ end;}
\text{p2_lim} &= \text{if pb.p} < \text{p_vapour} \text{ then } \text{p_vapour} \text{ else } \text{pb.p} \text{ end;}
\text{dp} &= \text{p1_lim} - \text{p2_lim};
\text{pa.phi} &= G \times \text{dp};
\text{pb.phi} &= \text{pa.phi};
\end{align*}
\]

There is no check on the validity of laminar flow in this component!

Interface

Ports Description
pa, pb Both terminals of the hydraulic component.

Causality
fixed volume flow
out pa
fixed volume flow
out pb

Input
G Conductance of laminar resistance [m3/s.Pa], G \geq 0.
VariableOrifice

Library
Iconic Diagrams\Hydraulics\Restrictions

Use

Description
This model describes the laminar/turbulent flow through an orifice if no cavitation occurs. The flow depends on the pressure difference:

\[ dp = pa.p - pb.p; \]
\[ \phi = \text{sign}(dp) \times Cd \times A \times \sqrt{\frac{2}{\rho} \times \text{abs}(dp)} + G\text{Leak} \times dp; \]

Here \( Cd \) is the discharge coefficient that normally has a value between 0.55 and 0.7 and \( A \) is the area of the orifice opening. The area \( A \) is given as an input signal.

The pressure at both ports has a lower limit that is equal to the vapour pressure. Therefore the actual equations used in this component are:

\[ p1\_lim = \text{if } pa.p < p\_vapour \text{ then } p\_vapour \text{ else } pa.p \text{ end}; \]
\[ p2\_lim = \text{if } pb.p < p\_vapour \text{ then } p\_vapour \text{ else } pb.p \text{ end}; \]
\[ dp = p1\_lim - p2\_lim; \]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
<td>Both terminals of the hydraulic component.</td>
</tr>
</tbody>
</table>

Causality
fixed volume flow
out pa
fixed volume flow
out pb

**Input**

A  
Orifice Area [m2], A >= 0.

**Parameters**

rho  
Mass density of the fluid [kg/m3].

GLeak  
Conductance of the laminar leakage flow [m3/s.Pa], GLeak >=0!

Cd  
Discharge coefficient [], Cd >=0!

**Sensors**

**FlowSensor**

**Library**
Iconic Diagrams\Hydraulics\Sensors

**Use**

**Domains**: Continuous.  **Size**: 1-D.  **Kind**: Iconic Diagrams (Hydraulics).

**Description**
This model gives the measured flow as an output signal. The port p of the model has separate high and low terminals. The equations are:

\[
p.\phi = p_{\text{high}}.\phi = p_{\text{low}}.\phi;
\]

\[
p.p = p_{\text{high}}.p - p_{\text{low}}.p;
\]

\[
p.p = 0;
\]

\[
\phi = p.\phi;
\]

The model has no leakage.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
</tr>
</tbody>
</table>

**Causality**
fixed volume flow
out

**Output**

<table>
<thead>
<tr>
<th>phi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow [m3/s]</td>
</tr>
</tbody>
</table>
HeadSensor

Library
Iconic Diagrams\Hydraulics\Sensors

Use

Description
This sensor gives the pressure in head:

\[ H = \frac{p}{\rho g} \]

with \( \rho \) the density of the fluid and \( g \) the specific gravity. The head is the rise of fluid in meters if an open tube would be connected. The figure below shows an example for water at 1 bar and 20 degrees (\( \rho = 998 \text{ kg/m}^3 \)) giving a head of 10.2 m.

Interface

Ports          Description
\( p \)

Causality       indifferent

Parameters
\( \rho \) Mass density of the fluid [kg/m\(^3\)].

PowerSensor

Library
Iconic Diagrams\Hydraulics\Sensors

Use

Description
This model gives the power that is transferred over a hydraulic line:

\[
\begin{align*}
p_{\text{high}}.p &= p_{\text{low}}.p; \\
p_{\text{high}}.phi &= p_{\text{low}}.phi; \\
P &= p_{\text{high}}.phi*p_{\text{high}}.p;
\end{align*}
\]

The model has no leakage.
Interface

Ports          Description
p

Causality
indifferent

Output
P          Power [W].

PressureSensor

Library
Iconic Diagrams\Hydraulics\Sensors

Use

Description
This model gives the measured pressure as an output signal:

\[
\text{pressure} = p.p;
\]
\[
p.phi = 0;
\]

The model has no leakage.

Interface

Ports          Description
p

Causality
fixed volume flow
out

Output
pressure          Absolute velocity [m/s].
Valves

Basic Valves

CheckValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use


Description

This model describes a spring-loaded check valve. The resistance depends on the pressure difference:

\[
\begin{align*}
  dp < pclosed & \Rightarrow \text{valve closed, only leakage: } pa.\phi = pb.\phi = dp \times G_{\text{Leak}} \\
  pclosed < dp < popen & \Rightarrow \text{working range, i.e. valve partially opened} \\
  popen < dp & \Rightarrow \text{valve wide open: } pa.\phi = pb.\phi = Cd \times A \times \sqrt{dp - pclosed};
\end{align*}
\]

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
</tr>
</tbody>
</table>

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters
pclosed  Valve is closed under this pressure [Pa].
popen    Valve is fully open above this pressure [Pa].
GLeak    Conductance of closed valve [m3/s.Pa].
A        Maximum valve area when the valve is open [m2], A >= 0!
Cd       Discharge coefficient [].

**FlowControlValve**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**

**Description**
Flow control valves have the purpose to provide a constant flow, independent of the downstream pressure. The flow is obtained by means of a pressure difference controller using the pressure drop over an orifice. Therefore flow control valves always need a certain pressure drop before the desired flow can be achieved.

![Flow Control Valve Diagram]

In this model the flow is modeled by an tanh function. The pressure drop is defined as the pressure where 95% of the desired flow rate is achieved.

\[
dp = pa.p - pb.p \\
phi = \text{if } dp > 0 \text{ then } \\
\quad \phi\text{arctanh}( (\text{arctan}(0.95)/p\_drop) * dp) + G\text{Leak} * dp; \\
\text{else} \\
\quad G\text{Leak} * dp \\
\text{end};
\]
Here \( \phi \) is the desired flow and \( p_{\text{drop}} \) is the 95% pressure drop. \( G_{\text{Leak}} \) is the conductance of laminar leakage flow when the valve is closed. The pressure at both ports has a lower limit that is equal to the vapour pressure. Therefore the actual equations used in this model are:

\[
\begin{align*}
  p_{1\_lim} &= \text{if } pa.p < p_{\text{vapour}} \text{ then } p_{\text{vapour}} \text{ else } pa.p \text{ end;}
  p_{2\_lim} &= \text{if } pb.p < p_{\text{vapour}} \text{ then } p_{\text{vapour}} \text{ else } pb.p \text{ end;}
  dp &= p_{1\_lim} - p_{2\_lim};
\end{align*}
\]

**Interface**

**Ports**

- \( pa, pb \) Both terminals of the hydraulic component.

**Causality**

- fixed volume flow
- out \( pa \)
- fixed volume flow
- out \( pb \)

**Parameters**

- \( \phi \) Desired flow [m3/s]
- \( p_{\text{drop}} \) pressure drop at 95% flow [Pa]
- \( G_{\text{Leak}} \) Conductance of the laminar leakage flow [m3/s.Pa], \( G_{\text{Leak}} \geq 0 \! \) 

**FourThreeWayDirectionalValve**

**Library**

Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Hydraulics).

**Description**

This model is equal to the four three way proportional valve model, except for the spool position. The spool position is rounded to 0, 1 or -1:

\[
\begin{align*}
  -0.5 < \text{spoolpos} < 0.5 & \Rightarrow \text{pos} = 0 \\
  \text{spoolpos} \geq 0.5 & \Rightarrow \text{pos} = 1 \\
  \text{spoolpos} \leq -0.5 & \Rightarrow \text{pos} = -1
\end{align*}
\]

The spool dynamics is modeled by a second order transfer function:

\[
sp = SO(f,d,\text{discrete(pos)})
\]

which is characterized by the bandwidth \( f \) and damping \( d \).
Implementation
The 4/3-way directional control valve is implemented with various spool centre configurations. The configurations are shown in the picture below:

When you drag and drop a model in the editor, you will be asked which implementation you want to choose. During modeling you can easily change the spool center configuration:

1. Select the valve model.
2. Click the right mouse button to open the right mouse menu.
3. Click *Edit Implementation* and choose another implementation.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp, pt, pa, pb,</td>
<td>All terminals of the valve.</td>
</tr>
</tbody>
</table>

**Causality**
fixed volume flow
out pp
fixed volume flow
out pt
fixed volume flow
out pa
fixed volume flow
out pb

**Inputs**

<table>
<thead>
<tr>
<th>spoolpos</th>
<th>position of the spool valve: 0 = closed, 1 = open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 &lt;= spoolpos &lt;= 1</td>
</tr>
</tbody>
</table>

**Parameters**

rho	Mass density of the fluid [kg/m3].
GLeak	Conductance of the laminar leakage flows [m3/s.Pa], GLeak >= 0.
Amax	Maximum spool valve areas when the valves are open [m2], Amax > 0.
Cd	0.
overlap Discharge coefficient [], Cd > 0.
f The valve overlaps in closed position [], -1 < overlap < 1.
d Bandwidth of the spool dynamics [Hz], f > 0.
Damping of the spool dynamics [], d > 0

**FourThreeWayProportionalValve**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Hydraulics).

**Description**

This model describes a 4/3-way proportional control valve with second order spool dynamics.

The spool position is indicated by the variable \( sp \):

\[
sp = -1 \quad \text{Flow from p to b and a to t}
\]
\[-1 < sp < 0 \quad \text{Partial flow from p to b and a to t}
\]

\[
sp = 0 \quad \text{No flow}
\]
\[0 < sp < 1 \quad \text{Partial flow from p to a and b to t}\]
The flow through the valves is described as laminar/turbulent flow through an orifice. A detailed description of the flow equations can be found in the description of the model TwoTwoWayDirectionalValve.

In the neutral spool position (sp = 0) all valves are closed. A positive overlap indicates that the spool must travel a certain distance before the valves open. A negative overlap indicates that the valves are already open in the neutral position. A 4/3-way directional control valve with negative overlap could therefore also be indicated by the figure below.

The overlap is indicated by the parameter overlap, which is given as a fraction of the spool position. Note that overlap is only active in the neutral position. For the spool position equal to 1 or -1 the valves are completely open or completely closed.

The spool position \(sp\) is a function of the input signal \(spoolpos\):

\[
sp = SO(f,d,\text{discrete}(spoolpos))
\]

where \(SO\) is a second order transfer function to model the spool dynamics. The function is characterized by the bandwidth \(f\) and damping \(d\). The valve input position \(spoolpos\) should be limited to the range between -1 and 1.

**Implementation**

The 4/3-way proportional control valve is implemented with various spool centre configurations. The configurations are shown in the picture below:
When you drag and drop a model in the editor, you will be asked which implementation you want to choose. During modeling you can easily change the spool center configuration:

1. Select the valve model.
2. Click the right mouse button to open the right mouse menu.
3. Click *Edit Implementation* and choose another implementation

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>All terminals of the valve.</td>
<td>pp, pt, pa, pb,</td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>out pp</td>
<td>fixed volume flow</td>
</tr>
<tr>
<td>out pt</td>
<td>fixed volume flow</td>
</tr>
<tr>
<td>out pa</td>
<td>fixed volume flow</td>
</tr>
<tr>
<td>out pb</td>
<td>fixed volume flow</td>
</tr>
</tbody>
</table>

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>spoolpos</th>
</tr>
</thead>
<tbody>
<tr>
<td>position of the spool valve: 0 = closed, 1 = open</td>
<td>0 &lt;= spoolpos &lt;= 1</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density of the fluid [kg/m3].</td>
<td>rho</td>
</tr>
<tr>
<td>Conductance of the laminar leakage flows [m3/s.Pa], GLeak &gt;= 0.</td>
<td>GLeak</td>
</tr>
<tr>
<td>Maximum spool valve areas when the valves are open [m2], Amax &gt; 0.</td>
<td>Amax</td>
</tr>
<tr>
<td>Discharge coefficient [], Cd &gt; 0.</td>
<td>Cd</td>
</tr>
<tr>
<td>The valve overlaps in closed position [], -1 &lt; overlap &lt; 1.</td>
<td>overlap</td>
</tr>
<tr>
<td>Bandwidth of the spool dynamics [Hz], f &gt; 0.</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>d</td>
</tr>
</tbody>
</table>
Damping of the spool dynamics [], \( d > 0 \)

**LoopFlushingValve**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**
Loop flushing valves are used to maintain a high quality working fluid in closed hydraulic circuits. In closed hydraulic circuits the oil is continuously flowing from a pump to an actuator. A loop flushing valve allows the oil to leave the circuit for cooling and filtering. If one side (\( p_a \)) of the valve has a higher pressure, oil will flow from the other side (\( p_b \)) out of the closed circuit and vice versa.

![Diagram of LoopFlushingValve](image)

The circuit is always equipped (not shown above) with a charge pump to keep the suction side of the pump on a pre-pressure to avoid cavitation and so damage to the pump, and to exchange the fluid that is flushed.

Loop flushing valves are spring operated. I.e. a certain pressure difference between port \( a \) and \( b \) is required to open the valve. This pressure can be adjusted and is indicated by the parameter \( p_{sw} \).
A small pressure difference is required to turn a valve from completely closed to completely opened. This overlap pressure is indicated by the parameter $p_o$.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input terminals of the valve.</td>
<td>pa, pb</td>
</tr>
<tr>
<td>Output terminal.</td>
<td>p_out</td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow

out pa

dfixed volume flow

out pb

fixed volume flow

out p_out

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>position of the spool valve: 0 = closed, 1 = open</td>
<td>spoolpos</td>
</tr>
<tr>
<td>0 &lt;= spoolpos &lt;= 1</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density of the fluid [kg/m3].</td>
<td>rho</td>
</tr>
<tr>
<td>Conductance of the laminar leakage flows [m3/s.Pa], GLeak &gt;= 0.</td>
<td>GLeak</td>
</tr>
<tr>
<td>Maximum spool valve areas when the valves are open [m2], Amax &gt; 0.</td>
<td>Amax</td>
</tr>
<tr>
<td>Discharge coefficient [], Cd &gt; 0.</td>
<td>Cd</td>
</tr>
<tr>
<td>Bandwidth of the spool dynamics [Hz], f &gt; 0.</td>
<td>f</td>
</tr>
<tr>
<td>Damping of the spool dynamics [], d &gt; 0</td>
<td>d</td>
</tr>
<tr>
<td>Overlap pressure [Pa].</td>
<td>p_o</td>
</tr>
<tr>
<td>Switching pressure [Pa].</td>
<td>p_sw</td>
</tr>
</tbody>
</table>
**PilotOperatedCheckValve**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Hydraulics).

**Description**
A pilot operated check valve is a check valve that is normally closed but can be opened for reverse flow by a signal from an external pilot supply.

![Diagram of Pilot Operated Check Valve](image)

The figure above shows the standard design using a pilot piston with a stem to unseat the check valve poppet for reverse flow. The pilot piston has an area three to four times that of the poppet seat. This produces enough force to open the poppet against backpressure. Some pilot-operated check valves have area ratios up to 100:1, allowing a very low pilot pressure to open the valve against high backpressure.

The flow through a pilot operated check depends on the differential pressure \( dp \) between the inlet port \( pa \) and the outlet port \( pb \) and is equal to:

\[
flow = Cd \times A \times valve \times \sqrt{dp};
\]

The variable \( valve \) indicates the valve opening and varies between zero (closed) and 1 (open). The opening depends on a force balance which depends on the pressures of the inlet and outlet port, the spring force and the pressure of the pilot port \( px \):

\[
valve = \text{limit}( ( pa.p - pb.p - pclosed + px.p*kp )/(popen - pclosed) , 0 , 1 )
\]

The pilot ratio \( kp \) is ratio of the pilot piston area and the check valve area. For a large pilot ratio a relatively small pilot pressure is sufficient to open the valve against a large outlet pressure.
**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>Inlet port</td>
</tr>
<tr>
<td>pb</td>
<td>Outlet port</td>
</tr>
<tr>
<td>px</td>
<td>Pilot port</td>
</tr>
</tbody>
</table>

**Causality**

- fixed volume flow
- out pa
- fixed volume flow
- out pb
- fixed volume flow
- out pt

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pclosed</td>
<td>Valve is closed under this pressure [Pa] and zero pilot pressure.</td>
</tr>
<tr>
<td>popen</td>
<td>Valve is fully open above this pressure [Pa] and zero pilot pressure.</td>
</tr>
<tr>
<td>GLeak</td>
<td>Conductance of closed valve [m3/s.Pa].</td>
</tr>
<tr>
<td>A</td>
<td>Maximum valve area when the valve is open [m2], A &gt;= 0!</td>
</tr>
<tr>
<td>Cd</td>
<td>Discharge coefficient[].</td>
</tr>
<tr>
<td>kp</td>
<td>Pilot ratio[].</td>
</tr>
</tbody>
</table>
**PressureCompensator**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description - Default**

A pressure compensator is a component that maintains a constant differential pressure across its sensing ports $p_x$ and $p_y$ by regulating the flow through the component from port $p_a$ to port $p_b$. A pressure compensator can be used to maintain a constant flow over a valve by keeping the pressure drop over the valve constant. The sensing ports $p_y$ and $p_x$ are then connected with the input and output of the valve.

The flow through the element is laminar or turbulent depending on the pressure drop $p_{ab}$ over $p_a$ and $p_b$:

\[
p_{ab} = p_a.p - p_b.p;
\]

\[
\phi = \text{sign}(p_{ab}) \times C_d \times A \times \sqrt{(2/\rho) \times \text{abs}(dp)} + \text{Gleak} \times p_{ab};
\]

The opening $A$ depends on the pressure drop $p_{xy}$ over $p_a$ and $p_b$:
The maximum opening $A_{\text{max}}$ is determined by the maximum flow $\phi_{\text{max}}$ at the maximum pressure drop $p_{\text{in\_max}}$ over the component:

$$A_{\text{max}} = \frac{\phi_{\text{max}}}{Cd \sqrt{\frac{2}{\rho} p_{\text{in\_max}}}};$$

The opening is at its maximum value when the differential pressure across it sensing ports $px$ and $py$ is below the pressure $((k-1)/k)*p_{\text{set}}$. If the differential pressure across it sensing ports $px$ and $py$ is too high, the opening is closed. In between it varies between fully open and fully closed. The speed of response of the component is determined by the proportional gain $k$ (typical choose $k = 2$ to 5). The proportional gain determines the slope of the valve opening. If $k$ is large the regulator will respond quickly but also induce oscillations in the circuit.

The valve is implemented with second order spool dynamics. I.e. the spool opening is characterized by the bandwidth ($f$) and damping ($d$).

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>pa, pb</th>
<th>Input and output terminals of the component.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>px, py</td>
<td>Sensing terminals of the component. These are used to measure the pressure and have almost zero flow.</td>
</tr>
</tbody>
</table>

**Causality**

<table>
<thead>
<tr>
<th>Description</th>
<th>fixed volume flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>out pa</td>
</tr>
<tr>
<td></td>
<td>fixed volume flow</td>
</tr>
<tr>
<td></td>
<td>out pb</td>
</tr>
<tr>
<td></td>
<td>fixed volume flow</td>
</tr>
<tr>
<td></td>
<td>out px</td>
</tr>
<tr>
<td></td>
<td>fixed volume flow</td>
</tr>
<tr>
<td></td>
<td>out py</td>
</tr>
</tbody>
</table>

**Parameters**
rho  Mass density of the fluid [kg/m³].
GLeak  Conductance of the laminar leakage flows [m³/s·Pa], GLeak >= 0.
Cd  Discharge coefficient [], Cd > 0.
p_set  Desired differential pressure over xy (px.p - py.p), [Pa]
p_in_max  maximum inlet pressure, [Pa]
phi_max  maximum flow at maximum inlet pressure (pa.p) and zero outlet pressure (pb.p), [m³/s]
f  natural frequency of the second order spool dynamics [Hz]
d  relative damping of the second order spool dynamics [Hz]
k  proportional gain [-]

**PressureReliefValve**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Hydraulics).

**Description**
This model describes a pressure relief valve. The resistance depends on the pressure difference:
\[ dp = pa.p - pb.p \]
\[ dp < pclosed \Rightarrow \text{valve closed, only leakage: } pa.\phi = pb.\phi = dp \times G\text{Leak} \]
\[ pclosed < dp < popen \Rightarrow \text{working range, i.e. valve partially opened} \]
\[ popen < dp \Rightarrow \text{valve wide open: } pa.\phi = pb.\phi = dp \times G\text{Open} \]

**Interface**

**Ports**

*pa, pb* Both terminals of the hydraulic component.

**Causality**

fixed volume flow

out pa

fixed volume flow

out pb

**Parameters**

*pclosed* Valve is closed under this pressure [Pa].

*popen* Valve is fully open above this pressure [Pa].

*G\text{Leak}* Conductance of closed valve [m3/s.Pa].

*G\text{Open}* Conductance of open valve [m3/s.Pa].
PressureReducingValve

Library
Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Description
Pressure reducing valves have the purpose to provide a constant pressure \( p_{\text{nom}} \), independent of the upstream pressure. They are used to limit the pressure of a primary circuit to a desired pressure for a secondary circuit.

The desired pressure \( p_{\text{nom}} \) is obtained by means of a flow over a valve between an input port \( p_a \) and an output port \( p_b \). The valve is modeled by a variable conductance. Depending on the pressure downstream \( p_b.p \) the valve is opened (large conductance) or closed (zero conductance). Therefore pressure reducing valves always need a small flow to establish the correct downstream pressure.

When the downstream pressure \( p_b.p \) increases over the desired pressure a second valve opens to allow flow from the downstream port \( p_b \) to a third port \( p_t \). The third port is mostly connected to the tank.
The valves have a pressure region for opening and closing. This region is indicated by the parameter *range*.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>Upstream port</td>
</tr>
<tr>
<td>pb</td>
<td>Downstream port</td>
</tr>
<tr>
<td>pt</td>
<td>Relief port</td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow
out pa
fixed volume flow
out pb
fixed volume flow
out pt

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_nom</td>
<td>Desired downstream pressure [Pa].</td>
</tr>
<tr>
<td>range</td>
<td>Range for opening and closing the valves [Pa].</td>
</tr>
<tr>
<td>Gab</td>
<td>The maximum conductance from a to b [m$^3$/s.Pa].</td>
</tr>
<tr>
<td>Gbt</td>
<td>The maximum conductance from b to t [m$^3$/s.Pa].</td>
</tr>
</tbody>
</table>
ShuttleValve

Library
Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Description - Default
A shuttle valve is a type of valve which allows fluid to flow through it from one of two sources. Shuttle valves accept flow from two different sources \((pa)\) and \((pb)\) and divert the highest pressure to a single outlet port \((p_out)\). Shuttle valves are commonly used in Load Sensing circuits and at a cylinder to measure the working pressure, as well as Brake circuits. Normal shuttle valve are mostly ball and poppet types valves.

\[
p.out.p = \text{maximum}(pa.p, pb.p) \\
\text{pa.phi} = \text{pb.phi} = 0;
\]

This model sets the flows of the input ports to zero and assumes the output flow is zero as well. However the output flow is determined by the component that is connected with the output port. A warning is given when the output flow exceeds 1.0e-5 m3. If flows are important in your model, use the Spool Dynamics implementation of this model (see below).

Interface - Default

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pa, pb)</td>
<td>Input terminals of the valve.</td>
</tr>
<tr>
<td>(p_out)</td>
<td>Output terminal.</td>
</tr>
</tbody>
</table>

Causality
fixed volume flow
out \(pa\)
fixed volume flow
out \(pb\)
fixed pressure out
   p_out

**Description - BallDynamics**
This implementation is equal to the default implementation but with modeled dynamics. A small pressure difference between the inlet ports \( p_a \) and \( p_b \) is enough to make the ball switch from one side to the other. This pressure is called the overlap pressure \( p_o \).

![Diagram of BallDynamics](image)

**Interface - BallDynamics**

<table>
<thead>
<tr>
<th><strong>Ports</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_a, p_b )</td>
<td>Input terminals of the valve.</td>
</tr>
<tr>
<td>( p_{\text{out}} )</td>
<td>Output terminal.</td>
</tr>
</tbody>
</table>

**Causality**
fixed volume flow
out \( p_a \)
fixed volume flow
out \( p_b \)
fixed volume flow
out \( p_{\text{out}} \)

**Parameters**

**rho**	Mass density of the fluid [kg/m\(^3\)].
**GLeak**	Conductance of the laminar leakage flows [m\(^3\)/s.Pa], \( G\text{Leak} \geq 0 \).
**Amax**	Maximum valve areas when the valves are open [m\(^2\)], \( A\text{max} > 0 \).
**Cd**	Discharge coefficient [], \( C_d > 0 \).
**f**	Bandwidth of the valve dynamics [Hz], \( f > 0 \).
**d**	Damping of the valve dynamics [], \( d > 0 \).
**p_o**	Overlap pressure [Pa].
TwoTwoWayDirectionalValve

Library
Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Description

This model describes a 2/2-way directional control valve with second order spool dynamics. The flow through the valve is described as laminar/turbulent flow through an orifice:

\[ dp = \frac{pa - pb}{1} \]
\[ \phi = \text{sign}(dp) \cdot Cd \cdot A(sp) \cdot \sqrt{\frac{2}{\rho} \cdot |dp|} + G\text{Leak} \cdot dp; \]

Here \( Cd \) is the discharge coefficient which normally has a value between 0.55 and 0.7. \( A(sp) \) is the area of the orifice opening. \( A(sp) \) depends linearly on the spool position \( sp \) and varies between 0 (\( sp = 0 \)) and the maximum area \( A_{max} (sp = 1) \). \( G\text{Leak} \) is the conductance of laminar leakage flow when the valve is closed. The relative opening of the spool valve is indicated by \( sp \). For a closed valve the spool position (\( sp \)) is equal to zero and for an open valve the spool position (\( sp \)) is equal to 1.

In the neutral spool position (\( sp = 0 \)) the valve is just closed. A positive overlap indicates that the spool must travel a certain distance before the valve opens.
A negative overlap indicates that the valve is already open in the neutral position.

The overlap is indicated by the parameter overlap, which is given as a fraction of the spool position.

The spool position sp is a function of the input signal spoolpos:

$$sp = SO(f,d,\text{discrete}(\text{spoolpos}))$$

where $SO$ is a second order transfer function to model the spool dynamics. The function is characterized by the bandwidth ($f$) and damping ($d$). The model acts as a directional valve (a valve which is either open or closed) because the input signal $\text{spoolpos}$ is rounded to 0 or 1:

$$\text{spoolpos} < 0.5 \Rightarrow 0$$
$$\text{spoolpos} \geq 0.5 \Rightarrow 1$$

The pressure at both ports has a lower limit which is equal to the vapour pressure. Therefore the actual equations used in this component are:

$$\text{pa}_\text{lim} = \text{if } \text{pa}.p < \text{p}_\text{vapour} \text{ then } \text{p}_\text{vapour} \text{ else } \text{pa}.p \text{ end};$$
$$\text{pb}_\text{lim} = \text{if } \text{pb}.p < \text{p}_\text{vapour} \text{ then } \text{p}_\text{vapour} \text{ else } \text{pb}.p \text{ end};$$
**Interface**

**Ports**

- pa, pb
  - Both terminals of the valve.

**Causality**

- Fixed volume flow out pa
- Fixed volume flow out pb

**Inputs**

- spoolpos
  - Position of the spool valve
  - spoolpos < 0.5 => valve is closed
  - spoolpos >= 0.5 => valve is open

**Parameters**

- rho
  - Mass density of the fluid [kg/m3].
- GLeak
  - Conductance of the laminar leakage flow [m3/s.Pa], GLeak >= 0.
- Amax
  - Maximum spool valve area when the valve is open [m2], Amax > 0.
- Cd
  - Discharge coefficient [], Cd > 0.
- overlap
  - The valve overlap in closed position [], -1 < overlap < 1.
- f
  - Bandwidth of the spool dynamics [Hz], f > 0.
- d
  - Damping of the spool dynamics [], d > 0.

**TwoTwoWayProportionalValve**

**Library**

Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**

- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).
Description

This model describes a 2/2-way proportional control valve with second order spool dynamics. The flow through the valve is described as laminar/turbulent flow through an orifice:

\[ dp = pa.p - pb.p \]
\[ \phi = \text{sign}(dp) \times C_d \times A(sp) \times \sqrt{\frac{2}{\rho} \times |dp|} + G_{\text{leak}} \times dp; \]

Here \( C_d \) is the discharge coefficient which normally has a value between 0.55 and 0.7. \( A(sp) \) is the area of the orifice opening. \( A(sp) \) depends linearly on the spool position \( sp \) and varies between 0 (\( sp = 0 \)) and the maximum area \( A_{\text{max}} \) (\( sp = 1 \)). \( G_{\text{leak}} \) is the conductance of laminar leakage flow when the valve is closed. The relative opening of the spool valve is indicated by \( sp \). For a closed valve the spool position \( sp \) is equal to zero and for an open valve the spool position \( sp \) is equal to 1.

In the neutral spool position \( sp = 0 \) the valve is just closed. A positive overlap indicates that the spool must travel a certain distance before the valve opens.
A negative overlap indicates that the valve is already open in the neutral position.

The overlap is indicated by the parameter overlap, which is given as a fraction of the spool position.

The spool position $sp$ is a function of the input signal $spoolpos$:

$$ sp = SO(f,d,spoolpos) $$

where $SO$ is a second order transfer function to model the spool dynamics. The function is characterized by the bandwidth ($f$) and damping ($d$). The valve input position $spoolpos$ should be limited to the range between 0 and 1.

The pressure at both ports has a lower limit which is equal to the vapour pressure. Therefore the actual equations used in this component are:

$$ pa\_lim = \text{if } pa.p < p\_vapour \text{ then } p\_vapour \text{ else } pa.p \text{ end}; $$
$$ pb\_lim = \text{if } pb.p < p\_vapour \text{ then } p\_vapour \text{ else } pb.p \text{ end}; $$

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
<td>Both terminals of the valve.</td>
</tr>
</tbody>
</table>
Causality
fixed volume flow
out pa
fixed volume flow
out pb

Inputs
spoolpos position of the spool valve: 0 = closed, 1 = open
0 <= spoolpos <= 1

Parameters
rho Mass density of the fluid [kg/m3].
GLeak Conductance of the laminar leakage flow [m³/s·Pa], GLeak >= 0.
Amax Maximum spool valve area when the valve is open [m²], Amax > 0.
Cd Discharge coefficient [], Cd > 0.
overlap The valve overlap in closed position [], -1 < overlap < 1.
f Bandwidth of the spool dynamics [Hz], f > 0.
d Damping of the spool dynamics [], d > 0.

CheckValve-States

Library
Iconic Diagrams\Hydraulics\Valves

Use

Description

This model describes a spring-loaded check valve with parasitic volumes. The resistance depends on the pressure difference:
**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>pa, pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both terminals of the hydraulic component.</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

<table>
<thead>
<tr>
<th>preferred pressure out pa</th>
<th>preferred pressure out pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>CheckValve\pclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve is closed under this pressure [Pa].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>CheckValve\popen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve is fully open above this pressure [Pa].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>CheckValve\GLeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductance of closed valve [m3/s.Pa].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>CheckValve\A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum valve area when the valve is open [m2], A &gt;= 0!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>CheckValve\Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge coefficient [].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Va\V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of oil under pressure [m3] (hidden)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Va\B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective bulk modulus [Pa] (hidden)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Vb\V</th>
</tr>
</thead>
<tbody>
<tr>
<td>The starting pressure of the volume [Pa] (hidden)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Vb\B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of oil under pressure [m3] (hidden)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Vb\p_initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective bulk modulus [Pa] (hidden)</td>
<td></td>
</tr>
<tr>
<td>The starting pressure of the volume [Pa] (hidden)</td>
<td></td>
</tr>
</tbody>
</table>
**CounterbalanceValve**

**Library**  
Iconic Diagrams\Hydraulics\Valves

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**
This model is an externally piloted counter balance valve. The model consists of an externally piloted pressure relief valve with a check valve in parallel. The ports of the model are connected to parasitic volumes.

The Counterbalance valve is applied as a brake valve to get a positive control on a hydraulic cylinder or motor with a negative load. The check valve is used to get a free running actuator in one direction and the pressure relief valve is used to control the actuator in the other direction. The relief valve is controlled by the external pilot pressure.

**Interface**

**Ports**
- pa, pb  
- pt.

**Causality**
- fixed volume flow out pa  
- fixed volume flow out pb  
- fixed volume flow out pt

**Description**
Both terminals of the hydraulic component.
Parameters

- `CheckValve\pclosed`: Valve is closed under this pressure [Pa].
- `CheckValve\popen`: Valve is fully open above this pressure [Pa].
- `CheckValve\GLeak`: Conductance of closed valve [m3/s.Pa].
- `CheckValve\A`: Maximum valve area when the valve is open [m2], \( A \geq 0 \)
- `CheckValve\Cd`: Discharge coefficient [].
- `PressureReliefValve\pclosed`: Valve is closed under this pressure [Pa].
- `PressureReliefValve\popen`: Valve is fully open above this pressure [Pa].
- `PressureReliefValve\GLeak`: Conductance of closed valve [m3/s.Pa].
- `PressureReliefValve\GOpen`: Conductance of open valve [m3/s.Pa].
- `Va\V`: Volume of oil under pressure [m3] (hidden)
- `Va\B`: Effective bulk modulus [Pa] (hidden)
- `Va\p_initial`: The starting pressure of the volume [Pa] (hidden)
- `Vb\V`: Volume of oil under pressure [m3] (hidden)
- `Vb\B`: Effective bulk modulus [Pa] (hidden)
- `Vb\p_initial`: The starting pressure of the volume [Pa] (hidden)
- `Vt\V`: Volume of oil under pressure [m3] (hidden)
- `Vt\B`: Effective bulk modulus [Pa] (hidden)
- `Vt\p_initial`: The starting pressure of the volume [Pa] (hidden)

FlowControlValve-States

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

Description

This model describes a flow control valve with with parasitic volumes.
In this model the flow is modeled by an \( \tanh \) function. The pressure drop is defined as the pressure where 95% of the desired flow rate is achieved.

\[
\text{dp} = \text{pa.p} - \text{pb.p} \\
\text{phi} = \text{if dp > 0 then} \\
\quad \text{phi*arctanh} \left( \frac{\text{arctan}(0.95)}{\text{p\_drop}} \right) \times \text{dp} + \text{GLeak} \times \text{dp}; \\
\text{else} \\
\quad \text{GLeak} \times \text{dp} \\
\text{end;}
\]

Here \( \text{phi} \) is the desired flow and \( \text{p\_drop} \) is the 95% pressure drop. \( \text{Gleak} \) is the conductance of laminar leakage flow when the valve is closed. The pressure at both ports has a lower limit that is equal to the vapour pressure. Therefore the actual equations used in this model are:

\[
\text{p1\_lim} = \text{if pa.p < p\_vapour then p\_vapour else pa.p end;} \\
\text{p2\_lim} = \text{if pb.p < p\_vapour then p\_vapour else pb.p end;} \\
\text{dp} = \text{p1\_lim} - \text{p2\_lim};
\]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
<td>Both terminals of the hydraulic component.</td>
</tr>
</tbody>
</table>

**Causality**

fixed volume flow out pa  
fixed volume flow out pb

**Parameters**

- \( \text{FlowControlValve\phi} \): Desired flow [m3/s]  
- \( \text{FlowControlValve\_p\_drop} \): pressure drop at 95% flow [Pa]  
- \( \text{FlowControlValve\_GLeak} \): Conductance of the laminar leakage flow [m3/s.Pa], \( \text{GLeak} \geq 0 \)  
- \( \text{Va\_V} \): Volume of oil under pressure [m3] (hidden)
FourThreeWayDirectionalValve-States

Library
Iconic Diagrams\Hydraulics\Valves

Use

Description

This model describes a 4/3-way directional control valve with second order spool dynamics and parasitic volumes. The flow through the valves is described as laminar/turbulent flow through an orifice. A detailed description of the valve can be found in FourThreeWayDirectionalValve.htm.

The spool position is indicated by the input spoolpos:

\[
\begin{align*}
sp &= -1 \quad \text{Flow from p to b and a to t} \\
sp &= 0 \quad \text{No flow} \\
sp &= 1 \quad \text{Flow from p to a and b to t}
\end{align*}
\]

Values between -1 and 0 or between 0 and 1 are rounded to the nearest value.

Implementation
The 4/3-way proportional control valve is implemented with various spool center configurations. The configurations are shown in the picture below:
When you drag and drop a model in the editor, you will be asked which implementation you want to choose. During modeling you can easily change the spool center configuration:

1. Select the valve model.
2. Click the right mouse button to open the right mouse menu.
3. Click *Edit Implementation* and choose another implementation.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All terminals of the valve.</td>
</tr>
</tbody>
</table>

**Causality**

- preferred effort out pp
- preferred effort out pt
- preferred effort out pa
- preferred effort out pb

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>position of the spool valve</td>
</tr>
<tr>
<td>spoolpos &lt; 0.5 =&gt; valve is closed</td>
</tr>
<tr>
<td>spoolpos &gt;= 0.5 =&gt; valve is open</td>
</tr>
</tbody>
</table>

**Parameters**

- Mass density of the fluid [kg/m3].
- Conductance of the laminar leakage flow [m3/s.Pa], GLeak >= 0.
- Maximum spool valve area when the valve is open [m2], Amax > 0.
- Discharge coefficient [], Cd > 0.
- The valve overlap in closed position [], -1 < overlap < 1.
- Bandwidth of the spool dynamics [Hz], f > 0.
- Damping of the spool dynamics [], d > 0.
- Volume of oil under pressure [m3] (hidden)
FourThreeWayDirectionalValve Effective bulk modulus [Pa] (hidden)
ed
FourThreeWayDirectionalValve Volume of oil under pressure [m3] (hidden)
Va\V The starting pressure of the volume [Pa] (hidden)
Va\B Volume of oil under pressure [m3] (hidden)
Va\p_initial Effective bulk modulus [Pa] (hidden)
Vb\V The starting pressure of the volume [Pa] (hidden)
Vb\B Volume of oil under pressure [m3] (hidden)
Vb\p_initial Effective bulk modulus [Pa] (hidden)
Vp\V The starting pressure of the volume [Pa] (hidden)
Vp\B
Vp\p_initial
Vt\V
Vt\B
Vt\p_initial

**FourThreeWayProportionalValve-States**

**Library**
Iconic Diagrams\Hydraulics\Valves

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**

This model describes a 4/3-way proportional control valve with second order spool dynamics and parasitic volumes. The flow through the valves is described as laminar/turbulent flow through an orifice. A detailed description of the valve can be found in FourThreeWayProportionalValve.htm.
The spool position is indicated by the input spoolpos:

\[ sp = -1 \quad Flow \text{ from } p \text{ to } b \text{ and } a \text{ to } t \]
\[-1 < sp < 0 \quad Partial \text{ flow from } p \text{ to } b \text{ and } a \text{ to } t \]

\[ sp = 0 \quad No \text{ flow} \]
\[ 0 < sp < 1 \quad Partial \text{ flow from } p \text{ to } a \text{ and } b \text{ to } t \]
\[ sp = 1 \quad Flow \text{ from } p \text{ to } a \text{ and } b \text{ to } t \]

**Implementation**
The 4/3-way proportional control valve is implemented with various spool centre configurations. The configurations are shown in the picture below:

![Implementation Diagram](image)

When you drag and drop a model in the editor, you will be asked which implementation you want to choose. During modeling you can easily change the spool center configuration:

1. Select the valve model.
2. Click the right mouse button to open the right mouse menu.
3. Click *Edit Implementation* and choose another implementation.

**Interface**

**Ports**

- pp, pt, pa, pb
  - Description: All terminals of the valve.

**Causality**

- preferred effort out pp
- preferred effort out pt
- preferred effort out pa
- preferred effort out pb

**Inputs**

- spoolpos
  - Description: value of the spool position

**Parameters**
FourThreeWayProportionalVal Mass density of the fluid [kg/m³].
ve\rho Conductance of the laminar leakage flow [m³/s.Pa],
FourThreeWayProportionalVal GLeak >= 0.
ve\Amax Maximum spool valve area when the valve is open [m²],
FourThreeWayProportionalVal Amax > 0.
ve\Cd Discharge coefficient [], Cd > 0.
FourThreeWayProportionalVal The valve overlap in closed position [], -1 < overlap < 1.
ve\Cd Damping of the spool dynamics [Hz], f > 0.
FourThreeWayProportionalVal Damping of the spool dynamics [], d > 0.
ve\overlap Volume of oil under pressure [m³] (hidden)
FourThreeWayProportionalVal Effective bulk modulus [Pa] (hidden)
ve\f The starting pressure of the volume [Pa] (hidden)
FourThreeWayProportionalVal Volume of oil under pressure [m³] (hidden)
ve\d Effective bulk modulus [Pa] (hidden)
Va\V The starting pressure of the volume [Pa] (hidden)
Va\B Volume of oil under pressure [m³] (hidden)
Va\p_initial Effective bulk modulus [Pa] (hidden)
Vb\V The starting pressure of the volume [Pa] (hidden)
Vb\B Volume of oil under pressure [m³] (hidden)
Vb\p_initial Effective bulk modulus [Pa] (hidden)
Vp\V The starting pressure of the volume [Pa] (hidden)
Vp\B
Vp\p_initial
Vt\V
Vt\B
Vt\p_initial

LoopFlushingValve-States

Library
Iconic Diagrams\Hydraulics\Valves

Use

Description
This model describes a loop flushing valve with parasitic volumes.
Loop flushing valves are used to maintain a high quality working fluid in closed hydraulic circuits. In closed hydraulic circuits the oil is continuously flowing from a pump to an actuator. A loop flushing valve allows the oil to leave the circuit for cooling and filtering. If one side \((pa)\) of the valve has a higher pressure, oil will flow from the other side \((pb)\) out of the closed circuit and vice versa.

The circuit is always equipped (not shown above) with a charge pump to keep the suction side of the pump on a pre-pressure to avoid cavitation and so damage to the pump, and to exchange the fluid that is flushed.

Loop flushing valves are spring operated. I.e. a certain pressure difference between port \(a\) and \(b\) is required to open the valve. This pressure can be adjusted and is indicated by the parameter \(p_{sw}\).
A small pressure difference is required to turn a valve from completely closed to completely opened. This overlap pressure is indicated by the parameter $p_o$.

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input terminals of the valve.</td>
<td>Output terminal.</td>
</tr>
</tbody>
</table>

**Causality**

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure out pa</td>
<td>Pressure out pb</td>
</tr>
</tbody>
</table>

**Inputs**

<table>
<thead>
<tr>
<th>spoolpos</th>
<th>position of the spool valve: 0 = closed, 1 = open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 &lt;= spoolpos &lt;= 1</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Mass density of the fluid [kg/m³].</th>
<th>Conductance of the laminar leakage flows [m³/s·Pa], $G_{Leak} \geq 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho$</td>
<td>$G_{Leak}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum spool valve areas when the valves are open [m²], $A_{max} &gt; 0$.</th>
<th>Discharge coefficient [], $C_d &gt; 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{max}$</td>
<td>$C_d$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bandwidth of the spool dynamics [Hz], $f &gt; 0$.</th>
<th>Damping of the spool dynamics [], $d &gt; 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f$</td>
<td>$d$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overlap pressure [Pa].</th>
<th>Switching pressure [Pa].</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{sw}$</td>
<td>$p_{sw}$</td>
</tr>
</tbody>
</table>
**PilotOperatedCheckValve-States**

**Library**
Iconic Diagrams\Hydraulics\Valves\Basic Valves

**Use**

**Description**
This model is a pilot operated check valve with parasitic volumes.

![Diagram of PilotOperatedCheckValve](image)

The flow through a pilot operated check depends on the differential pressure $dp$ between the inlet port $pa$ and the outlet port $pb$ and is equal to:

$$flow = Cd * A * valve * \sqrt{dp};$$

The variable $valve$ indicates the valve opening and varies between zero (closed) and 1 (open). The opening depends on a force balance which depends on the pressures of the inlet and outlet port, the spring force and the pressure of the pilot port $px$:

$$valve = limit( ( pa.p - pb.p - pclosed + px.p*kp )/(popen - pclosed) , 0 , 1 )$$

The pilot ratio $kp$ is ratio of the pilot piston area and the check valve area. For a large pilot ratio a relatively small pilot pressure is sufficient to open the valve against a large outlet pressure.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
</table>

pa  Inlet port
pb  Outlet port
px  Pilot port

**Causality**
fixed volume flow
out pa
fixed volume flow
out pb
fixed volume flow
out pt

**Parameters**
pclosed  Valve is closed under this pressure [Pa] and zero pilot pressure.
oppen  Valve is fully open above this pressure [Pa] and zero pilot pressure.
GLeak  Conductance of closed valve [m3/s.Pa].
A  Maximum valve area when the valve is open [m2], A >= 0!
Cd  Discharge coefficient [].
kp  Pilot ratio [].

**PressureCompensator-States**

**Library**
Iconic Diagrams\Hydraulics\Valves

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Hydraulics).

**Description - Default**
This model is a pressure compensator with parasitic volumes. A pressure compensator is an component that maintains a constant differential pressure across it sensing ports px and py by regulating the flow through the component from port pa to port pb. A pressure compensator can be used to maintain a constant flow over a valve by keeping the pressure drop over the valve constant. The sensing ports py and px are then connected with the input and output of the valve.
The flow through the element is laminar or turbulent depending on the pressure drop $p_{ab}$ over $pa$ and $pb$:

$$p_{ab} = pa.p - pb.p;$$
$$phi = \text{sign}(p_{ab}) * Cd * A * sqrt( (2/rho) * abs(dp) ) + G\text{Leak} * p_{ab};$$

The opening $A$ depends on the pressure drop $p_{xy}$ over $pa$ and $pb$:

The maximum opening $A_{\text{max}}$ is determined by the maximum flow $phi_{\text{max}}$ at the maximum pressure drop $p_{in\_max}$ over the component:

$$A_{\text{max}} = phi_{\text{max}} / ( Cd * sqrt( (2/rho) * p_{in\_max} ) );$$
The opening is at its maximum value when the differential pressure across it sensing ports $p_x$ and $p_y$ is below the pressure $((k-1)/k) \cdot p\_set$. If the differential pressure across it sensing ports $p_x$ and $p_y$ is too high, the opening is closed. In between it varies between fully open and fully closed. The speed of response of the components is determined by the proportional gain $k$ (typical choose $k = 2$ to 5). The proportional gain determines the slope of the valve opening. If $k$ is large the regulator will respond quickly but also induce oscillations in the circuit.

The valve is implemented with second order spool dynamics. I.e. the spool opening is characterized by the bandwidth ($f$) and damping ($d$).

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
<td>pa, pb</td>
</tr>
<tr>
<td>Sensing terminals</td>
<td>px, py</td>
</tr>
<tr>
<td>of the component.</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

preferred	pressure out pa
preferred	pressure out pb
preferred	pressure out px
preferred	pressure out py

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density of</td>
<td>rho</td>
</tr>
<tr>
<td>Conductance of</td>
<td>GLeak</td>
</tr>
<tr>
<td>Discharge coefficient</td>
<td>Cd</td>
</tr>
<tr>
<td>Desired differential pressure over xy (px.p - py.p)</td>
<td>p_set</td>
</tr>
<tr>
<td>maximum inlet pressure</td>
<td>p_in_max</td>
</tr>
<tr>
<td>maximum flow at maximum inlet pressure (pa.p) and zero outlet pressure (pb.p)</td>
<td>phi_max</td>
</tr>
<tr>
<td>natural frequency of the second order spool dynamics</td>
<td>f</td>
</tr>
<tr>
<td>relative damping of the second order spool dynamics</td>
<td>d</td>
</tr>
<tr>
<td>proportional gain</td>
<td>k</td>
</tr>
</tbody>
</table>
PressureReducingValve-States

Library
Iconic Diagrams\Hydraulics\Valves

Use

Description
This model describes a pressure reducing valve with parasitic volumes. Pressure reducing valves have the purpose to provide a constant pressure ($p_{nom}$), independent of the upstream pressure. They are used to limit the pressure of a primary circuit to a desired pressure for a secondary circuit.

Interface

Ports
pa, pb
pt

Description
Both terminals of the hydraulic component.
Pilot

Causality
fixed volume flow out pa
fixed volume flow out pb

Parameters
FlowControlValve$\phi$
FlowControlValve$p_{drop}$
FlowControlValve$G_{Leak}$
Va\V
Va\B
Va\p$_{initial}$
Vb\V
Vb\B
Vb\p$_{initial}$

Description
Desired flow [m3/s]
pressure drop at 95% flow [Pa]
Conductance of the laminar leakage flow [m3/s.Pa],
GLeak $\geq 0$!
Volume of oil under pressure [m3] (hidden)
Effective bulk modulus [Pa] (hidden)
The starting pressure of the volume [Pa] (hidden)
Volume of oil under pressure [m3] (hidden)
Effective bulk modulus [Pa] (hidden)
The starting pressure of the volume [Pa] (hidden)

**PressureReliefValve-States**

**Library**
Iconic Diagrams\Hydraulics\Valves

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**

This model describes a pressure relief valve with parasitic volumes. The resistance depends on the pressure difference:

\[ dp = pa.p - pb.p \]

\[ dp < pclosed \Rightarrow \text{valve closed, only leakage: } pa.phi = pb.phi = dp * G\text{Leak} \]

\[ pclosed < dp < popen \Rightarrow \text{working range, i.e. valve partially opened} \]

\[ popen < dp \Rightarrow \text{valve wide open: } pa.phi = pb.phi = dp * G\text{Open} \]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
</table>
pa, pb

Both terminals of the hydraulic component.

**Causality**
preferred pressure out pa
preferred pressure out pb

**Parameters**
- **PressureReliefValve\pclosed**: Valve is closed under this pressure [Pa].
- **PressureReliefValve\popen**: Valve is fully open above this pressure [Pa].
- **PressureReliefValve\GLeak**: Conductance of closed valve [m3/s.Pa].
- **PressureReliefValve\GOpen**: Conductance of open valve [m3/s.Pa].
- **Va\V**: Volume of oil under pressure [m3] (hidden)
- **Va\B**: Effective bulk modulus [Pa] (hidden)
- **Va\p_initial**: The starting pressure of the volume [Pa] (hidden)
- **Vb\V**: Volume of oil under pressure [m3] (hidden)
- **Vb\B**: Effective bulk modulus [Pa] (hidden)
- **Vb\p_initial**: The starting pressure of the volume [Pa] (hidden)

**ShuttleValve-States**

**Library**
- Iconic Diagrams\Hydraulics\Valves

**Use**
- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description - Default**

This model describes a loop shuttle valve with parasitic volumes. A shuttle valve is a type of valve which allows fluid to flow through it from one of two sources. Shuttle valves accept flow from two different sources (pa) and (pb) and divert the highest pressure to a single outlet port (p_out). Shuttle valves are commonly used in Load Sensing circuits and at a cylinder to measure the working pressure, as well as Brake circuits. Normal shuttle valve are mostly ball and poppet types valves.

The default implementation of the shuttle valve assumes ideal behaviour:

![Shuttle Valve Diagram]
p.out.p = maximum(pa.p, pb.p)
pa.phi = pb.phi = 0;

This model sets the flows of the input ports to zero and assumes the output flow is zero as well. However the output flow is determined by the component that is connected with the output port. A warning is given when the output flow exceeds 1.0e-5 m³. If flows are important in your model, use the Spool Dynamics implementation of this model (see below).

**Interface - Default**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa, pb</td>
<td>Input terminals of the valve.</td>
</tr>
<tr>
<td>p_out</td>
<td>Output terminal.</td>
</tr>
</tbody>
</table>

**Causality**

- preferred pressure out pa
- preferred pressure out pb
- preferred pressure out p_out

**Description - BallDynamics**

This model describes a loop shuttle valve with parasitic volumes. This implementation is equal to the default implementation but with modeled dynamics. A small pressure difference between the inlet ports pa and pb is enough to make the ball switch from one side to the other. This pressure is called the overlap pressure po.

![Diagram of BallDynamics Valve]

**Interface - BallDynamics**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
</table>

20-sim 4.7 Reference Manual
**Input terminals of the valve.**

**Output terminal.**

**Causality**

preferred
pressure out pa
preferred
pressure out pb
preferred
pressure out

**Parameters**

rho  
Mass density of the fluid [kg/m³].

GLeak  
Conductance of the laminar leakage flows [m³/s.Pa], GLeak ≥ 0.

Amax  
Maximum valve areas when the valves are open [m²], Amax > 0.

Cd  
Discharge coefficient [], Cd > 0.

f  
Bandwidth of the valve dynamics [Hz], f > 0.

d  
Damping of the valve dynamics [], d > 0

p_o  
Overlap pressure [Pa].

**TwoTwoWayValve-States**

**Library**

Iconic Diagrams\Hydraulics\Valves

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).
Description

This model describes a 2/2-way directional control valve with second order spool dynamics and parasitic volumes. The flow through the valve is described as laminar/turbulent flow through an orifice. A detailed description of the valve can be found in TwoTwoWayDirectionalValve.htm.

Interface

Ports
pa, pb
Both terminals of the valve.

Causality
preferred effort out pa
preferred effort out pb

Inputs
spoolpos
position of the spool valve
spoolpos < 0.5 => valve is closed
spoolpos >= 0.5 => valve is open

Parameters

TwoTwoWayDirectionalValve \rho
Mass density of the fluid [kg/m3].

TwoTwoWayDirectionalValve GLeak
Conductance of the laminar leakage flow [m3/s.Pa], GLeak >= 0.

TwoTwoWayDirectionalValve \text{Amax}
Maximum spool valve area when the valve is open [m2], \text{Amax} > 0.

TwoTwoWayDirectionalValve \text{Cd}
Discharge coefficient [], \text{Cd} > 0.

TwoTwoWayDirectionalValve \text{overlap}
The valve overlap in closed position [], -1 < \text{overlap} < 1.

TwoTwoWayDirectionalValve \text{f}
Bandwidth of the spool dynamics [Hz], \text{f} > 0.

TwoTwoWayDirectionalValve \text{d}
Damping of the spool dynamics [], \text{d} > 0.

TwoTwoWayDirectionalValve \text{V}
Volume of oil under pressure [m3] (hidden)

TwoTwoWayDirectionalValve \text{E}
Effective bulk modulus [Pa] (hidden)

TwoTwoWayDirectionalValve \text{p0}
The starting pressure of the volume [Pa] (hidden)
The model describes a 2/2-way proportional control valve with second order spool dynamics and parasitic volumes. The flow through the valve is described as laminar/turbulent flow through an orifice. A detailed description of the valve can be found in TwoTwoWayProportionalValve.htm.

**Interface**

**Ports**
- pa, pb

**Causality**
- preferred effort out pa
- preferred effort out pb

**Description**
- Both terminals of the valve.
spoolpos is the position of the spool valve: 0 = closed, 1 = open 
0 <= spoolpos <= 1

**Parameters**
- \( \rho \): Mass density of the fluid \([\text{kg/m}^3]\).
- \( G_{\text{Leak}} \): Conductance of the laminar leakage flow \([\text{m}^3/\text{s}.\text{Pa}]\), \( G_{\text{Leak}} \geq 0 \).
- \( A_{\text{max}} \): Maximum spool valve area when the valve is open \([\text{m}^2]\), \( A_{\text{max}} > 0 \).
- \( C_d \): Discharge coefficient \([\cdot]\), \( C_d > 0 \).
- \( \text{Overlap} \): The valve overlap in closed position \([\cdot]\), \(-1 < \text{Overlap} < 1 \).
- \( f \): Bandwidth of the spool dynamics \([\text{Hz}]\), \( f > 0 \).
- \( d \): Damping of the spool dynamics \([\cdot]\), \( d > 0 \).
- \( V_a \): Volume of oil under pressure \([\text{m}^3]\) (hidden).
- \( V_a \): Effective bulk modulus \([\text{Pa}]\) (hidden).
- \( V_b \): The starting pressure of the volume \([\text{Pa}]\) (hidden).
- \( V_b \): Volume of oil under pressure \([\text{m}^3]\) (hidden).
- \( V_b \): Effective bulk modulus \([\text{Pa}]\) (hidden).
- \( V_{\text{p_initial}} \): The starting pressure of the volume \([\text{Pa}]\) (hidden).

**Volumes**

**Accumulator**

**Library**
Iconic Diagrams\Hydraulic\Volumes

**Use**

**Description**
Accumulators consist of a gas filled chamber, pressurized by an oil filled chamber. The chambers are separated by a bladder or piston. If oil enters the chamber the gas chamber will reduce in size and the pressure will rise. If the oil pressures sinks, the gas chamber will expand and drive oil out of the oil chamber. The accumulator thus acts as a storage of hydraulic energy. Most accumulators are filled with nitrogen gas which is also used in this model. You can change to other gasses by changing the gas parameters.
Use

When preparing an accumulator for use with the oil at ambient pressure, the gas is pre-
charged to a certain pressure $p_{pr}$. The gas chamber will expand its maximum size
which is called the accumulator volume $V$. During operation, oil will flow into the
chamber and the gas chamber will change size. The oil and gas pressure will be in
balance and indicated with the gas pressure $p_{gas}$. The resulting gas volume is name
$V_{gas}$. We assume that during pre-charging the gas temperature is constant and equal
to the ambient temperature $T_{amb}$. During operation, the gas temperature may change
but the ambient temperature is assumed constant.

Thermal Model

Due to compression, the gas temperature will increase and the accumulator will heat up.
This heat may be lost to the environment. In this model the heat loss is modeled by a
first order transfer function using a thermal time constant $\tau$. If the accumulator is
heated up and the gas keeps its volume, an exponential temperature decrease will be
found. The thermal time constant is the time where the temperature is decreased by
63%. However, the gas will be compressed if the temperature sinks. As a rule of thumb
take for the thermal time constant the time it takes for the temperature to sink by 50%.
By making $\tau$ infinite, the accumulator does not convert heat to the environment.
The change is gas volume is then called adiabatic expansion or compression. By making $\tau$
very small, the accumulator instantly convert all heat to the environment.
The change is gas volume is then called isothermal expansion or compression.
Gas Laws
The accumulator model is based on the Van der Waals equation for a real gas. This model takes into account that gas particles have finite size and attractive forces. The Van der Waals model uses the critical gas temperature \( T_{cr} \) and the critical gas pressure \( p_{cr} \) as parameters. By taking the parameter \( T_{cr} = 0 \) the Van der Waals model changes into the ideal gas model.

By changing the parameters, the accumulator model can represent various gas models:

1) Ideal Gas: set \( T_{cr} = 0 \)
2) Ideal Gas, Adiabatic Expansion: set \( T_{cr} = 0 \) and \( tau \) very large (i.e 1.0e9)
3) Ideal Gas, Isothermal Expansion: set \( T_{cr} = 0 \) and \( tau \) very small (i.e 1.0e-9)
4) Real Gas: set the critical temperature of the gas (i.e. nitrogen: \( T_{cr} = 126.2 \) {K}) and set the thermal time constant to a specific value

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>hydraulic port</td>
</tr>
</tbody>
</table>

Causality
fixed volume flow
out

Parameters

- \( p_{vapour} \) vapour pressure [Pa].
- \( G \) conductance of the accumulator input [m3/s.Pa].
- \( V \) max gas volume of the accumulator [m3]
- \( p_{pr} \) pre-charge pressure [Pa]
- \( p_{oil} \) oil pressure at the start [Pa]
- \( T_{amb} \) ambient temperature [K]
- \( tau \) thermal time constant [s]
- \( R_s \) specific gas constant [J/kg.K]
- \( c_v \) specific heat of the gas at constant volume [J/kg.K]
- \( T_{cr} \) critical gas temperature [K]
- \( p_{cr} \) critical gas pressure [Pa]

TankNoRes.em

Library
Iconic Diagrams\Hydraulic\Volumes

Use
Description
This model represents a tank with a preload pressure against atmosphere. The default preload pressure of 0 [Pa] means that the tank has atmospheric pressure. A preload pressure of 1e5 [Pa] means that the tank has an absolute pressure of 2e5 [Pa] etc.

Interface

Ports               Description
p

Causality
fixed pressure out

Parameters
p_preload           tank pressure [Pa]

TankRes

Library
Iconic Diagrams\Hydraulic\Volumes

Use

Description
This model represents a tank with a preload pressure against atmosphere and a resistance of the tank pipe. The default preload pressure of 0 [Pa] means that the tank has atmospheric pressure. A preload pressure of 1e5 [Pa] means that the tank has an absolute pressure of 2e5 [Pa] etc.

There is no check on the validity of laminar flow in this component!

Interface

Ports               Description
p

Causality
fixed volume flow
out p

Parameters
p_preload           tank pressure [Pa]
G                   Conductance of laminar resistance [m3/s.Pa]
**Volume**

**Library**
Iconic Diagrams\Hydraulic\Volumes

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**
This model represents a lumped volume with a constant bulk modulus. If the calculated pressure falls below the vapour pressure the pressure is NOT limited to the vapour pressure.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**
preferred
pressure out

**Parameters**

<table>
<thead>
<tr>
<th>V</th>
<th>Volume of oil under pressure [m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Effective bulk modulus [Pa]</td>
</tr>
<tr>
<td>p_initial</td>
<td>The starting pressure of the volume [Pa]</td>
</tr>
</tbody>
</table>

**ParasiticVolume**

**Library**
Iconic Diagrams\Hydraulic\Volumes

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Hydraulics).

**Description**
This model represents a tiny volume (default: 1 ml) if the causality of the port is pressure out, and a zero flow, if the causality is flow out:

- Pressure out: Volume of 1 ml
- Flow out: flow source with 0 {m$^3$/s} flow.

A parasitic volume is a tiny volume that can be added to elements to make them more easy to simulate. Some elements require a pressure as input variable. Coupling two such elements leads to a mathematical problem: both yield a volume flow as function of the input pressure. Adding a parasitic volume in between will solve the mathematical problem (the parasitic volume calculates the pressure) without changing the dynamics much (the volume is small).
The parasitic element has a likes causality. If two parasitic volumes are coupled, one of them will get a pressure out causality (representing a tiny volume) and the other will get a flow out causality (representing a zero flow). I.e only one of them is a volume and the other becomes ineffective.

Note: If you want an element to have a specific volume, do not use the parasitic volume! In case of a flow out causality it will be replaced by a 0 flow (e.g. ero volume). Use the volume element instead.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

likes pressure out

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(hidden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Volume of oil under pressure [m³]</td>
</tr>
<tr>
<td>B</td>
<td>Effective bulk modulus [Pa]</td>
</tr>
<tr>
<td>p_initial</td>
<td>The starting pressure of the volume [Pa]</td>
</tr>
</tbody>
</table>

10.2.4 Mechanical

**Mechanical**

The Mechanical library contains components which are very useful for modeling mechanical systems. The library contains the following sections:

- Mechanics
  - Rotation
    - Actuators
    - Components
    - Friction
    - Gears
    - Sensors
  - Translation
    - 2D Small Rotation
    - 3D Small Rotation
    - Actuators
    - Components
    - Friction
    - Sensors
    - Transmission
**Rotation**

**Actuators**

**AccelerationActuator-Relative**

**Library**
Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**
Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

**Description**
This model represents an ideal actuator. An angular acceleration input signal is integrated to an angular velocity difference between its two terminals:

\[
p_{\text{high}}.\omega = p_{\text{low}}.\omega + \text{int}(\alpha,\omega_{\text{initial}});
\]
\[
p_{\text{low}}.T = p_{\text{high}}.T = \text{indifferent};
\]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Rotation port p.</td>
</tr>
</tbody>
</table>

**Causality**
fixed angular velocity out

**Input**
\[
\alpha          \quad \text{Angular acceleration \([\text{rad/s}^2]\).}
\]

**Parameters**
\[
\omega_{\text{initial}} \quad \text{Initial angular velocity output of the integration \([\text{rad/s}]\).}
\]

**AccelerationActuator**

**Library**
Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**
Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

**Description**
This model represents an ideal actuator. An angular acceleration input signal is integrated to an angular velocity at the rotation port. The actuator is mounted to the fixed world:
\[ p.\omega = \text{int}(\alpha, \omega_{\text{initial}}); \]
\[ p.T = \text{indifferent}; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**

- fixed angular velocity out

**Input**

- \( \alpha \) Angular acceleration \([\text{rad/s}^2]\).

**Parameters**

- \( \omega_{\text{initial}} \) Initial angular velocity at the port \([\text{rad/s}]\).

**ACMotor-TorqueLoop.em**

**Note**

This model was named ServoMotor.emx in previous versions of 20-sim!

**Library**

Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation).

**Description**

Industrial servo motors in the medium to high power range generally consist of an AC-electric and drive (the digital controlled current supply of the motor). The drive takes care of the correct supply of current to let the motor follow every desired path. Unfortunately the exact implementation and performance of drives and motors is one of the trade secrets of the commercial motor suppliers. Fortunately modern servo-motors are designed well enough to be described by general parameters that can be found in every data sheet.
The servo motor model describes a digitally controlled AC-motor that is described by general parameters. The model is suited for modeling machine dynamics, i.e. models where the machine behavior is the topic of interest and not the motor itself. For studying the exact motor behavior (temperature, wear, vibration etc.) other motor models should be used. A complete description of the motor is given in the second part of this topic.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**

| Preferred angular velocity out p |

**Inputs**

| v       | velocity setpoint [rad/s] |

**Parameters**

VelocityLimit	Maximum motor speed (>0) [rad/s]
v_max	Maximum allowed acceleration (>0) [rad/s²]
AccelerationLimit	Bandwidth drive (half of the sample frequency, >0) [Hz]
a_max	Proportional gain []
f_e	Integral time constant (>0) [s]
PI\K	Tracking time constant (>0) [s]
PI\Ti	Maximum motor torque (>0) [Nm]
PI\Ta	Motor speed where torque gain starts to drop (>0) [rad/s]
PI\T_max	Torque gain at zero motor speed (>0, choose equal to 1 to turn off torque gain drop [])
MotorDynamics\fc	Bandwidth drive and motor electronics [Hz]
Inertia\J	Motor inertia [kg.m²/rad]

**Variables**

There are some variables that can be of interest when inspecting the servo performance:

PI\error	The error between setpoint and motor velocity [rad/s].
PositionSensor	Motor Angle [rad]
\phi	Motor Speed [rad/s]
VelocitySensor	Motor Acceleration [rad/s²]
\omega	Output Torque [Nm].
Inertia\alpha	Output Power [W].
PowerSensor\T	
Model

The complete servo motor model is shown below. Every block that is used to form this model will be explained in the next sections. The model has a velocity input signal \( v \) and a rotary output port \( p \).

The servo motor model can be used in a machine model as shown in the example below.

Blocks

Velocity Limit

Most servo motors have a velocity limit to prevent the motor from damage. This limit can be set in the velocity VelocityLimit block. If no limit is known choose twice the nominal velocity.

Acceleration Limit

To prevent the motor from damage, most servos have a maximum acceleration limit. This limit is very important in a model because it can seriously degrade the systems performance.

To find the acceleration, the derivative of the input must be calculated. This is done by means of a first order differentiation with bandwidth \( f_c \). The bandwidth is equal to one half the of the sample frequency of the velocity control loop. Older drives may have loops that run on sample frequencies ranging from 100 Hz to 500 Hz. Modern drives can run the velocity control loop on sample frequencies of 2 kHz or more.
To switch the maximum acceleration limit off, choose the maximum acceleration parameter high enough and choose the bandwidth sufficiently high, preferably 10 times as large as the bandwidth $f_e$ of the motor electronics (specified in the motor dynamics block).

**PI-Controller**

Most servos will use velocity as the setpoint signal. To calculate the desired torque out of the velocity setpoint, PI-controllers are widely used. For many servos, the controller parameters can be changed by the user, but this is not a very easy task. Therefore these servos often offer automatic tuning facilities.

In 20-sim you can use the Optimization toolbox for automatic tuning. A good starting point is to take the error variable of the PI-controller and minimize it by changing the controller parameters $K_p$, $T_i$ and $T_a$. It is important to realize that automatic tuning will tune the controller parameters for a certain task. If you run another task, i.e. perform a simulation with another setpoint, the results may degrade. For varying tasks it is better to use parameters that give a good response over a wide area of loads. To help the user find good starting values, the table below shows some motors, loads and corresponding starting value for the controller parameters.

<table>
<thead>
<tr>
<th>Motor</th>
<th>Load controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Power</td>
<td>Nominal Torque</td>
</tr>
<tr>
<td>kW</td>
<td>Nm</td>
</tr>
<tr>
<td>0.38</td>
<td>1.2</td>
</tr>
<tr>
<td>1.13</td>
<td>3.6</td>
</tr>
<tr>
<td>7.54</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>55</td>
<td>177</td>
</tr>
<tr>
<td>560</td>
<td>1732</td>
</tr>
</tbody>
</table>

The user has to find the load that should be driven in terms of the rotational inertia. If there is a gear that changes the rotary motion to a linear motion this means the load has to be divided by the square of the gear ratio to get the corresponding load in the rotational domain. Do not forget to add the inertia of the motor itself! For many gear ratios the load in terms of rotational inertia will be of the same magnitude as the motor inertia.

In this model PI-controller with an anti-windup facility is used. This controller is the heart of the servo motor model. It is therefore important to know something about PI-control. More information can be found in the PID controllers section of the library.

AC-motors have a limited output torque which is a complex function of the controller settings, the applied speed, duty cycle, temperature and more. In the servo motor model simply the torque limit of the PI-controller $T_{\text{max}}$ is used which limits the generated torque to a maximum. Because this is a simplification of the real behavior, the maximum torque limit should only be used to inspect what happens to the system when the motor torque is approaching its maximum value. For a proper evaluation of its system, the user should also look at the unconstrained torque. Run a simulation and note the amount of time that the motor runs at a maximum torque. This is called the duty cycle. Every motor manual will have tables showing duty cycles and the corresponding chances of overheating.
**Torque Gain**

Standard AC-motors, normally designed to run at base speeds between 850 to 3500 rpm, are not particularly well suited for low-speed operation, as their efficiency drops with the reduction in speed. They may also be unable to deliver sufficient smooth torque at low speeds.

An ideal motor will always have a torque gain of 1, i.e. an input signal of 1 Nm will always result in an output torque of 1 Nm. Most industrial motors have a torque gain that is only equal to 1 for higher speeds. At low speeds the torque gain will drop due to electronic limitations. This behavior is represented by the graph below. At speeds below a drop-off speed $v_d$ the torque gain drops linearly to a user defined zero speed torque gain $g_0$. If no torque gain drop is desired, choose $g_0$ equal to 1.

![Torque Gain Graph](image)

**Motor Dynamics**

The electrical circuits of the drive and wiring of the motor have a limited bandwidth. This is modeled with a first order low-pass filter with a bandwidth $f_e$. Typical motor bandwidths vary from 3 kHz to 20 kHz.

**Torque source**

In the torque source block the torque signal is converted to an iconic diagram port $p$.

**Inertia**

This block describes the rotor inertia. The equations of motion of the inertia are used to get the angular acceleration without needing derivatives.

**Sensors**
Finally four sensors are available to plot the position, velocity, acceleration and output power.

**Variables**

There are some variables in the model that may be of special interest:

- **PI\(error\)**: The error between setpoint and motor velocity [rad/s].
- **PositionSensor**
  - \(\phi\): Motor Angle [rad]
- **VelocitySensor**
  - \(\omega\): Motor Speed [rad/s]
- **Inertia\(\alpha\)**: Motor Acceleration [rad/s²]
- **PowerSensor\(\mathbf{T}\)**
- **PowerSensor\(\mathbf{P}\)**

All these variables are output signals of their respective blocks. By inserting extra outputs in the servo motor model you can use as output signals for usage in other parts of your model. In the pictures below is shown how to define signals for the torque and power.

In the servo model define a torque and a power output and connect them.

One level higher you can use these signals for modeling, for example in a high level control unit.
ACMotor

Library
Iconic Diagrams\Mechanical\Rotation\Actuators

Use
Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

Description
This is a model of an industrial AC electric motor with squirrel cage rotor. The motor is not controlled by a power electric convertor. Instead its performance is directly defined by a torque speed curve.

![Motor Characteristic Diagram]

The torque speed curve is fully defined by the parameters shown in the picture. The synchronous speed is defined as:

\[ n = 2 \times \text{voltage frequency} / \text{no. of poles} \]

Interface

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts</td>
<td>start torque (zero speed) [Nm]</td>
</tr>
<tr>
<td>n</td>
<td>synchronous speed (zero torque) [rad/s]</td>
</tr>
<tr>
<td>Tm</td>
<td>maximum torque [Nm]</td>
</tr>
<tr>
<td>nm</td>
<td>speed at maximum torque [rad/s]</td>
</tr>
<tr>
<td>Tf</td>
<td>full load torque [Nm]</td>
</tr>
<tr>
<td>nf</td>
<td>speed at full load torque [rad/s]</td>
</tr>
<tr>
<td>J</td>
<td>motor inertia [kgm^2/rad]</td>
</tr>
</tbody>
</table>
DCMotor

Library
Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Electric

Implementations
Default
IR

Use

Description - Default
This models represents an ideal DC-motor with no energy loss. The electric port has separate high and low terminals. The equations are

\[
\begin{align*}
\dot{p}_1.i &= \dot{p}_1.\text{high} = \dot{p}_1.\text{low} = \dot{p}_1.i; \\
\dot{p}_1.u &= \dot{p}_1.\text{high} - \dot{p}_1.\text{low} = \dot{p}_1.u;
\end{align*}
\]

The model can have mixed forms of causality

\[
\begin{align*}
\dot{p}_1.u &= k \cdot \dot{p}_2.\omega; \\
\dot{p}_2.T &= k \cdot \dot{p}_1.i;
\end{align*}
\]

or:

\[
\begin{align*}
\dot{p}_2.\omega &= \frac{\dot{p}_1.u}{k}; \\
\dot{p}_1.i &= \frac{\dot{p}_2.T}{k};
\end{align*}
\]

Interface - Default

Ports
\begin{itemize}
  \item \texttt{p1\_high, p1\_low}
  \item \texttt{p2}
\end{itemize}

Description
Both terminals of the Electric port p1.
Rotation port.

Causality
mixed

Parameters
\begin{itemize}
  \item \texttt{k}
\end{itemize}

Description [math notation]

Description - IR
This models represents an ideal DC-motor with inductance and resistance.
The electric port has separate high and low terminals. The equations are

\[
\begin{align*}
    p1.i &= p1\_high.i = p1\_low.i; \\
    p1.u &= p1\_high.u - p1\_low.u;
\end{align*}
\]

**Interface - IR**

**Ports**	**Description**
$p1\_high$, $p1\_low$ | Both terminals of the Electric port $p1$. 
$p2$ | Rotation port.

**Causality**

mixed | See equations above.

**Parameters**

$k$ | motor constant [Nm/A] 
$L$ | motor inductance [H] 
$R$ | motor resistance [Ohm]

**PositionActuator-Relative**

**Library**

Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

**Description**

This model represents an ideal actuator. An angle input signal is differentiated by a state variable filter to an angular velocity difference between its two terminals:

\[
\begin{align*}
    p\_high.omega &= p\_low.omega + \frac{d\phi}{dt}; \\
    p\_low.T &= p\_high.T = \text{indifferent};
\end{align*}
\]

Differentiation is performed by a state variable filter:
The S-domain function of this filter is equal to:

\[
\text{output} = \frac{s}{s + \frac{1}{f}} \cdot \text{input}
\]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Rotation port p.</td>
</tr>
</tbody>
</table>

**Causality**

fixed angular velocity out

**Input**

phi Angle [rad].

**Parameters**

f Cut-off frequency of the differentiation [Hz].
omega_initial Initial angular velocity output of the differentiation [rad/s].
ServoMotor

Library
Iconic Diagrams\Mechanical\Rotation\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This is a masked model which opens the Servo Motor Editor when edited. The servo
Motor Editor is a tool that can shows the torque speed plots numerous permanent
magnet motors and can generate a dynamic model from any motor that you select. The
following motor types are supported:

1. Brush DC
2. Brushless DC (trapezoidal EMC and square wave currents)
3. AC synchronous (sinusoidal EMC and sinusoidal currents)
4. AC synchronous linear (sinusoidal EMC and sinusoidal currents)

Interface
Depending on the type of motor that you have selected, the interface can vary:

DC Brush

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

Causality
fixed  rotational velocity out

Input
i     The input current [A]

DC Brushless

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

Causality
fixed  rotational velocity out

Input
i     The maximum input current [A]
### AC Synchronous

**Ports**
- p: Rotation port.

**Description**
- Rotation port.

**Causality**
- fixed rotational velocity out

**Input**
- i_rms: The rms phase current [A]

### AC Synchronous Linear

**Ports**
- p: Translation port.

**Description**
- Translation port.

**Causality**
- fixed velocity out

**Input**
- i_rms: The rms phase current [A]

For more information on the parameters and variables of this model, refer to the Mechatronic Toolbox.

### PositionActuator

**Library**
- Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**
- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation), Block Diagrams.

**Description**
- This model represents an ideal actuator. An angle input signal is differentiated by a state variable filter to an angular velocity at the rotation port. The actuator is mounted to the fixed world:

\[
p.\omega = \frac{d\phi}{dt};
\]

\[
p.T = \text{indifferent};
\]

Differentiation is performed by a state variable filter:
The S-domain function of this filter is equal to:

\[
\text{output} = \frac{s}{s + \frac{1}{f}} \cdot \text{input}
\]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.

**Interface**

**Ports**
- Description  
  - p: Rotation port.

**Causality**
- fixed angular velocity out

**Input**
- phi: Angle [rad].

**Parameters**
- f: Cut-off frequency of the differentiation [Hz].
- omega_initial: Initial angular velocity at the port [m/s].
10. Library

Steppermotor

Library
Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Description
A stepper motor is a device used to convert electrical pulses into discrete mechanical rotational movements. The minimum movement, invoked by one pulse, is called the step angle. The electrical pulses are mostly generated by a pulse generator that converts a setpoint change in a corresponding amount of pulses. This model describes a combination of a pulse generator and stepper motor.

At standstill the torque required to deflect the motor a full step is called the holding torque. The holding torque normally is much higher than required to drive the load, and thus acts as a strong brake to hold the load. The holding torque as function of the output angle is shown in the graph below. Around zero angle the curves shows the behavior of a spring. By changing the input by one step, the force will increase to its maximum and move the the load.

![Holding Torque Graph]

Motor torque as function of the angle (holding torque = 1 [N], step angle = [10°]).

If the subsequent steps are generated fast enough the holding torque will start to decrease. The maximum holding torque as function of the rotation speed is shown in the figure below. This force curve is commonly describe as the pull out curve.
Pull out curve: maximum generated torque as a function of the rotational speed.

**Ports**
- **input**: Desired output angle.
- **p_out**: Rotation port.

**Causality**
- **fixed current out**
- **p_in**: preferred angular velocity out
- **p_out**:

**Inputs**
- **input**: Stepper motor input

**Parameters**
- **step_angle**: Minimum change of the output axis [deg].
- **tau**: Time constant coil [s].
- **Th**: Holding torque [Nm].
- **J**: Inertia rotor [Nm^2]
- **B**: Relative damping at the stepper motor resonance [].
- **fmax**: Maximum frequency motor (frequency at which the torque gets zero) [rad/s].
**Torque-Relative**

**Library**  
Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**  
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Description**  
This model represents an ideal actuator. The actuator applies a torque between its two terminals. This torque can be set to a certain constant value, the angular velocity is indifferent.

\[ p\text{\_high}.T = p\text{\_low}.T = T \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Rotational port p.</td>
</tr>
</tbody>
</table>

**Causality**  
fixed torque out

**Input**  

| T          | Torque [Nm].                                    |

---

**Torque**

**Library**  
Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**  
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Description**  
This model represents an ideal actuator. The actuator is mounted to the fixed world and applies a torque. The torque can be set to a certain constant value, the angular velocity is indifferent.

\[ p.T = T; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

---
fixed torque out

**Parameters**

- **T** Torque [Nm].

---

**TorqueActuator-Relative**

**Library**

Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation), Block Diagrams.

**Description**

This model represents an ideal actuator. The actuator applies a torque between its two terminals. This torque can be set to a (fluctuating) value given by the input signal \( T \), the angular velocity is indifferent.

\[
p_{\text{high}}.T = p_{\text{low}}.T = T
\]

**Interface**

**Ports**

- **p_high**, **p_low** Both terminals of the Rotation port p.

**Causality**

fixed torque out

**Input**

- **T** Torque [Nm].
**TorqueActuator**

**Library**
Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**
 Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation), Block Diagrams.

**Description**
This model represents an ideal actuator. The actuator is mounted to the fixed world and applies a torque. The torque can be set to a (fluctuating) value given by the input signal $T$, the angular velocity is indifferent.

$$p.T = T;$$

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation port.</td>
<td>p</td>
</tr>
</tbody>
</table>

**Causality**
fixed torque out

**Input**

<table>
<thead>
<tr>
<th>Description</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque [Nm].</td>
<td>T</td>
</tr>
</tbody>
</table>

---

**Velocity-Relative**

**Library**
Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**
 Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Description**
This model represents an ideal actuator. The actuator applies an angular velocity difference between its two terminals. This angular velocity can be set to a constant value $omega$, the force is indifferent.

$$p_{low}.omega = p_{high}.omega + omega$$

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Port</th>
</tr>
</thead>
</table>

---
Both terminals of the Rotation port p.

**Causality**
fixed    angular
velocity out

**Parameter**

\( \omega \)
Angular velocity [rad/s].

---

**Velocity**

**Library**

Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Description**

This model represents an ideal actuator. The actuator is mounted to the fixed world and applies an angular velocity. This angular velocity can be set to a certain constant value, the torque is indifferent.

\[ p.\omega = \omega; \]

**Interface**

**Ports**

\( p \)
Rotation port.

**Causality**

fixed    angular
velocity out

**Parameters**

\( \omega \)
Angular velocity [rad/s].

---

**VelocityActuator-Relative**

**Library**

Iconic Diagrams\Mechanical\Rotation\Actuators

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation), Block Diagrams.
Description
This model represents an ideal actuator. The actuator applies an angular velocity difference between its two terminals. This angular velocity can be set to a (fluctuating) value given by the input signal $\omega$, the force is indifferent.

\[ p_{\text{low}}.\omega = p_{\text{high}}.\omega + \omega \]

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
</tr>
</tbody>
</table>

Causality

fixed angular velocity out

Input

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>omega</td>
</tr>
</tbody>
</table>

VelocityActuator

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and applies an angular velocity. This angular velocity can be set to a (fluctuating) value given by the input signal $\omega$, the torque is indifferent.

\[ p.\omega = \omega; \]

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
</tr>
</tbody>
</table>

Causality

fixed angular velocity out

Input
omega \quad \text{Angular velocity \ [\text{rad/s}].}

**Components**

**Backlash**

**Library**
Iconic Diagrams\Mechanical\Rotation\Components

**Use**

**Description**
This model represents backlash by a spring damper system equivalent to the translational backlash model. The port p of this model has separate high and low terminals. The equations are:

\[ p.T = p_{high}.T = p_{low}.T \]
\[ p.\omega = p_{high}.\omega - p_{low}.\omega \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of port p (Rotation).</td>
</tr>
</tbody>
</table>

**Causality**
fixed torque out

**Parameters**

<table>
<thead>
<tr>
<th>s</th>
<th>Interval of the play \ [\text{rad}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>Stiffness in the play \ [\text{Nm/rad}]</td>
</tr>
<tr>
<td>k2</td>
<td>Stiffness outside the play \ [\text{Nm/rad}]</td>
</tr>
<tr>
<td>d1</td>
<td>Damping inside the play \ [\text{Nms/rad}]</td>
</tr>
<tr>
<td>d2</td>
<td>Damping outside the play \ [\text{Nms/rad}]</td>
</tr>
<tr>
<td>ep</td>
<td>Relative round off (1e-6 -&gt; sharp edges, 1e-2 -&gt; smoother)</td>
</tr>
</tbody>
</table>

**Parameters**

| x\_initial | Initial position in the play \ [\text{rad}], \ -s/2 < x\_initial < s/2 |

\[ p.T = p_{high}.T = p_{low}.T \]
\[ p.\omega = p_{high}.\omega - p_{low}.\omega \]
Bearing

Library
Iconic Diagrams\Mechanical\Rotation\Components

Use

Description
In this model bearing friction is represented as linear viscous friction. The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting torque $p.T$ is equal to the sum of the torques of all connected ports $p1 .. pn$. The angular velocities of all connected ports are equal to $p.omega$. The model can have an torque out as well as an angular velocity out causality. In the last case the constitutive equation, as shown below, is simply inverted:

$$p.T = \sum(p1.T, p2.T, \ldots)$$
$$p.omega = p1.omega = p2.omega = \ldots$$

Torque out causality:

$$p.T = d * p.omega;$$

Angular velocity out causality:

$$p.omega = p.T / d;$$

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Rotation).</td>
</tr>
</tbody>
</table>

Causality
indifferent

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Damping [Nms/rad]</td>
</tr>
</tbody>
</table>

Brake

Library
Iconic Diagrams\Mechanical\Rotation\Components

Implementations
C
Use


Introduction

The brake models represent a disk brake or other type of brake where a rotation is stopped by applying a friction force. The amount of friction depends on the normal force that is applied and the friction function that is used. The normal force is given by the input signal $F_n$. The brake is mounted to the fixed world.

\[ p.T = \text{sum}(p1.T, p2.T, \ldots) \]
\[ p.\omega = p1.\omega = p2.\omega = \ldots \]

Due to the use of normal force, the brake models all have a fixed torque out causality. The constitutive equations are therefore described as:

\[ p.T = F_n \times f(p.\omega); \]

with $f$ the friction function.

Description - C

This model represents a brake with braking force described as coulomb friction. The brake is mounted to the fixed world. The amount of friction depends on the normal force that is applied:

\[ p.T = F_n \times \mu_c \times \text{tanh}(\text{slope} \times p.\omega); \]

$F_n$: normal force (given by the input signal $F_n$)
$\mu_c$: the coulomb friction coefficient
$slope$: the steepness of the coulomb friction curve.
Interface - C

Ports	Description
p[any] | Any number of connections can be made (Rotation).

Causality
Fixed torque out

Input
Fn | Normal force [N]

Parameters
mu_c | Coulomb friction coefficient [m]
slope | Steepness of Coulomb friction curve [s/rad]

Description - V
This model represents a brake with braking force described as viscous friction. The brake is mounted to the fixed world. The amount of friction depends on the normal force that is applied:

\[ p.T = Fn*mu_v*p.omega; \]

FN: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
Interface - V

Ports Description
p[any] Any number of connections can be made (Rotation).

Causality
Fixed torque out

Input
Fn Normal force [N]

Parameters
mu_v Viscous friction coefficient [m.s/rad]

Description - CV
This model represents a brake with braking force described as coulomb plus viscous friction. The brake is mounted to the fixed world. The amount of friction depends on the normal force that is applied:

\[ p.T = Fn*(mu_c*tanh(slope*p.omega) + mu_v*p.omega); \]

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.
Interface - CV

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Rotation).</td>
</tr>
</tbody>
</table>

**Causality**
Fixed torque out

**Input**

<table>
<thead>
<tr>
<th>Fn</th>
<th>Normal force [N]</th>
</tr>
</thead>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>mu_v</th>
<th>Viscous friction coefficient [ms/rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu_v</td>
<td>Coulomb friction coefficient [m]</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/rad]</td>
</tr>
</tbody>
</table>

**Description - SCVS**

This model represents a brake with braking force described as static plus coulomb plus viscous plus Stribeck friction. The brake is mounted to the fixed world. The amount of friction depends on the normal force that is applied:

\[
p.T = Fn \times \\
( (mu_c + (mu_st \times \text{abs(tanh(slope*p.omega)))} - mu_c) \\
\times \exp(-((p.omega / v_st)^2)) \times \text{sign(p.omega)} \\
+ mu_v \times p.omega);
\]

*Fn*: normal force (given by the input signal Fn)

*mu_s*: the static friction coefficient

*mu_v*: the viscous friction coefficient

*mu_c*: the coulomb friction coefficient

*slope*: the steepness of the coulomb and static friction curve.

*v_st*: the characteristic Stribeck velocity.
### Interface - SCVS

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Rotation).</td>
</tr>
</tbody>
</table>

**Causality**

Fixed torque out

**Input**

F\text{n}  : Normal force [N]

**Parameters**

- \text{mu}\_s  : Static friction coefficient [m]
- \text{mu}\_v  : Viscous friction coefficient [m.s/rad]
- \text{mu}\_c  : Coulomb friction coefficient [m]
- \text{slope}  : Steepness of Coulomb friction curve [s/rad]
- \text{v}\_st  : Characteristic Striebeck velocity [rad/s]

### Description - LuGre

This model represents a brake with braking force described by the LuGre friction model. The brake is mounted to the fixed world. The amount of friction depends on the normal force that is applied:

\[
p.T = FN*f_{lg}(p.omega);
\]

\text{Fn} : normal force (given by the input signal \text{Fn})

\text{f}_{lg} : the LuGre friction model

### Interface - LuGre

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Rotation).</td>
</tr>
</tbody>
</table>

**Causality**

Fixed Torque out
Input
Fn Normal force [N]

Parameters
mu_c Coulomb friction coefficient
mu_s Static friction coefficient [m]
mu_v Viscous friction coefficient [ms/rad]
v_st Characteristic Strubeck velocity [rad/s]
u_mu_k rotational stiffness coefficient at zero speed [m/rad]

Clutch

Iconic Diagrams\Mechanical\Rotation\Components

Implementations
C
V
CV
SCVS
LuGre

Use

Introduction
The clutch models model represent friction relative to other objects. The amount of friction depends on the normal force that is applied and the friction function that is used. The normal force is given by the input signal $FN$.

The port $p$ of the clutch model has separate high and low terminals. The equations are:

\[ p.T = p_{\text{high}}.T = p_{\text{low}}.T \]
\[ p.\omega = p_{\text{high}}.\omega - p_{\text{low}}.\omega \]

Due to the use of normal force, the clutch models all have a fixed torque out causality. The constitutive equations are therefore described as:

\[ p.T = FN \times f(p.\omega) \]

with $f$ the friction function.
**Description - C**

This model represents bearing with friction force described as coulomb friction. The amount of friction depends on the normal force that is applied and the friction function that is used:

\[ p.T = Tc \times \tanh(slope \times p.omega); \]

*\(Tc\): coulomb friction

*\(slope\): the steepness of the coulomb friction curve.

---

**Interface - C**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both terminals of port p (Rotation).</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

Fixed torque out

**Input**

<table>
<thead>
<tr>
<th>Description</th>
<th>Fn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal force [N]</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>Tc</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coulomb friction [N.m]</td>
<td>Steepness of Coulomb friction curve [s/rad]</td>
<td></td>
</tr>
</tbody>
</table>

---

**Description - V**

This model represents a clutch with friction force described as viscous friction. The amount of friction depends on the normal force that is applied and the friction function that is used:

\[ p.T = Fn \times mu_v \times p.omega; \]

*\(Fn\): normal force (given by the input signal Fn)

*\(mu_v\): the viscous friction coefficient
Interface - V

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both terminals of port p (Rotation).</td>
<td>p_high, p_low</td>
</tr>
</tbody>
</table>

**Causality**

Fixed torque out

**Input**

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal force [N]</td>
<td>Fn</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscous friction coefficient [m.s/rad]</td>
<td>mu_v</td>
</tr>
</tbody>
</table>

**Description - CV**

This model represents a clutch with friction force described as coulomb plus viscous friction. The amount of friction depends on the normal force that is applied and the friction function that is used:

\[ p.T = Fn*(Tc*tanh(slope*p.omega) + \mu_v*p.omega); \]

*Fn*: normal force (given by the input signal Fn)

*\mu_v*: the viscous friction coefficient

*Tc*: the coulomb friction coefficient

*slope*: the steepness of the coulomb friction curve.
Interface - CV

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of port p (Rotation).</td>
</tr>
</tbody>
</table>

**Causality**
Fixed torque out

**Input**
- Fn: Normal force [N]

**Parameters**
- mu_v: Viscous friction coefficient [m.s/rad]
- Tc: Coulomb friction [N.m]
- slope: Steepness of Coulomb friction curve [s/rad]

**Description - SCVS**
This model represents a clutch with friction force described as static plus coulomb plus viscous plus Striebeck friction. The amount of friction depends on the normal force that is applied and the friction function that is used:

\[
p.T = Fn * \\
(( Tc + (mu_st*abs(tanh( slope*p.omega ))) - Tc) * exp( -((p.omega / v_st)^2 )) ) * sign(p.omega) + mu_v * p.omega); \]

- Fn: normal force (given by the input signal Fn)
- mu_s: the static friction coefficient
- mu_v: the viscous friction coefficient
- Tc: the coulomb friction coefficient
- slope: the steepness of the coulomb and static friction curve.
- v_st: the characteristic Striebeck velocity.
**Interface - SCVS**

**Ports**
- p_high, p_low: Both terminals of port p (Rotation).

**Causality**
- Fixed torque out

**Input**
- Fn: Normal force [N]

**Parameters**
- mu_s: Static friction coefficient [m]
- mu_v: Viscous friction coefficient [m.s/rad]
- Tc: Coulomb friction [N.m]
- slope: Steepness of Coulomb friction curve [s/rad]
- v_st: Characteristic Striebeck velocity [rad/s]

**Description - LuGre**

This model represents a clutch with friction force described by the LuGre friction model. The amount of friction depends on the normal force that is applied and the friction function that is used:

\[ p.T = FN*f_{lg}(p.omega); \]

*Fn*: normal force (given by the input signal Fn)
*f_{lg}*: the LuGre friction model

**Interface - LuGre**

**Ports**
- p_high, p_low: Both terminals of port p (Rotation).

**Causality**
- Fixed torque out
Input
Fn Normal force [N]

Parameters
Tc Coulomb friction coefficient
mu_s Static friction coefficient [m]
mu_v Viscous friction coefficient [m.s/rad]
v_st Characteristic Striebeck velocity [rad/s]
u_k rotational stiffness coefficient at zero speed [m/rad]

Damper

Library
Iconic Diagrams\Mechanical\Rotation\Components

Use

Description
This model represents a linear damper. It can have an torque out as well as an angular velocity out causality. In the last case the constitutive equation, as shown below, is simply inverted. The port p of the damper model has separate high and low terminals. The equations are:

\[
\begin{align*}
p.T &= p\_high.T = p\_low.T \\
p.omega &= p\_high.omega - p\_low.omega
\end{align*}
\]

Torque out causality:

\[
p.T = d \times p.omega;
\]

Angular velocity out causality:

\[
p.omega = p.T / d;
\]

Interface

Ports
p\_high, p\_low Both terminals of the Rotation port p.

Causality
indifferent

Parameters
d damping [Nms/rad]
**FixedWorld**

**Library**
Iconic Diagrams\Mechanical\Rotation\Components

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Description**
This model represents the fixed world (angular velocity = 0). The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. which gives the constitutive equations:

\[
p1.\omega = p2.\omega = .. = pn.\omega = 0; \\
p1.T = free; p2.T = free; ..; pn.T = free;
\]

**Interface**

**Ports**

**Description**

p [any] Any number of connections can be made.

**Causality**

Fixed angular velocity out All ports have a fixed angular velocity out causality.

velocity out

**Friction**

**Library**
Iconic Diagrams\Mechanical\Rotation\Components

**Implementations**
C V CV SCVS LuGre

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Introduction**
The friction model represent bearing friction with various friction models. The model have only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting force \( p.F \) is equal to the sum of the forces of all connected ports \( p1 .. pn \). The velocities of all connected ports are equal to \( p.v \).
\( p.F = \text{sum}(p1.F, p2.F, \ldots) \)
\( p.v = p1.v = p2.v = \ldots \)

**Description - C**

This model represents a bearing with friction torque described as coulomb friction:

\[ p.T = Tc*\text{tanh}(\text{slope}*p.\omega); \]

*\( Tc \): the coulomb friction
*\( \text{slope} \): the steepness of the coulomb friction curve.

**Interface - C**

**Ports**
- \( \text{p[any]} \): Any number of connections can be made (Rotation).

**Causality**
- Fixed torque out

**Parameters**
- \( Tc \): Coulomb friction [N.m]
- \( \text{slope} \): Steepness of Coulomb friction curve [s/rad]

**Description - V**

This model represents a bearing with friction force described as viscous friction:

\[ p.T = d*p.\omega; \]

*\( d \): the viscous damping
### Interface - V

**Ports**
- `p[any]` Any number of connections can be made (Rotation).

**Causality**
Fixed torque out

**Input**
- `Fn` Normal force [N]

**Parameters**
- `d` Viscous friction torque or damping [N.m.s/rad]

**Description - CV**
This model represents a bearing with friction force described as coulomb plus viscous friction:

\[ p.T = T_c \cdot \tanh(slope \cdot p.\omega) + d \cdot p.\omega; \]

- `d`: the viscous damping
- `T_c`: the coulomb friction
- `slope`: the steepness of the coulomb friction curve.
**Interface - CV**

**Ports**

| p[any] | Any number of connections can be made (Rotation). |

**Causality**

Fixed torque out

**Input**

| Fn | Normal force [N] |

**Parameters**

mu_v	Viscous damping [N.m.s/rad]
Tc	Coulomb friction [N.m]
slope	Steepness of Coulomb friction curve [s/rad]

**Description - SCVS**

This model represents a bearing with friction force described as static plus coulomb plus viscous plus Stribeck friction:

\[
p_T = ((Tc + (Tst*abs(tanh(slope*p.omega)) - Tc) \cdot \exp((-((p.omega / v_st)^2))) \cdot \text{sign}(p.omega) + d \cdot p.omega);
\]

*Tst*: the static friction  
*d*: the viscous damping  
*Tc*: the coulomb friction  
*slope*: the steepness of the coulomb and static friction curve.  
*v_st*: the characteristic Stribeck velocity.

---

**Interface - SCVS**

**Ports**

| p[any] | Any number of connections can be made (Rotation). |

**Causality**
Fixed torque out

**Input**

| Fn | Normal force [N] |

**Parameters**

Tst	Static friction torque [N.m]
d	Viscous friction torque or damping [N.m.s/rad]
Tc	Coulomb friction [N.m]
slope	Steepness of Coulomb friction curve [s/rad]
v_st	Characteristic Strubeck velocity [rad/s]

**Description - LuGre**

This model represents a bearing with friction force described by the LuGre friction model:

\[ p.T = f_{lg}(p.omega); \]

\( f_{lg} \): the LuGre friction model

**Interface - LuGre**

**Ports**

| p[any] | Any number of connections can be made (Rotation). |

**Causality**

Fixed torque out

**Input**

| Fn | Normal force [N] |

**Parameters**

Tc	Coulomb friction [N.m]
Tst	Static friction torque [m]
d	Viscous damping [N.m.s/rad]
v_st	Characteristic Strubeck velocity [rad/s]
c	Stiffness at zero speed [N.m/rad]
Inertia

Library
Iconic Diagrams\Mechanical\Rotation\Components

Use

Description
This model represents an ideal rotational inertia. The element has a preferred angular velocity out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred torque out causality. The constitutive equations then contain a derivation. The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting torque $p.T$ is equal to the sum of the torques of all connected ports p1 .. pn and that the angular velocities of all connected ports is equal to $p.omega$.

$$p.T = \text{sum}(p1.T, p2.T, ....)$$
$$p.omega = p1.omega = p2.omega = ....$$

angular velocity out causality (preferred):

$$\alpha = \frac{p.T}{J};$$
$$p.omega = \int(\alpha);$$
$$\phi = \int(p.omega);$$

torque out causality:

$$\alpha = \frac{\text{ddt}(p.omega)}{J};$$
$$p.T = J*\alpha;$$
$$\phi = \int(p.omega);$$

Interface

Ports

| p[any] | Any number of connections can be made (Rotation). |

Causality
preferred angular velocity out
An torque out causality results in a derivative constitutive equation.

Variables

| phi | angle [rad] |
| alpha | angular acceleration [rad/s^2] |

Parameters

| J | moment of inertia [kgm^2] |
**Initial Values**

- `p.omega_initial`: The initial velocity of the inertia [rad/s].
- `phi_initial`: The initial angle of the inertia [rad].

**Node**

**Library**
Iconic Diagrams\Mechanical\Rotation\Components

**Use**


**Description**

This node model represents a structural connection between two (or more) shafts, where the velocity of all connected shafts is equal. The model has only one initial port `p` defined. Because any number of connections can be made, successive ports are named `p1`, `p2`, `p3` etc.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>p</code> [any]</td>
<td>Any number of connections can be made (Rotation).</td>
</tr>
</tbody>
</table>

**Spring**

**Library**
Iconic Diagrams\Mechanical\Rotation\Components

**Use**


**Description**

This model represents an ideal rotational spring. The element has a preferred torque out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred angular velocity out causality. The constitutive equations then contain a derivation. The port `p` of the spring model has separate high and low terminals. The equations are:

\[
p.T = p_{\text{high}}.T = p_{\text{low}}.T
\]

\[
p.\omega = p_{\text{high}}.\omega - p_{\text{low}}.\omega
\]

torque out causality (preferred):
\begin{verbatim}
\phi = int(p.\omega);
p.T = c * \phi;
\end{verbatim}

angular velocity out causality:

\begin{verbatim}
p.\omega = ddt(\phi);
\phi = p.T/k;
\end{verbatim}

**Interface**

**Ports**

- \(p\)\_high, \(p\)\_low

**Description**

Both terminals of the Rotational port \(p\).

**Causality**

- preferred torque out

An angular velocity out causality results in a derivative constitutive equation.

**Variables**

- \(\phi\)

  torsion of the spring \([\text{rad}]\)

**Parameters**

- \(c\)

  Stiffness \([\text{Nm/rad}]\)

**Initial Values**

- \(\phi\)\_initial

  The initial torsion of the spring \([\text{rad}]\).

**SpringDamper**

**Library**

Iconic Diagrams\Mechanical\Rotation\Components

**Implementations**

- Default
- Stiffness
- Frequency

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation).

**Description - Default**

This model represents an ideal rotational spring with damper. The element has a preferred torque out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred angular velocity out causality. The constitutive equations then contain a derivation. The port \(p\) of the spring model has separate high and low terminals. The equations are:

\begin{verbatim}
p.T = p\_high.T = p\_low.T
p.\omega = p\_high.\omega - p\_low.\omega
\end{verbatim}

Torque out causality (preferred):
\[ \phi = \text{int}(p.\omega); \]
\[ p.T = c \times \phi + d*p.\omega; \]

Angular velocity out causality:

\[ p.\omega = \text{ddt}(\phi); \]
\[ \phi = (p.T - d*p.\omega)/c; \]

### Interface - Default

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high</td>
<td>Two ports of the spring (Rotation).</td>
</tr>
<tr>
<td>p_low</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

preferred torque out

An angular velocity out causality results in a derivative constitutive equation.

**Variables**

phi  
torsion of the spring [rad]

**Parameters**

<table>
<thead>
<tr>
<th>c</th>
<th>Rotational stiffness [Nm /rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Damping [Nms/rad]</td>
</tr>
</tbody>
</table>

**Initial Values**

phi_initial  
The initial torsion of the spring [rad].

**Description - Stiffness**

This model represents an ideal rotational spring with damper. The damping value \( (d) \) is calculated on the basis of a known stiffness \( (c) \), relative damping \( (b) \) and reference inertia \( (J) \). The inertia is only used to compute the damping (no actual mass is used in this component).

The element has a preferred torque out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred angular velocity out causality. The constitutive equations then contain a derivation. The port \( p \) of the spring model has separate high and low terminals. The equations are:

\[ p.T = p._\text{high}.T = p._\text{low}.T \]
\[ p.\omega = p._\text{high}.\omega - p._\text{low}.\omega \]

Torque out causality (preferred):

\[ \phi = \text{int}(p.\omega); \]
\[ p.F = c \times \phi + d*p.\omega; \]
\[ d = 2*b*\text{sqrt}(c*J); \]

Angular velocity out causality:
\[ p.\text{omega} = \text{ddt}(\text{phi}); \]
\[ \text{phi} = (p.T - d*p.\text{omega})/c; \]
\[ d = 2*b*\text{sqrt}(c*J); \]

**Interface - Stiffness**

**Ports**
- `p_high`
- `p_low`

**Causality**
- preferred torque out

An angular velocity out causality results in a derivative constitutive equation.

**Variables**
- `phi`
  - torsion of the spring [rad]
- `d`
  - damping [Nms/rad]

**Parameters**
- `c`
  - Rotational stiffness [Nm /rad]
- `b`
  - Relative damping []
- `J`
  - Moment of inertia [kgm^2]

**Initial Values**
- `phi_initial`
  - The initial torsion of the spring [rad].

**Description - Frequency**

This model represents an ideal rotational spring with damper. The stiffness \( c \) is calculated on basis of a known resonance frequency \( f \). The damping value \( d \) is calculated on the basis of the stiffness, relative damping \( b \) and reference inertia \( J \). The inertia is only used to compute the damping (no actual mass is used in this component).

The element has a preferred torque out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred angular velocity out causality. The constitutive equations then contain a derivation. The port \( p \) of the spring model has separate high and low terminals. The equations are:

\[ p.T = p\_\text{high}.T = p\_\text{low}.T \]
\[ p.\text{omega} = p\_\text{high}.\text{omega} - p\_\text{low}.\text{omega} \]

Torque out causality (preferred):

\[ \text{phi} = \text{int}(p.\text{omega}); \]
\[ p.T = c * \text{phi} + d*p.\text{omega}; \]
\[ c = J*(2*pi*f)^2; \]
\[ d = 2*b*\text{sqrt}(c*J); \]

Angular velocity out causality:
\( p.\omega = ddt(\phi); \)
\( \phi = (p.T - d*p.\omega)/c; \)
\( c = J*(2*pi*f)^2; \)
\( d = 2*b*sqrt(c*J); \)

**Interface - Frequency**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high</td>
<td>Two ports of the spring (Rotation).</td>
</tr>
<tr>
<td>p_low</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

preferred torque out

An angular velocity out causality results in a derivative constitutive equation.

**Variables**

phi	torsion of the spring [rad]
c	rotational stiffness [Nm /rad]
d	damping [Nms/rad]

**Parameters**

f	Resonance frequency [Hz]
b	Relative damping []
J	Moment of inertia [kgm^2]

**Initial Values**

| phi_initial | The initial torsion of the spring [rad]. |

**Unbalance**

**Library**

Iconic Diagrams\Mechanical\Rotation\Components

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation).

**Description**

This model represents an unbalanced mass with an offset \( r \) to the axis of rotation and a starting angle \( \phi_{\text{initial}} \).
The mass will act as an inertia $J$ with a gravity induced disturbance torque:

$$J = r^2 \times m;$$
$$\alpha = (p.T + m\times r \times g\_n\times \sin(\phi))/ J;$$
$$p.omega = \int (\alpha);$$
$$\phi = \int (p.omega, \phi{}_{initial});$$

The element has a preferred angular velocity out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred torque out causality. The constitutive equations then contain a derivation. The model has only one rotation port $p$ defined. Because any number of connections can be made, successive ports are named $p1$, $p2$, $p3$ etc. 20-sim will automatically create equations such that the resulting torque $p.T$ is equal to the sum of the torques of all connected ports $p1 .. pn$ and that the angular velocities of all connected ports is equal to $p.omega$.

$$p.T = \text{sum}(p1.T, p2.T, ....)$$
$$p.omega = p1.omega = p2.omega = ....$$

**Interface**

**Ports**

- **p[any]**
  - Any number of connections can be made (Rotation).

**Causality**

- preferred angular velocity out
  - An torque out causality results in a derivative constitutive equation.

**Variables**

- **J**
  - moment of inertia [kgm^2]
- **phi**
  - angle [rad]
- **alpha**
  - angular acceleration [rad/s^2]

**Parameters**
m
mass [kg]
r
distance of mass from center line of rotation [m]

Initial Values

p.omega_initial
The initial velocity of the inertia [rad/s].
phi_initial
The starting angle of the mass [rad].

ZeroTorque

Library
Iconic Diagrams\Mechanical\Rotation\Components
Use
Description
This model can be used to connect any open end of another model that is not connected to the fixed world. It generates a fixed torque of 0 N while the angular velocity is free:

\[ p.\omega = \text{indifferent}; \]
\[ p.T = 0; \]

Interface

Ports	Description
p | rotation port

Causality
Fixed torque out
Gears

BeltPulley

Library
Iconic Diagrams\Mechanical\Rotation\Gears

Use

Description
This models represents a belt and pulley. The connection to the pulley is through the rotation port \( p_{rot} \). The connection to the belt is through the translation port \( p_{trans} \). The model is ideal, i.e. there are no compliances or inertias. The causality of this model is always mixed: torque out & velocity out or angular velocity out & force out:

\[
\begin{align*}
  p_{rot}.T &= \text{radius} \times p_{trans}.F \\
  p_{trans}.v &= \text{radius} \times p_{rot}.\omega
\end{align*}
\]

or:

\[
\begin{align*}
  p_{trans}.F &= \frac{1}{\text{radius}} \times p_{rot}.T \\
  p_{rot}.\omega &= \frac{1}{\text{radius}} \times p_{trans}.v
\end{align*}
\]

Interface

Ports	Description
p\_rot | Rotation port.
p\_trans | Translation port.

Causality

\( p_{rot} \) notequal \( p_{trans} \)

Parameters

\[
\begin{align*}
  \text{radius} & \quad \text{pulley radius [m]}
\end{align*}
\]

Cam-Wizard

Library
Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Description
This is a masked model which opens the Cam Wizard when edited. Depending on the selections entered, various cam motion profiles can be generated.
Interface

### Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Driving axis (Rotation)</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port with resulting motion (Rotation or Translation)</td>
</tr>
</tbody>
</table>

### Parameters

- **stroke**: amplitude of resulting motion
- **start_angle**: start angle motion
- **stop_angle**: angle when the maximum is reached
- **return_angle**: start angle of the return motion
- **end_angle**: finish angle of the return motion

CamRod

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**

This models represents a cam and rod mechanism. If the input shaft is rotating with a constant speed, the output motion is a pure sinusoidal.

![Graph showing output motion](image)

The mechanism starts with the carriage in the most left position. The arm length is half of the stroke:
The mechanism is ideal, i.e., it does not have inertia, friction or geometrical limitations. It has one rotation port (\(p_{\text{in}}\)) and one translation port (\(p_{\text{out}}\)). The causality of this model is always mixed: one port has a force out causality while the other has a velocity out causality:

\[
\begin{align*}
  p_{\text{in}}.T &= i \times p_{\text{out}}.F \\
  p_{\text{out}}.v &= i \times p_{\text{in}}.\omega
\end{align*}
\]

The transmission ratio (\(i\)) is the ratio of the velocities of both ports (in fact a sinusoidal function of the shaft angle).

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{\text{in}})</td>
<td>Driving axis (Rotation)</td>
</tr>
<tr>
<td>(p_{\text{out}})</td>
<td>Output port with resulting motion (Translation)</td>
</tr>
</tbody>
</table>

**Causality**

- fixed torque out | \(p_{\text{in}}\)
- fixed velocity out | \(p_{\text{out}}\)

**Parameters**

- stroke: Stroke of the translation port (is equal to half the length of the rod).
CrankRod

Library
Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Description

This models represents a crank and rod mechanism. The mechanism is ideal, i.e., it does not have inertia, friction or geometrical limitations. It has one rotation port (p_in) and one translation port (p_out). The causality of this model is always mixed: one port has a force out causality while the other has a velocity out causality:

\[ p_{in}.T = i \times p_{out}.F \]
\[ p_{out}.v = i \times p_{in}.\omega \]

The transmission ratio \( i \) is the ratio of the velocities of both ports. It is a function of the shaft angle, the crank length and the rod length.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Driving axis (Rotation)</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port with resulting motion (Translation)</td>
</tr>
</tbody>
</table>

Causality
fixed torque out
p_in
fixed velocity out
p_out

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crank_length</td>
<td>Crank length [m]</td>
</tr>
<tr>
<td>rod_length</td>
<td>Rod length [m]</td>
</tr>
</tbody>
</table>
DifferentialGear

Library
Iconic Diagrams\Mechanical\Rotation\Gears

Use

Description
A differential gear is well known for its use in automotive mechanics. It transfers power from the engine to the wheels, dividing the force equally between them but permitting them to follow paths of different lengths when turning a corner.

When p3 is the drive-shaft and p1 and p3 the shafts connected to the wheels, the constitutive equations for this model are:

\[ p3.\omega \cdot 2 \cdot i = p1.\omega + p2.\omega; \]
\[ p1.T = p2.T = p3.T/(2 \cdot i); \]

with \( i \) the gear ratio. The gear ratio is equal to the diameter of the drive shaft pinion divided by the diameter of the ring gear, which makes it equivalent to the angular velocity of the drive shaft divided by the average angular velocity of the wheel shafts:

\[ i = p3.\omega / ((p1.\omega + p2.\omega)/2); \]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>drive shaft port (Rotation)</td>
</tr>
</tbody>
</table>
Parameters

\[ i \quad \text{gear ratio} \]

Differential

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use


Description

This model is equivalent to the fork model of the Translation library. It represents a special type of node where the torques are equal and the angular velocities are added:

\[
p_3.\omega = p_1.\omega + p_2.\omega; \quad p_1.T = p_2.T = p_3.T;
\]

This model can for example be used for actuators that generate a torque difference. With the differential model an equivalent model can be found with the actuator attached to the fixed world:

Interface

Ports

Description
Gear

Library
Iconic Diagrams\Mechanical\Rotation\Gears

Implementations
Ideal
Lossy

Use

Description - Ideal
This model represents any type of gearbox with two counter rotating shafts. The gear is ideal, i.e., it does not have inertia or friction. The gear has one fast moving shaft and one slow moving shaft. The gearbox has a reduction of i:1 and thus a transmission ratio of 1/i.

The causality of this model is always mixed: one port has a torque out causality while the other has an angular velocity out causality:

\[
p_{\text{in}}.T = -\frac{1}{i} \times p_{\text{out}}.T
\]
\[
p_{\text{out}}.\omega = -\frac{1}{i} \times p_{\text{in}}.\omega
\]
or:

\[
p_{\text{out}}.T = -i \times p_{\text{in}}.T
\]
\[
p_{\text{in}}.\omega = -i \times p_{\text{out}}.\omega
\]

Interface - Ideal

Ports
\begin{tabular}{lc}
 p\_in & Input port \\
p\_out & Output port \\
\end{tabular}

Causality
\[
p_{\text{in}} \neq p_{\text{out}}
\]

Parameters
\begin{tabular}{lc}
i & gearbox reduction, i > 1 \\
\end{tabular}

Description - Efficiency
This model represents any type of gearbox with two counter rotating shafts. The gearbox has a reduction of i:1 and thus a transmission ratio of 1/i.
Unlike the model of an ideal gearbox, this model includes power loss. The power loss is represented by the efficiency, where the efficiency is defined as the output power divided by the input power:

\[ \text{eff} = \frac{P_{\text{out}}}{P_{\text{in}}} \]

The efficiency is a value between zero and one and given by the gearbox manufacturer. If you do not know the value, a good guess is a power loss of 3% per stage (\( \text{eff} = 0.97 \)). If your gearbox for example contains three stages, you can set the efficiency as:

\[ \text{eff} = 0.97 \times 0.97 \times 0.97 = 0.91 \]

### Interface - Efficiency

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Input port</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port</td>
</tr>
</tbody>
</table>

#### Parameters

- \( i \): gearbox reduction [-], \( i > 1 \)
- \( \text{eff} \): gearbox efficiency [-]

#### Description - Lossy

This model represents any type of gearbox with two counter-rotating shafts. The gearbox has a reduction of \( i : 1 \) and thus a transmission ratio of \( 1/i \).

\[ p\_\text{in}.\omega = -i \times p\_\text{out}.\omega \]

Unlike the model of an ideal gearbox, this model includes rotational inertia and power loss. The inertia is defined at the input axis. If the gearbox manufacturer gives the inertia at the output axis you can calculate the inertia at input axis as:

\[ J_{\text{input}} = J_{\text{output}} / i^2 \]

The power loss is represented by the efficiency, where the efficiency is defined as the output power divided by the input power:

\[ \text{eff} = \frac{P_{\text{out}}}{P_{\text{in}}} \]

The efficiency is a value between zero and one and given by the gearbox manufacturer. If you do not know the value, a good guess is a power loss of 3% per stage (\( \text{eff} = 0.97 \)). If your gearbox for example contains three stages, you can set the efficiency as:
\[ \text{eff} = 0.97 \times 0.97 \times 0.97 = 0.91 \]

**Interface - Lossy**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Input port</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port</td>
</tr>
</tbody>
</table>

**Causality**

- preferred angular velocity out \( p_{in} \)
- preferred angular velocity out \( p_{out} \)

**Parameters**

- \( i \) gearbox reduction [-], \( i > 1 \)
- \( J \) moment of inertia [kgm^2]
- \( \text{eff} \) gearbox efficiency [-]

**PlanetaryGear**

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation).

**Description**

A planetary gear is well known for its use in automotive mechanics. It transfers power from a sun wheel to the planet wheels and the ring. In standard planetary gears, the planet wheels are connected by a carriage. I.e the gear has three rotation ports: the sun, the carriage and the ring.
The model that is used here is ideal. I.e. there is only power flow between the three axes. No internal dynamics or friction are incorporated. If the inertia cannot be neglected, you can easily add inertia models to the ports of the planetary gear model.

The number of teeth of the planet wheels are uniquely defined by the number of teeth of the sun wheel and the ring by:

$$zp = (zr - zs)/2;$$

Therefore the ratio between the sun teeth and the ring teeth:

$$z = zr / zs;$$

determine the transmission ratio of the gearbox and therefore the dynamic equations of the gearbox:

$$\text{carriage.omega} = \text{sun.omega} * (1/(1 + z)) + \text{ring.omega} * (z/(1 + z));$$
$$\text{ring.T} = \text{carriage.T} * (z/(1 + z));$$
$$\text{sun.T} = \text{carriage.T} * (1/(1 + z));$$

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>shaft attached to the sun wheel (Rotation)</td>
</tr>
<tr>
<td>carriage</td>
<td>shaft attached to the carriage (Rotation)</td>
</tr>
<tr>
<td>ring</td>
<td>shaft attached to the ring (Rotation)</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>number of ring teeth divided by the number of sun teeth []</td>
</tr>
</tbody>
</table>
RackPinionGear

**Library**
Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

**Implementations**
FixedPinion
FixedRack

**Use**

**Description - FixedPionion**
This models represents a rack and pinion gear. The connection to the pinion gear is through the rotation port $p_{rot}$. The connection to the rack is through the translation port $p_{trans}$. The model is ideal, i.e. there is no compliance nor inertia nor backlash.

In this model the pinion bearing is connected to the fixed world and the rack is free to move. This in contrary to the model FixedRackPinionGear where the pinion bearing is free to move and the rack is connected to the fixed world.

The causality of this model is always mixed: torque out & velocity out or angular velocity out & force out:

\[
p_{rot}.T = radius \times p_{trans}.F \\
p_{trans}.v = radius \times p_{rot}.omega
\]

or:

\[
p_{trans}.F = 1/radius \times p_{rot}.T \\
p_{rot}.omega = 1/radius \times p_{trans}.v
\]

The rack position is determined by the internal variable $x$. For $x = 0$, the pinion gear is at the middle of the rack. When the pinion crosses the end of the rack, i.e.
\[ \text{abs}(x) > \frac{\text{rack\_length}}{2} \]

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion gear!", and the simulation is stopped.

**Interface - FixedPionion**

**Ports**
- p_rot: Rotation port.
- p_trans: Translation port.

**Causality**
- p_rot: notequal
- p_trans

**Parameters**
- radius: pinion gear pitch radius [m]
- rack_length: rack length [m]

**Variables**
- x: Internal variable which denotes the rack position, \( \text{abs}(x) < \frac{\text{rack\_length}}{2} \) else simulation halted.

**Initial values**
- x_initial: Initial rack position, \( \text{abs}(x\_\text{initial}) < \frac{\text{rack\_length}}{2} \)

**Description - FixedRack**

This model represents a fixed rack and pinion gear. The connection to the pinion gear is through the rotation port \( p\_\text{rot} \). The connection to the rack is through the translation port \( p\_\text{trans} \). The model is ideal, i.e. there is no compliance nor inertia nor backlash.

In this model the pinion bearing is free to move and the rack is connected to the fixed world. This is contrary to the model RackPinionGear where the pinion bearing is connected to the fixed world and the rack is free to move.
The causality of this model is always mixed: torque out & velocity out or angular velocity out & force out:

\[ p\_rot.T = radius \times p\_trans.F \]
\[ p\_trans.v = radius \times p\_rot.omega \]

or:

\[ p\_trans.F = 1/radius \times p\_rot.T \]
\[ p\_rot.omega = 1/radius \times p\_trans.v \]

The rack position is determined by the internal variable \( x \). For \( x = 0 \) the pinion gear is at the middle of the rack. When the pinion crosses the end of the rack, i.e.

\[ abs(x) > rack\_length/2 \]

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion gear!", and the simulation is stopped.

**Interface - FixedRack**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_rot )</td>
<td>Rotation port.</td>
</tr>
<tr>
<td>( p_trans )</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

\( p\_rot \) notequal \( p\_trans \)

**Parameters**

\( radius \) pinion gear pitch radius [m]
\( rack\_length \) rack length [m]

**Variables**

\( x \) Internal variable which denotes the rack position, \( abs(x) < rack\_length/2 \) else simulation halted.

**Initial values**

\( x\_initial \) Initial rack position, \( abs(x\_initial) < rack\_length/2 \)
Spindle

Library
Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Introduction
This models represents a spindle and nut. It transfers an angular motion of the spindle into a translational motion of the nut. The model is ideal, i.e., it does not have inertia or friction. The causality of this model is always mixed: one port has a torque out causality while the other has an angular velocity out causality:

\[
p_{\text{spindle}}.T = i \ast p_{\text{nut}}.F \\
p_{\text{nut}}.v = i \ast p_{\text{spindle}}.\omega
\]

or:

\[
p_{\text{nut}}.F = 1/i \ast p_{\text{spindle}}.T \\
p_{\text{spindle}}.\omega = 1/i \ast p_{\text{nut}}.v
\]

The model has two implementations which calculate the transform ratio \(i\) out of different parameters.

Description - Pitch
In this implementation the transform ratio is calculated using the pitch (the advance of the nut during one revolution of the spindle):

\[i = \text{pitch} / (2 \ast \pi);\]

Interface - Pitch

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_spindle</td>
<td>Port at the spindle shaft (Rotation).</td>
</tr>
<tr>
<td>p_nut</td>
<td>Port at the wheel (Translation).</td>
</tr>
</tbody>
</table>

Causality
p_spindle
notequal p_nut

Parameters
pitch translation of the nut during one revolution of the spindle [m]

Description - LeadAngle
This implementation calculates the transform ratio out of the lead angle \(\alpha\) and the radius \(r_{\text{spindle}}\) of the spindle:

\[i = \tan(\alpha) \ast r_{\text{spindle}};\]
The pitch angle is shown in the figure below. \( r_{\text{spindle}} \) is the effective radius of the spindle, i.e. the radius from the center of the spindle to the pitch point \( p \).

\[ \text{Interface - LeadAngle} \]

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_{\text{spindle}} )</td>
<td>Port at the spindle shaft (Rotation).</td>
</tr>
<tr>
<td>( p_{\text{nut}} )</td>
<td>Port at the wheel (Translation).</td>
</tr>
</tbody>
</table>

**Causality**

\( p_{\text{spindle}} \)
\( \text{notequal} \ p_{\text{nut}} \)

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( r_{\text{spindle}} )</td>
<td>effective radius of the spindle [m]</td>
</tr>
<tr>
<td>( \alpha )</td>
<td>lead angle of the spindle [rad]</td>
</tr>
</tbody>
</table>

**TimingBelt**

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation/Translation).

**Introduction**

This models represents a timing belt, used for linear positioning.
It has a rotating pulley which drives the belt and clamp. The timing belt is modeled by a series of spring damper elements that convey the rotation of the pulley to a clamp translation. Because the output position is moving, stiffness and damping values are not constant.

The stiffness for a piece of belt can be expressed as:

\[ k = \frac{E \cdot A}{l} \]

with

\[ E = \text{Modulus of elasticity \{N/m^2\}} \]
\[ A = \text{Belt area \{m^2\}} \]
\[ l = \text{belt length \{m\}} \]

If the belt is sufficiently pre-tensioned, the stiffness experienced at the clamp can be expressed as the combination of three individual belt parts:

\[ k = \frac{E \cdot A}{(0.5 \cdot l + x)} + \frac{1}{\frac{1}{\frac{E \cdot A}{(0.5 \cdot l - x)}} + \frac{1}{\frac{E \cdot A}{l}} } \]

which can be rewritten to:

\[ k = E \cdot A \left( \frac{1}{(0.5 \cdot l + x)} + \frac{1}{(1.5 \cdot l - x)} \right) \]

The stiffness approaches infinity as the clamp moves to the driven pulley (x = -l/2) and has a minimum value when the clamp moves to the other pulley (x = 0.5*l). The minimum stiffness is equal to:

\[ k = 2 \cdot E \cdot A / l \]

The belt position is determined by the internal variable x. For x = 0 the clamp is in the middle. When the position crosses the driven pulley, i.e.
\[ x < - \frac{\text{belt_length}}{2} \]

the simulation is stopped: "Error: clamp position larger than belt end!". When the position crosses the other pulley, i.e.

\[ x > \frac{\text{belt_length}}{2} \]

the simulation is also stopped, "Error: clamp position smaller than belt start!".

**Description - Default**

In this model the minimum stiffness is used, based on an output position at a length \( L \) of the driven pulley.

\[ k = \frac{2E \cdot A}{l} \]

**Description - VariableStiffness**

In this model a variable stiffness is used equal to:

\[ k = E \cdot A \cdot \left( \frac{1}{0.5 \cdot l + x} + \frac{1}{1.5 \cdot l - x} \right) \]

Take care not to let the clamp get too close to the driven pulley, because the stiffness will then grow to infinity!

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_rot</td>
<td>Rotation port.</td>
</tr>
<tr>
<td>p_trans</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

p_rot noblock p_trans

**Parameters**

- radius: pinion gear pitch radius [m]
- d: damping N.s/m
- E: Modulus of elasticity [N/m2]
- A: \( A = \) Belt area [m2]
- l: belt length [m]

**Variables**

- x: clamp position, abs(x) < belt length/2

**Initial values**

- x_initial: Initial clamp position, abs(x_initial) < belt length/2
Transmission

Library
Iconic Diagrams\Mechanical\Rotation\Gears

Implementations
Ideal
Lossy

Use

Description - Ideal
This models represents any type of gearbox with two shafts rotating in the same direction. The gear is ideal, i.e., it does not have inertia or friction. The gear has one fast moving shaft and one slow moving shaft. The gearbox has a reduction of $i : 1$ and thus a transmission ratio of $1/i$.

The causality of this model is always mixed: one port has a torque out causality while the other has an angular velocity out causality:

$$p_{in}.T = \frac{1}{i} \times p_{out}.T$$
$$p_{out}.\omega = \frac{1}{i} \times p_{in}.\omega$$

or:

$$p_{out}.T = i \times p_{in}.T$$
$$p_{in}.\omega = i \times p_{out}.\omega$$

Interface - Ideal

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Input port</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port</td>
</tr>
</tbody>
</table>

Causality
p_in not equal p_out

Parameters
i \hspace{1cm} \text{gearbox reduction, } i > 1

Description - Efficiency
This models represents any type of gearbox with two shafts rotating in the same direction. The gearbox has a reduction of $i : 1$ and thus a transmission ratio of $1/i$.

$$p_{in}.\omega = i \times p_{out}.\omega$$

Unlike the model of an ideal gearbox, this model includes power loss. The power loss is represented by the efficiency, where the efficiency is defined as the output power divided by the input power:
eff = Pout / Pin

The efficiency is a value between zero and one and given by the gearbox manufacturer. If you do not know the value, a good guess is a power loss of 3% per stage (eff = 0.97). If your gearbox for example contains three stages, you can set the efficiency as:

eff = 0.97*0.97*0.97 = 0.91

### Interface - Efficiency

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Input port</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port</td>
</tr>
</tbody>
</table>

### Causality

p_in not equal p_out

### Parameters

- i: gearbox reduction [-], i > 1
- eff: gearbox efficiency [-]

### Description - Lossy

This models represents any type of gearbox with two shafts rotating in the same direction. The gearbox has a reduction of i : 1 and thus a transmission ratio of 1/i.

\[ p_{in}.omega = i \times p_{out}.omega \]

Unlike the model of an ideal gearbox, this model includes rotational inertia and power loss. The inertia is defined at the input axis. If the gearbox manufacturer gives the inertia at the output axis you can calculate the inertia at input axis as:

\[ J_{input} = J_{output}/i^2 \]

The power loss is represented by the efficiency, where the efficiency is defined as the output power divided by the input power:

\[ eff = P_{out} / P_{in} \]

The efficiency is a value between zero and one and given by the gearbox manufacturer. If you do not know the value, a good guess is a power loss of 3% per stage (eff = 0.98). If your gearbox for example contains three stages, you can set the efficiency as:

\[ eff = 0.97*0.97*0.97 = 0.91 \]

### Interface - Lossy

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Input port</td>
</tr>
</tbody>
</table>
p_out  
Output port

**Causality**
preferred angular velocity out p_in
preferred angular velocity out p_out

**Parameters**

- \(i\)  
gearbox reduction [-], \(i > 1\)
- \(J\)  
moment of inertia [kgm^2]
- \(eff\)  
gearbox efficiency [-]

---

**UniversalCoupling**

**Library**
Iconic Diagrams\Mechanical\Rotation\Gears

**Use**

- **Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation).

**Description**

Universal Joint couplings are used to couple axes which are not aligned. They can be used in single or double set-up. Consider the single Universal Joint coupling, shown in the picture below.
Due to the nature of the coupling, the output angular velocity $w_1$ will show a sinusoidal ripple, compared to the input angular velocity $w_2$:

$$w_2 = \frac{\cos(\alpha)}{1 - \cos^2(\varphi_1) \sin^2(\alpha)} \cdot w_1$$

with $\alpha$ the angle between the two axes and $\varphi_1$ the initial rotation of the input axis. The initial rotation $\varphi_1$ is defined with respect to a plane that is spanned by the axes (1 and 2).

When two Universal Joint couplings are combined, the angular velocity of the output axis will be equal to the angular velocity of the input axis (e.g. no ripple) when two conditions are met. When the output axis of the first coupling is connected to the input axis of the second coupling, these conditions are:

1. For both couplings the absolute value of the angle $\alpha$ should be equal.
2. The difference in initial rotation of both couplings ($\varphi_1 - \varphi_2$) should be equal to $+\pi/2$ [rad] or $-\pi/2$ [rad].

Two alignments are shown in the figure below.

$$\alpha = 0.35, \alpha' = -0.35, \varphi_1 = 0, \varphi_1' = \pi/2 \text{ [rad]}$$

### Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2</td>
<td>The input and output axes (Rotation)</td>
</tr>
</tbody>
</table>
Input
p1 not equal p2

Parameters
alpha The angle between the two axes ($\alpha$).

Initial Values
phi1_initial The initial rotation of the input axis ($\varphi_1$).

Wormgear

Library
Iconic Diagrams\Mechanical\Rotation\Gears

Implementations
Ideal
Backlash

Use

Description - Ideal

This models represents a worm gear with spindle (also referred to as worm) and wheel (also referred to as gear). The gear is ideal, i.e., it does not have inertia or friction. The causality of this model is always mixed: one port has a torque out causality while the other has an angular velocity out causality:

\[ p\_spindle.T = i \ast p\_wheel.T \]
\[ p\_wheel.omega = i \ast p\_spindle.omega \]

or:

\[ p\_wheel.T = \frac{1}{i} \ast p\_spindle.T \]
\[ p\_spindle.omega = \frac{1}{i} \ast p\_wheel.omega \]

with
\[ i = \tan(\alpha) \frac{r_{spindle}}{r_{wheel}}; \]

\textit{Alpha} is the pitch angle as shown in the figure below. \textit{r\_wheel} and \textit{r\_spindle} are the effective radii of the wheel and spindle, i.e. the radii from the center of the wheel and spindle to the pitch point \textit{p}.

**Interface - Ideal**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_spindle</td>
<td>Port at the spindle shaft (Rotation).</td>
</tr>
<tr>
<td>p_wheel</td>
<td>Port at the wheel (Rotation).</td>
</tr>
</tbody>
</table>

**Causality**

- p\_wheel notequal
- p\_spindle

**Parameters**

- r\_spindle pitch radius spindle [m]
- r\_wheel pitch radius wheel [m]
- alpha lead angle of the spindle [rad]
Description - Backlash

This models represents a worm gear with spindle (also referred to as worm) and wheel (also referred to as gear). Between spindle and wheel, backlash and friction is modelled. The causality of this model is always fixed: both ports have a torque out causality.

Analysis

The spindle and wheel have one or more pair of teeth contacting each other. The effective point of contact is called the pitch point $P$. At the pitch point a frame is defined, with an x- and y-direction. During rotation of the wheel and spindle, the teeth will experience a normal force $F_n$ in the x-direction and a friction force $F_f$ in the y-direction.

Between each pair of teeth, a clearance exists (y-direction), causing backlash. This effect is time-dependent, because of the tooth pairs coming in and out of contact. During normal operation this is a high frequency effect, which is filtered out by the damping of the construction. We therefore only use an average backlash at the pitch point. Using the same reasoning as backlash, an average friction is used at the pitch point.

To define both backlash and friction a frame is used at the pitch point (see picture above) to indicate velocities. The velocity in x-direction is the sliding velocity between the teeth and used to calculate the friction force. The position in y-direction is the position in the clearance and used to calculate the backlash force.
**Backlash**

The backlash is described by the standard formula that is also used in the Backlash.emx model. The normal force is modelled by a spring-damper system. Inside the clearance a low damping and stiffness is used ($k1$ and $d1$), while a high stiffness and damping ($k2$ and $d2$) is used at both ends of the clearance. This yields a normal force $F_n$ of:

$$p \cdot F = 0.5 \cdot k_2 \cdot \left( x - \sqrt{-x - \frac{s}{2}} + (e_p \cdot s)^2 \right) + x + \sqrt{x - \frac{s}{2} + (e_p \cdot s)^2} + k_1 \cdot x + d_{1 \text{or}2} \cdot p \cdot v$$

**Friction**

Friction is described as static plus coulomb plus viscous plus Stribeck friction:

$$p \cdot F = F_n *$$
$$(( \mu_c + (\mu_{st} \cdot \text{abs(tanh(slope*p.v))} - \mu_c) * \text{exp}(-((p.v / v_{st})^2)) ) * \text{sign}(p.v)$$
$$+ \mu_v * p.v);$$

with:

$F_n$: the normal force (given by the backlash formula)
$\mu_s$: the static friction coefficient
$\mu_v$: the viscous friction coefficient
$\mu_c$: the coulomb friction coefficient
$slope$: the steepness of the coulomb and static friction curve.
$v_{st}$: the characteristic Stribeck velocity.

**Self-Locking**

A worm gear is said to be self-locking, or irreversible when the wheel cannot drive the spindle. This condition is obtained, if the lead angle of the worm is small and the friction force between the teeth is high enough. Then the friction force becomes larger than the driving force on the teeth. Suppose we only consider static and Coulomb friction and both friction coefficients are equal. Then self locking is obtained when the following condition holds:

$$\mu_s > \tan(\alpha)$$
$$\mu_c > \tan(\alpha)$$

**Interface - Backlash**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Port at the spindle shaft (Rotation).</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_spindle</td>
<td>Port at the wheel (Rotation).</td>
</tr>
<tr>
<td>p_wheel</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

<table>
<thead>
<tr>
<th>fixed torque out</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_spindle</td>
</tr>
</tbody>
</table>

**Parameters**
**Variables**

- `r_spindle`: pitch radius spindle [m]
- `r_wheel`: pitch radius wheel [m]
- `alpha`: lead angle of the spindle [rad]
- `s`: Interval of the play [m]
- `k1`: Stiffness in the play [N/m]
- `k2`: Stiffness outside the play [N/m]
- `d1`: Damping inside the play [Ns/m]
- `d2`: Damping outside the play [Ns/m]
- `ep`: Relative round off (1e-6 -> sharp edges, 1e-2 -> smoother)
- `mu_s`: Static friction coefficient []
- `mu_v`: Viscous friction coefficient [s/m]
- `mu_c`: Coulomb friction coefficient []
- `slope`: Steepness of Coulomb friction curve [s/m]
- `v_st`: Characteristic Stribeck velocity [m/s]

**Interesting Variables**

- `Fn`: Average normal force between teeth [N]
- `Ff`: Average friction force between teeth [N]
- `v_x`: Velocity in x-direction at the pitch frame [m/s] (used in friction formula)
- `v_y`: Velocity in y-direction at the pitch frame [m/s] (used in backlash formula)
- `x_x`: Position in x-direction at the pitch frame [m/s] (used in friction formula)
- `x_y`: Position in y-direction at the pitch frame [m/s] (used in backlash formula)

**Sensors**

**AccelerationSensor-Absolute**

**Library**

Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation), Block Diagrams.

**Description**

This model describes an acceleration sensor which derives an angular acceleration output out of a port angular velocity by differentiation. Differentiation is performed by a state variable filter:
The S-domain function of this filter is equal to:

\[
\text{output} = \frac{s}{f + 1} \cdot \text{input}
\]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.

The equations of this model are:

\[
\text{alpha} = \frac{d (p.\omega)}{dt};
\]
\[
p.T = \text{indifferent};
\]

**Interface**

**Ports**

- **p**
  
  Rotation port \( p \).

**Causality**

fixed force out

**Output**

alpha

Absolute angular acceleration \([\text{rad/s}^2]\)

**Parameters**

- **f**
  
  Cut-off frequency of the differentiation \([\text{Hz}]\).

- **alpha_initial**
  
  Initial angular acceleration \([\text{m/s}]\).

**AccelerationSensor-Relative**

**Library**

Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation), Block Diagrams.
**Description**

This model describes an acceleration sensor which derives an angular acceleration output out of a angular velocity difference (between high and low terminals) by differentiation. Differentiation is performed by a state variable filter:

The S-domain function of this filter is equal to:

\[
output = \frac{s}{s + \frac{1}{f}} \cdot input
\]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.

The equations of this model are:

\[
\begin{align*}
\alpha &= \frac{d}{dt}(p_{high.omega} - p_{low.omega})/dt; \\
p_{low.T} &= p_{high.T} = \text{indifferent};
\end{align*}
\]

**Interface**

**Ports**

- **p_high, p_low**: Both terminals of the Mechanical port \( p \).

**Causality**

- **fixed force out**

**Output**

- **alpha**: Angular acceleration (measured as the difference between both terminals) [rad/s²]

**Parameters**

- **f**: Cut-off frequency of the differentiation [Hz].
- **alpha_initial**: Initial angular acceleration [m/s].
Encoder

Library
Iconic Diagrams\Mechanical\Rotation\Sensors

Implementations
Ideal
Absolute
Incremental

Use

Description - Ideal
This is a model of an optical encoder combined with sampling. The Encoder has no internal friction. The output signal is equal to the sampled shaft angle (in radians).

Example
The shaft angle is equal to a sine with amplitude $2\pi$ (one revolution forward and one back), the sampling rate is 5 Hz.

\[
\begin{align*}
\text{Encoder (sample frequency 5 Hz)}
\end{align*}
\]

\[
\begin{align*}
\text{time} & \quad \text{output} \\
0 & \quad 0 \\
1 & \quad 2 \\
2 & \quad 5 \\
3 & \quad 8 \\
4 & \quad 11 \\
5 & \quad 14 \\
6 & \quad 17 \\
7 & \quad 20 \\
8 & \quad 23 \\
9 & \quad 26 \\
10 & \quad 29
\end{align*}
\]

Interface - Ideal

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port</td>
</tr>
</tbody>
</table>

Causality
fixed torque out (The output torque is zero)

Outputs
<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
<tr>
<td>sampled shaft angle (rad)</td>
</tr>
</tbody>
</table>
**Description - Absolute**
This is a model of an optical encoder combined with counting logic and analog to digital conversion. The encoder has no internal friction. Counting is absolute. The shaft angle is measured with an accuracy of a given number of counts per revolution.

**Example**
An encoder has an accuracy of 10 counts per revolution. This means an input signal with value 6.283185307 gives an output of 10. This is illustrated in the figure below. The input is a sine with amplitude 2*π (one revolution forward and one back).

![Encoder (12 bits, 10 counts per revolution)](image)

**Overflow**
This model has no overflow.

**Interface - Absolute**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port</td>
</tr>
</tbody>
</table>

**Causality**
fixed torque out (The output torque is zero)

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
<tr>
<td>number of counts</td>
</tr>
</tbody>
</table>

**Parameters**

| counts | counts per revolution. |

**Description - Incremental**
This is a model of an optical encoder combined with counting logic and analog to digital conversion. The encoder has no internal friction. Counting is incremental. The shaft angle is measured with an accuracy of a given number of counts per revolution and a window defined by the number of bits.
Example
An encoder has an accuracy of 2000 counts per revolution. This means an input signal with value 6.283185307 gives an output of 2000.

Example
An encoder has an accuracy of 10 counts per revolution and a 5 bits counter. This means an input signal with value 6.283185307 gives an output of 10 and the output is clipping between +15 and -16. This is illustrated in the figure below. The input is a sine with amplitude 2*π (one revolution forward and one back).

Encoder output without overflow.

The next figure shows the same settings but only 4 bits are used. This means the output is clipping between +7 and -8.

Encoder output with overflow.
Overflow
The maximum and minimum number of counts are equal to $2^{(\text{bits}-1)} - 1$ and -$2^{(\text{bits}-1)}$. If the number of counts passes $2^{(\text{bits}-1)} - 1$, counting continues at -$2^{(\text{bits}-1)}$ and vice versa.

Interface - Incremental

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port</td>
</tr>
</tbody>
</table>

Causality
fixed torque out (The output torque is zero)

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>number of counts</td>
</tr>
</tbody>
</table>

Parameters
counts counts per revolution.
bits maximum counting interval is between $2^{(\text{bits}-1)} - 1$ and -$2^{(\text{bits}-1)}$.

Limitations
The output of this model is a discrete signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

PositionSensor-Absolute

Library
Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Description
This model translates a angular position to an output signal. It has a force out causality. The equations are:

\[
p.T = 0; \\
\phi i = \text{int}(p.\omega)\
\]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Rotation port p.</td>
</tr>
</tbody>
</table>
fixed force out

**Output**

phi Absolute angular position [rad]

**Initial Values**

phi_initial Initial angular position [rad]

**PositionSensor-Relative**

**Library**

Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation), Block Diagrams.

**Description**

This model translates a angular position difference to an output signal. It has a force out causality. The port $p$ of the model has separate high and low terminals. The equations are:

\[
\begin{align*}
p.T &= p\_high.T = p\_low.T; \\
p.omega &= p\_high.omega - p\_low.omega; \\
p.T &= 0; \\
phi &= \text{int}(p.omega);
\end{align*}
\]

**Interface**

**Ports**

p\_high, p\_low Both terminals of the Rotation port $p$.

**Causality**

fixed force out

**Output**

phi Relative angular position [rad]

**Initial Values**

phi\_initial Initial angular position [rad]
Potentiometer

Library
Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Description
Potentiometers have a variable resistance according to a certain rotation. By establishing a voltage (see picture below) across the resistor it is possible to get a proportional relation between the angle and the output voltage.

\[ U_{out} = U_{max} \times \frac{\text{angle}}{(\text{turns} \times 2\pi)} \]

Here Umax is the maximum voltage and turns is the maximum number of turns.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>Rotation port.</td>
</tr>
<tr>
<td>p2</td>
<td>Electric port.</td>
</tr>
</tbody>
</table>

Causality
fixed torque out (The output torque is zero)
fixed voltage out

Parameters
Umax                Maximum output voltage [V]
turns               maximum allowed number of turns [ ]
**PowerSensor**

**Library**
Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**
Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

**Description**
This is an ideal sensor (no dissipation or other effects) that yields the power that flows through the model as output signal. The equations are:

\[
\begin{align*}
p_{\text{high}}.T &= p_{\text{low}}.T \\
p_{\text{high}}.\omega &= p_{\text{low}}.\omega \\
P &= p_{\text{high}}.T \times p_{\text{high}}.\omega;
\end{align*}
\]

**Interface**

- **Ports**
  - p\text{\_\_\_\_\_\_\_\_\_\_high}, p\text{\_\_\_\_\_\_\_\_\_\_low}
    - Both rotation ports.

- **Causality**
  - p\text{\_\_\_\_\_\_\_\_\_\_high} not equal p\text{\_\_\_\_\_\_\_\_\_\_low}

- **Output**
  - P
    - Power [w].

**Tachometer**

**Library**
Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**

**Description**
A tachometer is a transducer for measuring the rotation speed. It is normally mounted at the shaft of a motor and gives a voltage signal proportional to the rotation speed:

\[
V = K_v \cdot v
\]

with \(K_v\) the tachometer gradient [V / rad/s] and \(v\) the shaft velocity [rad/s]. This equation represents the ideal case. Due to the slots and commutator segments of the tachometer, a noise ripple will exists:
\[ V_n = \frac{K_n}{100} \cdot K_v \cdot v \cdot \cos(N \cdot v \cdot t) \]

with \( N \) the ripple frequency [cycles per turn] and \( K_n \) the peak to peak noise Ripple [in % of the output voltage]. To convert the Voltage Gradient parameter from RPM units [V / RPM] to radian units [V / rad/s], use the conversion formula:

\[
K_{v_{rad/s}} = K_{v_{RPM}} \cdot \frac{2 \cdot \pi}{60}
\]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**

fixed torque out (The output torque is zero)

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

Output voltage [V]

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kv</td>
</tr>
</tbody>
</table>

Voltage Gradient [V / rad/s].

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kn</td>
</tr>
</tbody>
</table>

Noise Ripple, relative to output voltage [%].

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

Ripple frequency in cycles per turn [].

## TorqueSensor

**Library**

Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

**Description**

This model translates an applied torque to an output signal. It has an angular velocity out causality. The port \( p \) of the model has separate high and low terminals. The equations are:

\[
\begin{align*}
p.T &= p_{high}.T = p_{low}.T; \\
p.omega &= p_{high}.omega - p_{low}.omega; \\
p.omega &= 0; \\
T &= p.T;
\end{align*}
\]
Interface

Ports Description
p_high, p_low Both terminals of the Rotation port p.

Causality
fixed angular velocity out

Output
T Applied torque [N/m]

VelocitySensor-Absolute

Library
Iconic Diagrams\Mechanical\Rotation\Sensors

Use
Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description
This model translates an angular velocity to an output signal. It has a force out causality. The equations are:

\[
p.T = 0; \\
\omega = p.\omega;
\]

Interface

Ports Description
p Mechanical port p.

Causality
fixed force out

Output
\omega Absolute angular velocity [rad/s]
**VelocitySensor-Relative**

**Library**
Iconic Diagrams\Mechanical\Rotation\Sensors

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Rotation), Block Diagrams.

**Description**
This model translates a velocity difference to an output signal. It has a force out causality. The port \( p \) of the model has separate high and low terminals. The equations are:

\[
\begin{align*}
  p.T &= p._{\text{high}}.T = p._{\text{low}}.T; \\
  p.\omega &= p._{\text{high}}.\omega - p._{\text{low}}.\omega; \\
  p.T &= 0; \\
  \omega &= p.\omega;
\end{align*}
\]

**Interface**

**Ports**
- \( p._{\text{high}}, p._{\text{low}} \)
  - Both terminals of the Rotation port \( p \).

**Causality**
- fixed force out

**Output**
- \( \omega \)
  - Relative angular velocity [rad/s]

**Translation**

**2DSmallRotation**

**2D Library (Small Rotations)**

**Introduction**
The 2DSmallRotation library contains models that describe 2-D planar motion and are valid for small rotations. Due to these small rotations, the dynamic equations that describe the various models are simple and can be linearized symbolically. The library is therefore suited for modeling mechanical systems that experience small rotations and must be thoroughly analyzed in the frequency domain.
Consider the guidance system below. Due to the limited stiffness of the guidance wheels, the central body will experience a small rotation that results in a movement in the x-direction at the end-effector. To properly model the end-effector movement as a function of the driven force, this rotation has to be incorporated. To inspect the resulting resonance frequencies in a bode plot, the model must be linearized. If linearization is performed symbolically, the effect of parameter changes ($af$, $b$, $J$) can be inspected directly in the bode plot, which is very useful when the system is still in the design phase.

To perform symbolic linearization, the example system should be modeled using the models of the 2DSmallAngles library.

**2D**

When we speak of **2D motion** we often mean all planar motion. However, to describe this motion, **three degrees of freedom** (displacement $x$ and $y$ and rotation $\theta$) are used. In 20-sim we keep to the common naming standard of 2D for planar motion (3 degrees of freedom) and 3D for spatial motion (6 degrees of freedom). In 20-sim the three degrees of freedom for planar motion are combined in a vector notation:

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>identity</th>
<th>forces</th>
<th>velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x$</td>
<td>position</td>
<td>P.F[1] [N]</td>
<td>P.v[1] [m/s]</td>
</tr>
<tr>
<td>$y$</td>
<td>position</td>
<td>P.F[2] [N]</td>
<td>P.v[2] [m/s]</td>
</tr>
<tr>
<td>$\theta$</td>
<td>angle</td>
<td>P.F[3] [Nm]</td>
<td>P.v[3] [rad/s]</td>
</tr>
</tbody>
</table>

**Note**

It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 3 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm]!
**Ports**

**1D**
The models in the 2DSmallRotation library have two types of connection ports: 1D and 2D. The 1D ports can represent movement and force (x- or y-direction) or an angular displacement and torque.

The models of the standard translation and rotation libraries can be used to connect to these 1D ports as shown in the picture below.

**2D**
The 2D connection port is a vector that represents three degrees of freedom. The vector notation that is used in 20-sim is:

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>identity</th>
<th>forces</th>
<th>velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>position</td>
<td>P.F[1] [N]</td>
<td>P.v[1] [m/s]</td>
</tr>
<tr>
<td>(y)</td>
<td>position</td>
<td>P.F[2] [N]</td>
<td>P.v[2] [m/s]</td>
</tr>
<tr>
<td>(\theta)</td>
<td>angle</td>
<td>P.F[3] [Nm]</td>
<td>P.v[3] [rad/s]</td>
</tr>
</tbody>
</table>

In 20-sim it is not possible to use vector ports with mixed units. This means that element number 3 will always be displayed with the units [m/s] and [N] although it should be interpreted as [rad/s] and [Nm].

To connect 2D ports, only other models with 2D ports can be used. A double line indicates this vector connection.
Small Rotations

Consider the body below:

Given a force $F_x$ in $x$-direction acting upon the body at an offset $y_1$ from the center, the resulting force at the center of the body is:

$$F_{1x} = F_x \cdot \cos(q)$$
$$F_{1y} = F_x \cdot \sin(q)$$
$$F_{1q} = F_x \cdot -y_1$$

For small angles this can be simplified to:

$$F_{1x} = F_x$$
$$F_{1y} = 0$$
$$F_{1q} = F_x \cdot -y_1$$

A force acting upon a body at a certain offset is rewritten to a force at the center of the body. This is common in multibody dynamics and called a transformation. A force acting at a certain point can be transformed to see its effect at another point.

Consider two frames which have an arbitrary offset as shown in the picture below. We want to know how a force in frame 0 is transformed to a force in frame 1. We assume that frame 1 has an offset of $x_1$ and $y_1$ with respect to frame 0 and a rotation $q_1$ with respect to frame 0. In order to make clear that the offsets are given with respect to frame 0 we will write the with extra indices ($x_1,0$, $y_1,0$ and $q_1,0$).
Given an arbitrary force $F_{1,0}$ at frame 0 the resulting force $F_{1,1}$ at frame 1 is equal to:

$$F_{1,1} = R_0^1 \cdot F_{1,0} \quad \text{with} \quad R_0^1 = \begin{bmatrix} \cos(\theta_{1,0}) & \sin(\theta_{1,0}) & 0 \\ -\sin(\theta_{1,0}) & \cos(\theta_{1,0}) & 0 \\ -y_{1,0} & x_{1,0} & 1 \end{bmatrix}$$

For small angles this can be simplified to:

$$F_{1,1} = R_{01} \cdot F_{1,0} \quad \text{with} \quad R_{01} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -y_{1,0} & x_{1,0} & 1 \end{bmatrix}$$

The accuracy of this simplification depends on the angle $\theta$. For an angle of 0.5 degrees (0.009 rad) this results in an almost 1% error in the calculation of $F_{1,1}$. Considering the cumulative effects of this error when multiple models are used, an angle of maximum 0.05 degrees (<1 mrad) is an upper bound for the models of the 2DSmallRotation library.

The simplification of the equations has two advantages. First because of the small rotations there is no frame rotation any more. Therefore all frames have the same direction (there is only an offset in x-direction and y-direction). Interpreting results is therefore much easier. But the biggest advantage is the simplification of equations which allows us to linearize models symbolically and thus perform tasks in the frequency like parameter sweeps!

**Connections**

**Degrees of Freedom**

As described in the previous topic, the models in 2DSmallRotation library have two types of connection ports: 1D and 2D. The 1D port can represent movement in the x-direction, the y-direction or an angular displacement $\theta$. 
The 2D port is a vector that contains all three degrees of freedom. The vector notation that is used in 20-sim is:

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>identity</th>
<th>forces</th>
<th>velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>position</td>
<td>P.F[1] [N]</td>
<td>P.v[1] [m/s]</td>
</tr>
<tr>
<td>y</td>
<td>position</td>
<td>P.F[2] [N]</td>
<td>P.v[2] [m/s]</td>
</tr>
<tr>
<td>θ</td>
<td>angle</td>
<td>P.F[3] [Nm]</td>
<td>P.v[3] [rad/s]</td>
</tr>
</tbody>
</table>

The vector element number (1, 2 or 3) denotes the identity of the degree of freedom (x, y and θ). To create meaningful models, we have to define the positive direction of each degree of freedom:

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>positive direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>from left to right</td>
</tr>
<tr>
<td>y</td>
<td>from bottom to top</td>
</tr>
<tr>
<td>θ</td>
<td>counter clockwise</td>
</tr>
</tbody>
</table>

This definition is arbitrary. We could as well define it any other way. In the 2DSmallRotation library we have chosen the definition above. It will help us define new models and interpret simulation results.

**Orientation Independent**

The connections between models only indicate how variables (forces and velocities) are transferred from one model to the other and vice versa. The orientation of the models in the Graph Editor (how they are drawn) is therefore not important. **Flipping, rotating or moving** a model **does not change the model**! All four representations in the figure below are the same although their individual models are oriented differently.

The figure above shows a point model in x-direction connected to a 2D body. The point indicates a force in x-direction that is applied to the body. Since we defined that the positive x-direction is from the left to the right, intuitively figure b leads to the correct interpretation.
This indicates a problem. Although all models describe the same behavior, we would intuitively interpret them differently. It is therefore useful to impose some rules to prevent misinterpretation of a model by other users.

**Drawing Rules**

1. Preferably leave the orientation of the models of the 2DSmallRotation library as they pop up on the screen.
2. If necessary, only flip or rotate models in a direction that does not lead to misinterpretations.
3. If possible, draw 1D connections in the following direction:

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>positive direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>from left to right</td>
</tr>
<tr>
<td>y</td>
<td>from bottom to top</td>
</tr>
<tr>
<td>( \theta )</td>
<td>from left bottom to right top</td>
</tr>
</tbody>
</table>

An example is shown in the figure below:

---

**TwoDBody**

**Library**

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

**Use**

**Domains:** Continuous. **Size:** 2-D. **Kind:** Iconic Diagrams (2D Planar).
### Description

The central model in the 2DSmallRotation library is the TwoDBody model. It describes a body with three degrees of freedom: $x$, $y$ and $\theta$. The TwoDBody is a point mass with rotational inertia. The constitutive equations are therefore very simple:

$$ P.v = I \cdot \text{int}(P.F); $$

With

$$ I = [1/M; 1/M; 1/J]; $$

Any number of connections can be made to the TwoDBody model. All forces acting upon the body are added.

Because any number of connections can be made, successive ports are named $P_1$, $P_2$, $P_3$ etc. 20-sim will automatically create equations such that the resulting force $P.F$ is equal to the sum of the forces of all connected ports $P_1 . P_n$. The velocities of all connected ports are equal to $P.v$. The model has a preferred velocity out causality. The corresponding constitutive equations then contain an integration. The model can also have the non-preferred force out causality. The constitutive equations then contain a differentiation.

$$ P.F = \text{sum}(P_1.F, P_2.F, ....) $$
$$ P.v = P_1.v = P_2.v = .... $$

velocity out causality (preferred):

$$ I = [1/M;1/M;1/J] $$
$$ P.v = I \cdot \text{int}(P.F); $$

force out causality:

$$ I = [1/M;1/M;1/J] $$
$$ P.F = I-1 \cdot \text{ddt}(P.v); $$

### Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
</table>

20-sim 4.7 Reference Manual 812
P[3] Port with three degrees of freedom (x, y, θ). Any number of connections can be made.

**Causality**
preferred velocity
out

**Parameters**

M Mass [kg].
J Moment of inertia [kgm²/rad]

**Note**
- A TwoDBody model can be connected to any other element of the 2D-library except other 2D-bodies. Two bodies can always be simplified to one TwoDBody model with the combined mass and inertia of both single bodies.
- TwoDBody models can be connected to 1D models using the TwoDPoint models as intermediate. If a TwoDPoint is connected to a body, it constrains the movement of the body in one direct

**TwoDPoint Models**

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D force or torque that is applied in a certain direction, onto a body.

![Diagram of TwoDPoint models](image)

A point model forms the connection between the single degree of freedom part of a system and the center of mass of a body. Consider the example below, where force F in x-direction (single degree of freedom) is pushing upon a body (three degrees of freedom) at an offset YP from the body center of mass.

![Diagram of force F and YP](image)

To create such a construct, the TwoDPoint-X model is used:
The TwoDPoint-X model describes the translation of a 1D force (x-direction) to a 2D-force (x-, y- and θ-direction) and vice versa the translation of a 2D-velocity (x-, y- and θ-direction) to a 1D velocity (x-direction).

There are four point models. Three point models transform from x-direction, y-direction and θ-direction to 2D. One point models transforms from direction with arbitrary orientation to 2D.

**Fixation of bodies**

If a TwoDBody model is used in combination with TwoDPoint models, at least three non-coinciding, unequal (i.e. not having the same offsets) TwoDPoints must be connected to prevent the body from free motion. This is obvious when we interpret the point models physically. Point models can be interpreted as constraints on motion in one direction. The motion in the other two directions is free.

To show that two points are not sufficient to constrain all motions look at the figure below.
TwoDPoint

Library
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Implementations
X
Y
theta
XY

Use

Description - X
TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D force or torque that is applied in a certain direction, onto a body. The TwoDPoint-X model forms the connection between the single degree of freedom in x-direction and the center of mass of a body. Consider the example below, where force $F$ in x-direction (single degree of freedom) is pushing upon a body (three degrees of freedom) at an offset $YP$ from the body center of mass.

To create such a construct the TwoDPoint-X model is used:

```
P_out.F[1] = p_in.F; // x-direction
P_out.F[2] = 0; // y-direction
p_in.v = P_out.v[1] - YP * P_out.v[3]; // x-direction
```

The TwoDPoint-X model describes the transformation of force in x-direction to a force in three degrees of freedom. The single degree of freedom port $p\_in$ describes the connection in x-direction and the three three degree of freedom port $P\_out$ describes connection with the 2D-body (x, y and $\theta$).
**Interface - X**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>1D Translation port (x).</td>
</tr>
<tr>
<td>P_out[3]</td>
<td>2D Port with three degrees of freedom (x, y, \theta).</td>
</tr>
</tbody>
</table>

**Causality**

- fixed force out
- P_out
- fixed velocity out
- p_in

**Parameters**

YP Distance (\(y\)-direction) between connection and center of mass [m].

**Description - Y**

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D force or torque that is applied in a certain direction, onto a body. The TwoDPoint-Y model forms the connection between the single degree of freedom in \(y\)-direction and the center of mass of a body. Consider the example below, where force \(F\) in \(y\)-direction (single degree of freedom) is pushing upon a body (three degrees of freedom) at an offset \(XP\) from the body center of mass.

![Diagram](image)

To create such a construct the 2D-point-Y model is used:
The 2D-point-Y model describes the transformation of force in y-direction to a force in three degrees of freedom. The single degree of freedom port \( p_{in} \) describes the connection in y-direction and the three three degree of freedom port \( P_{out} \) describes connection with the 2D-body \((x, y, \theta)\).

\[
\begin{align*}
P_{out}.F[1] &= 0; & \text{ // x-direction} \\
P_{out}.F[2] &= p_{in}.F; & \text{ // y-direction} \\
P_{out}.F[3] &= p_{in}.F \times XP; & \text{ // rotation} \\
p_{in}.v &= P_{out}.v[2] + XP \times P_{out}.v[3]; & \text{ // y-direction} \\
P_{out}.v[3];
\end{align*}
\]

**Interface - Y**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_{in} )</td>
<td>1D Translation port (y).</td>
</tr>
<tr>
<td>( P_{out}[3] )</td>
<td>2D Port with three degrees of freedom ((x, y, \theta)).</td>
</tr>
</tbody>
</table>

**Causality**

- fixed force out \( P_{out} \)
- fixed velocity out \( p_{in} \)

**Parameters**

- \( XP \)  
  Distance (x-direction) between connection and center of mass [m].
**Description - theta**

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D force or torque that is applied in a certain direction, onto a body. The TwoDPoint-Theta model forms the connection between the single degree of freedom rotation and the center of mass of a body. Consider the example below, where torque (single degree of freedom) is acting on a body (three degrees of freedom).

To create such a construct the TwoDPoint-Theta model is used:

```
P_out.F[1] = 0; // x-direction
P_out.F[2] = 0; // y-direction
p_in.omega = P_out.v[3]; // rotation
```

**Interface - theta**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>1D Rotation port ((\theta)).</td>
</tr>
<tr>
<td>P_out[3]</td>
<td>2D Port with three degrees of freedom ((x, y, \theta)).</td>
</tr>
</tbody>
</table>

**Causality**

- fixed force out
- P_out
- fixed velocity out
- p_in
Description - XY

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D force or torque that is applied in a certain direction, onto a body. The TwoDPoint-XY model forms the connection between a single degree of freedom in arbitrary direction and the center of mass of a body. Consider the example below, where force $F$ (single degree of freedom) is pushing upon a body (three degrees of freedom) with an arbitrary angle $\theta$ at an offset $XP$ and $YP$ from the body center of mass.

![Diagram of TwoDPoint-XY model](image)

To create such a construct the TwoDPoint-XY model is used:

\[
\begin{align*}
Fx &= \cos(\theta) \cdot p_{in}.F; & // arbitrary-direction \\
Fy &= \sin(\theta) \cdot p_{in}.F; & // arbitrary-direction \\
\text{P}_\text{out}.F[1] &= Fx; & // x-direction \\
\text{P}_\text{out}.F[2] &= Fy; & // y-direction \\
\text{P}_\text{out}.F[3] &= Fy \cdot XP - Fx \cdot YP; & // rotation
\end{align*}
\]
\[ p_{in.v} = \cos(\theta) \times P_{out.v[1]} + \sin(\theta) \times P_{out.v[2]} + XP \times \sin(\theta) \times P_{out.v[3]} - YP \times \cos(\theta) \times P_{out.v[3]}; \] // arbitrary-direction

**Interface - XY**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>1D Translation port in arbitrary direction.</td>
</tr>
<tr>
<td>P_out[3]</td>
<td>2D Port with three degrees of freedom (x, y, θ).</td>
</tr>
</tbody>
</table>

**Causality**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed force out</td>
<td></td>
</tr>
<tr>
<td>P_out</td>
<td></td>
</tr>
<tr>
<td>fixed velocity out</td>
<td></td>
</tr>
<tr>
<td>p_in</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP</td>
<td>Distance (y-direction) between connection and center of mass [m].</td>
</tr>
<tr>
<td>XP</td>
<td>Distance (x-direction) between connection and center of mass [m].</td>
</tr>
<tr>
<td>theta</td>
<td>Angle of impact of the single degree of freedom port [rad].</td>
</tr>
</tbody>
</table>

**Note**

- A TwoDBody has to be connected to at least three unequal TwoDPoint models to prevent it from free motion (rotation & translation).
- Flipping or rotating the model does not change the direction of applied forces or measured directions. Preferably leave the orientation as it pops up on the screen.

**TwoDFixedWorld**

**Library**

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

**Use**

**Domains**: Continuous. **Size**: 2-D. **Kind**: Iconic Diagrams (2D Planar).

**Description**

The TwoDFixedWorld represents the fixed world in 3 degrees of freedom. It can be connected to other 2D models to freeze their motion. Models that can be connected to the fixed world are:

1. TwoDSprings
2. TwoDLinearSlides
3. TwoDLinearActuators

Although other models like the TwoDBody can also be connected to the TwoDFixedWorld model, it makes no sense because it completely fixates all equations of motion.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Port with three degrees of freedom ((x, y, \theta)).</td>
</tr>
</tbody>
</table>

**Causality**

fixed velocity out P

**TwoDZeroForce**

**Library**

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

**Use**

Domains: Continuous. **Size**: 2-D. **Kind**: Iconic Diagrams (2D Planar).

**Description**

This model can be used to connect any open end of another 2D model that is not connected to the fixed world. It generates a three degree of freedom zero force while the velocity is free.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Port with three degrees of freedom ((x, y, \theta)).</td>
</tr>
</tbody>
</table>

**Causality**

fixed force out P

**Sensors**

To inspect the model behavior you can plot variables. Sometimes not all variables are available. Then sensor model can be used.

**1D**

To use the 1D sensor models from the standard library, connect them to the 2D models using the TwoDPoint models.
2D
To measure variables directly from the 2D models, three absolute sensors are available showing the absolute position, velocity and acceleration. Also two relative sensors are available showing the force and powerflow between two elements.

TwoDPositionSensor

Library
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use
Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D Rotation, 2D Planar).

Description
This model is used to find the absolute position of a TwoDBody model. It has a port $P$ which can be connected to the body and it has three output signals that denotes the $x$- and $y$-position and the angle of the body. The model has a force out causality. The equations are:

$$P.F = 0;$$
$$x = \text{int} \ (P.v[1]);$$
$$y = \text{int} \ (P.v[2]);$$
$$\theta = \text{int} \ (P.v[3]);$$

Interface

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[3]$</td>
<td>Port with three degrees of freedom ($x$, $y$, $\theta$).</td>
</tr>
</tbody>
</table>

Causality

fixed force out $P$

Output

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x$</td>
<td>Absolute position [m].</td>
</tr>
<tr>
<td>$y$</td>
<td>Absolute position [m].</td>
</tr>
<tr>
<td>$\theta$</td>
<td>Absolute angle [rad].</td>
</tr>
</tbody>
</table>

Initial Values

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{\text{initial}}$</td>
<td>Initial position [m]</td>
</tr>
<tr>
<td>$y_{\text{initial}}$</td>
<td>Initial position [m]</td>
</tr>
<tr>
<td>$\theta_{\text{initial}}$</td>
<td>Initial angle [m]</td>
</tr>
</tbody>
</table>
TwoDVelocitySensor

Library
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use
Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D Rotation, 2D Planar).

Description
This model is used to find the absolute velocity of a TwoDBody model. It has a port $P$ which can be connected to the body and it has three output signals that denotes the $x$- and $y$-velocity and the angular velocity of the body. The model has a force out causality. The equations are:

\[
\begin{align*}
P.F &= 0; \\
v_x &= P.v[1]; \\
v_y &= P.v[2]; \\
\omega &= P.v[3];
\end{align*}
\]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[3]$</td>
<td>Port with three degrees of freedom ($x$, $y$, $\theta$).</td>
</tr>
</tbody>
</table>

Causality
fixed force out $P$

Output
vx Absolute velocity [m].
vy Absolute velocity [m].
omega Absolute angular velocity [rad].

TwoDAccelerationSensor

Library
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use
Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D Rotation, 2D Planar).

Description
This model is used to find the absolute acceleration of a TwoDBody model. It has a port $P$ which can be connected to the body and it has three output signals that denotes the $x$- and $y$-acceleration and the angular acceleration of the body. The acceleration output is calculated out of the velocity by differentiation. Differentiation is performed by a state variable filter:
The S-domain function of this filter is equal to:

\[
output = \frac{s}{s + \frac{1}{f}} \cdot input
\]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.

The equations of this model are:

\[
P.F = 0;
ax = 2\pi f ( P.v[1] - \text{int}(ax, 0));
ay = 2\pi f ( P.v[2] - \text{int}(ay, 0));
alpha = 2\pi f ( P.v[3] - \text{int}(alpha, 0));
\]

### Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[3]</td>
<td>Port with three degrees of freedom (x, y, ( \theta )).</td>
</tr>
</tbody>
</table>

#### Causality

fixed force out P

#### Outputs

- ax: Absolute acceleration [m].
- ay: Absolute acceleration [m].
- alpha: Absolute acceleration [rad].

#### Initial Values

- ax_initial: Initial acceleration [m]
- ay_initial: Initial acceleration [m]
- alpha_initial: Initial angular acceleration [m]
TwoDForceSensor

Library
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use
Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D Rotation, 2D Planar).

Description
This model can be used to measure the forces and torque between two components. It has a high and a low terminal to connect to both components. The equations are:

\[
\begin{align*}
P.F &= P_{\text{high}}.F = P_{\text{low}}.F; \\
P.v &= P_{\text{high}}.v - P_{\text{low}}.v; \\
P.v &= 0; \\
Fx &= P.F[1]; \\
Fy &= P.F[2]; \\
T &= P.F[3];
\end{align*}
\]

Interface

Ports

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[3]</td>
<td>Port with three degrees of freedom (x, y, θ).</td>
</tr>
</tbody>
</table>

Causality
fixed velocity out

P

Outputs

<table>
<thead>
<tr>
<th>Fx</th>
<th>Force [N].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fy</td>
<td>Force [N].</td>
</tr>
<tr>
<td>T</td>
<td>Torque [Nm].</td>
</tr>
</tbody>
</table>

TwoDPowerSensor

Library
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use
Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D Rotation, 2D Planar).

Description
This model can be used to measure the powerflow between two models. It has two ports to both models. The equations are:
\[ P.F = P_{\text{high}}.F = P_{\text{low}}.F; \]
\[ P_{\text{high}}.F = P_{\text{low}}.F; \]
\[ P_{\text{high}}.v = P_{\text{low}}.v; \]
\[ P = P_{\text{high}}.v \cdot P_{\text{high}}.F; \]
\[ P_x = P[1]; \]
\[ P_y = P[2]; \]
\[ P_{\theta} = P[3]; \]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Port with three degrees of freedom ((x, y, \theta)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P[3])</td>
<td>Port with three degrees of freedom ((x, y, \theta)).</td>
</tr>
</tbody>
</table>

**Causality**

fixed velocity out

\(P\)

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Power [W].</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_x)</td>
<td>Power [W].</td>
</tr>
<tr>
<td>(P_y)</td>
<td>Power [W].</td>
</tr>
<tr>
<td>(P_{\theta})</td>
<td>Power [W].</td>
</tr>
</tbody>
</table>

**Springs and other Flexible Components**

**2D Springs**

A TwoDSpring model represents a flexible spring between two bodies. The center of stiffness is located relative to the two bodies. The offsets from the bodies to the center of stiffness are indicated by \(x_1, y_1, x_2\) and \(y_2\) as shown in the picture below (left).

![A 2-D spring in rest (left) and stretched (right).](image-url)
Note that \( x_1, y_1, x_2 \) and \( y_2 \) are defined with respect to the spring coordinate frame which is at the center of the spring. This means in the picture above \( x_1 \) and \( y_1 \) have a negative value and \( x_2 \) and \( y_2 \) have a positive value.

When the spring is stretched the offsets will change by the spring elongations \( x, y \) and \( \theta \) as indicated in the picture (right). The center of stiffness is always located precisely in the middle of the spring elongations. Because all spring equations will be calculated from the center of stiffness this means that the offsets for a stretched spring are \((x_1 - x/2), (y_1 - y/2), (x_2 + x/2)\) and \((y_2 + y/2)\).

For a realistic representation of vibration behavior, every 2D spring has a damper in parallel. If you want to turn off the effects of this damper, choose the damping parameters equal to zero. If you want to damp out unwanted vibrations, choose the damping parameters equal to 0.1% to 10% of the spring parameters.

**Linear Slides**

Take a look at the TwoDSpring model in the picture below. If we replace the spring in \( x \)-direction by a zero force we have created a linear slide.

Consider a carriage that is clamped with four wheels to a slide. In the \( x \)-direction the carriage is free to move, which is equal to a zero force. The limited stiffness of the wheels is represented by springs. If there is a force with equal sign on both wheels, the carriage will slightly move in the \( y \)-direction. If there is a force with opposite sign on both wheels, the carriage will only rotate. This can be represented by two independent springs: one in the \( y \)-direction and \( \theta \)-direction.

If we repeat the same experiment and replace the spring in \( x \)-direction by a zero force and the spring in \( \theta \)-direction by a zero torque, we have created a linear slide with rotational freedom. In practice this can be found with carriages that are clamped with a limited set of wheels as shown below.
Linear slide: \( x = \text{free}, \ y = \text{stiff}, \ \theta = \text{free} \).

The TwoDLibrary contains four Linear Slide models:

1. TwoDLinearSlide-X \( x = \text{free}, \ y = \text{stiff}, \ \theta = \text{stiff} \)
2. TwoDLinearSlide-Y \( x = \text{stiff}, \ y = \text{free}, \ \theta = \text{stiff} \)
3. TwoDLinearSlide-XTheta \( x = \text{free}, \ y = \text{stiff}, \ \theta = \text{free} \)
4. TwoDLinearSlide-YTheta \( x = \text{free}, \ y = \text{stiff}, \ \theta = \text{free} \)

**Linear Actuators**

Instead of replacing the spring in \( x \)-direction with a zero force as with the linear slides, we can replace it by a 1D power port to allow all kind of connections with the models from the standard library. In this way we have created a linear actuator, that allows every kind of actuation.

Like the linear slides, for the linear actuators we can also replace the spring in \( \theta \)-direction by a zero torque, which makes the total number of linear actuator models equal to four:
TwoDLinearActuator-X $F_x$ and $v_x$ connected to a port
TwoDLinearActuator-Y $F_y$ and $v_y$ connected to a port
TwoDLinearActuator-XTheta $F_x$ and $v_x$ connected to a port, $T=0$, $\omega=0$
TwoDLinearActuator-YTheta $F_y$ and $v_y$ connected to a port, $T=0$, $\omega=0$

With the port connection ever possible form of actuation can be created. Two examples are shown below.

**TwoDSpring**

**Library**
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

**Use**
**Domains**: Continuous. **Size**: 2-D. **Kind**: Iconic Diagrams (2D Planar).

**Description**
A TwoDSpring model represents a flexible connection between two bodies. The bodies are located relative to the center of stiffness. The offsets from the bodies to the center of stiffness are indicated by $x_1$, $y_1$, $x_2$ and $y_2$ as shown in the picture below (left).
Note that $x_1$, $y_1$, $x_2$ and $y_2$ are defined with respect to the spring coordinate frame which is at the center of the spring. This means in the picture above $x_1$ and $y_1$ have a negative value and $x_2$ and $y_2$ have a positive value.

When the spring is stretched the offsets will change by the spring elongations $x$, $y$ and $\theta$ as indicated in the picture (right). The center of stiffness is always located precisely in the middle of the spring elongations. Because all spring equations will be calculated from the center of stiffness this means that the offsets for a stretched spring are $(x_1 - x/2)$, $(y_1 - y/2)$, $(x_2 + x/2)$ and $(y_2 + y/2)$.

For a realistic representation of vibration behavior, every 2D spring has a damper in parallel. If you want to turn off the effects of this damper, choose the damping parameters equal to zero. If you want to damp out unwanted vibrations, choose the damping parameters equal to 0.1% to 10% of the spring parameters.

**Interface**

**Ports**

- **P[3]**: Port with three degrees of freedom ($x$, $y$, $\theta$).

**Causality**

- fixed force out P

**Parameters**

- **Distance in x-direction from center of stiffness to port 1 [m]**
- **Distance in y-direction from center of stiffness to port 1 [m]**
- **Distance in x-direction from center of stiffness to port 2 [m]**
- **Distance in y-direction from center of stiffness to port 2 [m]**
- **Stiffness in x-direction [N/m]**
- **Stiffness in y-direction [N/m]**
- **Rotational stiffness [N.m/rad]**
- **Damping in x-direction [N.s/m]**
dy damping in y-direction [N.s/m]
dth rotational damping [N.m.s/rad]

**Initial Values**

- x_initial: The initial extension of the spring [m].
- y_initial: The initial extension of the spring [m].
- theta_initial: The initial rotation of the spring [rad].

---

**TwoDLinearSlide**

**Library**
Iconic Diagrams\Mechanical\Translation\2DSmallAngles

**Implementations**

- X
- Y
- XTheta
- YTheta

**Use**

- **Domains**: Continuous.  **Size**: 2-D.  **Kind**: Iconic Diagrams (2D Planar).

**Description - X**

The TwoDLinearSlide-X model represents a flexible connection between two bodies in y- and θ-direction. The bodies are located relative to the center of stiffness. The offsets from the bodies to the center of stiffness are indicated by the parameters x1, y1, x2 and y2 as shown in the picture below.

The TwoDLinearSlide-X model is based on the TwoDSpring model by replacing the spring and damper in x-direction by a zero force. Consider a carriage that is clamped with four wheels to a slide. In the x-direction the carriage is free to move, which is equal to a zero force. The limited stiffness of the wheels is represented by springs. If there is a force with equal sign on both wheels, the carriage will slightly move in the y-direction. If there is a force with opposite sign on both wheels, the carriage will only rotate. This can be represented by two independent springs: one in the y-direction and θ-direction.
For a realistic representation of vibration behavior, every spring has a damper in parallel. If you want to turn off the effects of this damper, choose the damping parameters equal to zero. If you want to damp out unwanted vibrations, choose the damping parameters equal to 0.1% to 10% of the spring parameters.

**Interface - X**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port with three degrees of freedom ( (x, y, \theta) ).</td>
</tr>
</tbody>
</table>

**Causality**

fixed force out \( P \)

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance in ( x )-direction from center of stiffness to port 1 ( [m] )</td>
</tr>
<tr>
<td>distance in ( y )-direction from center of stiffness to port 1 ( [m] )</td>
</tr>
<tr>
<td>distance in ( x )-direction from center of stiffness to port 2 ( [m] )</td>
</tr>
<tr>
<td>distance in ( y )-direction from center of stiffness to port 2 ( [m] )</td>
</tr>
<tr>
<td>stiffness in ( y )-direction ( [N/m] )</td>
</tr>
<tr>
<td>rotational stiffness ( [N.m/rad] )</td>
</tr>
<tr>
<td>damping in ( y )-direction ( [N.s/m] )</td>
</tr>
<tr>
<td>rotational damping ( [N.m.s/rad] )</td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The initial extension of the spring ( [m] ).</td>
</tr>
<tr>
<td>The initial rotation of the spring ( [rad] ).</td>
</tr>
</tbody>
</table>

**Description - Y**

The TwoDLinearSlide-Y model is equal to the TwoDLinearSlide-X model except that here the movement is free in the \( y \)-direction.
Interface - Y

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports P[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port with three degrees of freedom ((x, y, \theta)).</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

fixed force out P

**Parameters**

x1	distance in x-direction from center of stiffness to port 1 [m]
y1	distance in y-direction from center of stiffness to port 1 [m]
x2	distance in x-direction from center of stiffness to port 2 [m]
y2	distance in y-direction from center of stiffness to port 2 [m]
kx	stiffness in x-direction [N/m]
kth	rotational stiffness [N.m/rad]
dx	damping in x-direction [N.s/m]
dth	rotational damping [N.m.s/rad]

**Initial Values**

| x_initial | The initial extension of the spring [m]. |
| theta_initial | The initial rotation of the spring [rad]. |

**Description - XTheta**

The TwoDLinearSlide-XTheta model represents a flexible connection between two bodies in y-direction. The bodies are located relative to the center of stiffness. The offsets from the bodies to the center of stiffness are indicated by the parameters \(x1, y1, x2\) and \(y2\) as shown in the picture below.

The TwoDLinearSLide-X model is based on the TwoDSpring model by replacing the spring and damper in x- and \(\theta\)-direction by a zero force. Consider a carriage that is clamped with two wheels to a slide. In the x-direction the carriage is free to move, which is equal to a zero force. The carriage is also free to rotate, which is equal to a zero torque. The limited stiffness of the wheels is represented by springs. If there is a force on the wheels, the carriage will slightly move in the y-direction.
For a realistic representation of vibration behavior, every spring has a damper in parallel. If you want to turn off the effects of this damper, choose the damping parameters equal to zero. If you want to damp out unwanted vibrations, choose the damping parameters equal to 0.1% to 10% of the spring parameters.

**Interface - XTheta**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[3]</td>
<td>Port with three degrees of freedom (x, y, (\theta)).</td>
</tr>
</tbody>
</table>

**Causality**

fixed force out P

**Parameters**

<table>
<thead>
<tr>
<th>x1</th>
<th>distance in x-direction from center of stiffness to port 1 [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>distance in y-direction from center of stiffness to port 1 [m]</td>
</tr>
<tr>
<td>x2</td>
<td>distance in x-direction from center of stiffness to port 2 [m]</td>
</tr>
<tr>
<td>y2</td>
<td>distance in y-direction from center of stiffness to port 2 [m]</td>
</tr>
<tr>
<td>ky</td>
<td>stiffness in y-direction [N/m]</td>
</tr>
<tr>
<td>dy</td>
<td>damping in y-direction [N.s/m]</td>
</tr>
</tbody>
</table>

**Initial Values**

| y\(_{\text{initial}}\) | The initial extension of the spring [m]. |

**Description - YTheta**

The TwoDLinearSlide-YTheta model is equal to the TwoDLinearSlide-XTheta model except that here the movement is free in the y and \(\theta\)-direction.

**Interface - YTheta**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
</table>
Port with three degrees of freedom (x, y, \( \theta \)).

**Causality**

Fixed force out P

**Parameters**

- \( x_1 \): distance in x-direction from center of stiffness to port 1 [m]
- \( y_1 \): distance in y-direction from center of stiffness to port 1 [m]
- \( x_2 \): distance in x-direction from center of stiffness to port 2 [m]
- \( y_2 \): distance in y-direction from center of stiffness to port 2 [m]
- \( k_x \): stiffness in x-direction [N/m]
- \( d_x \): damping in x-direction [N.s/m]

**Initial Values**

- \( x_{\text{initial}} \): The initial extension of the spring [m].

---

**TwoDLinearActuator**

**Library**

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

**Implementations**

- X
- Y
- XTheta
- YTheta

**Use**

**Domains:** Continuous. **Size:** 1-D / 2-D. **Kind:** Iconic Diagrams (1D Translation, 2D Planar).

**Description - X**

The TwoDLinearActuator-X model represents a flexible connection between two bodies in \( y \)- and \( \theta \)-direction. The TwoDLinearActuator-X model is based on the TwoDLinearSlide-X model. Instead of using a zero force in the x-direction, there is a coupling with a 1D translation port for the actuator force.
Consider a carriage that is clamped with four wheels to a slide. In the x-direction the carriage can be moved by a certain force. The limited stiffness of the wheels is represented by springs. If there is a force with equal sign on both wheels, the carriage will slightly move in the y-direction. If there is a force with opposite sign on both wheels, the carriage will only rotate. This can be represented by two independent springs: one in the y-direction and θ-direction.

Linear slide: \( x = \text{free}, y = \text{stiff}, \theta = \text{stiff}. \)

For a realistic representation of vibration behavior, every spring has a damper in parallel. If you want to turn off the effects of this damper, choose the damping parameters equal to zero. If you want to damp out unwanted vibrations, choose the damping parameters equal to 0.1% to 10% of the spring parameters.

With the 1D port connection every possible form of actuation can be created using the models from the standard library. Two examples are shown below.

**Interface - X**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[3]</td>
<td>Port with three degrees of freedom ((x, y, \theta)).</td>
</tr>
</tbody>
</table>
**Causality**

fixed force out P

### Parameters

- **x1** distance in x-direction from center of stiffness to port 1 [m]
- **y1** distance in y-direction from center of stiffness to port 1 [m]
- **x2** distance in x-direction from center of stiffness to port 2 [m]
- **y2** distance in y-direction from center of stiffness to port 2 [m]
- **ky** stiffness in y-direction [N/m]
- **kth** rotational stiffness [N.m/rad]
- **dy** damping in y-direction [N.s/m]
- **dth** rotational damping [N.m.s/rad]

### Initial Values

- **y_initial** The initial extension of the spring [m].
- **theta_initial** The initial rotation of the spring [rad].

### Description - Y

The TwoDLinearActuator-Y model is equal to the TwoDLinearActuator-X model except that here the force acts in the y-direction.

### Interface - Y

#### Ports

- **P[3]** Port with three degrees of freedom (x, y, θ).
- **p** 1D translation port

#### Causality

fixed force out P

### Parameters

- **x1** distance in x-direction from center of stiffness to port 1 [m]
- **y1** distance in y-direction from center of stiffness to port 1 [m]
- **x2** distance in x-direction from center of stiffness to port 2 [m]
- **y2** distance in y-direction from center of stiffness to port 2 [m]
- **kx** stiffness in x-direction [N/m]
- **kth** rotational stiffness [N.m/rad]
- **dx** damping in x-direction [N.s/m]
- **dth** rotational damping [N.m.s/rad]

### Initial Values

- **x_initial** The initial extension of the spring [m].
- **theta_initial** The initial rotation of the spring [rad].
Description - XTheta

The TwoDLinearActuator-XTheta model represents a flexible connection between two bodies in y-direction. The TwoDLinearActuator-XTheta model is based on the TwoDLinearSlide-XTheta model. Instead of using a zero force in the x-direction, there is a coupling with a 1D translation port for the actuator force.

Consider a carriage that is clamped with two wheels to a slide. In the x-direction the carriage can be moved by a certain force. The carriage is free to rotate, which is equal to a zero torque. The limited stiffness of the wheels is represented by springs. If there is a force acting on both wheels, the carriage will slightly move in the y-direction. If there is a force acting on the wheels, the carriage will slightly move in the y-direction.

**Linear slide:** x = free, y = stiff, θ = stiff.

For a realistic representation of vibration behavior, the spring has a damper in parallel. If you want to turn off the effects of this damper, choose the damping parameters equal to zero. If you want to damp out unwanted vibrations, choose the damping parameter equal to 0.1% to 10% of the spring parameter.

With the 1D port connection every possible form of actuation can be created using the models from the standard library. For example see the TwoDLinearActuator-X model.

Interface - XTheta

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[3]</td>
<td>Port with three degrees of freedom (x, y, θ).</td>
</tr>
<tr>
<td>p</td>
<td>1D translation port</td>
</tr>
</tbody>
</table>

Causality

fixed force out P

Parameters

- x1: distance in x-direction from center of stiffness to port 1 [m]
- y1: distance in y-direction from center of stiffness to port 1 [m]
- x2: distance in x-direction from center of stiffness to port 2 [m]
- y2: distance in y-direction from center of stiffness to port 2 [m]
ky  stiffness in y-direction [N/m]
dy  damping in y-direction [N.s/m]

**Initial Values**
y_initial  The initial extension of the spring [m].

**Description - YTheta**
The TwoDLinearActuator-YTheta model is equal to the TwoDLinearActuator-XTheta model except that here the force acts in the y-direction.

**Interface - YTheta**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[3]</td>
<td>Port with three degrees of freedom (x, y, θ).</td>
</tr>
<tr>
<td>p</td>
<td>1D translation port</td>
</tr>
</tbody>
</table>

**Causality**
fixed force out P

**Parameters**
x1  distance in x-direction from center of stiffness to port 1 [m]
y1  distance in y-direction from center of stiffness to port 1 [m]
x2  distance in x-direction from center of stiffness to port 2 [m]
y2  distance in y-direction from center of stiffness to port 2 [m]
kx  stiffness in x-direction [N/m]
kth  rotational stiffness [N.m/rad]
dx  damping in x-direction [N.s/m]
dth  rotational damping [N.m.s/rad]

**Initial Values**
x_initial  The initial extension of the spring [m].
theta_initial  The initial rotation of the spring [rad].
Tips

When you are working with the 2D-Library for small angles, it is good to keep the following tips in mind:

- The 2DSmallRotations library is very well suited for frequency domain analysis through linearization.
- The 2DSmallRotations library is not suited for large rotations. Consider a rotation of 0.05 degrees or 1 mrad as an upper bound for every model part.
- It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 3 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm]!
- The vector element number (1, 2 or 3) denotes the degree of freedom. Flipping or rotating of a model does not change this degree (e.g. a rotation does not change from x into y). Preferably leave the orientation of the models as they pop up on the screen.
- To create intuitive models, the positive direction of each degree of freedom is defined as: x from left to right, y from bottom to top, ? counter clockwise.
- To prevent misinterpretation of a model by other users, stick to the drawing rules that are given.
- A TwoDBody model can be connected to any other element of the 2D-library except other 2D-bodies.
- A TwoDBody model can be connected to 1D models using the TwoDPoint models as intermediate.
- TwoDPoint models can only be connected to TwoDBody models.
- If a TwoDBody model is connected to TwoDPoint models only, it has to be connected to at least three non-coinciding, unequal (i.e. not having the same offsets) TwoDPoints to prevent it from free motion.

3DSmallRotation

ThreeDLibrary

Library

The 3DSmallRotation library contains 3D models that are only suited for small rotations. The library is comparable to the 2DSmallRotation library and suited for modeling systems that, due to limited stiffness, experience rotation that should be accounted for.

Degrees of Freedom

All models in 3DSmallRotation library contain one or more ports with 6 degrees of freedom. The first three degrees of freedom denote the x-, y- and z-position and the last three degrees of freedom denote the rotation around the x-, y- and z-axes. A vector notation is used to denote the forces and velocities for these degrees of freedom. For a model with a port P the notation is:

```
degree identity forces velocities
x position P.F[1] [N] P.v[1] [m/s]
```
Note

- It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units \([\text{m/s}]\) and \([\text{N}]\) although it really is \([\text{rad/s}]\) and \([\text{Nm}]\)!
- The vector element number (1 to 6) denotes the identity of the degree of freedom. Flipping or rotating of a model does not change the this identity (e.g. a rotation does not change \(x\) into \(y\)). Preferably leave the orientation of the models as they pop up on the screen.

3D-body

The central model in the 3DSmallRotation library is the 3D-body model which describes a body with 6 degrees of freedom.

3D-mass

The 3D-mass model is a body with only mass and zero rotational inertia.

Points

The 3D-body model is nothing more than a center of mass. To connect a 3D-body with the outside (single degree of freedom) world, 3D-points are used. A 3D-point describes the offset between the center of mass and the connection point.

- A 3D-body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.
- A 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.

Sensors

The velocities of bodies can be inspected directly in the body models. To find positions sensor models are available.
ThreeDBody

Library
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Description
This is a model of a 6 degree of freedom body. It is the equivalent of the 2D-body model. The first three degrees of freedom in this model are represented by a single mass and the last three degrees of freedom by a rotational inertia. The 3D-body has to be connected to at least three orthogonal 3D-points, which define the reaction forces.

The model has a preferred velocity out causality. The corresponding constitutive equations then contain an integration. The model can also have the non-preferred force out causality. The constitutive equations then contain a differentiation. Because any number of connections can be made, successive ports are named $P_1, P_2, P_3$ etc. 20-sim will automatically create equations such that the resulting force $P.F$ is equal to the sum of the forces of all connected ports $P_1 .. P_n$. The velocities of all connected ports are equal to $P.v$

$$P.F = \text{sum}(P_1.F, P_2.F, ...)
\quad P.v = P_1.v = P_2.v = ...$$

velocity out causality (preferred):

$$I = [1/M;1/M;1/M;1/J[1];1/J[2];1/J[3]]; 
\quad P.v = I.*\text{int}(P.F);$$

force out causality:

$$I = [1/M;1/M;1/M;1/J[1];1/J[2];1/J[3]]; 
\quad P.F = I-1.*\text{ddt}(P.v);$$

Interface

Ports  Description
P[6]  Port with 6 degrees of freedom. Any number of connections can be made.

Causality
preferred velocity out

Parameters
M  Mass [kg].
Note

- A body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.
- A 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.
- Flipping or rotating the model does not change the direction of applied forces or measured directions. Preferably leave the orientation as it pops up on the screen.
- It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm]!

ThreeDFixedWorld

Library
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Description
This model represents the fixed world in 6 degrees of freedom. It can be connected to a 3D-body model to freeze its motion.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Port with 6 degrees of freedom.</td>
</tr>
</tbody>
</table>

Causality
fixed velocity out

P

ThreeDForceActuator-Relative

Library
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use
Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation, Rotation).

Description
This model represents an ideal actuator. The actuator applies a force between its two terminals. This force can be set to a (fluctuating) value given by the input signal \( F \), the velocity is indifferent.
This model is the equivalent of the 1 degree of freedom model `ForceActuator-Relative.emx`. It model represents an ideal actuator. The actuator applies a force between its two terminals. The force can be set to a (fluctuating) value given by a vector $K$ multiplied by a signal $F$, the velocity is indifferent. By setting the elements of the vector $K$ equal to zero or one, specific elements of the 6 degrees of freedom output force can set equal to the input signal $F$.


**Interface**

**Ports**

- **P_high[6]**, **P_low[6]**: Both terminals of the port with 6 degrees of freedom.

**Causality**

- **fixed force out P**

**Parameters**

- **K[6]**: Vector with 6 elements to set the 6 force elements on or off.

---

**ThreeDForceActuator**

**Library**

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

**Use**

- **Domains**: Continuous. **Size**: 1-D/6-D. **Kind**: Iconic Diagrams (Translation, Rotation).

**Description**

This model is the equivalent of the 1 degree of freedom model `ForceActuator.emx`. It model represents an ideal actuator. The actuator is mounted to the fixed world and applies a force. The force can be set to a (fluctuating) value given by a vector $K$ multiplied by a signal $F$, the velocity is indifferent. By setting the elements of the vector $K$ equal to zero or one, specific elements of the 6 degrees of freedom output force can set equal to the input signal $F$.


**Interface**

**Ports**

- **P**: Port with 6 degrees of freedom.

**Causality**

- **fixed force out P**

**Parameters**

- **K[6]**: Vector with 6 elements to set the 6 force elements on or off.
ThreeDMass

Library
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Description
This is a model of a 6 degree of freedom body without rotational inertia. The 3D-mass has to be connected to at least three orthogonal 3D-points, which define the reaction forces.

The model has a fixed velocity out causality. Because any number of connections can be made, successive ports are named P1, P2, P3 etc. 20-sim will automatically create equations such that the resulting force $P.F$ is equal to the sum of the forces of all connected ports $P1..Pn$. The velocities of all connected ports are equal to $P.v$

\[
P.F = \text{sum}(P1.F, P2.F, \ldots) \\
P.v = P1.v = P2.v = \ldots \\
I = [1/M; 1/M; 1/M]; \\
P.v[1..3] = I.*int(P.F); \\
P.v[4..6] = 0;
\]

Interface

Ports	Description
P[6] | Port with 6 degrees of freedom. Any number of connections can be made.

Causality
fixed velocity out

Parameters

M | Mass [kg].

Note

- A 3D-body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.
- A 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.
- Flipping or rotating the model does not change the direction of applied forces or measured directions. Preferably leave the orientation as it pops up on the screen.
- It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm]!
ThreeDPoint

Library
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Implementations
X
Y
Z
XYZ

Use
Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description - X
A point model forms the connection between the single degree of freedom part of a system and the center of mass of a 3D-body. The 3D-point-X model is the equivalent of the 2D-point-X model. It describes the translation of force in x-direction to a force in 6 degrees of freedom. Because there are three rotational degrees of freedom, the 3D-point-X model has two offsets, YP and ZP.

The single degree of freedom port p_in describes the connection in x-direction and the 6 degree of freedom port P_out describes connection with the 3D-body.

\[
\begin{align*}
P\text{\_out.F}[1] &= p\text{\_in.F}; & \text{\# x\,-direction} \\
P\text{\_out.F}[2] &= 0; & \text{\# y\,-direction} \\
P\text{\_out.F}[3] &= 0; & \text{\# z\,-direction} \\
P\text{\_out.F}[4] &= 0; & \text{\# x\,-rotation} \\
P\text{\_out.F}[5] &= ZP*p\text{\_in.F}; & \text{\# y\,-rotation} \\
P\text{\_out.F}[6] &= -YP*p\text{\_in.F}; & \text{\# z\,-rotation} \\
p\text{\_in.v} &= P\text{\_out.v}[1] - YP*P\text{\_out.v}[6] + ZP *P\text{\_out.v}[5]; & \text{\# x\,-direction} \\
\end{align*}
\]

As can be seen from the equations, a nonzero offset YP or ZP (distance from center of mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.

The equations also show that the y-direction and z-direction are not affected by the 3D-point-X model. Therefore each 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.

Interface - X

Ports	Description
p_in Translation port with one degree of freedom (x [m]).

**Causality**
fixed force out
P_out
fixed velocity out
p_in

**Parameters**
YP Distance (y-direction) between connection and center of mass [m].
ZP Distance (z-direction) between connection and center of mass [m].

**Description - Y**
A point model forms the connection between the single degree of freedom part of a system and the center of mass of a 3D-body. The 3D-point-Y model is the equivalent of the 2D-point-Y model. It describes the translation of force in x-direction to a force in 6 degrees of freedom. Because there are three rotational degrees of freedom, the 3D-point-Y model has two offsets, XP and ZP.

The single degree of freedom port \( p_{in} \) describes the connection in x-direction and the 6 degree of freedom port \( P_{out} \) describes connection with the 3D-body.

\[
\begin{align*}
P_{out}.F[1] &= 0; & \text{\( \text{\# x-direction} \)} \\
P_{out}.F[2] &= p_{in}.F; & \text{\( \text{\# y-direction} \)} \\
P_{out}.F[3] &= 0; & \text{\( \text{\# z-direction} \)} \\
P_{out}.F[4] &= -ZP*p_{in}.F; & \text{\( \text{\# x-rotation} \)} \\
P_{out}.F[5] &= 0; & \text{\( \text{\# y-rotation} \)} \\
P_{out}.F[6] &= XP*p_{in}.F; & \text{\( \text{\# z-rotation} \)} \\
\end{align*}
\]

\[
p_{in}.v = P_{out}.v[2] + XP*P_{out}.v[6] - ZP *P_{out}.v[4]; \text{\( \text{\# y-direction} \)}
\]

As can be seen from the equations, a nonzero offset \( XP \) or \( ZP \) (distance from center of mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.

The equations also show that the x-direction and z-direction are not affected by the 3D-point-Y model. Therefore each 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.

**Interface - Y**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Description - Z

A point model forms the connection between the single degree of freedom part of a system and the center of mass of a 3D-body. The 3D-point-Z model is the equivalent of the 2D-point-X model. It describes the translation of force in z-direction to a force in 6 degrees of freedom. Because there are three rotational degrees of freedom, the 3D-point-Y model has two offsets, XP and YP.

The single degree of freedom port p_in describes the connection in x-direction and the 6 degree of freedom port P_out describes connection with the 3D-body.

\[
\begin{align*}
P_{out}.F[1] &= 0; & \text{\(\text{\# x-direction}\)} \\
P_{out}.F[2] &= 0; & \text{\(\text{\# y-direction}\)} \\
P_{out}.F[3] &= p_{in}.F; & \text{\(\text{\# z-direction}\)} \\
P_{out}.F[4] &= YP*p_{in}.F; & \text{\(\text{\# x-rotation}\)} \\
P_{out}.F[5] &= -XP*p_{in}.F; & \text{\(\text{\# y-rotation}\)} \\
P_{out}.F[6] &= 0; & \text{\(\text{\# z-rotation}\)} \\
\end{align*}
\]

As can be seen from the equations, a nonzero offset XP or YP (distance from center of mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.

The equations also show that the x-direction and y-direction are not affected by the 3D-point-Z model. Therefore each 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.

### Interface - Z

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Translation port with one degree of freedom (x [m]).</td>
</tr>
</tbody>
</table>

**Causality**
- fixed force out P_out
- fixed velocity out p_in

**Parameters**
- XP Distance (x-direction) between connection and center of mass [m].
- YP Distance (y-direction) between connection and center of mass [m].

**Description - XYZ**
A point model forms the connection between the single degree of freedom part of a system and the center of mass of a 3D-body.

The 3D-point-XYZ model is a combination of the 3D-point-X model, the 3D-point-Y model and the 3D-point-Z model. It describes the translation of force in x-direction, y-direction and z-direction to a force in 6 degrees of freedom. Because there are three rotational degrees of freedom, the model has three offsets, XP, YP and ZP.

The single degree of freedom ports p_inx, p_iny and p_inz describes the connection in x-direction, y-direction and z-direction and the 6 degree of freedom port P_out describes connection with the 3D-body.

\[
\begin{align*}
P_{\text{out}.F[1]} &= p_{\text{inx}}.F; & \quad \text{// x-direction} \\
P_{\text{out}.F[2]} &= p_{\text{iny}}.F; & \quad \text{// y-direction} \\
P_{\text{out}.F[3]} &= p_{\text{inz}}.F; & \quad \text{// z-direction} \\
P_{\text{out}.F[4]} &= YP*p_{\text{inz}}.F - ZP*p_{\text{iny}}.F; & \quad \text{// x-rotation} \\
P_{\text{out}.F[5]} &= -XP*p_{\text{inz}}.F + ZP*p_{\text{inx}}.F; & \quad \text{// y-rotation} \\
P_{\text{out}.F[6]} &= XP*p_{\text{iny}}.F - YP*p_{\text{inx}}.F; & \quad \text{// z-rotation} \\
p_{\text{inx}}.v &= P_{\text{out}}.v[1] - YP*P_{\text{out}}.v[6] + ZP\quad // \text{x-direction} \\
&*P_{\text{out}}.v[5]; & \quad // \text{y-direction} \\
p_{\text{iny}}.v &= P_{\text{out}}.v[2] + XP*P_{\text{out}}.v[6] - ZP\quad // \text{z-direction} \\
&*P_{\text{out}}.v[4]; \\
&+ YP \times P_{\text{out}}.v[4];
\end{align*}
\]

As can bee seen from the equations, a nonzero offset XP, YP or ZP (distance from center of mass) in a 3D-point will result in a momentum. **Therefore a 3D-body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.**
**Interface - XYZ**

**Ports**

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_inx</td>
<td>Translation port with one degree of freedom [m].</td>
</tr>
<tr>
<td>p_iny</td>
<td>Translation port with one degree of freedom [m].</td>
</tr>
<tr>
<td>p_inz</td>
<td>Translation port with one degree of freedom [m].</td>
</tr>
</tbody>
</table>

**Causality**

fixed force out
P_out
fixed velocity out
p_in

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP</td>
<td>Distance (y-direction) between connection and center of mass [m].</td>
</tr>
<tr>
<td>XP</td>
<td>Distance (x-direction) between connection and center of mass [m].</td>
</tr>
<tr>
<td>theta</td>
<td>Angle of impact of the single degree of freedom port [rad].</td>
</tr>
</tbody>
</table>

**Note**

- A body has to be connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from free rotation.
- A 3D-body has to be connected to at least three orthogonal 3D-point models to prevent it from free motion.
- Flipping or rotating the model does not change the direction of applied forces or measured directions. Preferably leave the orientation as it pops up on the screen.
- It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm]!

**ThreeDPositionSensor**

**Library**

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

**Use**

**Domains:** Continuous. **Size:** 1-D/6D. **Kind:** Iconic Diagrams (Translation,Rotation).

**Description**

This model is used to find the positions of a 3D-body model. It has a port \( P \) which can be connected to the body and an output signal \( pos \) that denotes the positions \( (x,y,z,\theta_x,\theta_y,\theta_z) \) of the body.
Interface

Ports	Description

Causality
fixed force out P

Output
Pos(6) | Absolute positions [m].

Initial Values
Pos_initial[6] | Initial positions [m]

Note
- The sensor model yields an absolute position starting at 0. Set the initial values to yield a position starting at other values.
- It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units [m] although it really is [rad]!

ThreeDSpringDamper

Library
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use
Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description
This model is the equivalent of the 1 degree of freedom model SpringDamper.emx. It model represents an ideal spring-damper. The model has a preferred force out causality. The corresponding constitutive equations then contain integrations. The element can also have the non-preferred velocity out causality. The constitutive equations then contain derivatives. The spring-damper model has separate high and low ports. The equations are

\[
P.F = P_{high}.F = P_{low}.F \\
P.v = P_{high}.v - P_{low}.v
\]

Force out causality (preferred):

\[
X = \text{int}(P.v); \\
P.F = S^X + D*P.v;
\]

Velocity out causality:
\[ P.v = ddt(X); \]
\[ X = S^{-1}(P.F - D*P.v); \]

**Interface**

**Ports**
- \texttt{P\_high[6]}, \texttt{P\_low[6]}

**Description**
Both terminals of a port with 6 degrees of freedom.

**Causality**
- \texttt{preferred force}
- \texttt{out P}

**Variables**
- \texttt{X}

Vector with 6 spring extension values [m].

**Parameters**
- \texttt{S[6]}

Stiffness vector [N/m]
- \texttt{D[6]}

Damping vector [N.s/m]

**Initial Values**
- \texttt{X\_initial[6]}

Vector with 6 initial extension values of the spring [m].

**Note**
It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm] etc.!

**ThreeDZeroForce**

**Library**
Iconic Diagrams\Mechanical\Translation\3DSmallAngles

**Use**
**Domains**: Continuous. **Size**: 6-D. **Kind**: Iconic Diagrams (Translation,Rotation).

**Description**
This model can be used to connect any open end of another 3D model that is not connected to the fixed world. It generates a three degree of freedom zero force while the velocity is free.

**Interface**

**Ports**
- \texttt{P}

Port with 6 degrees of freedom.

**Causality**
- \texttt{fixed force out P}
Note
It is not possible in 20-sim to use vector elements with mixed units. Therefore element number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and [Nm] etc.!

Actuators

AccelerationActuator-Relative

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. An acceleration input signal is integrated to a velocity difference between its two terminals:

\[
\begin{align*}
p_{\text{high}.v} &= p_{\text{low}.v} + \text{int}(a,v_{\text{initial}}); \\
p_{\text{low}.F} &= p_{\text{high}.F} = \text{indifferent};
\end{align*}
\]

Interface

Ports
p\_high, p\_low
Both terminals of the Translation port p.

Causality
fixed velocity out

Input
a
Acceleration [m/s²].

Parameters
v\_initial
Initial velocity output of the integration [m/s].

AccelerationActuator

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. An acceleration input signal is integrated to a velocity at the translation port. The actuator is mounted to the fixed world:
\[
p.v = \text{int}(a,v_{\text{initial}}); \\
p.F = \text{indifferent}; 
\]

### Interface

#### Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>p</th>
<th>Translation port.</th>
</tr>
</thead>
</table>

#### Causality

fixed velocity out

#### Input

<table>
<thead>
<tr>
<th>Description</th>
<th>a</th>
<th>Acceleration [m/s²].</th>
</tr>
</thead>
</table>

#### Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>v\text{_initial}</th>
<th>Initial velocity at the port [m/s].</th>
</tr>
</thead>
</table>

---

**CMABender**

<table>
<thead>
<tr>
<th>Library</th>
<th>Iconic Diagrams\Electric\Actuators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iconic Diagrams\Mechanical\Translation\Actuators</td>
</tr>
<tr>
<td>Use</td>
<td>Domains: Continuous. <strong>Size:</strong> 1-D. <strong>Kind:</strong> Iconic Diagrams (Translation), Block Diagrams.</td>
</tr>
</tbody>
</table>

#### Description

This model represents a piezo actuator. The actuator translates a voltage difference at port \( p1 \) to a mechanical position difference between the base at port \( p2 \) and the end effector at port \( p3 \).

Although the underlying equations of this model are equal to the equations of the CMAStrecher.emx model, the default parameter values are typical for bending.

#### Interface

<table>
<thead>
<tr>
<th>Description</th>
<th>p</th>
<th>Translation port.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>C</th>
<th>Capacitance [F]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>KF</td>
<td>Voltage to force conversion factor [N/V]</td>
</tr>
<tr>
<td>Description</td>
<td>m</td>
<td>Equivalent mass [kg]</td>
</tr>
<tr>
<td>Description</td>
<td>k</td>
<td>Stiffness [N/m]</td>
</tr>
<tr>
<td>Description</td>
<td>B</td>
<td>Relative damping ratio [ ]</td>
</tr>
</tbody>
</table>
### CMAStretcher

**Library**
Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation), Block Diagrams.

**Description**
This model represents a piezo actuator. The actuator translates a voltage difference at port $p1$ to a mechanical position difference between the base at port $p2$ and the end effector at port $p3$.

Although the underlying equations of this model are equal to the equations of the CMABender.emx model, the default parameter values are typical for stretching.

**Interface**

**Ports**
- $p$: Translation port.

**Causality**
fixed force out

**Input**
- $C$: Capacitance [F]
- $KF$: Voltage to force conversion factor [N/V]
- $m$: Equivalent mass [kg]
- $k$: Stiffness [N/m]
- $B$: Relative damping ratio []
- $KB$: Force to voltage conversion factor [V/N]
Chapter 10. Library

Force-Relative

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. The actuator applies a force between its two terminals. This force can be set to a constant value $F$, the velocity is indifferent.

$p_{high}.F = p_{low}.F = F$

Interface

Ports  Description
$p_{high}$, $p_{low}$  Both terminals of the Translation port $p$.

Causality
fixed force out

Parameters
$F$  Force [N]

Force

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. The actuator is mounted to the fixed world and applies a force. The force can be set to a certain constant value, the velocity is indifferent.

$p.F = F$

Interface

Ports  Description
$p$  Translation port.

Causality
fixed force out

Parameters
ForceActuator-Relative

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. The actuator applies a force between its two terminals. This force can be set to a (fluctuating) value given by the input signal \( F \), the velocity is indifferent.

\[
p\_high.F = p\_low.F = F
\]

Interface

Port	Description
p\_high, p\_low | Both terminals of the Translation port p.

Causality
fixed force out

Input
F | Force [N]

ForceActuator

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. The actuator is mounted to the fixed world and applies a force. The force can be set to a (fluctuating) value given by the input signal \( F \), the velocity is indifferent.
\[ p.F = F; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

fixed force out

**Input**

\[ F \quad \text{Force [N]}. \]

### PositionActuator-Relative

**Library**

Iconic Diagrams\Mechanical\Translation\Actuators

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation), Block Diagrams.

**Description**

This model represents an ideal actuator. A position input signal is differentiated by a state variable filter to a velocity difference between its two terminals:

\[
\begin{align*}
p_{\text{high}}.v &= p_{\text{low}}.v + \frac{dx}{dt}; \\
p_{\text{low}}.F &= p_{\text{high}}.F = \text{indifferent};
\end{align*}
\]

Differentiation is performed by a state variable filter:

The S-domain function of this filter is equal to:

\[
\text{output} = \frac{s}{s + \frac{1}{f}} \cdot \text{input}
\]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.
Interface

Ports	Description
p_high, p_low | Both terminals of the Translation port p.

Causality
fixed velocity out

Input
x | Position [m].

Parameters
f | Cut-off frequency of the differentiation [Hz].
v_initial | Initial velocity output of the differentiation [m/s].

PositionActuator

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. A position input signal is differentiated by a state variable filter to a velocity at the translation port. The actuator is mounted to the fixed world:

\[
p.v = \frac{dx}{dt};
\]
\[
p.F = \text{indifferent};
\]

Differentiation is performed by a state variable filter:

\[
\begin{align*}
p.v &= \frac{dx}{dt}; \\
p.F &= \text{indifferent};
\end{align*}
\]

The S-domain function of this filter is equal to:
where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of 1e5.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

Fixed velocity out

**Input**

| x     | Position [m]. |

**Parameters**

<table>
<thead>
<tr>
<th>f</th>
<th>Cut-off frequency of the differentiation [Hz].</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_initial</td>
<td>Initial velocity at the port [m/s].</td>
</tr>
</tbody>
</table>

**ServoMotor**

**Library**

Iconic Diagrams\Mechanical\Rotation\Actuators

Iconic Diagrams\Mechanical\Translation\Actuators

**Use**


**Description**

This is a masked model which opens the Servo Motor Editor when edited. The servo Motor Editor is a tool that can shows the torque speed plots numerous permanent magnet motors and can generate a dynamic model from any motor that you select. The following motor types are supported:

1. Brush DC
2. Brushless DC (trapezoidal EMC and square wave currents)
3. AC synchronous (sinusoidal EMC and sinusoidal currents)
4. AC synchronous linear (sinusoidal EMC and sinusoidal currents)
**Interface**
Depending on the type of motor that you have selected, the interface can vary:

**DC Brush**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**
fixed rotational velocity out

**Input**

| i     | The input current [A] |

**DC Brushless**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**
fixed rotational velocity out

**Input**

| i     | The maximum input current [A] |

**AC Synchronous**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>

**Causality**
fixed rotational velocity out

**Input**

| i_rms | The rms phase current [A] |

**AC Synchronous Linear**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**
fixed velocity out

**Input**
i_rms  The rms phase current [A]

For more information on the parameters and variables of this model is referred to the Mechatronic Toolbox.

**Velocity-Relative**

**Library**
Iconic Diagrams\Mechanical\Translation\Actuators

**Use**

**Description**
This model represents an ideal actuator. The actuator applies a velocity difference between its two terminals. This velocity can be set to a constant value \( v \), the force is indifferent.

\[
p_{\text{low}}.v = p_{\text{high}}.v + v
\]

**Interface**

**Ports**
- \( p_{\text{high}} \), \( p_{\text{low}} \)  Both terminals of the Translation port \( p \).

**Causality**
- fixed velocity out

**Parameter**
- \( v \)  Velocity [m/s].

**Velocity**

**Library**
Iconic Diagrams\Mechanical\Translation\Actuators

**Use**

**Description**
This model represents an ideal actuator. The actuator is mounted to the fixed world and applies a velocity. This velocity can be set to a certain constant value, the force is indifferent.
\( p.v = v; \)

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port</td>
</tr>
</tbody>
</table>

**Causality**

fixed velocity out

**Parameters**

| v       | velocity [m/s]               |

**VelocityActuator-Relative**

**Library**

Iconic Diagrams\Mechanical\Translation\Actuators

**Use**


**Description**

This model represents an ideal actuator. The actuator applies a velocity difference between its two terminals. This velocity can be set to a (fluctuating) value given by the input signal \( v \), the force is indifferent.

\( p_{\text{high}}.v = p_{\text{low}}.v + v \)

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_{\text{high}}, p_{\text{low}} )</td>
<td>Both terminals of the Translation port ( p ).</td>
</tr>
</tbody>
</table>

**Causality**

fixed velocity out

**Input**

| v       | Velocity [m/s].               |
VelocityActuator

Library
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Description
This model represents an ideal actuator. The actuator is mounted to the fixed world and applies a velocity. This velocity can be set to a (fluctuating) value given by the input signal $v$, the force is indifferent.

\[ p \cdot v = v; \]

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation port.</td>
<td>p</td>
</tr>
</tbody>
</table>

Causality
fixed velocity out

Input

<table>
<thead>
<tr>
<th>Description</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity [m/s].</td>
<td>v</td>
</tr>
</tbody>
</table>

Components

Backlash

Library
Iconic Diagrams\Mechanical\Translation\Components

Use

Description
This model represents backlash by a spring damper system. Inside an outside the play, spring and damping can be set separately. Discontinuities are avoided by adding a round off. The model can has a force out causality. The port $p$ of this model has separate high and low terminals. The equations are:
\[ p.F = p\text{\_high}.F = p\text{\_low}.F \]
\[ p.v = p\text{\_high}.v - p\text{\_low}.v \]

\[ p.F = 0.5 \cdot k_2 \cdot \left( x - \sqrt{\frac{x - \frac{s}{2}}{2} + (\epsilon p \cdot s)^2} + x + \sqrt{\frac{x - \frac{s}{2}}{2} + (\epsilon p \cdot s)^2} \right) + k_1 \cdot x + d_{1or2} \cdot p.v \]

with \( x \) the position within the play. Real backlash behavior is obtained by choosing low stiffness and damping values inside the play and choosing high stiffness and damping values outside the play.

The parameter \( \epsilon p \) determines the smoothness of the force curve that is obtained. A larger value (> 0.01) makes the force change gradually when the position reaches the play boundaries. A smaller value (< 0.001) makes the force change abruptly. This is shown in the figure below. A good starting value for \( \epsilon p \) is 1e-4.

### Interface

**Ports**

- **p_high, p_low**
  Both terminals of port \( p \) (Translation).

**Causality**

- fixed force out

**Parameters**

- **s**
  Interval of the play [m]
- **c1**
  Stiffness in the play [N/m]
- **c2**
  Stiffness outside the play [N/m]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Damping inside the play [Ns/m]</td>
</tr>
<tr>
<td>d2</td>
<td>Damping outside the play [Ns/m]</td>
</tr>
<tr>
<td>ep</td>
<td>Relative round off (1e-6 -&gt; sharp edges, 1e-2 -&gt; smoother)</td>
</tr>
</tbody>
</table>

**Initial Values**

| x_initial | Initial position in the play [m], -s/2 < x_initial < s/2 |

**Collision-Relative**

**Library**

Iconic Diagrams\Mechanical\Translation\Components

**Implementations**

Right
Left

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description - Right**

This model represents an collision of an object with another object. It can be used to indicate a possible collision to the right of an object.

The collision force is modeled by a spring and damper:

\[ p.F = \text{if } x > x_0 \text{ then } k*(x-x_0) + d*\text{limit}(p.v,0,1e20) \text{ else } 0 \text{ end}; \]

with a stiffness \( k \) and damping \( d \). The \text{limit} function is used to prevent the damper force to become negative. The initial position of the spring is indicated by \( x_0 \) (see the figure above). Note that the positive direction is to the right. If \( x \) is larger that \( x_0 \), the two sides have collided and are in contact. The collision model has separate high and low ports. The equations are

\[
\begin{align*}
    p.F &= p\_high.F = p\_low.F \\
    p.v &= p\_high.v - p\_low.v
\end{align*}
\]

**Interface - Right**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high</td>
<td>Two ports of the collision model.</td>
</tr>
</tbody>
</table>
p_low

**Causality**
fixed force out

**Variables**

- \( x \)  
  extension of the spring [m]

**Parameters**

- \( x_0 \)  
  unstretched spring position
- \( k \)  
  stiffness [N/m]
- \( d \)  
  damping [N.s/m]

**Initial Values**

- \( x_{\text{initial}} \)  
  The initial extension of the spring [m].

**Description - Left**

This model represents an collision of an object with another object. It can be used to indicate a possible collision to the left of an object.

The collision force is modeled by a spring and damper. Note that the positive direction is to the right, so the initial position of the spring \( x_0 \) has a negative value in the figure above. If \( x \) is smaller than \( x_0 \), the two sides have collided and are in contact.

**Interface - Left**

**Ports**

- \( p_{\text{high}} \)
- \( p_{\text{low}} \)

**Causality**
fixed force out

**Variables**

- \( x \)  
  extension of the spring [m]

**Parameters**

- \( x_0 \)  
  unstretched spring position
k  stiffness [N/m]
d  damping [N.s/m]

**Initial Values**
x_initial  The initial extension of the spring [m].

**Collision**

**Library**
Iconic Diagrams\Mechanical\Translation\Components

**Implementations**
Right
Left

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation).

**Description - Right**
This model represents a collision of an object with the ground.

The collision force is modeled by a spring and damper:

```
p.F = if x > x0 then k*(x-x0) + d*limit(p.v,0,1e20) else 0 end;
```

with a stiffness $k$ and damping $d$. The `limit` function is used to prevent the damper force to become negative. The initial position of the spring is indicated by $x0$ (see the figure above). Note that the positive direction is to the right. If $x$ is larger than $x0$, the two sides have collided and are in contact. The collision model has separate high and low ports. The equations are

```
p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v
```

**Interface - Right**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high</td>
<td>Two ports of the collision model.</td>
</tr>
<tr>
<td>p_low</td>
<td></td>
</tr>
</tbody>
</table>
**Causality**
fixed force out

**Variables**
\[ x \quad \text{extension of the spring [m]} \]

**Parameters**
\[ x_0 \quad \text{unstretched spring position} \]
\[ k \quad \text{stiffness [N/m]} \]
\[ d \quad \text{damping [N.s/m]} \]

**Initial Values**
\[ x_{\text{initial}} \quad \text{The initial extension of the spring [m].} \]

**Description - Left**
This model represents a collision of an object with the ground.

The collision force is modeled by a spring and damper. Note that the positive direction is to the right, so the initial position of the spring \(x_0\) has a negative value in the figure above. If \(x\) is smaller than \(x_0\), the two sides have collided and are in contact.

**Interface - Left**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high</td>
<td>Two ports of the collision model.</td>
</tr>
<tr>
<td>p_low</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**
fixed force out

**Variables**
\[ x \quad \text{extension of the spring [m]} \]

**Parameters**
\[ x_0 \quad \text{unstretched spring position} \]
\[ k \quad \text{stiffness [N/m]} \]
\[ d \quad \text{damping [N.s/m]} \]
**Initial Values**

x\_initial  

The initial extension of the spring [m].

**Damper**

**Library**

Iconic Diagrams\Mechanical\Translation\Components

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**

This model represents a linear damper. It can have an force out as well as an velocity out causality. In the last case the constitutive equation, as shown below, is simply inverted. The port \( p \) of the damper model has separate high and low terminals. The equations are:

\[
\begin{align*}
    p.F &= p\_high.F = p\_low.F \\
    p.v &= p\_high.v - p\_low.v
\end{align*}
\]

Force out causality:

\[
p.F = d \times p.v;
\]

Velocity velocity out causality:

\[
p.v = p.F / d;
\]

**Interface**

**Ports**

\( p\_high, p\_low \)  

Both terminals of the Translation port \( p \).

**Causality**

indifferent

**Parameters**

d  
damping [Ns/m]
FixedWorld

Library
Iconic Diagrams\Mechanical\Translation\Components

Use

Description
This model represents the fixed world (velocity = 0). The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. which gives the constitutive equations:

\[ p1.v = p2.v = .. = pn.v = 0; \]
\[ p1.F = free; p2.F = free; ..; pn.F = free; \]

Interface

Ports Description
p [any] Any number of connections can be made (Translation).

Causality
Fixed angular All ports have a fixed velocity out causality.
velocity out

Friction

Library
Iconic Diagrams\Mechanical\Translation\Components

Use

Implementations
C
V
CV
SCVS
LuGre

Use

Introduction
These models represents friction with the fixed world. The amount of friction depends on the normal force that is applied and the friction function that is used. The normal force is given by the input signal \( F_n \).
The models have only one initial port \( p \) defined. Because any number of connections can be made, successive ports are named \( p_1, p_2, p_3 \) etc. 20-sim will automatically create equations such that the resulting force \( p.F \) is equal to the sum of the forces of all connected ports \( p_1 .. p_n \). The velocities of all connected ports are equal to \( p.v \).

\[
\begin{align*}
  p.F &= \text{sum}(p1.F, p2.F, ...) \\
  p.v &= p1.v = p2.v = ... 
\end{align*}
\]

Due to the use of normal force, the friction models all have a fixed force out causality. The constitutive equations are therefore described as:

\[
p.F = Fn * f(p.v);
\]

with \( f \) the friction function.

**Description - C**

This model represents friction with the fixed world described as coulomb friction:

\[
p.F = Fn*\mu_c*tanh(slope*p.v);
\]

*\( Fn \): normal force (given by the input signal \( Fn \))
*\( \mu_c \): the coulomb friction coefficient
*\( slope \): the steepness of the coulomb friction curve.

**Interface - C**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
<th>Causality</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any number of connections can be made (Translation).</td>
<td>p[any]</td>
<td>Fixed force out</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

\begin{align*}
\text{mu}_c & \quad \text{Coulomb friction coefficient []} \\
\text{slope} & \quad \text{Steepness of Coulomb friction curve [s/m]}
\end{align*}

Description - V

This model represents friction with the fixed world described as viscous friction:

\[ p.F = \text{Fn} \times \text{mu}_v \times p.v; \]

\text{Fn}: normal force (given by the input signal Fn)

\text{mu}_v: the viscous friction coefficient

\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[->] (-5,0) -- (5,0) node[below] {Sliding velocity};
\draw[->] (0,-5) -- (0,5) node[left] {Friction force};
\end{tikzpicture}
\end{center}

Interface - V

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

Causality

Fixed force out

Input

| Fn | Normal force [N] |

Parameters

| \text{mu}_v | Viscous friction coefficient [s/m] |

Description - CV

This model represents friction with the fixed world described as coulomb plus viscous friction:
\[ p.F = F_n \left( \mu_c \tanh(slope \times p.v) + \mu_v \times p.v \right); \]

*\( F_n \)*: normal force (given by the input signal \( F_n \))

*\( \mu_v \)*: the viscous friction coefficient

*\( \mu_c \)*: the coulomb friction coefficient

*\( slope \)*: the steepness of the coulomb friction curve.

**Interface - CV**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation)</td>
</tr>
</tbody>
</table>

**Causality**
Fixed force out

**Input**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \mu_v )</td>
<td>Viscous friction coefficient [s/m]</td>
</tr>
<tr>
<td>( \mu_c )</td>
<td>Coulomb friction coefficient []</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/m]</td>
</tr>
</tbody>
</table>

**Description - SCVS**

This model represents friction with the fixed world described as static plus coulomb plus viscous plus Stribeck friction:

\[
p.F = F_n \times \left( \left( \mu_c + \left( \mu_st \times \text{abs}(\tanh(slope \times p.v)) \right) - \mu_c \right) \times \exp\left(-\left((p.v / v_st)^2\right)\right) \times \text{sign}(p.v) + \mu_v \times p.v \right);
\]

*\( F_n \)*: normal force (given by the input signal \( F_n \))

*\( \mu_s \)*: the static friction coefficient

*\( \mu_v \)*: the viscous friction coefficient

*\( \mu_c \)*: the coulomb friction coefficient
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

**Interface - SCVS**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

**Causality**

Fixed force out

**Input**

| Fm | Normal force [N] |

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu_s</td>
<td>Static friction coefficient []</td>
</tr>
<tr>
<td>mu_v</td>
<td>Viscous friction coefficient [s/m]</td>
</tr>
<tr>
<td>mu_c</td>
<td>Coulomb friction coefficient []</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/m]</td>
</tr>
<tr>
<td>v_st</td>
<td>Characteristic Stribeck velocity [m/s]</td>
</tr>
</tbody>
</table>

**Description - LuGre**

This model represents friction with the fixed world described by the LuGre friction model:

\[
p.F = FN*f_{lg}(p.v);\]

*Fn*: normal force (given by the input signal Fm)

*f-lg*: the LuGre friction model

**Interface - LuGre**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

**Causality**
Fixed force out

**Input**

Fn  
Normal force [N]

**Parameters**

- mu_c  
Coulomb friction coefficient []
- mu_s  
Static friction coefficient []
- mu_v  
Viscous friction coefficient [s/m]
- v_st  
Characteristic Striebeck velocity [m/s]
- mu_k  
Stiffness coefficient at zero speed []

**Friction-Relative**

**Library**

Iconic Diagrams\Mechanical\Translation\Components

**Implementations**

C
V
CV
SCVS
LuGre

**Use**

*Domains*: Continuous.  **Size**: 1-D.  **Kind**: Iconic Diagrams (Translation).

**Introduction**

These models represent friction relative to other objects. The amount of friction depends on the normal force that is applied and the friction function that is used. The normal force is given by the input signal *Fn*.

The port *p* of the friction models have separate high and low terminals. The equations are:

\[
\begin{align*}
p.F &= p_{\text{high}}.F = p_{\text{low}}.F \\
p.v &= p_{\text{high}}.v - p_{\text{low}}.v
\end{align*}
\]

Due to the use of normal force, the friction models all have a fixed torque out causality. The constitutive equations are therefore described as:

\[
p.F = F_n \ast f(p.v);
\]

with *f* the friction function.

**Description -C**

This model represents friction between two terminals described as coulomb friction:
\[ p.F = Fn*mu_c*tanh(slope*p.v); \]

*Fn*: normal force (given by the input signal Fn)

*mu_c*: the coulomb friction coefficient

*slope*: the steepness of the coulomb friction curve.

**Interface - C**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of port p (Translation).</td>
</tr>
</tbody>
</table>

**Causality**

Fixed force out

**Input**

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn</td>
<td>Normal force [N]</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu_c</td>
<td>Coulomb friction coefficient [ ]</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/m]</td>
</tr>
</tbody>
</table>

**Description - V**

This model represents friction between two terminals described as viscous friction:

\[ p.F = Fn*mu_v*p.v; \]

*Fn*: normal force (given by the input signal Fn)

*mu_v*: the viscous friction coefficient
Interface -V

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality
Fixed force out

Input
Fn Normal force [N]

Parameters
mu_v Viscous friction coefficient [s/m]

Description - CV
This model represents friction between two terminals described as coulomb plus viscous friction:

\[ p.F = F_n*(\mu_c*tanh(slope*p.v) + \mu_v*p.v); \]

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.
Interface - CV

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of port p (Translation).</td>
</tr>
</tbody>
</table>

Causality

Fixed force out

Input

<table>
<thead>
<tr>
<th>Fn</th>
<th>Normal force [N]</th>
</tr>
</thead>
</table>

Parameters

<table>
<thead>
<tr>
<th>mu_v</th>
<th>Viscous friction coefficient [s/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu_c</td>
<td>Coulomb friction coefficient [ ]</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/m]</td>
</tr>
</tbody>
</table>

Description - SCVS

This model represents friction between two terminals described as static plus coulomb plus viscous plus Stribeck friction:

\[
p.F = Fn \times \left( \left( \mu_c + (\mu_s \times \text{abs}(\tanh(slope \times p.v))) - \mu_c \right) \times \exp\left(-((p.v / v_st)^2)\right) \times \text{sign}(p.v) + \mu_v \times p.v \right);
\]

Fn: normal force (given by the input signal Fn)
mu_s: the static friction coefficient
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.
10. Library

## Interface - SCVS

### Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>p_high, p_low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both terminals of port p (Translation).</td>
<td></td>
</tr>
</tbody>
</table>

### Causality

Fixed force out

### Input

<table>
<thead>
<tr>
<th>Description</th>
<th>Fn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal force [N]</td>
<td></td>
</tr>
</tbody>
</table>

### Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>mu_s, mu_v, mu_c, slope, v_st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static friction coefficient []</td>
<td></td>
</tr>
<tr>
<td>Viscous friction coefficient [s/m]</td>
<td></td>
</tr>
<tr>
<td>Coulomb friction coefficient []</td>
<td></td>
</tr>
<tr>
<td>Steepness of Coulomb friction curve [s/m]</td>
<td></td>
</tr>
<tr>
<td>Characteristic Striebeck velocity [m/s]</td>
<td></td>
</tr>
</tbody>
</table>

### Description - LuGre

This model represents friction between two terminals described by the LuGre friction model:

\[
p.F = FN f_{lg}(p.v);
\]

*Fn*: normal force (given by the input signal Fn)

*f_{lg}*: the LuGre friction model

## Interface - LuGre

### Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>p_high, p_low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both terminals of port p (Translation).</td>
<td></td>
</tr>
</tbody>
</table>

### Causality
Fixed force out

**Input**

F \text{ n} \quad \text{Normal force [N]}

**Parameters**

mu_c \quad \text{Coulomb friction coefficient [\]} \\
mu_s \quad \text{Static friction coefficient [\]} \\
mu_v \quad \text{Viscous friction coefficient [s/m]} \\
v_{st} \quad \text{Characteristic Striebeck velocity [m/s]} \\
u_k \quad \text{Stiffness coefficient at zero speed [\]}

---

**Friction Simple**

**Library**

Iconic Diagrams\Mechanical\Translation\Components

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Implementations**

C \\
V \\
CV \\
SCVS \\
LuGre

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Introduction**

These models represent friction with the fixed world. The amount of friction does not depend on the normal force but determined by parameters directly. The models have only one initial port \( p \) defined. Because any number of connections can be made, successive ports are named \( p_1, p_2, p_3 \) etc. 20-sim will automatically create equations such that the resulting force \( p.F \) is equal to the sum of the forces of all connected ports \( p_1..p_n \). The velocities of all connected ports are equal to \( p.v \).

\[
\begin{align*}
p.F &= \text{sum}(p_1.F, p_2.F, ....) \\
p.v &= p_1.v = p_2.v = ....
\end{align*}
\]

**Description - C**

This model represents friction with the fixed world described as coulomb friction:

\[
p.F = F_c\cdot\tanh(slope*p.v);
\]

\( F_c \): the coulomb friction \\
\( slope \): the steepness of the coulomb and static friction curve.
Interface - C

Ports
p[any] Any number of connections can be made (Translation).

Causality
Fixed force out

Parameters
Fc Coulomb friction [N]
slope Steepness of Coulomb friction curve [s/m]

Description - V
This model represents friction with the fixed world described as viscous friction:

\[ p.F = d \cdot p.v; \]

\( d \): the viscous friction or damping
10. Library

Interface - V

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

Causality
Fixed force out

Parameters
- d: Viscous friction or damping [N.s/m]

Description - CV
This model represents friction with the fixed world described as coulomb plus viscous friction:

\[ p.F = F_c \tanh(\text{slope} \times p.v) + d \times p.v; \]

- \( d \): the viscous friction or damping
- \( F_c \): the coulomb friction
- \( \text{slope} \): the steepness of the coulomb and static friction curve.

![Friction force vs. Sliding velocity graph]

Interface - CV

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation)</td>
</tr>
</tbody>
</table>

Causality
Fixed force out

Parameters
- \( F_c \): Coulomb friction [N]
- d: Viscous friction or damping [N.s/m]
- slope: Steepness of Coulomb friction curve [s/m]
Description - SCVS
This model represents friction with the fixed world described as static plus coulomb plus viscous plus Stribeck friction:

\[ p.F = (( Fc + (Fst * \text{abs(tanh}(\text{slope} * p.v))) - Fc) * \exp(-((p.v / v_{st})^2)) \) * sign(p.v) + d * p.v); \]

\( Fst \): the static friction  
\( d \): the viscous friction or damping  
\( Fc \): the coulomb friction  
\( \text{slope} \): the steepness of the coulomb and static friction curve.  
\( v_{st} \): the characteristic Stribeck velocity.

![Graph showing friction force vs sliding velocity]

Interface - SCVS

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

Causality
Fixed force out

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc</td>
<td>Coulomb friction [N]</td>
</tr>
<tr>
<td>Fst</td>
<td>Static friction [N]</td>
</tr>
<tr>
<td>d</td>
<td>Viscous friction or damping [N.s/m]</td>
</tr>
<tr>
<td>v_{st}</td>
<td>Characteristic Stribeck velocity [m/s]</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/m]</td>
</tr>
</tbody>
</table>

Description - LuGre
This model represents friction with the fixed world described by the LuGre friction model:

\[ p.F = f_{lg}(p.v); \]

\( f_{lg} \): the LuGre friction model
Interface - LuGre

Ports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>p[any]</strong></td>
</tr>
</tbody>
</table>

Causality

Fixed force out

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fc</strong></td>
<td>Coulomb friction [N]</td>
</tr>
<tr>
<td><strong>Fst</strong></td>
<td>Static friction [N]</td>
</tr>
<tr>
<td><strong>d</strong></td>
<td>Viscous friction or damping [N.s/m]</td>
</tr>
<tr>
<td><strong>v_st</strong></td>
<td>Characteristic Striebeck velocity [m/s]</td>
</tr>
<tr>
<td><strong>k</strong></td>
<td>Stiffness at zero speed [N/m]</td>
</tr>
</tbody>
</table>

FrictionSimple-Relative

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

Implementations

C  
V  
CV  
SCVS  
LuGre

Use

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

Introduction

These models represent friction with the fixed world. The amount of friction does not depend on the normal force but determined by parameters directly. The models have only one initial port \( p \) defined. The port \( p \) of the friction models have separate high and low terminals. The equations are:

\[
p.F = p\_high.F = p\_low.F  
p.v = p\_high.v - p\_low.v
\]

Description - C

This model represents friction with the fixed world described as coulomb friction:

\[
p.F = Fc*tanh(slope*p.v);
\]

Fc: the coulomb friction  
slope: the steepness of the coulomb and static friction curve.
### Interface - C

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

**Causality**

Fixed force out

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc</td>
<td>Coulomb friction [N]</td>
</tr>
<tr>
<td>slope</td>
<td>Steepness of Coulomb friction curve [s/m]</td>
</tr>
</tbody>
</table>

**Description - V**

This model represents friction with the fixed world described as viscous friction:

\[ p.F = d*p.v; \]

*d*: the viscous friction or damping
**Interface - V**

**Ports**
- p[any]

**Description**
- Any number of connections can be made (Translation).

**Causality**
- Fixed force out

**Parameters**
- d
  - Viscous friction or damping [N.s/m]

**Description - CV**

This model represents friction with the fixed world described as coulomb plus viscous friction:

\[ p.F = Fc \cdot \tanh(\text{slope} \cdot p.v) + d \cdot p.v; \]

- \(d\): the viscous friction or damping
- \(Fc\): the coulomb friction
- \(slope\): the steepness of the coulomb and static friction curve.

![Diagram of friction force vs sliding velocity](image)

**Interface - CV**

**Ports**
- p[any]

**Description**
- Any number of connections can be made (Translation)

**Causality**
- Fixed force out

**Parameters**
- Fc
  - Coulomb friction [N]
- d
  - Viscous friction or damping [N.s/m]
- slope
  - Steepness of Coulomb friction curve [s/m]
**Description - SCVS**

This model represents friction with the fixed world described as static plus coulomb plus viscous plus Stribeck friction:

\[ p.F = \left( ( Fc + (Fst*\text{abs(tanh( slope*p.v ))) - Fc) * e^{-((p.v / v_{st})^2 } \right) * \text{sign}(p.v) + d * p.v); \]

- \( Fst \): the static friction
- \( d \): the viscous friction or damping
- \( Fc \): the coulomb friction
- \( slope \): the steepness of the coulomb and static friction curve.
- \( v_{st} \): the characteristic Stribeck velocity.

**Interface - SCVS**

**Ports**

| p[any] | Any number of connections can be made (Translation). |

**Causality**

Fixed force out

**Parameters**

- \( Fc \): Coulomb friction [N]
- \( Fst \): Static friction [N]
- \( d \): Viscous friction or damping [N.s/m]
- \( v_{st} \): Characteristic Stribeck velocity [m/s]
- \( slope \): Steepness of Coulomb friction curve [s/m]

**Description - LuGre**

This model represents friction with the fixed world described by the LuGre friction model:

\[ p.F = f_{lg}(p.v); \]

- \( f_{lg} \): the LuGre friction model
Interface - LuGre

Ports
p[any] Any number of connections can be made (Translation).

Causality
Fixed force out

Parameters
Fc Coulomb friction [N]
Fst Static friction [N]
d Viscous friction or damping [N.s/m]
v_st Characteristic Strubeck velocity [m/s]
k Stiffness at zero speed [N/m]

Mass

Library
Iconic Diagrams\Mechanical\Translation\Components

Use

Description-Default
This model represents an ideal mass (no gravity). The element has a preferred velocity out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred force out causality. The constitutive equations then contain a derivation. Because any number of connections can be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting force p.F is equal to the sum of the forces of all connected ports p1 .. pn. The velocities of all connected ports are equal to p.v.

\[
\begin{align*}
p.F &= \text{sum}(p1.F, p2.F, \ldots) \\
p.v &= p1.v = p2.v = \ldots
\end{align*}
\]

velocity out causality (preferred):

\[
\begin{align*}
a &= \frac{p.F}{m}; \\
p.v &= \text{int}(a); \\
x &= \text{int}(p.omega);
\end{align*}
\]

force out causality:
\begin{verbatim}
  a = ddt(p.v);
  p.T = m*a;
  x = int(p.v);
\end{verbatim}

**Description-Gravity**

This model represents an ideal mass with gravity. It is equal to the default model with a gravitational acceleration $g$ added:

\begin{verbatim}
  a = p.F/m - g;
  p.v = int(a);
  x = int(p.omega);
\end{verbatim}

The gravitational acceleration $g$ acts in the negative direction. E.g. a free fall will give the model a negative acceleration, negative velocity and negative position.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

**Causality**

preferred velocity out  
An torque out causality results in a derivative constitutive equation.

**Variables**

x	position [m]
a	acceleration [m/s^2]
p	impulse [Ns]

**Parameters**

| m | mass [kg] |
| g | acceleration of gravity [m/s^2] |

**Initial Values**

| p.v_initial | The initial velocity of the mass. |
| x_initial | The initial position of the mass. |
Modal

Library
Iconic Diagrams\Mechanical\Translation\Components

Implementations
Stiffness
Frequency

Use

Description - Stiffness
This model represents a spring-damper-mass system that can be used for modal analysis. The springdamper is equivalent to the SpringDamper-Stiffness.emx model. The mass is equivalent to the Mass.emx model. The model has one output that can be connected to the modal-summer.emx model.

Interface - Stiffness

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

Causality
preferred velocity out

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Stiffness [N/m]</td>
</tr>
<tr>
<td>b</td>
<td>Relative damping []</td>
</tr>
<tr>
<td>m</td>
<td>Equivalent mass [kg]</td>
</tr>
</tbody>
</table>

Description - Frequency
This model represents a spring-damper-mass system that can be used for modal analysis. The springdamper is equivalent to the SpringDamper-Frequency model. The mass is equivalent to the Mass model. The model has one output that can be connected to the Modal-Summer model.

Interface - Frequency

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

Causality
preferred velocity out

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Relative damping []</td>
</tr>
<tr>
<td>f</td>
<td>Resonance frequency [Hz]</td>
</tr>
</tbody>
</table>
m  

Equivalent mass [kg]

**ModalSummer**

**Library**
Iconic Diagrams\Mechanical\Translation\Components

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**
This model combines the results from all modal.emx models to one resulting output. The model has 8 input ports and one output port that shows the combined result. If more or less input ports are needed, you have to adapt the model (Choose *Go Down* and alter the internal description).

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input ports for modal.emx models (Translation).</td>
<td>p1 .. p8</td>
</tr>
<tr>
<td>Port with the modal result (Translation)</td>
<td>p_out</td>
</tr>
</tbody>
</table>

**Causality**

preferred force out p1..p8
preferred velocity out p_out

**Parameters**

A1 .. A8  

Gains for each input port.

**Node**

**Library**
Iconic Diagrams\Mechanical\Translation\Components

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**
This node model represents a structural connection between two or more parts, where the velocity of all connected parts is equal. The model has only one initial port p defined. Because any number of connections can be made, successive ports are named p1, p2, p3 etc.
Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p [any]</td>
<td>Any number of connections can be made (Translation).</td>
</tr>
</tbody>
</table>

ShockAbsorber

Library
Iconic Diagrams\Mechanical\Translation\Components

Implementations
Right
Left

Use

Introduction
This model represents a shock absorber with an open end. This type of shock absorbers is used to protect equipment from large impacts when reaching the end of a line.

The damper has an internal piston which can travel a certain length (i.e. the stroke \( l \)) until it collides with the end cap. The shock absorber is modeled by a damper for the active damping part and a spring damper to model the impact with the end cap. The position of the damper is indicated by the parameter \( x_0 \). Two implementations are available: one with the impact at the right and one with the impact at the left.

The damper is modeled by viscous damping, where the damping force is proportional with the velocity:

\[ p.F = d \times v; \]

After a stroke of length \( l \), the end caps are reached which are modeled by a spring damper:

\[ p.F = k \times x; \]
To get the damper back in its original position a return force is added.

**Description - Right**
The *ShockAbsorber-Right* models a shock absorber with impact at the right of the system.

![Shock absorber model with impact at the right.](image)

**Description - Right**
The *ShockAbsorber-Left* models a shock absorber with impact at the left of the system.

![Shock absorber model with impact at the left.](image)

**Interface**

**Ports**
- p_high
- p_low

**Description**
Two ports of the shock absorber model.

**Causality**
fixed force out

**Parameters**
- **k**: stiffness at the end cap [N/m]
- **d**: damping [N.s/m]
- **l**: shock absorber stroke [m]
- **x0**: position of the damper [m]
SkyHookDamper

Library
Iconic Diagrams\Mechanical\Translation\Components

Use

Description
This model represents a skyhook damper. It can have an force out as well as an velocity out causality. In the last case the constitutive equation, as shown below, is simply inverted. The model has a fixed force out causality. The equations are:

**Force out causality:**

\[
\begin{align*}
  p\_high.F &= d \times p\_high.v; \\
  p\_low.F &= p\_high.F
\end{align*}
\]

As the equations point out, the force of the skyhook damper only depends on the velocity at the port \(p\_high\). The position of \(p\_high\) is indicated by an arrow, as shown in the figure below.

In this figure two models are shown. In the top model, the damping force of the skyhook damper is zero because the velocity at \(p\_high\) is zero. Consequently the mass is free to move.

In the lower model, the damping force is proportional to the velocity of the mass. Here the skyhook damper acts as a normal damper.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_high,\ p_low)</td>
<td>Both Translation ports of the skyhook damper.</td>
</tr>
</tbody>
</table>
Causality
fixed force out

Parameters
d damping [Ns/m]

Spring

Library
Iconic Diagrams\Mechanical\Translation\Components

Use

Description
This model represents an ideal translational spring. The element has a preferred force out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred velocity out causality. The constitutive equations then contain a derivation. The spring model has separate high and low ports. The equations are

\[ p.F = p._\text{high}.F = p._\text{low}.F \]
\[ p.v = p._\text{high}.v - p._\text{low}.v \]

Force out causality (preferred):

\[ x = \text{int}(p.v); \]
\[ p.F = k * x; \]

Velocity out causality:

\[ p.v = ddt(x); \]
\[ x = p.F/k; \]

A positive force will compress the spring. The length \( x \) is positive when the spring is compressed. It is negative when the spring is stretched.

Interface

Ports
p_high
p_low

Causality
preferred force out

Variables

Description
Two ports of the spring (Translation).
An velocity out causality results in a derivative constitutive equation.
**Parameters**

- **k**  
  Stiffness [N/m]

**Initial Values**

- **x_initial**  
  The initial extension of the spring [m].

---

### SpringDamper

**Library**

Iconic Diagrams\Mechanical\Translation\Components

**Implementations**

- Default
- Stiffness
- Frequency

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description - Default**

This model represents an ideal translational spring with damper. The element has a preferred force out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred velocity out causality. The constitutive equations then contain a derivation. The spring-damper model has separate high and low ports. The equations are

\[
\begin{align*}
  p.F &= p_{\text{high}}.F = p_{\text{low}}.F \\
  p.v &= p_{\text{high}}.v - p_{\text{low}}.v
\end{align*}
\]

Force out causality (preferred):

\[
\begin{align*}
  x &= \int(p.v); \\
  p.F &= k*x + d*p.v;
\end{align*}
\]

Velocity out causality:

\[
\begin{align*}
  p.v &= ddt(x); \\
  x &= (p.F - d*p.v)/k;
\end{align*}
\]

A positive force will compress the spring damper. The length \(x\) is positive when the spring damper is compressed. It is negative when the spring damper is stretched.

**Interface - Default**

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
</table>

20-sim 4.7 Reference Manual 897
Causality
preferred force out

Variables
x compression of the spring [m]

Parameters
k Stiffness [N/m]
d damping [N.s/m]

Initial Values
x_initial The initial extension of the spring [m].

Description - Stiffness
This model represents another implementation of the ideal translational spring with damper. The damping value \(d\) is calculated on the basis of a known stiffness \(k\), relative damping \(b\) and mass reference \(m\). The mass is only used to compute the damping (no actual mass is used in this component).

The element has a preferred force out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred velocity out causality. The constitutive equations then contain a derivation. The spring-damper model has separate high and low ports. The equations are

\[
\begin{align*}
p.F &= p_{\text{high}}.F = p_{\text{low}}.F \\
p.v &= p_{\text{high}}.v - p_{\text{low}}.v
\end{align*}
\]

Force out causality (preferred):

\[
\begin{align*}
x &= \text{int}(p.v); \\
p.F &= k \times x + d*p.v; \\
d &= 2*b*\sqrt{k*m};
\end{align*}
\]

Velocity out causality:

\[
\begin{align*}
p.v &= \text{ddt}(x); \\
x &= (p.F - d*p.v)/k; \\
d &= 2*b*\sqrt{k*m};
\end{align*}
\]

A positive force will compress the spring damper. The length \(x\) is positive when the spring damper is compressed. It is negative when the spring damper is stretched.

Interface - Stiffness

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high</td>
<td>Two ports of the spring (Translation).</td>
</tr>
</tbody>
</table>
Causality
preferred force out

Variables

\( x \)
- compression of the spring [m]

\( d \)
- damping [N.s/m]

Parameters

\( k \)
- Stiffness [N/m]

\( b \)
- Relative damping []

\( m \)
- Reference mass [kg]

Initial Values

\( x_{\text{initial}} \)
The initial extension of the spring [m].

Description - Frequency

This model represents another implementation of the ideal translational spring with damper. The stiffness \((k)\) is calculated on basis of a known resonance frequency. The damping value \((d)\) is calculated on the basis of the calculated stiffness \((k)\), relative damping \((b)\) and mass reference \((m)\). The mass is only used to compute the damping (no actual mass is used in this component).

The element has a preferred force out causality. The corresponding constitutive equations then contain an integration. The element can also have the non-preferred velocity out causality. The constitutive equations then contain a derivation. The spring-damper model has separate high and low ports. The equations are

\[
\begin{align*}
p.F &= p\_high.F = p\_low.F \\
p.v &= p\_high.v - p\_low.v
\end{align*}
\]

Force out causality (preferred):

\[
\begin{align*}
x &= \text{int}(p.v); \\
p.F &= k \times x + d*p.v; \\
k &= m*(2*pi*f)^2; \\
d &= 2*b*sqrt(k*m);
\end{align*}
\]

Velocity out causality:

\[
\begin{align*}
p.v &= ddt(x); \\
x &= (p.F - d*p.v)/k; \\
k &= m*(2*pi*f)^2; \\
d &= 2*b*sqrt(k*m);
\end{align*}
\]

A positive force will compress the spring damper. The length \(x\) is positive when the spring damper is compressed. It is negative when the spring damper is stretched.
### Interface - Frequency

#### Ports
- **p_high**
- **p_low**

#### Description
- Two ports of the spring (Translation).

#### Causality
- preferred force out

#### Variables
- **x**
  - compression of the spring [m]
- **k**
  - stiffness [N/m]
- **d**
  - damping [N.s/m]

#### Parameters
- **b**
  - Relative damping []
- **f**
  - Resonance frequency [Hz]
- **m**
  - Reference mass [kg]

#### Initial Values
- **x_initial**
  - The initial extension of the spring [m].

### ZeroForce

**Library**
- Iconic Diagrams\Mechanical\Translation\Components

**Use**
- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**
This model can be used to connect any open end of another model that is not connected to the fixed world. It generates a fixed force of 0 N while the velocity is free:

\[
\begin{align*}
  p.v &= \text{indifferent}; \\
  p.F &= 0;
\end{align*}
\]

**Interface**

#### Ports
- **p**
  - Translation port

#### Causality
Fixed force out

Sensors

**AccelerationSensor-Absolute**

**Library**
Iconic Diagrams\Mechanical\Translation\Sensors

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation), Block Diagrams.

**Description**
This model describes an acceleration sensor which derives an acceleration output out of a port velocity by differentiation. Differentiation is performed by a state variable filter:

![Diagram](image)

The S-domain function of this filter is equal to:

\[ output = \frac{s}{s + \frac{1}{f}} \cdot input \]

where \( f \) is the cut-off frequency. For very high values of \( f \), the output becomes the pure derivative of the input. High values of \( f \), however, increase simulations times. A good trade-off is a starting value of \( 1e5 \).

The equations of this model are:

\[ a = \frac{d( p.v)}{dt}; \]
\[ p.F = \text{indifferent}; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Translation port p.</td>
</tr>
</tbody>
</table>

**Causality**
fixed force out

**Output**
alpha  Acceleration $[m/s^2]$ 

**Parameters**

- $f$  Cut-off frequency of the differentiation $[Hz]$.
- $a_{\text{initial}}$  Initial acceleration $[m/s]$.

**AccelerationSensor-Relative**

**Library**
Iconic Diagrams\Mechanical\Translation\Sensors

**Use**

- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation), Block Diagrams.

**Description**

This model describes an acceleration sensor which derives an acceleration output out of a velocity difference (between high and low terminals) by differentiation. Differentiation is performed by a state variable filter:

$$a = \frac{d( p_{\text{high}}.v - p_{\text{low}}.v)}{dt};$$

$$p_{\text{low}}.F = p_{\text{high}}.F = \text{indifferent};$$

The S-domain function of this filter is equal to:

$$\text{output} = \frac{s}{s + \frac{1}{f}} \cdot \text{input}$$

where $f$ is the cut-off frequency. For very high values of $f$, the output becomes the pure derivative of the input. High values of $f$, however, increase simulations times. A good trade-off is a starting value of $1\times10^5$.

The equations of this model are:

- $a = d( p_{\text{high}}.v - p_{\text{low}}.v)/dt$;
- $p_{\text{low}}.F = p_{\text{high}}.F = \text{indifferent}$;

**Interface**

**Ports**

- $p_{\text{high}}$, $p_{\text{low}}$  Both terminals of the Translational port p.
**Causality**
fixed force out

**Output**

a Acceleration (measured as the difference between both terminals) [m/s²]

**Parameters**

f Cut-off frequency of the differentiation [Hz].

a_initial Initial acceleration [m/s].

---

**ForceSensor**

**Library**
Iconic Diagrams\Mechanical\Translation\Sensors

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation), Block Diagrams.

**Description**
This model translates an applied force to an output signal. It has a velocity out causality. The port p of the model has separate high and low terminals. The equations are:

\[
\begin{align*}
  p.F &= p_{high}.F = p_{low}.F; \\
  p.v &= p_{high}.v - p_{low}.v; \\
  F &= p.F; \\
  p.v &= 0;
\end{align*}
\]

**Interface**

**Ports**

p_high, p_low Both terminals of the Translation port p.

**Causality**
fixed velocity out

**Output**

F Applied force [N].
**PositionSensor-Absolute**

**Library**
Iconic Diagrams\Mechanical\Translation\Sensors

**Use**
Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation), Block Diagrams.

**Description**
This model translates a position to an output signal. It has a force out causality. The equations are:

\[
p.F = 0; \\
x = int(p.v);
\]

**Interface**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
</tr>
</tbody>
</table>

**Causality**
fixed force out

**Output**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
</tbody>
</table>

***Absolute position [m].***

**Initial Values**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_initial</td>
</tr>
</tbody>
</table>

**PositionSensor-Relative**

**Library**
Iconic Diagrams\Mechanical\Translation\Sensors

**Use**
Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation), Block Diagrams.

**Description**
This model translates a position difference to an output signal. It has a force out causality. The port \( p \) of the model has separate high and low terminals. The equations are:

\[
p.F = p\_high.F = p\_low.F; \\
p.v = p\_high.v - p\_low.v; \\
p.F = 0; \\
x = int(p.v);
\]
Library

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Translation port p.</td>
</tr>
</tbody>
</table>

Causality

fixed force out

Output

x Relative position [m].

Initial Values

x_initial Initial position [m].

PowerSensor

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use


Description

This is an ideal sensor (no dissipation or other effects) that yields the power that flows through the model as output signal. The equations are:

\[
\begin{align*}
p_{\text{high}}.F &= p_{\text{low}}.F \\
p_{\text{high}}.v &= p_{\text{low}}.v \\
P &= p_{\text{high}}.F \times p_{\text{high}}.v;
\end{align*}
\]

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both translation ports.</td>
</tr>
</tbody>
</table>

Causality

p_high not equal p_low

Output

P Power [w].
VelocitySensor-Absolute

Library
Iconic Diagrams\Mechanical\Translation\Sensors

Use

Description
This model translates a velocity to an output signal. It has a force out causality. The equations are:

\[
p.F = 0; \\
v = p.v;
\]

Interface

Ports Description
p Translation port p.

Causality
fixed force out

Output
v Absolute velocity [m/s].

VelocitySensor-Relative

Library
Iconic Diagrams\Mechanical\Translation\Sensors

Use

Description
This model translates a velocity difference to an output signal. It has a force out causality. The port \( p \) of the model has separate high and low terminals. The equations are:
\[ p.F = p\_high.F = p\_low.F; \]
\[ p.v = p\_high.v - p\_low.v; \]
\[ p.F = 0; \]
\[ v = p.v; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both terminals of the Translation port p.</td>
</tr>
</tbody>
</table>

**Causality**

Fixed force out

**Output**

| v              | Relative velocity [m/s]. |

**Transmission**

**BeltPulley**

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears

**Use**


**Description**

This model represents a belt and pulley. The connection to the pulley is through the rotation port \( p\_rot \). The connection to the belt is through the translation port \( p\_trans \). The model is ideal, i.e. there are no compliances or inertias. The causality of this model is always mixed: torque out & velocity out or angular velocity out & force out:

\[ p\_rot.T = radius \times p\_trans.F \]
\[ p\_trans.v = radius \times p\_rot.omega \]

or:

\[ p\_trans.F = 1/radius \times p\_rot.T \]
\[ p\_rot.omega = 1/radius \times p\_trans.v \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_rot</td>
<td>Rotation port.</td>
</tr>
</tbody>
</table>
p_trans  Translation port.

**Causality**
p_rot  notequal
p_trans

**Parameters**

radius  pulley radius [m]

---

**Cam-Wizard**

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation/Translation).

**Description**

This is a masked model which opens the Cam Wizard when edited. Depending on the selections entered, various cam motion profiles can be generated.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Driving axis (Rotation)</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port with resulting motion (Rotation or Translation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stroke</td>
<td>amplitude of resulting motion</td>
</tr>
<tr>
<td>start_angle</td>
<td>start angle motion</td>
</tr>
<tr>
<td>stop_angle</td>
<td>angle when the maximum is reached</td>
</tr>
<tr>
<td>return_angle</td>
<td>start angle of the return motion</td>
</tr>
<tr>
<td>end_angle</td>
<td>finish angle of the return motion</td>
</tr>
</tbody>
</table>

---

**CamRod**

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**

This models represents a cam and rod mechanism. If the input shaft is rotating with a constant speed, the output motion is a pure sinusoidal.
The mechanism starts with the carriage in the most left position. The arm length is half of the stroke:

\[ \text{Interface} \]

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Driving axis (Rotation)</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port with resulting motion (Translation)</td>
</tr>
</tbody>
</table>
Causality
fixed torque out
p_in
fixed velocity out
p_out

Parameters
stroke Stroke of the translation port (is equal to half the length of the rod).

CrankRod

Library
Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Description

This models represents a crank and rod mechanism. The mechanism is ideal, i.e., it does not have inertia, friction or geometrical limitations. It has one rotation port (p_in) and one translation port (p_out). The causality of this model is always mixed: one port has a force out causality while the other has a velocity out causality:

\[ p_{in}.T = i * p_{out}.F \]
\[ p_{out}.v = i * p_{in}.omega \]

The transmission ratio \( i \) is the ratio of the velocities of both ports. It is a function of the shaft angle, the crank length and the rod length.

Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_in</td>
<td>Driving axis (Rotation)</td>
</tr>
<tr>
<td>p_out</td>
<td>Output port with resulting motion (Translation)</td>
</tr>
</tbody>
</table>

Causality
fixed torque out
p_in
fixed velocity out
p_out

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crank_length</td>
<td>Crank length [m]</td>
</tr>
<tr>
<td>rod_length</td>
<td>Rod length [m]</td>
</tr>
</tbody>
</table>

**Fork**

**Library**
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**

This model is equivalent to the differential model of the Rotation library. It represents a special type of node where the forces are equal and the velocities are added:

\[
\begin{align*}
    p3.v &= p1.v + p2.v;  \\
\end{align*}
\]

This model can for example be used for actuators that generate a force difference. With the fork model an equivalent model can be found with the actuator attached to the fixed world:
### Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1, p2, p3</td>
<td>Translation ports.</td>
</tr>
</tbody>
</table>

### Lever

**Library**

Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation).

**Description**

This models represents any type of lever with two counter-moving ports. The lever is ideal, i.e., it does not have inertia, friction or geometrical limitations. The lever has one fast moving port and one slow moving port. The lever ratio is the (absolute) ratio of the velocities of both ports. The causality of this model is always mixed: one port has a force out causality while the other has an velocity out causality:

\[
p_{\text{fast}}.F = -i \times p_{\text{slow}}.F \\
p_{\text{slow}}.v = -i \times p_{\text{fast}}.v
\]

or:

\[
p_{\text{slow}}.F = -\frac{1}{i} \times p_{\text{fast}}.F \\
p_{\text{fast}}.v = -\frac{1}{i} \times p_{\text{slow}}.v
\]
Interface

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_fast</td>
<td>Fast moving translation port.</td>
</tr>
<tr>
<td>p_slow</td>
<td>Slow moving translation port.</td>
</tr>
</tbody>
</table>

Causality

p_slow notequal p_fast

Parameters

i \quad \text{lever ratio } p\text{\_slow.}v / p\text{\_fast.}v [], 0 < i < 1

Note

Keep the lever ratio $i$ between 0 and 1. Confusion might otherwise exist:

- $i > 1$: the fast moving port is slower than the slow moving port (you better interchange the connections of the lever model).
- $i < 0$: the ports are not counter-moving (use the transmission model instead).

RackPinionGear

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Implementations

FixedPinion
FixedRack

Use


Description - FixedPinion

This models represents a rack and pinion gear. The connection to the pinion gear is through the rotation port $p\text{\_rot}$. The connection to the rack is through the translation port $p\text{\_trans}$. The model is ideal, i.e. there is no compliance nor inertia nor backlash.
In this model the pinion bearing is connected to the fixed world and the rack is free to move. This in contrary to the model FixedRackPinionGear where the pinion bearing is free to move and the rack is connected to the fixed world.

The causality of this model is always mixed: torque out & velocity out or angular velocity out & force out:

\[
\begin{align*}
p_{\text{rot}}.T &= \text{radius} \times p_{\text{trans}}.F \\
p_{\text{trans}}.v &= \text{radius} \times p_{\text{rot}}.\omega
\end{align*}
\]

or:

\[
\begin{align*}
p_{\text{trans}}.F &= \frac{1}{\text{radius}} \times p_{\text{rot}}.T \\
p_{\text{rot}}.\omega &= \frac{1}{\text{radius}} \times p_{\text{trans}}.v
\end{align*}
\]

The rack position is determined by the internal variable \(x\). For \(x = 0\), the pinion gear is at the middle of the rack. When the pinion crosses the end of the rack, i.e.

\[\text{abs}(x) > \text{rack\_length}/2\]

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion gear!", and the simulation is stopped.

**Interface - FixedPinion**

**Ports**

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{\text{rot}})</td>
<td>Rotation port.</td>
</tr>
<tr>
<td>(p_{\text{trans}})</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

\(p_{\text{rot}}\) notequal \(p_{\text{trans}}\)

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{radius})</td>
<td>pinion gear pitch radius [m]</td>
</tr>
<tr>
<td>(\text{rack_length})</td>
<td>rack length [m]</td>
</tr>
</tbody>
</table>

**Variables**
x Internal variable which denotes the rack position, abs(x) < rack_length/2 else simulation halted.

**Initial values**

x_initial Initial rack position, abs(x_initial) < rack_length/2

**Description - FixedRack**

This models represents a fixed rack and pinion gear. The connection to the pinion gear is through the rotation port \( p_rot \). The connection to the rack is through the translation port \( p_trans \). The model is ideal, i.e. there is no compliance nor inertia nor backlash.

In this model the pinion bearing is free to move and the rack is connected to the fixed world. This in contrary to the model RackPinionGear where the pinion bearing is connected to the fixed world and the rack is free to move.

The causality of this model is always mixed: torque out & velocity out or angular velocity out & force out:

\[
\begin{align*}
p_rot.T &= radius \times p_trans.F \\
p_trans.v &= radius \times p_rot.omega
\end{align*}
\]

or:

\[
\begin{align*}
p_trans.F &= 1/radius \times p_rot.T \\
p_rot.omega &= 1/radius \times p_trans.v
\end{align*}
\]

The rack position is determined by the internal variable \( x \). For \( x = 0 \) the pinion gear is at the middle of the rack. When the pinion crosses the end of the rack, i.e.

\[
abs(x) > rack_length/2
\]

a warning is given, "**WARNING: rack length has been exceeded at the rack and pinion gear!**", and the simulation is stopped.
**Interface - FixedRack**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_rot</td>
<td>Rotation port.</td>
</tr>
<tr>
<td>p_trans</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>

**Causality**

- p_rot notequal
- p_trans

**Parameters**

- radius: pinion gear pitch radius [m]
- rack_length: rack length [m]

**Variables**

- x: Internal variable which denotes the rack position, abs(x) < rack_length/2 else simulation halted.

**Initial values**

- x_initial: Initial rack position, abs(x_initial) < rack_length/2

---

**Spindle**

**Library**

- Iconic Diagrams\Mechanical\Rotation\Gears
- Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

- **Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation).

**Introduction**

This model represents a spindle and nut. It transfers an angular motion of the spindle into a translational motion of the nut. The model is ideal, i.e., it does not have inertia or friction. The causality of this model is always mixed: one port has a torque out causality while the other has an angular velocity out causality:

\[
p_{\text{spindle}}.T = i \times p_{\text{nut}}.F
\]

\[
p_{\text{nut}}.v = i \times p_{\text{spindle}}.\omega
\]

or:

\[
p_{\text{nut}}.F = \frac{1}{i} \times p_{\text{spindle}}.T
\]

\[
p_{\text{spindle}}.\omega = \frac{1}{i} \times p_{\text{nut}}.v
\]

The model has two implementations which calculate the transform ratio \(i\) out of different parameters.
Description - Pitch
In this implementation the transform ratio is calculated using the pitch (the advance of the nut during one revolution of the spindle):

\[ i = \text{pitch} / (2 * \pi); \]

Interface - Pitch

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_spindle</td>
<td>Port at the spindle shaft (Rotation).</td>
</tr>
<tr>
<td>p_nut</td>
<td>Port at the wheel (Translation).</td>
</tr>
</tbody>
</table>

Causality
p_spindle
notequal p_nut

Parameters
pitch translation of the nut during one revolution of the spindle [m]

Description - LeadAngle
This implementation calculates the transform ratio out of the lead angle alpha and the radius r_spindle of the spindle:

\[ i = \tan(\alpha) \times r_{spindle}; \]

The pitch angle is shown in the figure below. r_spindle is the effective radius of the spindle, i.e. the radius from the center of the spindle to the pitch point p.

Interface - LeadAngle

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_spindle</td>
<td>Port at the spindle shaft (Rotation).</td>
</tr>
<tr>
<td>p_nut</td>
<td>Port at the wheel (Translation).</td>
</tr>
</tbody>
</table>
**Causality**

\[ p_{\text{spindle}} \text{ notequal } p_{\text{nut}} \]

**Parameters**

\[ r_{\text{spindle}} \quad \text{effective radius of the spindle [m]} \]
\[ \alpha \quad \text{lead angle of the spindle [rad]} \]

---

**TimingBelt**

**Library**

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Rotation/Translation).

**Introduction**

This models represents a timing belt, used for linear positioning.

It has a rotating pulley which drives the the belt and clamp. The timing belt is modeled by a series of spring damper elements that convey the rotation of the pulley to a clamp translation. Because the output position is moving, stiffness and damping values are not constant.

The stiffness for a piece of belt can be expressed as:

\[ k = \frac{E \cdot A}{l} \]
If the belt is sufficiently pre-tensioned, the stiffness experienced at the clamp can be expressed as the combination of three individual belt parts:

\[ k = \frac{E \cdot A}{0.5 \cdot l + x} + \frac{1}{\frac{1}{\frac{E \cdot A}{0.5 \cdot l - x}} + \frac{1}{\frac{E \cdot A}{l}}} \]

which can be rewritten to:

\[ k = \frac{E \cdot A}{0.5 \cdot l + x} + \frac{1}{\frac{1}{1.5 \cdot l - x}} \]

The stiffness approaches infinity as the clamp moves to the driven pulley (\( x = -l/2 \)) and has a minimum value when the clamp moves to the other pulley (\( x = 0.5 \cdot l \)). The minimum stiffness is equal to:

\[ k = \frac{2 \cdot E \cdot A}{l} \]

The belt position is determined by the internal variable \( x \). For \( x = 0 \) the clamp is in the middle. When the position crosses the driven pulley, i.e.

\[ x < -\frac{\text{belt_length}}{2} \]

the simulation is stopped: "Error: clamp position larger than belt end!". When the position crosses the other pulley, i.e.

\[ x > \frac{\text{belt_length}}{2} \]

the simulation is also stopped, "Error: clamp position smaller than belt start!".

**Description - Default**

In this model the minimum stiffness is used, based on an output position at a length \( L \) of the driven pulley.

\[ k = \frac{2 \cdot E \cdot A}{l} \]

**Description - VariableStiffness**

In this model a variable stiffness is used equal to:

\[ k = E \cdot A \left( \frac{1}{0.5 \cdot l + x} + \frac{1}{1.5 \cdot l - x} \right) \]

Take care not to let the clamp get too close to the driven pulley, because the stiffness will then grow to infinity!

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_rot</td>
<td>Rotation port.</td>
</tr>
<tr>
<td>p_trans</td>
<td>Translation port.</td>
</tr>
</tbody>
</table>
**Causality**

\[ p\_rot \quad \text{notequal} \quad p\_trans \]

**Parameters**

- `radius`: Pinion gear pitch radius [m]
- `d`: Damping N.s/m
- `E`: Modulus of elasticity [N/m²]
- `A`: \( A = \) Belt area [m²]
- `l`: Belt length [m]

**Variables**

- `x`: Clamp position, \( \text{abs}(x) < \text{belt length}/2 \)

**Initial values**

- `x\_initial`: Initial clamp position, \( \text{abs}(x\_initial) < \text{belt length}/2 \)

**Transmission**

**Library**

Iconic Diagrams\Mechanical\Translation\Transmission

**Use**


**Description**

This model represents any type of lever with ports moving in the same direction. The lever is ideal, i.e., it does not have inertia, friction or geometrical limitations. The lever has one fast moving port and one slow moving port. The transmission ratio is the ratio of the velocities of both ports. The causality of this model is always mixed: one port has a force out causality while the other has an velocity out causality:

\[
\begin{align*}
p\_fast.F &= i \times p\_slow.F \\
p\_slow.v &= i \times p\_fast.v \\
or: \\
p\_slow.F &= 1/i \times p\_fast.F \\
p\_fast.v &= 1/i \times p\_slow.v
\end{align*}
\]

**Interface**

**Ports**

| Description |
p_fast  Fast moving rotation port.
p_slow  Slow moving rotation port.

**Causality**
p_slow  notequal
p_fast

**Parameters**
i  transmission ratio p_slow.v / p_fast.v [], 0 < i < 1

**Note**
Keep the transmission ratio i between 0 and 1. Confusion might otherwise exist:
- **i > 1**: the fast moving port is slower than the slow moving port (you better interchange the connections of the transmission model).
- **i < 0**: the ports are counter-moving (use the lever model instead).

**UniversalLever**

**Library**
Iconic Diagrams\Mechanical\Translation\Transmission

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Translation).

**Description**
This model represents an ideal transmission with a free pivot point. The relations are:

\[
p3.v = (i/(1+i))*p1.v + (1/(1+i))*p2.v;
p2.F = (i/(1+i))*p3.F;
p1.F = (i/(1+i))*p3.F;
\]

**Ground**
Although each of the three ports may be connected to the ground, it is more efficient to use other models. When p1 or p2 is connected to the ground, this model is equal to the Transmission.emx model. When p3 is connected to the ground, this model is equal to the Lever.emx model.
10.2.5 Thermal

Thermal

The Thermal library contains components which are very useful for modeling thermal systems. The following libraries are available.

- Components
- Generators
- Sensors

Note

- For domains that have port variables that do no multiply to power the name pseudo is used. This model has pseudo thermal ports. The port variables of a pseudo thermal port are the heat flow, p.dQ [W], and the temperature, p.T [K], which do not multiply to power.
- The base unit of temperature is degrees Kelvin. You can select degrees Celsius in the Parameters Editor or Variables Chooser desired. 20-sim will take care that internally always SI units (Kelvin) are used for calculations.
Components

Convection

Library

Iconic Diagrams\Mechanical\Thermal\Components

Use


Description

This model describes linear heat convection between a material surface and gas or fluid flow. The basic equation is:

\[ p \cdot dQ = (p1.T - p2.T) \cdot Gc; \]

where \( p1.T \) is the temperature at the surface and \( p2.T \) the gas or fluid temperature. \( Gr \) is the thermal conductance which is function of the surface area \( A \) and the convection coefficient \( h \):

\[ Gr = A \cdot h; \]

In most cases \( h \) is not constant but a non-analytical function of the gas or fluid speed and other properties. In most cases \( Gr \) is experimentally defined. Therefore \( G \) is given as an input signal.

Interface

Ports

<table>
<thead>
<tr>
<th>Description</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material port</td>
<td>p1</td>
</tr>
<tr>
<td>Fluid port</td>
<td>p2</td>
</tr>
</tbody>
</table>

Causality

indifferent

Input

\( G \) 

thermal conductance [W/K]

Ground

Library

Iconic Diagrams\Mechanical\Thermal\Components
Use


Description

This is a general model for the heat storage that is so large that is can be considered constant (e.g. the environment). It is comparable to the ground in the electrical domain.

\[ T0 = 25 \, \text{degC}; \]
\[ p.T = T0; \]

Interface

Ports

| p[any]     | Any number of connections can be made (pseudothermal). |

Causality

fixed temperature out

An torque out causality results in a derivative constitutive equation.

Parameters

| T0       | temperature [K] |

HeatCapacity

Library

Iconic Diagrams\Mechanical\Thermal\Components

Use


Description

This is a general model for the heat storage in a specific material. A constant temperature distribution in the material is assumed and a constant heat capacity:

\[ E = \int(p.dQ) + C*T0; \]
\[ p.T = E/C; \]

\( T0 \) is the initial temperature of the material, \( E \) the internal energy \( \{J\} \) and \( C \) the thermal capacity \( \{J/K\} \). Because any number of connections can be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting heat flow \( p.dQ \) is equal to the sum of the heatflows of all connected ports p1 .. pn. The temperatures of all connected ports are equal to element temperature \( p.T \).

\[ p.dQ = \sum(p1.dQ, p2.dQ, ....) \]
\[ p.T = p1.T = p2.T = .... \]
The thermal capacity can be calculated with the specific heat capacity $c_p$ and material mass $m$:

$$C = c_p \times m;$$

Typical values for $c_p$ are:

- water: 4186
- granite: 790
- glass: 840
- aluminium: 900
- concrete: 840?
- copper: 387
- silver: 235
- iron / steel: 452
- wood: 1674
- air (50 °C): 1046

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[any]</td>
<td>Any number of connections can be made (pseudothermal).</td>
</tr>
</tbody>
</table>

**Causality**

- preferred temperature out: An torque out causality results in a derivative constitutive equation.

**Variables**

- $E$: internal energy [J]

**Parameters**

- $C$: thermal capacity [J/K]
- $T0$: initial temperature [K]

**Radiation**

**Library**

Iconic Diagrams\Mechanical\Thermal\Components
Use
Domains: Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Pseudothermal).

**Description**
This model describes the heat transfer between to bodies through radiation:

\[ p.dQ = G_r * \sigma * (p1.T^4 - p2.T^4); \]

where \( p1.T \) and \( p2.T \) are the temperatures of the body surfaces and \( \sigma \) is the Stefan-Boltzmann constant. For simple cases, \( G_r \) may be analytically computed. The analytical equations use \( \epsilon \), the surface emissivity of a body which is in the range 0..1. \( \epsilon = 1 \), if the body absorbs all radiation (= black body). \( \epsilon = 0 \), if the body reflects all radiation and does not absorb any.

Typical values for \( \epsilon \) are:

<table>
<thead>
<tr>
<th>Material</th>
<th>( \epsilon )</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium, polished</td>
<td>0.04</td>
</tr>
<tr>
<td>copper, polished</td>
<td>0.04</td>
</tr>
<tr>
<td>gold, polished</td>
<td>0.02</td>
</tr>
<tr>
<td>paper</td>
<td>0.09</td>
</tr>
<tr>
<td>rubber</td>
<td>0.95</td>
</tr>
<tr>
<td>wood</td>
<td>0.85..0.9</td>
</tr>
</tbody>
</table>

**Analytical Equations for \( G_r \)**

Small convex object in large enclosure (e.g., a hot machine in a room):

\[ G_r = \epsilon A; \]

where
- \( \epsilon \): Emission value of object (0..1)
- \( A \): Surface area of object where radiation heat transfer takes place

Two parallel plates:

\[ G_r = \frac{A}{1/\epsilon_1 + 1/\epsilon_2 - 1}; \]

where
- \( \epsilon_1 \): Emission value of plate1 (0..1)
- \( \epsilon_2 \): Emission value of plate2 (0..1)
- \( A \): Area of plate1 (= area of plate2)

**Interface**

<table>
<thead>
<tr>
<th><strong>Ports</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>Material port</td>
</tr>
<tr>
<td>p2</td>
<td>Fluid port</td>
</tr>
</tbody>
</table>

**Causality**
indifferent
**Input**

G  
thermal conductance [W/K]

**ThermalConductance**

**Library**
Iconic Diagrams\Mechanical\Thermal\Components

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Pseuothermal).

**Description**
When a temperature difference exists in a material, heat will flow from the high temperature part to the low temperature part. This model describes the transport of heat through a block of material with a temperature difference on both sides of the block. The heat conducting capacity of the material is indicated by the parameter $G$ (thermal conductance):

$$p.dQ = p.T*G;$$

This model is the dual form of the thermal resistor where the insulation capacity of the block is indicated by the parameter $R$ (thermal resistance):

$$p.dQ = p.T/R;$$

The heat flow through the material is ideal. I.e. there is no heat storage modeled. The thermal resistance model has separate high and low ports. The equations are

$$p.dQ = p_{high}.dQ = p_{low}.dQ$$
$$p.T = p_{high}.T - p_{low}.T$$

**Block**
The thermal conductance of a block can be calculated with the specific thermal conductivity $k$, the length $L$ of the block, and the area $A$ of both sides of the block:

$$G = k*A/L$$

Typical values of the thermal conductivity [W.m-1.K-1] are:

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>0.6</td>
</tr>
<tr>
<td>granite</td>
<td>2.1</td>
</tr>
<tr>
<td>glass</td>
<td>1.0</td>
</tr>
<tr>
<td>aluminium</td>
<td>210</td>
</tr>
<tr>
<td>concrete</td>
<td>1.28</td>
</tr>
<tr>
<td>copper</td>
<td>390</td>
</tr>
<tr>
<td>silver</td>
<td>430</td>
</tr>
<tr>
<td>iron / steel</td>
<td>40-70</td>
</tr>
</tbody>
</table>
when a temperature difference exists in a material, heat will flow from the high temperature part to the low temperature part. this model describes the transport of heat through a block of material with a temperature difference on both sides of the block. the insulation capacity of the block is indicated by the parameter $R$ (thermal resistance):

$$ p.dQ = p.T/R; $$

this model is the dual form of the thermal conductor where the heat conducting capacity of the material is indicated by the parameter $G$ (thermal conductance):

$$ p.dQ = p.T*G; $$

the heat flow through the material is ideal. i.e. there is no heat storage modeled. the thermal resistance model has separate high and low ports. the equations are

$$ p.dQ = p\_high.dQ = p\_low.dQ$$
$$ p.T = p\_high.T - p\_low.T $$

**Block**

the thermal resistance of a block can be calculated with the specific thermal conductivity $k$, the length $L$ of the block, and the area $A$ of both sides of the block:

$$ R = \frac{kA}{L} $$

<table>
<thead>
<tr>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ports</strong></td>
</tr>
<tr>
<td>p_high, p_low</td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>Both terminals of the pseudothermal port p</td>
</tr>
<tr>
<td><strong>Causality</strong></td>
</tr>
<tr>
<td>indifferent</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>thermal conductance [W/K]</td>
</tr>
</tbody>
</table>

**Library**

Iconic Diagrams\Mechanical\Thermal\Components

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Pseudothermal).

**Description**

The thermal resistance of a block can be calculated with the specific thermal conductivity $k$, the length $L$ of the block, and the area $A$ of both sides of the block:

$$ R = \frac{kA}{L} $$

| wood | 0.13 |
| air | 0.026 |
\[ R = \frac{L}{k \cdot A} \]

Typical values of the thermal conductivity [W.m⁻¹.K⁻¹] are:

- Water: 0.6
- Granite: 2.1
- Glass: 1.0
- Aluminium: 210
- Concrete: 1.28
- Copper: 390
- Silver: 430
- Iron / Steel: 40-70
- Wood: 0.13
- Air: 0.026

**Interface**

**Ports**
- p_high, p_low

**Description**
Both terminals of the pseudothermal port p

**Causality**
indifferent

**Parameters**
- R
  thermal resistance [K/W]

**Generators**

**HeatFlow**

**Library**
Iconic Diagrams\Mechanical\Thermal\Generators

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Pseudothermal).

**Description**
This model yields a heat flow that is set to a constant value. The temperature is indifferent. The model can represent any heat generating object with a constant heat flow.

**Interface**

**Ports**
- p

**Description**

Both terminals of the pseudothermal port p
**Causality**
fixed heat flow out

**Parameters**
dQ Heat flow [J/s]

**ModulatedHeatFlow**

**Library**
Iconic Diagrams\Mechanical\Thermal\Generators

**Use**

**Description**
This model yields a heat flow that is equal to a (fluctuating) value given by the input signal \( dQ \). The temperature is indifferent. The model can represent any heat generating object with a fluctuating heat flow.

**Interface**

**Ports**

p

**Causality**
fixed heat flow out

**Parameters**
dQ Heat flow [J/s]

**ModulatedTemperatureSource**

**Library**
Iconic Diagrams\Mechanical\Thermal\Generators

**Use**

**Description**
This model has a temperature that is equal to a (fluctuating) value given by the input signal \( T \). The heat flow is indifferent. This model can represent an object that has a heat capacity which is so much larger than the rest of the system, that its temperature can be seen as an independant variable.
Resistor

Library
Iconic Diagrams\Thermal\Generators\Generators

Use

Description
This is a model of a resistor with a temperature coefficient. The resistance and voltage equation can be written as:

\[ R = R_{\text{ref}}(1 + \alpha(p_{\text{th}.T} - T_{\text{ref}})); \]
\[ p_{\text{el}.u} = p_{\text{el}.i} \cdot R; \]

where \( R_{\text{ref}} \) is the reference resistance at reference temperature \( T_{\text{ref}} \) and \( \alpha \) the temperature coefficient of resistance. The actual temperature of the resistor is given by the pseudothermal port of the model, \( p_{\text{el}.T} \). The heat generated by the resistor is equal to

\[ p_{\text{th}.dQ} = p_{\text{el}.u} \cdot p_{\text{el}.i}; \]

The electrical port \( p \) of the resistor model has separate high and low terminals. The equations are:

\[ p_{\text{el}.i} = p_{\text{high}.el.i} = p_{\text{low}.el.i}; \]
\[ p_{\text{el}.u} = p_{\text{el.high}.u} - p_{\text{el.low}.u}; \]

Interface

Ports         Description
p_el_high    Both terminals of the Electric port.
p_el_low     The pseudothermal port
p_th         indifferent p_el
TemperatureSource

Library

Iconic Diagrams\Mechanical\Thermal\Generators

Use

Description
This model has a temperature that is set to a certain constant value. The heat flow is indifferent. The model can represent a piece of material which is so large that its temperature variation is neglectable (e.g. the environment) and thus can be seen as an ideal temperature source

Interface

Ports                                         Description
p

Causality                                    fixed temperature out

Parameters
T  Fixed temperature [K]

Thermistor

Library

Iconic Diagrams\Thermal\Generators

Use

Description
This is a model of a linear thermistor. Thermistors are thermally sensitive resistors and have, according to type, a negative (NTC), or positive (PTC) resistance/temperature coefficient. For linear thermistors the resistance and voltage equation can be written as:
\[ R = R_{\text{ref}}(1 + \alpha(p_{\text{th}.T} - T_{\text{ref}})); \]
\[ p_{\text{el}.u} = p_{\text{el}.i} \times R; \]

where \( R_{\text{ref}} \) is the reference resistance at reference temperature \( T_{\text{ref}} \) and \( \alpha \) the temperature coefficient of resistance. The actual temperature of the thermistor is given by the pseudothermal port of the model, \( p_{\text{el}.T} \). The heat generated by the thermistor is equal to

\[ p_{\text{th}.dQ} = p_{\text{el}.u} \times p_{\text{el}.i}; \]

The electrical port \( p \) of the thermistor model has separate high and low terminals. The equations are:

\[ p_{\text{el}.i} = p_{\text{high}_\text{el}.i} = p_{\text{low}_\text{el}.i}; \]
\[ p_{\text{el}.u} = p_{\text{el}_\text{high}.u} - p_{\text{el}_\text{low}.u}; \]

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_{\text{el}_\text{high}} )</td>
<td>Both terminals of the Electric port.</td>
</tr>
<tr>
<td>( p_{\text{el}_\text{low}} )</td>
<td></td>
</tr>
<tr>
<td>( p_{\text{th}} )</td>
<td>The pseudothermal port</td>
</tr>
</tbody>
</table>

**Causality**

indifferent \( p_{\text{el}} \)
fixed heat flow
out \( p_{\text{th}} \)

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R_{\text{ref}} )</td>
<td>Reference resistance [Ohm].</td>
</tr>
<tr>
<td>( T_{\text{ref}} )</td>
<td>Reference temperature [K].</td>
</tr>
<tr>
<td>( \alpha )</td>
<td>Temperature coefficient of the resistance []</td>
</tr>
</tbody>
</table>

**Sensors**

HeatFlowSensor

**Library**

Iconic Diagrams\Mechanical\Thermal

**Use**

**Description**

This is a model of an ideal heat flow sensor with an output signal $dQ$ that is equal to the measured heat flow. The sensor is ideal which means that it does not store, loses or adds heat.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_high, p_low</td>
<td>Both ports of the sensor</td>
</tr>
</tbody>
</table>

**Causality**

p_high not equal p_low

**Parameters**

dQ | Measured heat flow [J/s]

---

**TemperatureSensor**

**Library**

Iconic Diagrams\Mechanical\Thermal

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Pseudothermal).

**Description**

This is a model of an ideal temperature sensor with an output signal $T$ that is equal to the measured temperature. The heat flow into the model is zero to assure zero power loss.

**Interface**

<table>
<thead>
<tr>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

**Causality**

fixed heat flow out

**Parameters**

T | Measured temperature [K]
10.3 Signal

10.3.1 Block Diagram

**Attenuate**

**Library**
Signal\Block Diagram

**Use**
Domains: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This model divides an input signal by a constant value.
\[ \text{output} = \frac{\text{input}}{K} \]

**Interface**

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>input</td>
<td>output</td>
<td>K</td>
</tr>
</tbody>
</table>

**Delay-Pade**

**Library**
Signal\Block Diagram

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This model delays the input signal by "T" seconds using a 4th order Pade approximation. The model is linear which means that it can be used in models that should be linearized.

**Interface**

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>input</td>
<td>output</td>
<td>T</td>
</tr>
</tbody>
</table>

\[ \text{Delay time.} \]
Delay-Step

Library
Signal\Block Diagram
Use
Description
This model delays its input signal one simulation step.

\[ \text{output} = \text{initial}; \ (\text{time} = 0) \]
\[ \text{output} = \text{inp}(\text{time} - \text{hk}); \ (\text{time} > 0) \]

where \( \text{hk} \) = simulation step size.

Note
To correctly use models with constant delays, simulation runs must be performed using integration algorithms with a constant time-step. Otherwise the model Delay-Time.emx should be used!

Interface

Inputs
input

Outputs
output

Parameters
initial
The initial output value.

Note
- To correctly use models with constant delays, simulation runs must be performed using integration algorithms with a constant time-step. Otherwise the model Delay-Time.emx should be used!
- The delay-step.emx submodel is non-linear: i.e. models which include the delay-step.emx submodel cannot be linearized. Use the linear time delay Delay-Pade.emx if you want to perform linearization.

Delay-Time

Library
Signal\Block Diagram
Use
Description
This model stores the input signal and corresponding time in a buffer. After "delay" seconds the stored values are retrieved. When the simulation time step does not coincide with the delay time "delay", the output is calculated by first order interpolation.

\[
\begin{align*}
\text{output} &= \text{initial}; \quad (\text{time} < \text{delay}) \\
\text{output} &= \text{input}(\text{time} - \text{delay}); \quad (\text{time} \geq \text{delay}) \\
\text{output} &= \text{input}(\text{time}); \quad (\text{delay} < 0)
\end{align*}
\]

Interface

Inputs
input

Outputs
output

Parameters

initial The initial output value.
delay Delay time.

Delay-VariableTime

Library
Signal\Block Diagram

Use

Description
This model stores the input signal and corresponding time in a buffer. After "delay" seconds the stored values are retrieved. This delay is a variable input signal. When the simulation time step does not coincide with the delay time "delay", the output is calculated by first order interpolation.

\[
\begin{align*}
\text{output} &= \text{initial}; \quad (\text{time} < \text{delay}) \\
\text{output} &= \text{input}(\text{time} - \text{delay}); \quad (\text{time} \geq \text{delay}) \\
\text{output} &= \text{input}(\text{time}); \quad (\text{delay} < 0)
\end{align*}
\]

Interface

Inputs
input

Outputs
output

Parameters

initial The initial output value.
delay Delay time.
Note

- The maximum storage capacity of the buffer is 58254 input values. When many input values are stored the simulation speed may slow down considerably!
- The delay-variabletime.emx submodel is non-linear: i.e. models which include the delay-variabletime.emx submodel cannot be linearized. Use the linear time delay Delay-Pade.emx if you want to perform linearization.

Demux

Library
Signal\Block Diagram

Use

Description
You can use the Mux model to combine multiple input signals into one multi-dimensional signal. This model can be used to spit the multi-dimensional signal again into single signals.

Interface

Inputs
inputs

Description
Default 2 signals can be connected. Use the right mouse menu and choose Edit Implementation to change the number of signals.

Outputs
output[any]

The output signal size is equal to the number of inputs.
### Differentiate-Calculus

**Library**
Signal\Block Diagram

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
This model approximates the differentiation of an input signal by the equation:

\[
y = \frac{2}{3} \cdot \frac{u(t) - u(t-h)}{h} + \frac{1}{3} \cdot y(t-h)
\]

where \( h_k \) = simulation step size. The initial value of the output is equal to the parameter "initial". When the simulation step size is zero (time event, state event) the output value will be equal to the previous output value (the simulation step size part is not calculated to prevent a division by zero).

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>The initial value of the output.</td>
</tr>
</tbody>
</table>

### Differentiate-FO

**Library**
Signal\Block Diagram

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
This model is a first order approximation of a differentiation. The transfer function is:

\[
Y(s) = kd \cdot \frac{2 \cdot \pi \cdot f_h \cdot s}{s + 2 \cdot \pi \cdot f_h} \cdot U(s)
\]

As shown in the figure below, the model behaves as a differentiator for frequencies below \( f_l \).
Interface

Inputs
- input

Outputs
- output

Parameters
- \( kd \)
  Differentiation gain \([\text{ }]\)
- \( fl \)
  Differentiation limit \([\text{Hz}]\)

Initial Values
- output_initial
  The initial value of the integral.

Differentiate-SVF

Library
Signal\Block Diagram

Use

Description
This model approximates the differentiation of an input with a state variable filter:
As can be seen, no differentiation is used in this model and consequently all integration algorithms can be used. In the S-domain the output of this model is equal to:

\[ output = \frac{s}{s + 1} \cdot \text{input} \]

For very high values of N, the output becomes the pure derivative of the input. High values of N, however, increase simulations times. A good trade-off is a starting value of 10. If more accuracy is needed, this value can be increased.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Derivative Gain Limitation.</td>
</tr>
<tr>
<td>initial</td>
<td>The initial value of the output.</td>
</tr>
</tbody>
</table>

**Library**

**Signal\Block Diagram**

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This model differentiates an input signal. The initial value of the output is equal to the parameter "initial".

\[ output = ddt(input,initial); \]

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
</table>
output

**Parameters**

**initial**

The initial value of the output.

---

**Filter**

**Library**

Signal\Block Diagram

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

When you select this model and click Go Down a special editor opens (Filter Editor), allowing you to choose a filter:

![Filter Editor](image)

**Interface**

**Inputs**

input

**Outputs**

output

**Initial Values**

The model has internal states that are not accessible.

**Parameters**

Parameters are entered by the Filter Editor.
Gain

Library
Signal\Block Diagram
Use
Description
This model multiplies an input signal with a constant value.
\[ output = K \cdot input \]

Interface

Inputs	Description
input   |

Outputs	Description
output  |

Parameters	Description
K         | Gain

Integrate-ExpWindow

Library
Signal\Block Diagram
Use
Description
This model integrates an input signal over an exponential window with time constant \( T0 \) [s].

\[ output(t) = \int_0^t input(\tau) \cdot e^{(t-\tau)/T0} d\tau \]

The model behaves as a signal averager, with an effective window of \( T0 \) [s].

Interface

Inputs	Description
input   |
**Outputs**
output

**Initial Values**
state(0) The initial value of the integral.

**Parameters**
T0 Window constant [s].

---

**Integrate-FO**

**Library**
Signal\Block Diagram

**Use**

**Description**
This model is a first order approximation of an integration. The transfer function is:

\[ Y(s) = \frac{kI}{2 \cdot \pi \cdot f_l + s} \cdot U(s) \]

As shown in the figure below, the model behaves as an integrator for frequencies above the \( f_l \).
**Interface**

**Inputs**
- input

**Outputs**
- output

**Parameters**
- ki: Integration gain [\( \text{m} \)]
- fl: Integration limit [Hz]
- output_initial: Initial value.

---

**Integrate-FOLimited**

**Library**
- Signal\Block Diagram

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**

This model is a first order approximation of an integration with an output value limited to a minimum and maximum value. The model checks the output value to see if the maximum of minimum values have been crossed. If so the input value is set to zero to prevent the integral from winding-up. Between the bounds the transfer function is:
As shown in the figure below, the model behaves as an integrator for frequencies above the $f_l$.

\[
Y(s) = \frac{ki}{2\pi f_l + s} U(s)
\]

**Interface**

**Inputs**
- input

**Outputs**
- output

**Parameters**
- $ki$  
  Integration gain $[\,]$  
- $f_l$  
  Integration limit $[\,Hz]$  
- output_initial  
  Initial value.  
- maximum  
  Maximum output value  
- minimum  
  Minimum output value
**Integrate-Limited**

**Library**
Signal\Block Diagram

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
This model integrates an input signal. The output of this integral is limited between a maximum and minimum bound. If the integral is in saturated condition and the input changes sign, the output wanders away from the bounds immediately.

\[ output = \text{int}(inp) + \text{state}(0); (\text{minimum} \leq output \leq \text{maximum}) \]

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state(0)</td>
<td>The initial value of the integral.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>Minimum output value.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum output value.</td>
</tr>
</tbody>
</table>

**Integrate-RectWindow**

**Library**
Signal\Block Diagram

**Use**
**Domains:** Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
This model integrates an input signal over a limited time interval which is T0 [s] wide.

\[ output = \int_{t-T_0}^{t} \text{input} \cdot dt \]

The model behaves as a signal averager, with a rectangular window of T0 [s].
**Interface**

**Inputs**
- input

**Outputs**
- output

**Initial Values**
- state(0): The initial value of the integral.

**Parameters**
- T0: Integration interval.

**Integrate-Reset**

**Library**
Signal\Block Diagram

**Use**
- **Domains:** Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description-Default**
This model integrates an input signal. The output of this integral may be reset to any desired value each time the reset signal is unequal to zero.

\[
\text{output} = \text{int}(\text{inp}) + \text{state}(0); \ (\text{reset} = 0) \\
\text{output} = \text{reset to newoutput}; \ (\text{reset} <> 0)
\]

This implementation uses a normal integrator. That is why the model will also work when c-code is generated.

**Interface-Default**

**Inputs**
- input
- reset
- newoutput

**Outputs**
- output

**Initial Values**
- state(0): The initial value of the integral.

**Description-Pure**
This model integrates an input signal. The output of this integral may be reset to any desired value each time the reset signal is unequal to zero.
This implementation uses the function `resint`. This function forces the integration method with a state event to search for the exact time where the integral is reset. The result is more accurate than the Default implementation, but this implementation will not work when c-code is generated.

**Interface-Pure**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input signal</td>
</tr>
<tr>
<td>reset</td>
<td>When reset &lt;&gt; 0, the output changes to newoutput. New output.</td>
</tr>
<tr>
<td>newoutput</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>output</th>
<th></th>
</tr>
</thead>
</table>

**Initial Values**

| state(0)    | The initial value of the integral.   |

**Integrate**

**Library**

Signal\Block Diagram

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This model integrates an input signal:

\[
output = \text{int}(\text{input}) + \text{state}(0)
\]

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>output</th>
<th></th>
</tr>
</thead>
</table>

**Initial Values**

| state(0)    | The initial value of the integral.   |
**Inverse**

Library
Signal\Block Diagram

Use

Description
This model yields the inverse of the input signal.

\[ output = \frac{1}{input} \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Linear System**

Library
Signal\Block Diagram

Use

Description
When you select this model and click Go Down a special editor opens (Linear System Editor), allowing you to enter a linear system in State Space form, as a Transfer Function or by adding poles and zeros:
Interface

**Inputs**
- input

**Outputs**
- output

**Initial Values**
- The model has internal states that are not accessible.

**Parameters**
- Parameters are entered by the Linear System Editor.
MultiplyDivide

Library
Signal\Block Diagram , System

Use
Domains: Continuous, Discrete. Size: \([n,m]\). Kind: Block Diagrams.

Description
This model yields a multiplication and/or division of one or more input signals. While connecting input signals, 20-sim will ask whether the signals should be multiplied or divided. The signals may have either size, but the size of all connected signals should be equal.

For example the MultiplyDivide model can have 2 signals connected that are multiplied and 2 signals that must be divided. 20-sim treats them as an array multiply and an array divide with:

\[
\text{multiply} = [\text{multiply1};\text{multiply2}];
\]

and

\[
\text{divide} = [\text{divide1};\text{divide2}];
\]

The output will then be equal to:

\[
\text{output} = (\text{multiply1} \times \text{multiply2}) / (\text{divide1} \times \text{divide2});
\]

Interface

Inputs
multiply[any] Division [any]
divide[any]

Description
Any number of input signals (each of the same size) may be connected to be multiplied (multiply) or divided (divide).

Outputs
output

Limitations
The signals connected to this model should all have the same size.
**Mux**

**Library**
Signal\Block Diagram

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
You can use this model to combine multiple input signals into one multi-dimensional signal. The Demux model can be used to spit the multi-dimensional signal again into single signals.

![Mux Diagram]

**Interface**

**Inputs**
- **Description**
  Default 2 signals can be connected. Use the right mouse menu and choose *Edit Implementation* to change the number of signals.

**Outputs**
- **output[any]**
  The output signal size is equal to the number of inputs.

**Negate**

**Library**
Signal\Block Diagram

**Use**
**Domains**: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This model yields the negative of the input signal.
output = -input

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

PlusMinus

Library
Signal\Block Diagram , System

Use
Domains: Continuous, Discrete. Size: [n,m]. Kind: Block Diagrams.

Description
This model yields a subtraction and/or summation of one or more input signals. While connecting input signals, 20-sim will ask whether the signals should be added or subtracted. The signals may have either size, but the size of all connected signals should be equal.

For example the PlusMinus model can have 2 signals connected that are added and 2 signals that must be subtracted. 20-sim treats them as an array plus and an array minus with:

\[
\text{plus} = [\text{plus1}; \text{plus2}];
\]

and

\[
\text{minus} = [\text{minus1}; \text{minus2}];
\]

The output will then be equal to:
output = plus1 + plus2 - minus1 - minus2;

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plus[any]</td>
</tr>
<tr>
<td>minus[any]</td>
</tr>
</tbody>
</table>

**Outputs**

| output |

**Limitations**

The signals connected to this model should all have the same size.

---

**SignalMonitor**

**Library**

Signal\Block Diagram, Signal\Sources

**Use**

**Domains**: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**

This model shows the value of its input in the Simulator. When you open the Simulator (select Properties and Plot) the input of this model is automatically selected as plotvariable. As label for this variable the local name of the SignalMonitor model is chosen. It is therefore advised to give each SignalMonitor model a useful name (select the model, click the right mouse button and select Attributes from the right mouse menu).

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

**Description**

The value of the input is shown in the Simulator using the local name of the model as label.

---

**Splitter**

**Library**

Signal\Block Diagram, System

**Use**

**Domains**: Continuous, Discrete. **Size**: [n,m]. **Kind**: Block Diagrams.

**Description**

This model can split one output signal into two or more output signals. The signals may have either size, but the size of all connected signals should be equal.
**Interface**

**Inputs**
- input

**Outputs**
- output[any]

**Description**
- One input signal must be connected
- Any number of input signals (each of the same size) may be connected.

**Limitations**

The signals connected to this model should all have the same size.

### 10.3.2 Block Diagram Non-Linear

**DeadZone**

**Library**

Signal\Block Diagram Non-Linear

**Use**

**Domains:** Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**

This model generates zero output when the input is within a specified region, called the dead zone. Otherwise the output equals the input plus or minus half the zone.
output = input + zone/2; (input < -zone/2)
output = 0; (-zone/2 <= input <= zone/2)
output = input - zone/2; (input > zone/2)

**Interface**

**Inputs**
input

**Outputs**
output

**Parameters**
zone

**Limitations**
Only single signals (i.e. signals of size 1) can be connected to this model.

**Function-2DTable**

**Library**
Signal\Block Diagram Non-Linear

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This model uses a two-dimensional table with data points to calculate the output $z = f(x,y)$ as a function of the input $x$ and $y$. The output $z$ is calculated using linear interpolation between the table data points.
The first row denotes the \( x \)-values and the first column denotes the \( y \)-values.

- The input data of the first column and first row needs to be monotonically increasing.
- Discontinuities are allowed, by providing the same input point twice in first row or first column of the table.
- Values outside of the table range, are computed by linear extrapolation of the last two points.

A table must be stored as an ASCII (text) file and should consist rows and columns of data. The first row consists of the \( x \)-values first column consist of the \( y \)-values. The row-column pairs are the corresponding \( z \)-values. Values must be separated by a space or a tab. No comment or other text may be part of the table-file. The filename of the input file can be specified using the complete path (e.g. `c:\data\data.tbl`). When no path is given, the file is assumed to be in the experiment directory.

**Example**

Suppose we want to use the well known Matlab `peaks` function:

![Graph of the peaks function](image)

This function can be put in a matrix form as:
The first row and column denote the \( x \)-values and \( y \)-values and the other row-column pairs the corresponding peaks function values. This matrix can be entered in a text file:

![Matrix Image]

The model 2DTableLookup.emx (Examples\Signal Processing) shows how to use this text file as a 2-D table.

**Interface**

**Inputs**
- input1: \( x \)-value
- input2: \( y \)-value

**Outputs**
- output: \( z \)-value

**Parameters**
- filename: The filename of the table file.
Function-Absolute

Library
Signal\Block Diagram Non-Linear

Use

Description
This model yields the absolute value of an input signal.

\[ outp = abs(inp); \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

Function-Cosine

Library
Signal\Block Diagram Non-Linear

Use

Description
This model yields the cosine of an input signal.

\[ output = cos(input); \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>
Function-DB

Library
Signal\Block Diagram Non-Linear
Use
Description
This model returns an output signal in decibel (dB):

\[ \text{output} = 20 \cdot \log_{10}(\text{input}); \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

Function-Log

Library
Signal\Block Diagram Non-Linear
Use
Description
This model returns the natural logarithm of the input.

\[ \text{output} = \log(\text{input}); \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>
Function-Power

Library
Signal\Block Diagram Non-Linear

Use

Description
This model raises the values of an input signal to the power p.

\[ output = input^p; \]

Interface

Inputs
Description
input

Outputs
output

Parameters
p

Function-Sign

Library
Signal\Block Diagram Non-Linear

Use

Description
This model returns the sign of the input. A zero input results in a zero output.

\[ output = -1; \ (input < 0) \]
\[ output = 0; \ (input = 0) \]
\[ output = 1; \ (input > 0) \]

Interface

Inputs
Description
input

Outputs
output
Function-Sine

Library
Signal\Block Diagram Non-Linear

Use

Description
This model yields the sine of an input signal.

\[ output = \sin(input); \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

Function-Square

Library
Signal\Block Diagram Non-Linear

Use

Description
This model returns the square of the input signal.

\[ output = input^2; \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>
Function-SquareRoot

Library
Signal\Block Diagram Non-Linear

Use

Description
This model yields the square root of an input signal.

\[ \text{outp} = \sqrt{\text{inp}}; \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

Function-SquareRootSign

Library
Signal\Block Diagram Non-Linear

Use

Description
This model yields the square root of an input signal with sign and multiplied by a parameter \( p \).

\[ \text{output} = \text{sign}(\text{input}) \times \sqrt{\text{inp}} / p; \]

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>
**Function-SquareSign**

**Library**
Signal\Block Diagram Non-Linear

**Use**
Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This model yields the square of an input signal with sign and multiplied by a parameter \( p \).

\[
output = p*sign(input)*input*input;
\]

**Interface**

**Inputs**
- **input**

**Outputs**
- **output**

**Parameters**
- **p**

---

**Function-Table**

**Library**
Signal\Block Diagram Non-Linear

**Use**
Domains: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This model uses a one-dimensional table with data points to calculate the output \( y = f(x) \) as a function of the input \( x \). The output \( y \) is calculated using linear interpolation between the table data points.

- The input data of the first column needs to be monotonically increasing.
- Discontinuities are allowed, by providing the same input point twice in the table.
- Values outside of the table range, are computed by linear extrapolation of the last two points.
A table must be stored either as an ASCII (text) file or as a matrix inside the equation model. In both cases the table should consist two columns of data. The first column consists of the x-values and the second column of the corresponding y-values.

**Reading data from a file**

If the table is read from a file, each line of the file may only contain one x- and one corresponding y-value. The two values must be separated by a space or a tab. Each new set of x- and y-values must start on a new line. No comment or other text may be part of the table-file. The filename of the input file can be specified using the complete path (e.g. C:\data\data.tbl). When no path is given, the file is assumed to be in the experiment directory.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
</tr>
<tr>
<td>output</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>filename</td>
<td>The filename of the table file.</td>
</tr>
</tbody>
</table>

**Reading data from a matrix**

If the table is read from a matrix in an equation model, each row may only contain one x- and one corresponding y-value. The two values must be separated by a comma and each column must be separated by a semi-colon.

**Note**

Table interpolation can also be used directly in an equation model by using the function `table`.
**Function-Tan**

**Library**
Signal\Block Diagram Non-Linear

**Use**

**Description**
This model yields the tangent of an input signal.

\[ output = \tan(input); \]

Note that the tangent goes infinity for input signals that are a multiple of pi.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Function-Truncation**

**Library**
Signal\Block Diagram Non-Linear

**Use**

**Description**
This model rounds the input towards zero (i.e. it removes the fraction of the input).

\[ output = \text{trunc}(input); \]

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**
**SignalLimiter-Backlash**

**Library**
Signal\Block Diagram Non-Linear

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This model represents mechanical backlash between an input position and an output position.

\[
\begin{align*}
\text{output} &= 0; \text{ (input is within the dead zone)} \\
\text{output} &= \text{input} - \text{zone}/2; \text{ (input is increasing and out of the dead zone)} \\
\text{output} &= \text{input} + \text{zone}/2; \text{ (input is decreasing and out of the dead zone)}
\end{align*}
\]

\[
pF = 0.5 \cdot k_2 \cdot \left( x - \sqrt{-x - \frac{s}{2}} \right)^2 + x + \sqrt{\left( x - \frac{s}{2} \right)^2 + (e_p \cdot s)^2} + k_1 \cdot x + d_{1or2} \cdot p \cdot v
\]

**Interface**

**Inputs**
- **input**

**Outputs**
- **output**

**Parameters**
- **zone**
  - Size of the dead zone.
  - \( \text{zone} \geq 0 \)
- **initial**
  - Value of the output at time = 0.
  - \( \text{initial} \geq \text{input}(\text{time} = 0) - \text{zone}/2 \)
  - \( \text{initial} \leq \text{input}(\text{time} = 0) + \text{zone}/2 \)
**SignalLimiter-Hysteresis**

**Library**
Signal\Block Diagram Non-Linear

**Use**

**Description**
The output signal of this submodel switches between *maximum* and *minimum*, depending on the sign of the input signal, with hysteresis applied. When traversing between *minimum* and *maximum* (dead zone), the rate of change is defined by the parameter $k$.

![Hysteresis diagram](image)

**Interface**

**Inputs**
in

**Outputs**
output

**Parameters**
minimum  
maximum  
hysteresis  
k

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value of the output.</td>
</tr>
<tr>
<td>Maximum value of the output.</td>
</tr>
<tr>
<td>Magnitude of the hysteresis.</td>
</tr>
<tr>
<td>Rate of change in the dead zone.</td>
</tr>
</tbody>
</table>
**SignalLimiter-JumpRateLimit**

**Library**
Signal\Block Diagram Non-Linear

**Use**

**Description**
This model limits the input signal to a minimum and maximum jump and a minimum and maximum rate.

\[
\text{for minimum} < \text{input} < \text{maximum}: \\
\text{output} = \text{input} \\
\text{else} \\
\frac{d\text{output}}{dt} = \frac{d\text{input}}{dt}; \ (\text{minimumrate} < \frac{d\text{input}}{dt} < \text{maximumrate}) \\
\frac{d\text{output}}{dt} = \text{minimum}; \ (\frac{d\text{input}}{dt} < \text{minimumrate}) \\
\text{output} = \text{maximum} \ (\frac{d\text{input}}{dt} > \text{maximumrate})
\]

An example is shown below where a sinusoidal input signal is limited to a minimum jump of -0.2, a maximum jump of 0.2, a maximum rate of 0.4 and a minimum rate of -0.4.

**Interface**

**Inputs**
input

**Outputs**
output

**Parameters**
minimum
maximum
minimumrate
maximumrate

Minimum jump of the output.
Maximum jump of the output.
Minimum rate of the output.
Maximum rate of the output.
SignalLimiter-Limit

Library
Signal\Block Diagram Non-Linear

Use

Description
This model limits the input signal to minimum and maximum bounds.

\[
\begin{align*}
output &= \text{minimum;} \ (input < \text{minimum}) \\
output &= \text{input;} \ (\text{minimum} \leq input \leq \text{maximum}) \\
output &= \text{maximum} \ (input > \text{maximum})
\end{align*}
\]

Interface

Inputs
input

Outputs
output

Parameters
minimum
maximum

Description
Minimum value of the output.
Maximum value of the output.
**SignalLimiter-PWM**

**Library**
Signal\Block Diagram Non-Linear

**Use**

**Description**
Pulse width modulation (PWM) is a powerful technique for controlling analog circuits with a processor's digital outputs. PWM is employed in a wide variety of applications, ranging from measurement and communications to power control and conversion. The output of a PWM block is a pulse train. The duty cycle, (the time that a pulse is *on* divided by the time the pulse is *off*) is proportional to the value of the input signal if the input is within the range < -input\_amp , +input\_amp >. For Bipolar PWM the output signal switches between a positive and a negative value. For Unipolar PWM the output signal switches between zero and positive or negative value.

<table>
<thead>
<tr>
<th>input</th>
<th>bipolar PWM</th>
<th>Unipolar PWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; input_amp</td>
<td>100% output_amp</td>
<td>100% output_amp</td>
</tr>
<tr>
<td></td>
<td>0% -output_amp</td>
<td>0% 0</td>
</tr>
<tr>
<td>input_amp</td>
<td>100% output_amp</td>
<td>100% output_amp</td>
</tr>
<tr>
<td></td>
<td>0% -output_amp</td>
<td>0% 0</td>
</tr>
<tr>
<td>0.5*input_amp</td>
<td>75% output_amp</td>
<td>50% output_amp</td>
</tr>
<tr>
<td></td>
<td>25% -output_amp</td>
<td>50% 0</td>
</tr>
<tr>
<td>0</td>
<td>50% output_amp</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50% -output_amp</td>
<td></td>
</tr>
<tr>
<td>-0.5*input_amp</td>
<td>25% output_amp</td>
<td>50% 0</td>
</tr>
<tr>
<td></td>
<td>75% -output_amp</td>
<td>50% -output_amp</td>
</tr>
<tr>
<td>-input_amp</td>
<td>0% output_amp</td>
<td>0% 0</td>
</tr>
<tr>
<td></td>
<td>100% -output_amp</td>
<td>100% -output_amp</td>
</tr>
<tr>
<td>&lt; -input_amp</td>
<td>0% output_amp</td>
<td>0% 0</td>
</tr>
<tr>
<td></td>
<td>100% -output_amp</td>
<td>100% -output_amp</td>
</tr>
</tbody>
</table>

An example is shown in the graph below. The parameter *input\_amp* is equal to 1 and the parameter *max output* is equal to 5. The frequency of the PWM signal is 10 Hz.
Bipolar and Unipolar PWM conversion.

**Interface**

**Inputs**
input

**Outputs**
output

**Parameters**
- \( f \) (The modulating frequency [Hz].)
- \( \text{input\_amp} \) (Maximum value of the input signal. The output value will switch between \( \text{output\_amp} \), 0 and \(-\text{output\_amp}\).)
- \( \text{output\_amp} \)

**SignalLimiter-RateLimit**

**Library**
Signal\Block Diagram Non-Linear

**Use**

**Description**
This model limits the input signal to a minimum and maximum rate.

\[
\frac{d\text{output}}{dt} = \frac{d\text{input}}{dt}; \ (\text{minimum} < \frac{d\text{input}}{dt} < \text{maximum})
\]
\[
\frac{d\text{output}}{dt} = \text{minimum}; \ (\frac{d\text{input}}{dt} < \text{minimum})
\]
output = maximum (\( \frac{d\text{input}}{dt} > \text{maximum} \))
En example is shown below where a sinusoidal input signal is limited to a maximum rate of 0.4 and a minimum rate of -0.8.

![Rate Limiter Graph](image)

The rate limiter uses a first order filter to approximate the derivative of the input. Below the cut-off frequency $f_l$ the approximation is accurate and the model behaves as a rate limiter. Above the cut-off frequency $f_l$ the model output weakens to zero. For high values of the cut-off frequency $f_l$, the model will slow down simulation because it forces the integration method to take very small time-steps. A good trade-off for most models is a starting value of 100 [Hz].

**Interface**

<table>
<thead>
<tr>
<th><strong>Inputs</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Outputs</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Parameters</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>Minimum rate of the output.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum rate of the output.</td>
</tr>
<tr>
<td>$f_l$</td>
<td>Cut-off frequency [Hz]</td>
</tr>
</tbody>
</table>

**SignalLimiter-Relay**

**Library**

Signal|Block Diagram Non-Linear

**Use**

**Domains**: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.
**Description**

The output signal of this submodel switches between a max and a min parameter using the sign of the input signal.

\[
\begin{align*}
\text{output} & = \text{minimum}; \ (\text{input} < 0) \\
\text{output} & = \text{maximum}; \ (\text{input} \geq 0)
\end{align*}
\]

**Interface**

**Inputs**

**Description**

input

**Outputs**

output

**Parameters**

<table>
<thead>
<tr>
<th>minimum</th>
<th>Minimum value of the output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
<td>Maximum value of the output.</td>
</tr>
</tbody>
</table>
**SignalLimiter-RelayHysteresis**

**Library**
Signal\Block Diagram Non-Linear

**Use**
**Domains**: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
The output signal of this submodel switches between max and min parameters, depending on the sign of the input signal, with hysteresis and dead zone applied.

![Relay with Hysteresis](image)

**Interface**

**Inputs**
- **input**

**Outputs**
- **output**

**Parameters**
- **minimum**
- **maximum**
- **zone**
- **hysteresis**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>Minimum value of the output.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum value of the output.</td>
</tr>
<tr>
<td>zone</td>
<td>Magnitude of the dead zone.</td>
</tr>
<tr>
<td>hysteresis</td>
<td>Magnitude of the hysteresis.</td>
</tr>
</tbody>
</table>
**switch-Break**

**Library**
Signal\Block Diagram Non-Linear

**Use**
**Domains:** Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This model switches between zero and the input signal, depending on the value of a condition input signal.

\[
\begin{align*}
\text{output} & = 0; \ (\text{condition} > 0) \\
\text{output} & = \text{input}; \ (\text{condition} \leq 0)
\end{align*}
\]

**Interface**

**Inputs**
- **input_high**
- **input_low**
- **condition**  
  Switching condition

**Outputs**
- **output**

---

**Switch-Default**

**Library**
Signal\Block Diagram Non-Linear

**Use**
**Domains:** Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This model switches between two input signals, depending on the value of a third input signal.

\[
\begin{align*}
\text{output} & = \text{input}_{\text{high}}; \ (\text{condition} \geq 0) \\
\text{output} & = \text{input}_{\text{low}}; \ (\text{condition} < 0)
\end{align*}
\]

**Interface**

**Inputs**
- **input_high**
- **input_low**
Switch-Make

Library
Signal\Block Diagram Non-Linear

Use

Description
This model switches between the input signal and zero, depending on the value of a condition input signal.

\[
\begin{align*}
\text{output} &= \text{input}; \ (\text{condition} > 0) \\
\text{output} &= 0; \ (\text{condition} \leq 0) \\
\end{align*}
\]

Interface

Inputs
- input_high
- input_low
- condition

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_high</td>
<td></td>
</tr>
<tr>
<td>input_low</td>
<td></td>
</tr>
<tr>
<td>condition</td>
<td>Switching condition</td>
</tr>
</tbody>
</table>

Outputs
- output

Switch-Maximum

Library
Signal\Block Diagram Non-Linear

Use

Description
This model yields the maximum of two input signals.
output = input1; (input1 >= input2)
output = input2; (input1 < input2)

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input1</td>
<td></td>
</tr>
<tr>
<td>input2</td>
<td></td>
</tr>
</tbody>
</table>

Outputs	
---------	
output	

---

**Switch-Minimum**

**Library**
Signal\Block Diagram Non-Linear

**Use**
Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This model yields the minimum of two input signals.

output = input1; (input1 <= input2)
output = input2; (input1 > input2)

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input1</td>
<td></td>
</tr>
<tr>
<td>input2</td>
<td></td>
</tr>
</tbody>
</table>

Outputs	
---------	
output	
10.3.3 Control

Controlled Linear Systems

ControlledLinearSystem

Library
Signal\Control\Controlled Linear Systems

Use

Description
This is a masked model which opens the Controller Design Editor when edited. Using this editor the settings for a controlled linear system can be entered.

Depending on the choices made, various inputs and outputs are available. In the picture above, the most complex model is shown. Read more about it in the Controller Design Editor topic.

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller setpoint</td>
<td>r</td>
</tr>
<tr>
<td>Output Disturbance</td>
<td>d</td>
</tr>
<tr>
<td>Measurement Disturbance</td>
<td>n</td>
</tr>
<tr>
<td>Input Disturbance</td>
<td>di</td>
</tr>
<tr>
<td>Feedforward Input</td>
<td>uff</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant output</td>
<td>z</td>
</tr>
<tr>
<td>Feedforward Error Signal</td>
<td>uc</td>
</tr>
</tbody>
</table>

Parameters
hidden

The parameters and initial values of this model are hidden for the user. Use the Controller Design Editor to edit this model (select the model and choose Go Down).

**ControlledSystem**

**Library**
Signal\Control\Controlled Linear Systems

**Implementations**

rz
rzff
rzffn
rzffnd
rzffnddi
rzf
rznd
rznddi

**Use**

**Domains:** Continuous. **Size:** 1-D. **Kind:** Iconic Diagrams (Translation).

**Description - rz**

This model represents a controlled linear system described by graphically connected Linear systems:

![Diagram](image)

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

**Interface - rz**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller setpoint</td>
<td>r</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant output</td>
<td>z</td>
</tr>
</tbody>
</table>

**Parameters**

Depends on the implementation of the submodels.
Description - rzff
This model represents a controlled linear system described by graphically connected Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rzff

Inputs	Description
\(r\) | Controller setpoint
\(uff\) | Feedforward Input

Outputs	Description
\(z\) | Plant output
\(uc\) | Feedforward Error Signal

Parameters
Depends on the implementation of the submodels.

Description - rzffn
This model represents a controlled linear system described by graphically connected Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rzffn

Inputs	Description
### Parameters

Depends on the implementation of the submodels.

### Description - rzffnd

This model represents a controlled linear system described by graphically connected Linear systems:

![Diagram of rzffnd model](image)

These Linear Systems (F, C, P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

### Interface - rzffnd

#### Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller setpoint</td>
<td>r</td>
</tr>
<tr>
<td>Output Disturbance</td>
<td>d</td>
</tr>
<tr>
<td>Measurement Disturbance</td>
<td>n</td>
</tr>
<tr>
<td>Feedforward Input</td>
<td>uff</td>
</tr>
</tbody>
</table>

#### Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant output</td>
<td>z</td>
</tr>
<tr>
<td>Feedforward Error Signal</td>
<td>uc</td>
</tr>
</tbody>
</table>

### Description-rzffndddi

This model represents a controlled linear system described by graphically connected Linear systems:
These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

**Interface - rzffnddi**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>di</td>
</tr>
<tr>
<td>uff</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
</tr>
<tr>
<td>uc</td>
</tr>
</tbody>
</table>

**Parameters**

Depends on the implementation of the submodels.

**Description - rzn**

This model represents a controlled linear system described by graphically connected Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

**Interface - rzn**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
</tr>
</tbody>
</table>
### Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant output</td>
<td></td>
</tr>
</tbody>
</table>

### Parameters

Depends on the implementation of the submodels.

### Description - rznd

This model represents a controlled linear system described by graphically connected Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

### Interface - rznd

### Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller setpoint</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Output Disturbance</td>
</tr>
<tr>
<td>n</td>
<td>Measurement Disturbance</td>
</tr>
</tbody>
</table>

### Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant output</td>
<td></td>
</tr>
</tbody>
</table>

### Parameters

Depends on the implementation of the submodels.

### Description - rznddi

This model represents a controlled linear system described by graphically connected Linear systems:
These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or replaced by drag and drop (any desired model) giving maximum flexibility.

**Interface - rznddi**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Controller setpoint</td>
</tr>
<tr>
<td>d</td>
<td>Output Disturbance</td>
</tr>
<tr>
<td>n</td>
<td>Measurement Disturbance</td>
</tr>
<tr>
<td>di</td>
<td>Input Disturbance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>Plant output</td>
</tr>
</tbody>
</table>

**Parameters**

- Depends on the implementation of the submodels.

---

**Neural Networks**

**BSplineNetwork**

**Library**

Signal\Control\Neural Networks

**Use**

**Domains**: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This is a masked model which opens the BSpline Editor when edited. Using this editor the settings for a B-Spline Network can be entered.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>The user can defined any input.</td>
</tr>
</tbody>
</table>
error

The error signal: the difference between the desired output and the network output.

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
| learning_rate
The learning rate |
| network_order
The order of the spline-interpolation. |
| online_learning
A boolean: Learn at each sample (True) or Learn after Leaving Spline (False). |
| regularization
Not yet supported. |
| regularization_width
Not yet supported. |
| load_weights
A boolean: Load weights before simulation. |
| save_weights
A boolean: Save weights after simulation. |

---

### MLPNetwork

**Library**

Signal\Control\Neural Networks

**Use**


**Description**

This is a masked model which opens the MLP Editor when edited. Using this editor the settings for a MLP Network can be entered.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
</tr>
</tbody>
</table>
| error       
The error signal: the difference between the desired output and the network output. |

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
| nr_hidden
Number of hidden neurons. |
| learning_rate
The learning rate. |
| readWeights
A boolean: Load weights before simulation. |
| writeWeights
A boolean: Save weights after simulation. |
**PID Control**

**PIDControl**

PID control stands for Proportional, Integral and Derivative control. PID controllers have been around since about 1940. Modern controllers perform the same functions as those, perhaps with a few embellishments and certainly more accurately, but the same functions nonetheless.

PID controllers are the best general purpose controllers to do the job. More sophisticated control algorithms will produce better performance when fitted to a specific process, but poorer performance results if the process changes. This sensitivity to process changes is called robustness, with more robust being less sensitive. The PID algorithm is an excellent trade-off between robustness and performance.

Although theory on PID-controllers is widespread and more or less uniform nowadays, in practice there are many algorithms and parameter settings. The 20-sim Control library, supports the most common algorithms.

**Setpoint and other Variables**

A standard control loop is shown in the figure below. A controller tries to steer a process in a way that minimizes the difference between a given setpoint and the output of that process. In other words, the controller tries to get the process output as close as possible to the given setpoint.

![PID Control Diagram](image)

**Setpoint**

The **setpoint** (SP) is where the process output should match. It can be a static value (e.g. the desired temperature of a room) or a varying value (e.g. the desired position of a robot-tip).

The setpoint is where you would like the measurement to be. Error is defined as the difference between set-point and measurement.

**Process**

The **process** is the system that should be controlled. It is sometimes referred to as **plant** or **system**. The process should have has at least one input to control its behavior and at least one output that is a measure of its behavior. Consider for example a gas heated house as process. The heater feed could be the process input and the measured room temperature the process output.
The process input is connected to the **controller output** or **controller variable** (CV). It is mostly the input for an actuator that can drive the process to a desired setpoint.

The **process output** is commonly known as **process variable** (PV), or measured variable (MV). Other names of the process output are system output and measurement.

**Error**

The **error** is defined as the setpoint minus the process output. It is a measure for how much the process deviates from the desired setpoint, and thus how much the controller should respond to get the process back to the desired setpoint.

**Setpoint Weighting**

For many controllers the controller input is equal to the error signal. Some controllers, however, use specialized inputs for their proportional, integral and derivative parts (setpoint weighting). They have two inputs, one for the setpoint and one for the measured variable and are therefore also described as 2-DOF controllers.

**Proportional Control**

**Gain**

When we talk about the proportional action of a controller, we generally refer to the **proportional gain**. The action means that the controller moves in proportion to the error between setpoint (SP) and process output (PV):

\[
\text{controller output} = K \times \text{error} = K \times (SP - PV)
\]

where the gain is denoted by the parameter K. Many terms have been used by different manufacturers to designate this action. It has been called proportional gain, gain, throttling band, sensitivity and **proportional band**.

**Proportional Band**

In practice, the controller output is limited, either by its own limitations or by the limitations of the corresponding actuator. Let umax and umin denote the minimum and maximum output of the controller. The proportional band of the controller is then defined as:

\[
PB = \frac{u_{\text{max}} - u_{\text{min}}}{K} \times 100\%
\]

In the ideal case, a controller can have an unlimited output. The **proportional band** (PB) is then defined as:

\[
PB = \frac{1}{K} \times 100\%
\]

This definition of proportional band is often used instead of the controller gain. The value is expressed in percent (%).
**Direct Acting / Reverse Acting**

Suppose a process with a controller output CV and a process output PV is in steady state and kept to a certain setpoint SP. For proportional control the following equations can be found:

\[
\begin{align*}
PV &= P(CO) \\
CV &= K \cdot \text{error} = K \cdot (SP - PV)
\end{align*}
\]

where P is the process function that yields a measured variable as a result of the controller output. If the controller output decreases as the measured variable increases the controller is said to be **direct acting**. If the controller output increases as the measured variable increases, then it is called **reverse acting**. In other words, the controller is direct acting if the **gain K is positive** and reverse acting if the **gain K is negative**.

This is not only valid for proportional control, but for all PID controllers in the 20-sim library. If you need a reverse acting controller, simply use a negative gain.

**Offset**

If you look at the equation for the proportional gain:

\[
CV = K \cdot \text{error} = K \cdot (SP - PV)
\]

you will notice that there has to be an error to produce a controller output. This means that with proportional control only, there will always be a small offset between the setpoint and the measured variable. To remove this offset, integral control has to be used.

**Integral Control**

With **integral** action, the controller output is proportional to the amount of time the error is present. Integral action eliminates offset that remains when proportional control is used.

controller output = \((1/T_i) \cdot \text{int(error)}\)

where the parameter Ti is called the **integral time**. Integral action is also know as reset and the parameter Ti as reset time.

Integral action gives the controller a large gain at low frequencies that results in eliminating offset. Integrals give information concerning the past. That is why integrals are always late. Integrals provide stability but have a tendency to get stuck in the past. In most controllers the proportional and integral action are combined. The output of the combined proportional and integral action (in s-domain) is then:

\[
U = K \cdot \left(1 + \frac{1}{s \cdot T_i}\right) \cdot E
\]

with E equal to SP - PV.
Derivative Control

With *derivative* action, the controller output is proportional to the rate of change of the measurement or error. Some manufacturers use the term rate or pre-act instead of derivative. Derivative, rate and pre-act are the same thing. The controller output is calculated by the rate of change of the error with time.

\[
\text{controller output} = Td \cdot \frac{d(error)}{dt} = Td \cdot \frac{d(SP - PV)}{dt}
\]

where the parameter \( Td \) is called **derivative time**. Derivative control is mathematically the opposite of integral action, but while we might have an integral-only controller, we would never have a derivative-only controller. The reason for this is that derivative control only knows the error is changing. It does not know what the setpoint actually is.

Derivative action has the potential to improve performance when sudden changes in measured variable occur, but is should be used with care. It is mostly a matter of using enough, not too much.

**Derivative Gain Limitation**

In most commercial processes sudden changes in process output may appear. In most cases a sudden change in the slope of such a process output cannot be avoided at all times. Using such a process output in controllers with pure derivative action, would lead to unwanted steps in the controller output. Moreover, high frequency noise in the measured signals may lead to unwanted large outputs of the controller.

To prevent this unwanted effect, the derivative action can be filtered by a first-order system with time constant \( Td/N \).

\[
\frac{s \cdot K \cdot Td}{1 + s \cdot \frac{Td}{N}}
\]

This approximation acts as a derivative for low-frequency signal components. The gain, however, is limited to \( K \cdot N \). This means that high-frequency measurement noise is amplified at most by a factor \( KN \). This is why the parameter \( N \) is called the **derivative gain limitation**. Typical values of \( N \) are 8 to 20. Sometimes the reciprocal value of \( N \) is used, mostly with the name beta (\( \beta = 1/N \)).

**PID Controller Types**

In literature various PID controller laws and types have been described. In industry two types prevail: the parallel form and the series form.

**Parallel Form**

A PID controller in parallel form (also known as standard form, ISA form or non-interacting form), has the control equation:
The controller actions (P, I and D) act independently as can be seen in the corresponding block diagram representation.

\[ U = K \cdot \left(1 + \frac{1}{s \cdot Ti} + s \cdot Td\right) \cdot E \]

The controller actions (P, I and D) act dependently as can be seen in the corresponding block diagram representation.

**Series Form**
A PID controller in series form (also known as interacting form), has the control equation:

\[ U = K \cdot \left(1 + \frac{1}{s \cdot Ti}\right) \left(1 + s \cdot Td\right) \cdot E \]

The controller actions (P, I and D) act dependently as can be seen in the corresponding block diagram representation.

**Note**
P and PI controllers are the same in series and parallel form.

**Setpoint Weighting**
Standard PID controller equations operate on the error signal (Error Based):

- \( P \)-action: \( E_p = SP - PV \)
- \( I \)-action: \( E_I = SP - PV \)
- \( D \)-action: \( E_D = SP - PV \)

A more flexible structure is obtained by treating the setpoint (SP) and the process output (PV) separately (Setpoint Weighting):
The I-action always operates on the error to insure that the error between setpoint and process output will be minimized.

In most commercial controllers, the parameters \( b \) and \( c \) are chosen 1 or 0:

- \( b = 1 \rightarrow \) proportional control using the error: \( SP - PV \) (error feedback).
- \( b = 0 \rightarrow \) only proportional control on the process output (PV).
- \( c = 1 \rightarrow \) derivative control using the error: \( SP - PV \) (error feedback).
- \( c = 0 \rightarrow \) only derivative control on the process output (PV).

**Anti-Windup**

All actuators have physical limitations, a control valve cannot be more than fully open or fully closed, a motor has limited velocity, etc. This has severe consequences for control. Integral action in a PID controller is an unstable mode. This does not cause any difficulties when the loop is closed. The feedback loop will, however, be broken when the actuator saturates because the output of the saturating element is then not influenced by its input. The unstable mode in the controller may then drift to very large values. When the actuator desaturates it may then take a long time for the system to recover. It may also happen that the actuator bounces several time between high and low values before the system recovers.

**Integrator windup**

Integrator windup is illustrated in the figure below, which shows simulation of a system where the process dynamics is a saturation at a level of ±0.1 followed by a linear system with the transfer function:

\[
G(s) = \frac{1}{s(s + 1)}
\]
Because of the saturation in the actuator, the control signal saturates immediately when the step is applied. The control signal then remains in saturation level and the feedback is broken. The integral part continues to increase because the error (SP - PV) is positive. The integral part starts to decrease when the process output (PV) has become larger than the setpoint (SP), but the process output remains saturated because of the large integral part. Slowly the process output decreases towards the setpoint.

The net effect is that there is a large overshoot. This phenomenon is called "integrator windup". A good insight in windup is found when looking at the proportional band.

**Proportional Band and Windup**

The values of the process output that correspond to the minimum and maximum output are denoted as ymax and ymin. The controller operates linearly only if the process output is in the range (ymax, ymin). The controller output saturates when the process output is outside this band. A good insight into the windup problem is obtained by investigating the range (ymax, ymin). All 20-sim controller models in parallel form with anti-windup scheme, have the extra variables PB_high and PB_low which are equal to ymax and ymin.

An illustration of the proportional band is given below. The same linear system is used with the same controller. As can be seen, the actuator is saturated from t = 0 until t = 14. At t = 14 the process output enters the range (PB_high, PB_low) and controller feedback is regained.
Anti-Windup

Integrator windup can be avoided, by making sure that the integral is kept to a proper value when the actuator saturates, so that the controller is ready to resume action, as soon as the control error changes. This anti-windup scheme is known as tracking or back calculation.

parallel form

As well known form of tracking is linear feedback anti windup. It is shown in the figure below (parallel form). The actuator is represented by a signal limiter. The difference between actuator input and output (TR) is fed back to the integrator through the gain $1/T_a$. As soon as the limiter saturates, this signal becomes non-zero and prevents the integrator from winding up. The tracking time constant $T_a$ can be used to tune then amount of anti windup.
**series form**

The same scheme can also be used for controllers with a series form. A diagram is shown below.

**Tracking Time constant**

To prevent the integrator from saturating, the tracking time constant must be chosen small. Too small values, however decrease the controller performance. As a rule of thumb Åström suggested to choose the tracking time constant $T_d \leq T_a \leq T_i$. Some authors prefer a good controller performance and suggest to choose $T_a = T_i$.

**External Tracking**

As long as the actuator output is equal to the controller output, anti-windup scheme will not be activated and the controller is in normal operation (control mode). When the actuator saturates, the anti-windup scheme will be activated and prevent the controller output from wandering away. In effect the anti-windup scheme matches the controller output and actuator output. This is why the actuator output is also known as the tracking signal (TR).
When an external actuator signal is used (external tracking signal) it is important to compensate for the actuator gain. Otherwise the tracking signal is not equal to the controller output, during normal operation and the anti-windup scheme is activated.

**Actuator Model**

Anti-windup schemes are based on the difference between actuator input (controller output) and actuator output. These signals are not always available. Therefore an actuator model can be used inside the controller to yield this difference. In the library models, a signal limiter is used to model the actuator:

\[
\text{output} = \begin{cases} 
\text{minimum}; & (\text{input} < \text{minimum}) \\
\text{input}; & (\text{minimum} \leq \text{input} \leq \text{maximum}) \\
\text{maximum}; & (\text{input} > \text{maximum}) 
\end{cases}
\]
**Initial Output**

The output of PID controllers at time 0 depends on the given setpoint (SP), process output (PV) and control law. In general the process will not be at rest (PV <> 0) and the setpoint will not be equal to the process output (SP <> 0). This will result in an undesired step in the controller signal at startup. Even if the setpoint is equal to the process output (SP = PV) at startup, the use of setpoint weighting may result in a step in the control signal:

\[
P - \text{action}: E_p = b \cdot SP - PV \\
I - \text{action}: E_I = SP - PV \\
D - \text{action}: E_D = c \cdot SP - PV
\]

Let PV be a non zero value and b or c equal to zero. The P or D -action will then lead to a step in the control signal.

To avoid such a step, the initial output of some PID-controllers can be set to any value. The slope of the the control output of these controllers at startup is equal to zero.

**Initial output for with delays**

Controllers with manual output at start-up, use the process output at t = 0, PV(0), to calculate an internal offset that compensates for the initial controller output. Care should be taken when delays are available between the process output and the controller input. Due to these, the measured process output at t = 0 in the controller ( PV(0) ) may not be the same as the real process output at t = 0 ( PV(0) ). As a result, a wrong offset will be calculated and the initial output will not have the desired value. To avoid this, all initial values of delay elements between the process and controller should be chosen properly (e.g. equal to the initial process output)!

**Commercial Controllers**

According to b Åström the table below summarizes the properties of some commercial controllers.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Structure</th>
<th>Setpoint Weighting b</th>
<th>Setpoint Weighting c</th>
<th>Derivative Gain Limitation</th>
<th>Sampling Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Allen Bradley PLC 5</td>
<td>P</td>
<td>1.0</td>
<td>1.0</td>
<td>None</td>
<td>Load dependent</td>
</tr>
<tr>
<td>2. Bailey Net 90</td>
<td>P</td>
<td>0.0 or 1.0</td>
<td>1.0</td>
<td>0.0 or 1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>3. Fisher Controls Provox</td>
<td>P</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.25</td>
</tr>
<tr>
<td>4. Fisher Controls DPR 900,910</td>
<td>S</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.25</td>
</tr>
<tr>
<td>5. Fisher Porter Micro DCI</td>
<td>S</td>
<td>1.0</td>
<td>0.0 or 1.0</td>
<td>0.0</td>
<td>0.25</td>
</tr>
<tr>
<td>6. Foxboro Model 761</td>
<td>S</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>7. Honeywell TDC</td>
<td>S</td>
<td>0.0</td>
<td>0.0 or 1.0</td>
<td>0.0</td>
<td>0.25</td>
</tr>
<tr>
<td>8. Moore Products Type 352</td>
<td>S</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.25</td>
</tr>
<tr>
<td>9. Alfa Laval ECA40, ECA 400</td>
<td>S</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Literature


Expert information can also be found in the sci.eng.control newsgroup. An excellent frequently asked questions list can be found on the internet pages of Ron Graham (http://www.tcnj.edu/~rgraham/PID-tuning.html).

Continuous

Naming Conventions

Two types of PID-controllers are available in this library. The first type of controllers use an error input and the second type of controllers use separate Setpoint (SP) and Measured Variable (MV) input.

Error Input

PID-Controllers with the error as a direct input signal, are all in series form. The name simply denotes the type of controller: P, PI, PD or PID. Two versions of each controller exists: continuous time and discrete time. They can be found in the subdirectories Continuous and Discrete.

Ports

All controllers have one input ports and one output port:

1. error: The error between setpoint and measured variable.
2. output: The controller output.

Parameters

Depending on the type of controller, the following parameters can be used:

<table>
<thead>
<tr>
<th>Controller</th>
<th>Error Input</th>
<th>Output Gain</th>
<th>SP Offset</th>
<th>MV Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor Mod 30</td>
<td>0.0 or 1.0</td>
<td>1.0</td>
<td>0.0 or</td>
<td>1.0</td>
</tr>
<tr>
<td>Toshiba TOSDIC 200</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Turnbull TCS 6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yokogawa SLPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. $kd$: The proportional gain of the controller.
2. $\tau D$: The derivative time constant.
3. $\beta$: The reciprocal derivative gain limitation.
4. $\tau I$: The integral time constant.

**Controller Wizard**

A special form of controllers with error input is generated by the ControllerWizard.emx submodel. When you select this model and click **Go Down** the Filter Editor is opened, allowing you to specify controllers with frequency oriented parameters.

**Separate Input**

Controllers with separate inputs come in many forms. The naming denotes the type of controller and the options that are available. The type and options are also available in the model icons.

1. Two versions of each controller exists: continuous time and discrete time. They can be found in the subdirectories *Continuous* and *Discrete*. Continuous-time controllers have icons with blue text and discrete-time controllers have icons with green text.

2. The first characters denote the type of controller: $P$, $PD$, $PI$ or $PID$.
3. The character $p$ or $s$ denote the form: parallel ($p$) or series ($s$).
4. If setpoint weighting is used, the term $sp$ is added.
5. If an anti-windup scheme is incorporated, the term $aw$ is added.
6. If the output at startup can be set manually, the term $u0$ is added.
7. If an external tracking signal is used, the term $tr$ is added.

**Ports**

All controllers have two inputs ports and one output port:
1. \textit{SP}: The setpoint
2. \textit{MV}: The measured variable (also called process variable).
3. \textit{output}: The controller output.

\textbf{Parameters}
Depending on the type of controllers, the following parameters can be used:
1. \textit{K}: The proportional gain of the controller.
2. \textit{Td}: The derivative time constant.
3. \textit{N}: The derivative gain limitation.
4. \textit{Ti}: The integral time constant.
5. \textit{b}: The setpoint weighting constant for the proportional part of the controller.
6. \textit{c}: The setpoint weighting constant for the derivative part of the controller.
7. \textit{Ta}: The tracking time constant of the anti-windup scheme.
8. \textit{minimum}: The minimum controller output representing actuator saturation.
9. \textit{maximum}: The maximum controller output representing actuator saturation.
10. \textit{output\_initial}: The controller output at start-up.

\textbf{Initial Values}
Although most controllers have one or more internal states, the initial values of these states do not need to be set manually. You use the default values (0) at the start of a simulation. To get a desired output of the controller at startup, the parameter \textit{output\_initial} should be used.

\textbf{Discrete Controllers}
The discrete controllers that are available in the library are directly derived from their continuous counterparts, using approximation by backward differences. These discrete models have identical behavior, as long as the sample time is not chosen too low. Discrete loops in 20-sim are automatically detected and assigned a default sampletime. You can change the sample time in the Run Properties Editor (in the \textbf{Properties} menu select the \textbf{Simulation} command).

\textbf{Variables}
Some PID controllers (parallel form with anti-windup) have two internal variables that are of interest. \textit{PB\_high} and \textit{PB\_low}. These parameters are the upper and lower bound of the proportional band.
Controller Use

All controllers must can be used as shown in the figure below. The upper part shows a continuous time controller and the bottom part shows a discrete time controller.

Error Input

1. An error signal is generated with a plus minus element. Its serves as an input of the controller.

2. The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors should be used, when connecting a discrete-time controller to a continuous-time process.

Separate Input

1. A setpoint signal is connected with the SP port of the controller.

2. The process output is connected with the PV port of the controller.

3. The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors should be used, when connecting a discrete-time controller to a continuous-time process.
**ControllerWizard**

**Library**
Signal\Control\PID Control\Continuous

**Use**
**Domains:** Continuous, Discrete **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
A special form of controllers with error input is generated by the ControllerWizard.emx submodel. When you select this model and click **Go Down** the Filter Editor is opened, allowing you to specify controllers with frequency oriented parameters.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>u</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The error input signal: plant-output minus set point.</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>y</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal: input for the plant.</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

Look in the Filter Editor helpfile to find a detailed description of the possible controller types and their parameters.

---

**Controller-P**

**Library**
Signal\Control\PID Control\Continuous

**Use**
**Domains:** Continuous, Discrete. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
This is a P controller. The output of this controller (in s-domain) is:

\[ U = K \cdot E \]

with E equal to SP - PV.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>PV</td>
<td>Process output.</td>
</tr>
</tbody>
</table>
Outputs
CV  Controller output: input for the process.

Parameters
K  Proportional gain.

Controller-PD_p

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PD controller in parallel form. The output of this controller (in s-domain) is:

\[ U = K \left( 1 + \frac{s \cdot T_d}{1 + s \cdot \frac{T_d}{N}} \right) \cdot E \]

with \( E \) equal to \( SP - MV \).

Interface

Inputs  Description
SP  Setpoint.
MV  Measured variable or process output.

Outputs
output  Controller output: input for the process.

Parameters
K  Proportional gain.
Td  Derivative time constant (\( T_d > 0 \)).
N  Derivative gain limitation.

Initial Values
yes  Should be left default!
Controller-PD_s

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PD controller in series form. The output of this controller (in s-domain) is:

\[ U = K \left( \frac{1 + s \cdot T_d}{1 + s \cdot \frac{T_d}{N}} \right) \cdot E \]

with E equal to SP - MV.

Interface

Inputs
SP
Setpoint.
MV
Measured variable or process output.

Outputs
output
Controller output: input for the process.

Parameters
K
Proportional gain.
Td
Derivative time constant (Td > 0).
N
Derivative gain limitation.

Initial Values
yes
Should be left default!

Controller-PI

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PI controller. The output of this controller (in s-domain) is:
\[ U = K \cdot \left( 1 + \frac{1}{s \cdot Ti} \right) \cdot E \]

with \( E \) equal to \( SP - MV \).

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MV</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>

Should be left default!

---

**Controller-PI_sp**

**Library**

Signal\Control\PID Control\Continuous

**Use**


**Description**

This is a PI controller with setpoint weighting. The output of this controller (in \( s \)-domain) is:

\[ U = K \cdot \left( b \cdot SP - MV \right) + \frac{1}{s \cdot Ti} \cdot \left( SP - MV \right) \]

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MV</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

Controller output: input for the process.
Parameters

- $K$: Proportional gain.
- $Ti$: Integral time constant ($Ti > 0$).
- $b$: Proportional setpoint weighting parameter.

Initial Values

- Yes: Should be left default!

Controller-PI_sp_aw

Library

Signal\Control\PID Control\Continuous

Use


Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:

$$U = K \cdot \left( b \cdot SP - MV + \frac{1}{s \cdot Ti} \cdot (SP - MV) \right)$$

An anti-windup scheme has been added to this controller.

Interface

Inputs

- SP: Setpoint.
- MV: Measured variable or process output.

Outputs

- Output: Controller output: input for the process.

Parameters

- $K$: Proportional gain.
- $Ti$: Integral time constant ($Ti > 0$).
- $b$: Proportional setpoint weighting parameter.
- $Ta$: Tracking time constant.
- Minimum: Minimum controller output.
- Maximum: Maximum controller output.
**Initial Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Should be left default!</td>
</tr>
</tbody>
</table>

**Interesting Variables**

- PB_high, PB_low: Upper and lower bound of the proportional band.

**Controller-PI_sp_aw_u0**

**Library**

Signal\Control\PID Control\Continuous

**Use**

Domains: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b \cdot (SP - MV) + \frac{1}{s \cdot Ti} \cdot (SP - MV) \right)
\]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

**Parameters**

- K: Proportional gain.
- Ti: Integral time constant (Ti > 0).
- b: Proportional setpoint weighting parameter.
- Ta: Tracking time constant.
- minimum: Minimum controller output.
- maximum: Maximum controller output.
- output_initial: The controller output at start-up.

**Initial Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Should be left default!</td>
</tr>
</tbody>
</table>

**Interesting Variables**
PB_high, PB_low       Upper and lower bound of the proportional band.

**Controller-PI_sp_aw_u0_tr**

**Library**
Signal\Control\PID Control\Continuous

**Use**
Domains: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \left( b \cdot (SP - MV) + \frac{1}{s \cdot Ti} \cdot (SP - MV) \right)
\]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up. An external tracking signal must be supplied to activate the anti-windup scheme.

**Interface**

**Inputs**
- **SP**
  - Description: Setpoint.
- **MV**
  - Description: Measured variable or process output.
- **TR**
  - Description: Tracking signal.

**Outputs**
- **output**
  - Description: Controller output: input for the process.

**Parameters**
- **K**
  - Description: Proportional gain.
- **Ti**
  - Description: Integral time constant (Ti > 0).
- **b**
  - Description: Proportional setpoint weighting parameter.
- **Ta**
  - Description: Tracking time constant.
- **output_initial**
  - Description: The controller output at start-up.

**Initial Values**
- yes
  - Description: Should be left default!

**Interesting Variables**
- PB_high, PB_low
  - Description: Upper and lower bound of the proportional band.
Controller-PID_p

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PID controller in parallel form. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( 1 + \frac{1}{s \cdot Ti} + \frac{s \cdot Td}{1 + s \cdot \frac{Td}{N}} \right) \cdot E \]

with E equal to SP - MV.

Interface

Inputs
SP  Setpoint.
MV  Measured variable or process output.

Outputs
output  Controller output: input for the process.

Parameters
K  Proportional gain.
Td  Derivative time constant (Td > 0).
N  Derivative gain limitation.
Ti  Integral time constant (Ti > 0).

Initial Values
yes  Should be left default!
Controller-PID_p_sp.

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( b \cdot SP - MV + \frac{1}{s \cdot Ti} \cdot (SP - MV) + \frac{s \cdot Td}{1 + s \cdot N} \cdot c \cdot SP - MV \right) \]

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>SP</th>
<th>MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Setpoint.</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>K</th>
<th>Td</th>
<th>N</th>
<th>Ti</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Proportional gain.</td>
<td>Derivative time constant (Td &gt; 0).</td>
<td>Derivative gain limitation.</td>
<td>Integral time constant (Ti &gt; 0).</td>
<td>Proportional setpoint weighting parameter.</td>
<td>Derivative setpoint weighting parameter.</td>
</tr>
</tbody>
</table>

Initial Values

<table>
<thead>
<tr>
<th>Description</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Should be left default!</td>
</tr>
</tbody>
</table>

Interesting Variables

<table>
<thead>
<tr>
<th>Description</th>
<th>PB_high, PB_low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Upper and lower bound of the proportional band.</td>
</tr>
</tbody>
</table>
**Controller-PID_p_sp_aw**

**Library**  
Signal\Control\PID Control\Continuous  

**Use**  
**Domains**: Continuous, Discrete.  **Size**: 1-D.  **Kind**: Block Diagrams.  

**Description**  
This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \left( (b \cdot SP - MV) + \frac{1}{s \cdot Ti} \cdot (SP - MV) + \frac{s \cdot Td}{1 + s \cdot \frac{Td}{N}} \cdot c \cdot (SP - MV) \right)
\]

An anti-windup scheme has been added to this controller.  

**Interface**  

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Td</td>
<td>Derivative time constant (Td &gt; 0).</td>
</tr>
<tr>
<td>N</td>
<td>Derivative gain limitation.</td>
</tr>
<tr>
<td>Ti</td>
<td>Integral time constant (Ti &gt; 0).</td>
</tr>
<tr>
<td>b</td>
<td>Proportional setpoint weighting parameter.</td>
</tr>
<tr>
<td>c</td>
<td>Derivative setpoint weighting parameter.</td>
</tr>
<tr>
<td>Ta</td>
<td>Tracking time constant.</td>
</tr>
<tr>
<td>minimum</td>
<td>Minimum controller output.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum controller output.</td>
</tr>
</tbody>
</table>

**Initial Values**  
yes  
Should be left default!

**Interesting Variables**  
| PB_high, PB_low | Upper and lower bound of the proportional band. |
Controller-PID_p_sp_aw_u0

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[ U = K \left[ b \cdot SP - MV + \frac{1}{s \cdot Ti} \cdot (SP - MV) + \frac{s \cdot Td}{1 + s \cdot \frac{Td}{N}} \cdot c \cdot SP - MV \right] \]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up.

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MV</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>Td</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>minimum</td>
</tr>
<tr>
<td>maximum</td>
</tr>
<tr>
<td>output_initial</td>
</tr>
</tbody>
</table>

Initial Values

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>

Interesting Variables

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB_high, PB_low</td>
</tr>
</tbody>
</table>
**Controller-PID_p_sp_aw_u0_tr**

**Library**
Signal\Control\PID Control\Continuous

**Use**
**Domains**: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( (b \cdot SP - MV) + \frac{1}{s \cdot Ti} \cdot (SP - MV) + \frac{s \cdot Td}{1 + s \cdot \frac{Td}{N}} \cdot (c \cdot SP - MV) \right)
\]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up. An external tracking signal must be supplied to activate the anti-windup scheme.

**Interface**

**Inputs**

- **SP**: Setpoint.
- **MV**: Measured variable or process output.
- **TR**: Tracking signal.

**Outputs**

- **output**: Controller output: input for the process.

**Parameters**

- **K**: Proportional gain.
- **Td**: Derivative time constant (Td > 0).
- **N**: Derivative gain limitation.
- **Ti**: Integral time constant (Ti > 0).
- **b**: Proportional setpoint weighting parameter.
- **c**: Derivative setpoint weighting parameter.
- **Ta**: Tracking time constant.
- **output_initial**: The controller output at start-up.

**Initial Values**

- **yes**: Should be left default!

**Interesting Variables**

- **PB_high, PB_low**: Upper and lower bound of the proportional band.
Controller-PID_s

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PID controller in series form. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( 1 + \frac{1}{s \cdot Ti} \right) \left( \frac{1 + s \cdot Td}{1 + s \cdot \frac{Td}{N}} \right) \cdot E \]

with E equal to SP - MV.

Interface

Inputs
SP
MV
Setpoint.
Measured variable or process output.

Outputs
output
Controller output: input for the process.

Parameters
K
Td
N
Ti
Proportional gain.
Derivative time constant (Td > 0).
Derivative gain limitation.
Integral time constant (Ti > 0).

Initial Values
yes
Should be left default!
Controller-PID_s_sp

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \left( b + \frac{1}{s \cdot Ti} \right) \frac{1 + s \cdot c \cdot Td}{1 + s \cdot N} \cdot SP - \left( 1 + \frac{1}{s \cdot Ti} \right) \frac{1 + s \cdot Td}{1 + s \cdot N} \cdot MV
\]

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MV</td>
</tr>
</tbody>
</table>

Outputs

| output      | Controller output: input for the process. |

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>Td</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

Initial Values

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>
**Controller-PID_s_sp_aw**

**Library**
Signal\Control\PID Control\Continuous

**Use**

**Description**
This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot c \cdot Td}{1 + s \cdot \frac{Td}{N}} \cdot SP - \left( 1 + \frac{1}{s \cdot Ti} \right) \frac{1 + s \cdot Td}{1 + s \cdot \frac{Td}{N}} \cdot MV
\]

An anti-windup scheme has been added to this controller.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint.</td>
<td>MV</td>
</tr>
<tr>
<td>Measured variable or process output.</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller output: input for the process.</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Td</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative time constant (Td &gt; 0).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative gain limitation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral time constant (Ti &gt; 0).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional setpoint weighting parameter.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative setpoint weighting parameter.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking time constant.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum controller output.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum controller output.</td>
<td></td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Description</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should be left default!</td>
<td></td>
</tr>
</tbody>
</table>
**Controller-PID_s_sp_aw_u0**

**Library**  
Signal\Control\PID Control\Continuous

**Use**  

**Description**  
This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b + \frac{1}{s \cdot Ti} \right) \cdot \left( \frac{1 + s \cdot c \cdot Td}{Td} \right) \cdot SP - \left( 1 + \frac{1}{s \cdot Ti} \right) \cdot \left( \frac{1 + s \cdot Td}{N} \right) \cdot MV
\]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up.

**Interface**

<table>
<thead>
<tr>
<th><strong>Inputs</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Outputs</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Parameters</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Td</td>
<td>Derivative time constant (Td &gt; 0).</td>
</tr>
<tr>
<td>N</td>
<td>Derivative gain limitation.</td>
</tr>
<tr>
<td>Ti</td>
<td>Integral time constant (Ti &gt; 0).</td>
</tr>
<tr>
<td>b</td>
<td>Proportional setpoint weighting parameter.</td>
</tr>
<tr>
<td>c</td>
<td>Derivative setpoint weighting parameter.</td>
</tr>
<tr>
<td>Ta</td>
<td>Tracking time constant.</td>
</tr>
<tr>
<td>minimum</td>
<td>Minimum controller output.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum controller output.</td>
</tr>
<tr>
<td>output_initial</td>
<td>The controller output at start-up.</td>
</tr>
</tbody>
</table>

**Initial Values**

| **yes** | Should be left default! |
**Controller-PID_s_sp_aw_u0_tr**

**Library**
Signal\Control\PID Control\Continuous

**Use**

**Description**
This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot c \cdot Td}{1 + s \cdot Td} \cdot SP - \left( 1 + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot Td}{1 + s \cdot Td} \cdot MV
\]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up. An external tracking signal must be supplied to activate the anti-windup scheme.

**Interface**

**Inputs**

**Description**

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
<tr>
<td>TR</td>
<td>Tracking signal.</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Td</td>
<td>Derivative time constant (Td &gt; 0).</td>
</tr>
<tr>
<td>N</td>
<td>Derivative gain limitation.</td>
</tr>
<tr>
<td>Ti</td>
<td>Integral time constant (Ti &gt; 0).</td>
</tr>
<tr>
<td>b</td>
<td>Proportional setpoint weighting parameter.</td>
</tr>
<tr>
<td>c</td>
<td>Derivative setpoint weighting parameter.</td>
</tr>
<tr>
<td>Ta</td>
<td>Tracking time constant.</td>
</tr>
<tr>
<td>output_initial</td>
<td>The controller output at start-up.</td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Should be left default!</td>
</tr>
</tbody>
</table>
P

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a P controller. The output of this controller is:

\[ output = kp \cdot error \]

with the input of the controller equal to the error and the output of the controller used as the plant input:

![Diagram of P controller]

Interface

Inputs
error
Description
Input signal: plant-output minus set point.

Outputs
output
Description
Output signal: input for the plant.

Parameters
kp
Description
Proportional gain.

PD

Library
Signal\Control\PID Control\Continuous

Use

Description
This is a PD controller in series form. The transfer function of an ideal PD-controller is:
with the input of the controller equal to the error and the output of the controller used as the plant input:

\[
G(s) = \frac{kp (1 + s \cdot \tau_D)}{1 + s \cdot \beta \cdot \tau_D}
\]

with the input of the controller equal to the error and the output of the controller used as the plant input:

### Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
<td>Input signal: plant-output minus set point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Output signal: input for the plant.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kp</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>tauD</td>
<td>Derivative gain ((\tau_D &lt;&gt; 0)).</td>
</tr>
<tr>
<td>beta</td>
<td>Tameness constant ((0 &lt; \beta &lt;&lt; 1)).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state_initial</td>
<td>(\text{output}(0) = \text{state}_\text{initial} - \frac{\text{kp}\cdot\text{error}(0)}{\beta})</td>
</tr>
</tbody>
</table>

### PI

### Library

Signal\Control\PID Control\Continuous

### Use

**Domains:** Continuous, Discrete **Size:** 1-D. **Kind:** Block Diagrams.

### Description

This is a PI controller. The transfer function of the controller is:

\[
G(s) = kp + \frac{kp}{s \cdot \tau_I}
\]

with the input of the controller equal to the error and the output of the controller used as the plant input:
**Interface**

**Inputs**
- **error**
  - Description: Input signal: plant-output minus set point.

**Outputs**
- **output**
  - Description: Output signal: input for the plant.

**Parameters**
- **kp**
  - Description: Proportional gain.
- **tauI**
  - Description: Integral gain ($\tau_I \neq 0$).

**Initial Values**
- **state(0)**
  - Equation: $output(0) = state(0) - kp*error(0)$

**PID**

**Library**
Signal\Control\PID Control\Continuous

**Use**
Domains: Continuous, Discrete **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This is a PID controller in series form. The transfer function is:

\[
G(s) = kp \cdot \left( 1 + \frac{1}{s \cdot \tau_I} \right) \left( 1 + s \cdot \tau_D \right)
\]

with the input of the controller equal to the error and the output of the controller used as the plant input:
Interface

Inputs

error
Description
Input signal: plant-output minus set point.

Outputs

output
Description
Output signal: input for the plant.

Parameters

kp
Proportional gain.

tauD
Derivative gain (tauD <> 0).

tauI
Integral gain (tauD <> 0).

beta
Tameness constant (0 < beta << 1).

Initial Values

pdstate(0)

output(0) = pistate(0) - pdout(0)

Discrete

Naming Conventions

Two types of PID-controllers are available in this library. The first type used an error input and the second type of controller use separate setpoint and Measured Variable input. Both types use the same internal description, so the use is just a question of flavor.

Error Input

PID-Controllers with the error as a direct input signal, are all in series form. The name simply denotes the type of controller: P, PI, PD or PID. Two versions of each controller exists: continuous time and discrete time. They can be found in the subdirectories Continuous and Discrete.

Ports

All controllers have one input ports and one output port:

1. error: The error between setpoint and measured variable.
2. output: The controller output.
Parameters
Depending on the type of controller, the following parameters can be used:

1. \( kuD \): The proportional gain of the controller.
2. \( \tau_D \): The derivative time constant.
3. \( \beta \): The reciprocal derivative gain limitation.
4. \( \tau_I \): The integral time constant.

Separate Input
Controllers with separate inputs come in many forms. The naming denotes the type of controller and the options that are available. The type and options are also available in the model icons.

1. Two versions of each controller exists: continuous time and discrete time. They can be found in the subdirectories Continuous and Discrete. Continuous-time controllers have icons with blue text and discrete-time controllers have icons with green text.
2. The first characters denote the type of controller: \( P, PD, PI \) or \( PID \).
3. The character \( p \) or \( s \) denote the form: parallel (\( p \)) or series (\( s \)).
4. If setpoint weighting is used, the term \( sp \) is added.
5. If an anti-windup scheme is incorporated, the term \( aw \) is added.
6. If the output at startup can be set manually, the term \( u0 \) is added.
7. If an external tracking signal is used, the term \( tr \) is added.

Ports
All controllers have two inputs ports and one output port:
1. **SP**: The setpoint

2. **MV**: The measured variable (also called process variable).

3. **output**: The controller output.

**Parameters**

Depending on the type of controllers, the following parameters can be used:

1. **$K$**: The proportional gain of the controller.

2. **$Td$**: The derivative time constant.

3. **$N$**: The derivative gain limitation.

4. **$Ti$**: The integral time constant.

5. **$b$**: The setpoint weighting constant for the proportional part of the controller.

6. **$c$**: The setpoint weighting constant for the derivative part of the controller.

7. **$Ta$**: The tracking time constant of the anti-windup scheme.

8. **minimum**: The minimum controller output representing actuator saturation.

9. **maximum**: The maximum controller output representing actuator saturation.

10. **output_initial**: The controller output at start-up.

**Initial Values**

Although most controllers have one or more internal states, the initial values of these states do not need to be set manually. You use the default values (0) at the start of a simulation. To get a desired output of the controller at startup, the parameter output_initial should be used.

**Discrete Controllers**

The discrete controllers that are available in the library are directly derived from their continuous counterparts, using approximation by backward differences. These discrete models have identical behavior, as long as the sample time is not chosen too low. Discrete loops in 20-sim are automatically detected and assigned a default sampletime. You can change the sample time in the Run Properties Editor (in the Simulator from the Properties menu select the Simulation command).

**Variables**

Some PID controllers (parallel form with anti-windup) have two internal variables that are of interest. PB_high and PB_low. These parameters are the upper and lower bound of the proportional band.
Controller Use

All controllers must can be used as shown in the figure below. The upper part shows a continuous time controller and the bottom part shows a discrete time controller.

Error Input

1. An error signal is generated with a plus minus element. Its serves as an input of the controller.
2. The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors should be used, when connecting a discrete-time controller to a continuous-time process.

Separate Input

1. A setpoint signal is connected with the SP port of the controller.
2. The process output is connected with the PV port of the controller.

The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors should be used, when connecting a discrete-time controller to a continuous-time process.
Controller-P

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a P controller. The output of this controller (in s-domain) is:

\[ U = K \cdot E \]

with \( E \) equal to \( SP - PV \).

Interface

Inputs
- SP: Setpoint.
- PV: Process output.

Outputs
- CV: Controller output: input for the process.

Parameters
- \( K \): Proportional gain.

Controller-PD_p

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a PD controller in parallel form. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( 1 + \frac{s \cdot T_d}{1 + s \cdot \frac{T_d}{N}} \right) \cdot E \]

with \( E \) equal to \( SP - MV \).
**Controller-PD_s**

**Library**
Signal\Control\PID Control\Discrete

**Use**
Domains: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This is a PD controller in series form. The output of this controller (in s-domain) is:

\[
U = K \left( \frac{1 + s \cdot \frac{T_d}{T_d}}{1 + s \cdot \frac{T_d}{N}} \right) \cdot E
\]

with E equal to SP - MV.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Td</td>
<td>Derivative time constant (Td &gt; 0).</td>
</tr>
<tr>
<td>N</td>
<td>Derivative gain limitation.</td>
</tr>
</tbody>
</table>

**Initial Values**
yes
Should be left default!
**Controller-PI**

**Library**
Signal\Control\PID Control\Discrete

**Use**

**Description**
This is a PI controller. The output of this controller (in s-domain) is:

\[
U = K \cdot \left(1 + \frac{1}{s \cdot Ti}\right) \cdot E
\]

with \(E\) equal to \(SP - MV\).

**Interface**

**Inputs**
- **SP**: Setpoint.
- **MV**: Measured variable or process output.

**Outputs**
- **output**: Controller output: input for the process.

**Parameters**
- **K**: Proportional gain.
- **Ti**: Integral time constant (\(Ti > 0\)).

**Initial Values**
- **yes**: Should be left default!
Controller-PI_sp

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( b \cdot SP - MV \right) + \frac{1}{s \cdot Ti} \cdot (SP - MV) \]

Interface

Inputs
Description
SP  Setpoint.
MV  Measured variable or process output.

Outputs
output  Controller output: input for the process.

Parameters
K  Proportional gain.
Ti  Integral time constant (Ti > 0).
B  Proportional setpoint weighting parameter.

Initial Values
yes  Should be left default!

Controller-PI_sp_aw

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:
An anti-windup scheme has been added to this controller.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Ti</td>
<td>Integral time constant (Ti &gt; 0).</td>
</tr>
<tr>
<td>b</td>
<td>Proportional setpoint weighting parameter.</td>
</tr>
<tr>
<td>Ta</td>
<td>Tracking time constant.</td>
</tr>
<tr>
<td>minimum</td>
<td>Minimum controller output.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum controller output.</td>
</tr>
</tbody>
</table>

**Initial Values**

| yes | Should be left default! |

**Interesting Variables**

| PB_high, PB_low | Upper and lower bound of the proportional band. |

**Controller-PI_sp_aw_u0**

**Library**

Signal\Control\PID Control\Discrete

**Use**

**Domains:** Continuous, Discrete. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**

This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( (b \cdot SP - MV) + \frac{1}{s \cdot Ti} \cdot (SP - MV) \right)
\]
An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up.

**Interface**

**Inputs**
- **SP**: Setpoint.
- **MV**: Measured variable or process output.

**Outputs**
- **output**: Controller output: input for the process.

**Parameters**
- **K**: Proportional gain.
- **Ti**: Integral time constant (Ti > 0).
- **b**: Proportional setpoint weighting parameter.
- **Ta**: Tracking time constant.
- **minimum**: Minimum controller output.
- **maximum**: Maximum controller output.
- **output_initial**: The controller output at start-up.

**Initial Values**
- **yes**: Should be left default!

**Interesting Variables**
- **PB_high, PB_low**: Upper and lower bound of the proportional band.

**Controller-PI_sp_aw_u0_tr**

**Library**
- Signal\Control\PID Control\Discrete

**Use**
- **Domains**: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This is a PI controller with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b \cdot SP - MV \right) + \frac{1}{s \cdot Ti} \cdot (SP - MV)
\]
An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up. An external tracking signal must be supplied to activate the anti-windup scheme.

**Interface**

**Inputs**
- **SP**: Setpoint.
- **MV**: Measured variable or process output.
- **TR**: Tracking signal.

**Outputs**
- **output**: Controller output: input for the process.

**Parameters**
- **K**: Proportional gain.
- **Ti**: Integral time constant (Ti > 0).
- **b**: Proportional setpoint weighting parameter.
- **Ta**: Tracking time constant.
- **output_initial**: The controller output at start-up.

**Initial Values**
- **yes**: Should be left default!

**Interesting Variables**
- **PB_high, PB_low**: Upper and lower bound of the proportional band.

**Controller-PID_p**

**Library**
Signal\Control\PID Control\Discrete

**Use**
- **Domains**: Continuous, Discrete.
- **Size**: 1-D.
- **Kind**: Block Diagrams.

**Description**
This is a PID controller in parallel form. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b \cdot SP - MV \right) + \frac{1}{s \cdot Ti} \cdot \left( SP - MV \right)
\]
\[ U = K \left( 1 + \frac{1}{s \cdot Ti} + \frac{s \cdot Td}{1 + s \cdot \frac{Td}{N}} \right) \cdot E \]

with \( E \) equal to \( SP - MV \).

**Interface**

**Inputs**  
<table>
<thead>
<tr>
<th>Description</th>
<th>SP</th>
<th>MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured variable or process output.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**  
<table>
<thead>
<tr>
<th>Description</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller output: input for the process.</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>K</th>
<th>Td</th>
<th>N</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative time constant (( Td &gt; 0 )).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative gain limitation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral time constant (( Ti &gt; 0 )).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Initial Values**

| Should be left default! | yes |

**Controller-PID_p_sp.**

**Library**

Signal\Control\PID Control\Discrete

**Use**


**Description**

This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:
### Interface

#### Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>SP</th>
<th>MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured variable or process output.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller output: input for the process.</td>
<td></td>
</tr>
</tbody>
</table>

#### Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>K</th>
<th>Td</th>
<th>N</th>
<th>Ti</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative time constant (Td &gt; 0).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative gain limitation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral time constant (Ti &gt; 0).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional setpoint weighting parameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative setpoint weighting parameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Initial Values

<table>
<thead>
<tr>
<th>Description</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should be left default!</td>
<td></td>
</tr>
</tbody>
</table>

#### Interesting Variables

<table>
<thead>
<tr>
<th>Description</th>
<th>PB_high, PB_low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper and lower bound of the proportional band.</td>
<td></td>
</tr>
</tbody>
</table>

### Controller-PID_p_sp_aw

#### Library

Signal\Control\PID Control\Discrete

#### Use

**Domains:** Continuous, Discrete. **Size:** 1-D. **Kind:** Block Diagrams.

#### Description

This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \left( b \cdot SP - MV \right) + \frac{1}{s \cdot Ti} \left( SP - MV \right) + \frac{s \cdot Td}{1 + s \cdot \frac{Td}{N}} \left( c \cdot SP - MV \right)
\]
An anti-windup scheme has been added to this controller.

**Interface**

**Inputs**
- **SP**
  - Description: Setpoint.
- **MV**
  - Description: Measured variable or process output.

**Outputs**
- **output**
  - Description: Controller output: input for the process.

**Parameters**
- **K**
  - Description: Proportional gain.
- **Td**
  - Description: Derivative time constant ($T_d > 0$).
- **N**
  - Description: Derivative gain limitation.
- **Ti**
  - Description: Integral time constant ($T_i > 0$).
- **b**
  - Description: Proportional setpoint weighting parameter.
- **c**
  - Description: Derivative setpoint weighting parameter.
- **Ta**
  - Description: Tracking time constant.
- **minimum**
  - Description: Minimum controller output.
- **maximum**
  - Description: Maximum controller output.

**Initial Values**
- **yes**
  - Description: Should be left default!

**Interesting Variables**
- **PB_high, PB_low**
  - Description: Upper and lower bound of the proportional band.

**Controller-PID_p_sp_aw_u0**

**Library**
- **Signal\Control\PID Control\Discrete**

**Use**
- **Domains**: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( (b \cdot SP - MV) + \frac{1}{s \cdot T_i} \cdot (SP - MV) + \frac{s \cdot T_d}{T_d + \frac{T_d}{N}} \cdot (c \cdot SP - MV) \right)
\]
An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up.

### Interface

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint.</td>
<td>SP</td>
</tr>
<tr>
<td>Measured variable or process output.</td>
<td>MV</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller output: input for the process.</td>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain.</td>
<td>K</td>
</tr>
<tr>
<td>Derivative time constant (Td &gt; 0).</td>
<td>Td</td>
</tr>
<tr>
<td>Derivative gain limitation.</td>
<td>N</td>
</tr>
<tr>
<td>Integral time constant (Ti &gt; 0).</td>
<td>Ti</td>
</tr>
<tr>
<td>Proportional setpoint weighting parameter.</td>
<td>b</td>
</tr>
<tr>
<td>Derivative setpoint weighting parameter.</td>
<td>c</td>
</tr>
<tr>
<td>Tracking time constant.</td>
<td>Ta</td>
</tr>
<tr>
<td>Minimum controller output.</td>
<td>minimum</td>
</tr>
<tr>
<td>Maximum controller output.</td>
<td>maximum</td>
</tr>
<tr>
<td>The controller output at start-up.</td>
<td>output_initial</td>
</tr>
</tbody>
</table>

**Initial Values**

| Should be left default! | yes |

**Interesting Variables**

| Upper and lower bound of the proportional band. | PB_high, PB_low |

**Controller-PID_p_sp_aw_u0_tr**

**Library**

Signal\Control\PID Control\Discrete

**Use**

**Domains**: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.
Description
This is a PID controller in parallel form with setpoint weighting. The output of this controller (in s-domain) is:

\[ U = K \left( b \cdot SP - MV \right) + \frac{1}{s \cdot T_i} \cdot \left( SP - MV \right) + \frac{s \cdot T_d}{1 + s \cdot \frac{T_d}{N}} \cdot \left( c \cdot SP - MV \right) \]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up. An external tracking signal must be supplied to activate the anti-windup scheme.

Interface

Inputs

- **SP**: Setpoint.
- **MV**: Measured variable or process output.
- **TR**: Tracking signal.

Outputs

- **output**: Controller output: input for the process.

Parameters

- **K**: Proportional gain.
- **Td**: Derivative time constant (Td > 0).
- **N**: Derivative gain limitation.
- **Ti**: Integral time constant (Ti > 0).
- **b**: Proportional setpoint weighting parameter.
- **c**: Derivative setpoint weighting parameter.
- **Ta**: Tracking time constant.
- **output_initial**: The controller output at start-up.

Initial Values

- **yes**: Should be left default!

Interesting Variables

- **PB_high, PB_low**: Upper and lower bound of the proportional band.
Controller-PID_s

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a PID controller in series form. The output of this controller (in s-domain) is:

\[ U = K \cdot \left(1 + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot Td}{1 + s \cdot \frac{Td}{N}} \cdot E \]

with E equal to SP - MV.

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MV</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>Td</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Ti</td>
</tr>
</tbody>
</table>

Initial Values

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>

Controller-PID_s_sp

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:
10. Library


Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MV</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>Td</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

Initial Values

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>

Controller-PID_s_sp_aw

Library

Signal\Control\PID Control\Discrete

Use


Description

This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( b + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot c \cdot Td}{1 + s \cdot Td/N} \cdot SP - \left( 1 + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot Td}{1 + s \cdot Td/N} \cdot MV \]
An anti-windup scheme has been added to this controller.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Td</td>
<td>Derivative time constant (Td &gt; 0).</td>
</tr>
<tr>
<td>N</td>
<td>Derivative gain limitation.</td>
</tr>
<tr>
<td>Ti</td>
<td>Integral time constant (Ti &gt; 0).</td>
</tr>
<tr>
<td>b</td>
<td>Proportional setpoint weighting parameter.</td>
</tr>
<tr>
<td>c</td>
<td>Derivative setpoint weighting parameter.</td>
</tr>
<tr>
<td>Ta</td>
<td>Tracking time constant.</td>
</tr>
<tr>
<td>minimum</td>
<td>Minimum controller output.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum controller output.</td>
</tr>
</tbody>
</table>

**Initial Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Should be left default!</td>
</tr>
</tbody>
</table>

**Controller-PID_s_sp_aw_u0**

**Library**

Signal\Control\PID Control\Discrete

**Use**

**Domains**: Continuous, Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[
U = K \cdot \left( b + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + s \cdot c \cdot Td}{1 + s \cdot Td} \cdot SP - \left( 1 + \frac{1}{s \cdot Ti} \right) \frac{1 + s \cdot Td}{1 + s \cdot Td} \cdot MV
\]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up.
Interface

Inputs                Description
SP                    Setpoint.
MV                    Measured variable or process output.

Outputs               Controller output: input for the process.
output

Parameters            
K                      Proportional gain.
Td                     Derivative time constant (Td > 0).
N                      Derivative gain limitation.
Ti                     Integral time constant (Ti > 0).
b                     Proportional setpoint weighting parameter.
c                     Derivative setpoint weighting parameter.
Ta                     Tracking time constant.
minimum                Minimum controller output.
maximum                Maximum controller output.
output_initial        The controller output at start-up.

Initial Values        Should be left default!
yes

Controller-PID_s_sp_aw_u0_tr

Library
Signal\Control\PID Control\Discrete

Use

Description
This is a PID controller in series form with setpoint weighting. The output of this controller (in s-domain) is:

\[ U = K \cdot \left( b + \frac{1}{s \cdot Ti} \right) \cdot \frac{1 + c \cdot \frac{Td}{N}}{1 + s \cdot \frac{Td}{N}} \cdot \left( \frac{1}{s \cdot Ti} \right) \cdot \left( 1 + \frac{1}{s \cdot Ti} \right) \cdot \left( \frac{1 + s \cdot \frac{Td}{N}}{1 + s \cdot \frac{Td}{N}} \right) \cdot MV \]

An anti-windup scheme has been added to this controller as well as an offset for manual output at start-up. An external tracking signal must be supplied to activate the anti-windup scheme.
10. Library

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint.</td>
</tr>
<tr>
<td>MV</td>
<td>Measured variable or process output.</td>
</tr>
<tr>
<td>TR</td>
<td>Tracking signal.</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Controller output: input for the process.</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Proportional gain.</td>
</tr>
<tr>
<td>Td</td>
<td>Derivative time constant (Td &gt; 0).</td>
</tr>
<tr>
<td>N</td>
<td>Derivative gain limitation.</td>
</tr>
<tr>
<td>Ti</td>
<td>Integral time constant (Ti &gt; 0).</td>
</tr>
<tr>
<td>b</td>
<td>Proportional setpoint weighting parameter.</td>
</tr>
<tr>
<td>c</td>
<td>Derivative setpoint weighting parameter.</td>
</tr>
<tr>
<td>Ta</td>
<td>Tracking time constant.</td>
</tr>
<tr>
<td>output_initial</td>
<td>The controller output at start-up.</td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Initial Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Should be left default!</td>
</tr>
</tbody>
</table>

**P**

**Library**

Signal\Control\PID Control\Discrete

**Use**

**Domains:** Continuous, Discrete  **Size:** 1-D. **Kind:** Block Diagrams.

**Description**

This is a P controller. The output of this controller is:

\[ \text{output} = k_p \cdot \text{error} \]

with the input of the controller equal to the error and the output of the controller used as the plant input:
**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kp</td>
</tr>
</tbody>
</table>

**PD**

**Library**

Signal\Control\PID Control\Discrete

**Use**

Domains: Continuous, Discrete  
Size: 1-D.  
Kind: Block Diagrams.

**Description**

This is a PD controller in series form. The transfer function of an ideal PD-controller is:

\[
G(s) = \frac{kp(1 + s \cdot \text{tauD})}{1 + s \cdot \beta \cdot \text{tauD}}
\]

with the input of the controller equal to the error and the output of the controller used as the plant input:

![Diagram of PD controller](image)

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kp</td>
</tr>
</tbody>
</table>
error  Input signal: plant-output minus set point.

**Outputs**

output  Output signal: input for the plant.

**Parameters**

kp  Proportional gain.

tauD  Derivative gain (tauD <> 0).

beta  Tameness constant (0 < beta << 1).

**Initial Values**

state_initial  output(0) = state_initial - kp*error(0)/beta

**PI**

**Library**
Signal\Control\PID Control\Discrete

**Use**

**Description**
This is a PI controller. The transfer function of the controller is:

\[
G(s) = kp + \frac{kp}{s \cdot \tau_D}
\]

with the input of the controller equal to the error and the output of the controller used as the plant input:

**Interface**

**Inputs**
error  Description  Input signal: plant-output minus set point.

**Outputs**
output  Output signal: input for the plant.

**Parameters**
kp

Proportional gain.

tauI

Integral gain (tauI <> 0).

**Initial Values**

state(0)  
output(0) = state(0) - kp*error(0)

**PID**

**Library**

Signal\Control\PID Control\Discrete

**Use**

Domains: Continuous, Discrete **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This is a PID controller in series form. The transfer function is:

\[ G(s) = kp \cdot \left( 1 + \frac{1}{s \cdot \text{tauI}} \right) \left( \frac{1 + s \cdot \text{tauD}}{1 + s \cdot \beta \cdot \text{tauD}} \right) \]

with the input of the controller equal to the error and the output of the controller used as the plant input:

**Interface**

**Inputs**

error

Input signal: plant-output minus set point.

**Outputs**

output

Output signal: input for the plant.

**Parameters**

kp

Proportional gain.

tauD

Derivative gain (tauD <> 0).

tauI

Integral gain (tauD <> 0).

beta

Tameness constant (0 < beta << 1).

**Initial Values**

pdstate(0)

pdout(0) = pdstate(0) - kp*error(0)*beta
**10.3.4 Cost Functions**

**Continuous**

**CostFunction**

**Library**
Signal\Cost Functions\Continuous

**Implementations**
IE
ISE
IAE
ISTE
ITAE
ITSE
IAEWAI
ISEWSI
ITAEWAI

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Iconic Diagrams (Electric, Electric).

**Description - IE**
This submodel yields the following cost function:

\[ \text{output} = \int(e); \]

**Description - ISE**
This submodel yields the following cost function:

\[ \text{output} = \int(e^2); \]

**Description**
This submodel yields the following cost function:

\[ \text{output} = \int(\text{abs}(e)); \]

**Description - ISTE**
This submodel yields the following cost function:

\[ \text{output} = \int(\text{time}^2*e^2); \]

**Description - ITAE**
This submodel yields the following cost function:
\[ output = \text{int}(time \cdot \text{abs}(e)); \]

**Description - ITSE**
This submodel yields the following cost function:

\[ output = \text{int}(time \cdot e^2); \]

**I**

**Description - IAEWAI**
This submodel yields the following cost function:

\[ output = \text{int}(\text{abs}(e) + \lambda \cdot \text{abs}(input)); \]

**Description - ISEWSI**
This submodel yields the following cost function:

\[ output = \text{int}(e^2 + \lambda \cdot \text{input}^2); \]

**Description**
This submodel yields the following cost function:

\[ output = \text{int}(time \cdot \text{abs}(e) + \lambda \cdot \text{abs}(input)); \]

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Input signal</td>
</tr>
<tr>
<td>input</td>
<td>Input signal</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>output</th>
</tr>
</thead>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>lambda</th>
<th>Weighting factor.</th>
</tr>
</thead>
</table>

**Initial Values**

| output_initial | The initial value of the output. |

**Discrete**

**CostFunction**

**Library**

Signal\Cost Functions\Discrete

**Implementations**

IE
ISE
IAE
Use


Description - ISTE
This submodel yields the following cost function:

\[ output = \text{sum}(e); \]

Description - ITAE
This submodel yields the following cost function:

\[ output = \text{sum}(e^2); \]

Description - ITSE
This submodel yields the following cost function:

\[ output = \text{sum}(\text{abs}(e)); \]

Description - IAEWAI
This submodel yields the following cost function:

\[ output = \text{sum} \left( \text{abs}(e) + \lambda \text{abs}(input) \right); \]

Description - ISEWSI
This submodel yields the following cost function:

\[ output = \text{sum} \left( e^2 + \lambda \text{input}^2 \right); \]

Description
This submodel yields the following cost function:
output = sum(time*abs(e) + lambda*abs(input));

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input signal</td>
</tr>
</tbody>
</table>

| e |
| input |

Outputs

| output |

Parameters

| lambda |
| Weighting factor. |

Initial Values

| output_initial |
| The initial value of the output. |

10.3.5 Discrete

AD

Library

Signal\Discrete

Use


Description

This model incorporates the basic functions of an analog to digital convertor: sample and hold, output window (i.e. restriction of the output between a minimum and maximum value) and quantization. The quantization is specified in bits. For example 8 bits quantization means the output has $2^8 - 1 = 255$ possible values between the given minimum and maximum.

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
</tbody>
</table>

| input |

Outputs

| output |

Parameters

| minimum |
| Minimum output value. |

| maximum |
| Maximum output value |

| bits |
| Quantization levels (bits). |

| initial |
| Initial output |
Limitations

- The input of this model is a continuous signal. The output of this model is a discrete signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).
- The initial output is bounded by the window given by the minimum and maximum and rounded by the number of bits used.

Clock-Discrete

Library
Signal\Discrete

Use

Description
This models generates a logical discrete clock signal, i.e. a signal that changes from true (1) to false (0) and vice-versa, each sample time.

Interface

Outputs
output

Parameters
initial

Description
Initial value of the output.
**Limitations**

The output of this model is a discrete signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

**DA-Delay**

**Library**

Signal\Discrete

**Use**


**Description**

This model incorporates the basic functions of a digital to analog convertor: zero order hold, output window (i.e. restriction of the output between a minimum and maximum value) and quantization. The quantisation is specified in bits. For example 8 bits quantisation means the output has $2^8 - 1 = 255$ possible values between the given minimum and maximum.

The standard models of the discrete library assume that there is no time needed to perform the calculations the a discrete loop. In general these calculations do take time. To take this into account, the output of this model is delayed in time. This time delay can be set by the user and should correspond to the time needed to perform all calculations of the discrete loop in a real system.

**Interface**

**Inputs**

input

**Outputs**

output

**Parameters**

minimum
maximum
bits
$t_{\text{calc}}$

Minimum output value.
Maximum output value
Quantisation levels (bits).
Time needed to perform all calculations of the discrete loop.

**Limitations**

The input of this model is a discrete signal. The output of this model is a continuous signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).
This model incorporates the basic functions of a digital to analog converter: zero order hold, output window (i.e. restriction of the output between a minimum and maximum value) and quantization. The quantization is specified in bits. For example 8 bits quantization means the output has $2^8 - 1 = 255$ possible values between the given minimum and maximum.

**Interface**

**Inputs**

- input

**Outputs**

- output

**Parameters**

- minimum: Minimum output value.
- maximum: Maximum output value
- bits: Quantization levels (bits).

**Limitations**

The input of this model is a discrete signal. The output of this model is a continuous signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sampletime. You can set this sample time to any desired value in the Simulator (choose Properties > Run and then the Discrete System tab.)

**Delay-n**

This is the $z$-delay function with $n$ samples delay.
\[output(k) = input(k - n*T)\]
\[with \ k = n \times T, \ n = 1,2,3,...\]

The sample time \(T\) can be set in the Simulator (choose **Properties, Simulation** and **Discrete System**).

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output_initial</td>
</tr>
</tbody>
</table>

The initial value of the block.

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
</tbody>
</table>

The number of sample delays \((n = 1,2,3,..)\).

**Limitations**

- The parameter \(n\) can not be changed during simulation. If it is increased, re-processing of the model is necessary.
- The input and output of this model are discrete signals. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose **Properties, Simulation** and **Discrete System**).

---

**Delay**

**Library**

Signal\Discrete

**Use**

**Domains**: Discrete. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This is the the z-delay function with one sample interval delay.

\[output(k) = input(k - T)\]
\[with \ k = n \times T, \ n = 0,1,2,3,...\]

The sample time \(T\) can be set in the Simulator (choose **Properties, Simulation** and **Discrete System**).
Interface

Inputs	Description
input  | 

Outputs  | 
output  | 

Initial Values  | The initial value of the block.
output_initial  | 

Limitations
The input and output of this model are discrete signals. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

DiscreteDifferential

Library
Signal\Discrete

Use

Description
This model represents the discrete equivalent of the continuous differentiation:

\[
\begin{align*}
output(0) &= \text{initial}; \ (k = 0) \\
output(1) &= (u(1) - \text{initial})/\text{sampletime}; \ (k = 1) \\
output (k) &= (u(k) - u(k-1))/\text{sampletime}; \ (k = n * T , \ n = 2,3,4,...)
\end{align*}
\]

The sample time T can be set in the Simulator (choose Properties, Simulation and Discrete System). The discrete transfer function of this model is:

\[
H(z) = (z - 1) / ( z * \text{sampletime})
\]

which is the equivalent (using the backward difference transformation) of the continuous time transferential:

\[
H(s) = s
\]

Interface

Inputs	Description
input  | 
**Outputs**

output

**Parameters**

initial Initial value of the output.

**Limitations**

The input and output of this model are discrete signals. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

---

**DiscreteIntegral**

**Library**

Signal\Discrete

**Use**


**Description**

This model represents the discrete equivalent of the continuous integration:

\[
output(k) = \text{initial}; (k = 0) \\
inp(k-T)*T + inp(k-2T)*T + inp(k-3T)*T \\
+ ... + inp(0)*T + \text{initial}; (k = n * T , n = 1,2,3,...)
\]

The sample time T can be set in the Simulator (choose Properties, Simulation and Discrete System). The discrete transfer function of this model is:

\[
H(z) = \text{sampletime} / (z - 1)
\]

which is the equivalent (using the forward difference transformation) of the continuous time transfer function:

\[
H(s) = 1/s
\]

**Interface**

**Inputs**

input

**Outputs**

output

**Parameters**
Initial value of the output.

**Limitations**
The input and output of this model are discrete signals. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

**Hold**

**Library**
Signal\Discrete

**Use**

**Description**
This model forms the interconnection between a discrete and continuous system: zero order hold.

**Interface**

**Inputs**
- **Description**
  - input: discrete signal

**Outputs**
- **Description**
  - output: continuous signal

**Limitations**
The input of this model is a discrete signal. The output of this model is a continuous signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sample time. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

**LinearSystem**

**Library**
Signal\Discrete

**Use**
Description
When you select this model and click Go Down a special editor opens (Linear System Editor), allowing you to enter a linear system in State Space form, as a Transfer Function or by adding poles and zeros:

Note
This is a discrete linear system, using the transformation. The transformation is based on a sampletime (here 0.1 s). You can change the sampletime by going to a continuous-time linear system (click the button) and back (click again the button).

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

Initial Values
The model has internal states that are not accessible.

Parameters
Parameters are entered by the Linear System Editor.

**Quantize-Round**

**Library**
Signal\Discrete

**Use**
Domains: Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This model can be used to represent quantization of an input signal. It rounds the input as shown in the graph below. The quantization interval is specified by the least significant bit (lsb). The maximum output error is half a least significant bit.

![Quantize-Round Graph](image)

**Note**
Compare this model with the model Quantize-Truncate which represents quantization by truncation. Truncation results in a maximum error of a least significant bit.

**Interface**

**Inputs**
- input

**Outputs**
- output

**Parameters**
- lsb: Least significant bit.
Quantize-Truncate

Library
Signal\Discrete

Use
Domains: Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

Description
This model can be used to represent quantization of an input signal. It truncates the input as shown in the graph below. The quantization interval is specified by the least significant bit (lsb). The maximum output error is a least significant bit.

Note
Compare this model with the model Quantize-Round which represents quantization by rounding. Rounding results in a maximum error of half a least significant bit.

Interface

**Inputs**
- **Description**

**Outputs**
- **Description**

**Parameters**
- **lsb**
  - **Description:** Least significant bit.
Sample

Library
Signal\Discrete
Use
Description
This model samples and holds the input every T [s].

\[
output = input; \quad (t = k)
\]
where \( k = n*T \), with \( n = 0,1,2,3, \ldots \)

The sampletime \( T \) can be set in the Simulator (choose Properties, Run and Discrete System).

Interface

Inputs Description
input

Outputs
output

Limitations
The input of this model is a continuous signal. The output of this model is a discrete signal. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sampletime. You can set this sample time to any desired value in the Simulator (choose Properties, Simulation and Discrete System).

Sigma

Library
Signal\Discrete
Use
Description
This model represents a discrete summation operator:

\[
output(k) = initial;
\]
\( \text{with } k = 0 \)
\[
output(k) = inp(k-T) + inp(k-2T) + inp(k-3T) + \ldots + inp(0) + initial
\]
\( \text{with } k = n*T, \ n = 1,2,3,\ldots \)
The sampletime $T$ can be set in the Simulator (choose **Properties, Simulation** and **Discrete System**).

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>output</th>
</tr>
</thead>
</table>

**Parameters**

| initial | Initial value of the output. |

**Limitations**

The input and output of this model are discrete signals. 20-sim will automatically detect the existence of discrete models. Each chain of discrete models will be assigned a specific sampletime. You can set this sample time to any desired value in the Simulator (choose **Properties, Simulation** and **Discrete System**).

### 10.3.6 Events

**Event**

**Library**

Signal\Events

**Implementations**

CrossingBoth
CrossingDown
CrossingUp

**Use**

Domains: Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description - CrossingBoth**

This is the block implementation of the event function. The output signal is a boolean which goes from false (0) to true (1) when the input signal crosses zero ($\text{offset} = 0$):

$$\text{output} = \text{event} (\text{input} - \text{offset});$$

If desired, you can change the parameter $\text{offset}$ to trigger the event on a non-zero input value.
The output of the event block for a sinusoidal input (parameter offset = 0).

**Interface - CrossingBoth**

**Inputs**
- input

**Outputs**
- output
  - event signal (boolean)

**Parameters**
- offset
  - output is true (event) when the input signal crosses this value (default = 0)

**Description - CrossingDown**

This is the block implementation of the eventdown function. The output signal is a boolean which goes from false (0) to true (1) when the input signal crosses zero with a negative slope (offset = 0):

\[ output = \text{eventdown} \ (\text{input} - \text{offset}); \]

If desired, you can change the parameter offset to trigger the event on a non-zero input value.
The output of the event block for a sinusoidal input (parameter offset = 0).

**Interface - CrossingDown**

**Inputs**
- **input**

**Outputs**
- **output**
  - event signal (boolean)

**Parameters**
- **offset**
  - output is true (event) when the input signal crosses this value (default = 0).

**Description - CrossingUp**

This is the block implementation of the eventup function. The output signal is a boolean which goes from false (0) to true (1) when the input signal crosses zero with a positive slope (offset = 0):

\[
output = \text{eventup}(\text{input} - \text{offset});
\]

If desired, you can change the parameter *offset* to trigger the event on a non-zero input value.
The output of the event block for a sinusoidal input (parameter offset = 0).

**Interface - CrossingUp**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>output is true (event) when the input signal crosses this value (default = 0).</td>
</tr>
</tbody>
</table>

**FrequencyEvent**

**Library**

Signal\Events

**Use**

**Domains:** Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**

This is the block implementation of the frequencyevent function. The output signal is a boolean which is true (1) every time when $p$ [s] have passed. The function starts after an offset of $o$ [s]. The offset parameter is optional.

\[
output = \text{frequencyevent}(p,o);
\]
The output of the frequencyevent block with a period of 1 s and an offset of 2 s.

**Interface**

**Outputs**
- output
  - Description: event signal (boolean)

**Parameters**
- period
  - Description: period in [s]
- offset
  - Description: offset in [s]

**TimeEvent**

**Library**
Signal\Events

**Use**

**Description**
This is the block implementation of the timeevent function. The output signal is a boolean which is true (1) at a specific time given by the parameter triggerTime:
output = timeevent(triggerTime);

The output of the timeevent block with a triggerTime of 5 s.

**Interface**

**Outputs**
- output: event signal (boolean)

**Parameters**
- triggerTime: time in [s] when the output is true.

**10.3.7 Filters**

**Filter**

**Library**
Signal\Block Diagram

**Use**
**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
When you select this model and click *Go Down* a special editor opens (Filter Editor), allowing you to choose a filter:
Interface

Inputs

input

Outputs

output

Initial Values

The model has internal states that are not accessible.

Parameters

Parameters are entered by the Filter Editor.

LowPassFilter-BW2

Library

Signal\Filters

Use


Description

This is a second order Butterworth filter. The bandwidth is given in Hz. The phase and magnitude plot (bandwidth = 1 Hz) are shown in the figure below.
Interface

**Outputs**
input, output

**Parameters**
BW
Bandwidth (Hz)

**Initial Values**
y_initial
Output value of the filter at t = 0 s.
LowPassFilter-BW4

Library
Signal\Filters

Use

Description
This is a fourth order Butterworth filter. The bandwidth is given in Hz. The phase and magnitude plot (bandwidth = 1 Hz) are shown in the figure below.

Interface

Outputs
input, output

Parameters
BW

Initial Values
y_initial

Description
Bandwidth (Hz)
Output value of the filter at t = 0 s.
LowPassFilter-FO

Library
Signal\Filters

Use

Description
This is a first order filter. with transfer function:

\[ Y(s) = \frac{1}{\frac{s}{2 \cdot \pi \cdot BW} + 1} \cdot U(s) \]

The bandwidth is given in Hz. The phase and magnitude plot (bandwidth = 1 Hz) are shown in the figure below.
Interface

Outputs
input, output

Parameters
BW
Bandwidth (Hz)

Initial Values
state_initial
Output value of the filter at $t = 0$ s.
LowPassFilter-SO

Library
Signal\Filters

Use

Description
This is a second order filter. with transfer function:

\[ Y(s) = \frac{(2 \cdot \pi \cdot BW)^2}{s^2 + 2 \cdot \pi \cdot BW \cdot \frac{s}{Q} + (2 \cdot \pi \cdot BW)^2} \cdot U(s) \]

The bandwidth is given in Hz. The phase and magnitude plot (bandwidth = 1 Hz) are shown in the figure below.

Interface

Outputs
input, output

Parameters

Description

- Linear System : Bode Plot

![Bode Plot](image)

- Phase (deg)

![Phase Plot](image)

![Frequency (Hz)]

20-sim 4.7 Reference Manual
10.3.8 Import Export

Matlab

DoFromMatlab

Library
Signal\Import Export\Matlab

Use

Description
This submodel sends a command to the Matlab workspace during simulation, and gets the output signal from the Matlab workspace.

Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>The variable from the Matlab workspace.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>Command string in Matlab format</td>
</tr>
</tbody>
</table>
name

Name of the variable inside the Matlab workspace.

Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes '' in the command string instead.

DoMatlab-Final

Library
Signal\Import Export\Matlab

Use

Description
This submodel sends a command to the Matlab workspace at the end of the simulation.

Interface

Parameters                      Description
command                        Command string in Matlab format

Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes '' in the command string instead.

DoMatlab-Initial

Library
Signal\Import Export\Matlab

Use

Description
This submodel sends a command to the Matlab workspace at the start of the simulation.

Interface

Inputs                      Description

Outputs
**Parameters**
command  
Command string in Matlab format

**Tip**
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes '' in the command string instead.

---

**DoMatlab**

**Library**
Signal\Import Export\Matlab

**Use**
Domains: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This submodel sends a command to the Matlab workspace during simulation.

**Interface**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>Command string in Matlab format</td>
</tr>
</tbody>
</table>

**Tip**
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes '' in the command string instead.

---

**FromMatlab**

**Library**
Signal\Import Export\Matlab

**Use**
Domains: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This submodel gets an output from the Matlab workspace during simulation.

**Interface**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of the variable inside the Matlab workspace</td>
</tr>
</tbody>
</table>
Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.

ToDoFromMatlab

Library
Signal\Import Export\Matlab

Use

Description
This submodel sends the input signal to the Matlab workspace, sends the command to the workspace, and gets the output variable back. This is done during the 20-sim simulation.

Interface

Inputs

input
The variable for the Matlab workspace.

Outputs

output
The variable from the Matlab workspace

Parameters

command
Command string in Matlab format

nameInput
Name of the input variable in the Matlab workspace.

nameOutput
Name of the output variable in the Matlab workspace.

Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.
**ToDoMatlab**

**Library**
Signal\Import Export\Matlab

**Use**
Domains: Continuous, Discrete. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel sends the input signal and a command to the Matlab workspace during simulation.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
<tr>
<td>The variable for the Matlab workspace.</td>
</tr>
</tbody>
</table>

**Outputs**

**Parameters**

| command |
| Command string in Matlab format |
| name |
| Name of the variable inside the Matlab workspace. |

**Tip**
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.

---

**ToMatlab-Plot**

**Library**
Signal\Import Export\Matlab

**Use**
Domains: Continuous, Discrete. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel sends the input signal to the Matlab workspace, stores the input inside the Matlab workspace into a matrix, and plots the result in a graph. Each row of the matrix corresponds with a major simulation step, so the input is limited to a scalar or vector. Note: the name is set during the processing phase only

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
<tr>
<td>The variable to send to the Matlab workspace.</td>
</tr>
</tbody>
</table>

**Parameters**
name Name of the variable inside the Matlab workspace

**Tip**
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.

---

**ToMatlab-Store**

**Library**
Signal\Import Export\Matlab

**Use**
Domains: Continuous, Discrete. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel sends the input signal to the Matlab workspace and stores the input inside the Matlab workspace into a matrix. Each row of the matrix corresponds with a major simulation step, so the input is limited to a scalar or vector. Note: the name is set during the processing phase only.

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

**Outputs**

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
</tbody>
</table>

**Tip**
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.
ToMatlab-Timed

Library
Signal\Import Export\Matlab

Use

Description
This submodel sends the time and input signal to the Matlab workspace. The input is limited to a scalar or vector. Note: the name is set during the processing phase only.

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
</tbody>
</table>

Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes '' in the command string instead.

ToMatlab-TimedPlot

Library
Signal\Import Export\Matlab

Use

Description
This submodel sends the time and input signal to the Matlab workspace, stores the time and input inside the Matlab workspace into a matrix, and plots the result in a graph. Each row of the matrix corresponds with a major simulation step, so the input is limited to a scalar or column vector. Note: the name is set during the processing phase only.

Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
</tbody>
</table>
Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.

ToMatlab-TimedStore

Library
Signal\Import Export\Matlab
Use
Description
This submodel sends the time and input signal to the Matlab workspace and stores the time and input inside the Matlab workspace into a matrix. Each row of the matrix corresponds with a major simulation step, so the input is limited to a scalar or column vector. Note: the name is set during the processing phase only

Interface

Inputs
- input
  - Description: The variable to send to the Matlab workspace.

Parameters
- name
  - Description: Name of the variable inside the Matlab workspace

Tip
20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.

ToMatlab

Library
Signal\Import Export\Matlab
Use
Description
This submodel sends a variable to the Matlab workspace during simulation.
Interface

Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>The variable to send to the Matlab workspace.</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of the variable inside the Matlab workspace</td>
</tr>
</tbody>
</table>

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the command string for Matlab, use 2 single quotes " in the command string instead.

10.3.9 Logical

Continuous

And

Library

Signal\Logical\Continuous

Use


Description

The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>input1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>&lt;= 0.5</td>
<td>&gt; 0.5</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
**Interface**

**Inputs**
- input1
- input2

**Outputs**
- output

**Clock**

**Library**
Signal\Logical\Continuous

**Use**
Domains: Continuous. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**
This model generates a logical continuous clock signal, i.e. a signal that changes from true (1) to false (0) and back, each period T.

**Interface**

**Outputs**
- output

**Parameters**
- initial
- T

**Description**
- Initial value of the output.
- Clock-period.
DTTypeFlipFlop

Library
Signal\Logical\Continuous

Use

Description
The initial output of this model is equal to the parameter initial. Otherwise the output signal is equal to the input signal each time the control input changes from false to true:

\[
\begin{align*}
\text{output} &= \text{input}; \ (\text{oldcontrol} = \text{false} \text{ and } \text{control} = \text{true}) \\
\text{output} &= \text{oldoutput}; \ (\text{otherwise})
\end{align*}
\]

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>&lt;= 0.5</th>
<th>&gt; 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Interface

Inputs
input
control

Outputs
output

Parameters
initial Initial value of the output.

Invertor

Library
Signal\Logical\Continuous

Use

Description
The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>
true  false
with

false  true
inputs  <= 0.5  > 0.5
output  0.0   1.0

Interface

Inputs
input

Outputs
output

Logical-Xor

Library
Signal\Logical\Continuous

Use

Description
The output signal of this model is according the truth table below:

input2
false  true
input1
false  true
true   false
with

false  true
inputs  <= 0.5  > 0.5
output  0.0   1.0
Interface

Inputs
input1
input2

Outputs
output

Nand

Library
Signal\Logical\Continuous

Use

Description
The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input1</th>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;= 0.5</td>
<td>&gt; 0.5</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Nor

Library
Signal\Logical\Continuous

Use

Description
The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>input1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputs</td>
<td>&lt;= 0.5</td>
</tr>
<tr>
<td>output</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Interface

Inputs
input1
input2

Outputs
output

Or

Library
Signal\Logical\Continuous

Use

Description
The output signal of this model is according the truth table below:
<table>
<thead>
<tr>
<th>input1</th>
<th>input2</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>previous output</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>previous output</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>input1</th>
<th>input2</th>
<th>&lt;= 0.5</th>
<th>&gt; 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>Inputs</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>input1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>Initial value of the output.</td>
</tr>
</tbody>
</table>

**TriggerTypeFlipFlop**

**Library**

Signal\Logical\Continuous

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

Initially the output is equal to the parameter initial. Otherwise the output signal is changed each time the control input changes from false to true:

\[
\begin{align*}
\text{output} &= \text{not oldoutput}; \quad (\text{oldcontrol} = \text{false and control} = \text{true}) \\
\text{output} &= \text{oldoutput}; \quad \text{(otherwise)}
\end{align*}
\]

with

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
<tr>
<td>control</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>Initial value of the output.</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{inputs} &\quad \text{false} \quad \text{true} \\
\text{output} &\quad \leq 0.5 \quad > 0.5 \\
\text{output} &\quad 0.0 \quad 1.0
\end{align*}
\]
output

**Parameters**

| initial | Initial value of the output. |

**Discrete**

**And**

**Library**

Signal\Logical\Discrete

**Use**

Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**

The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input1</th>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;= 0.5</td>
<td>&gt; 0.5</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

**Interface**

**Inputs**

- input1
- input2

**Outputs**

- output
Clock

Library
Signal\Logical\Discrete

Use

Description
This models generates a logical discrete clock signal, i.e. a signal that changes from true (1) to false (0) and vice-versa, each sample time.

![Clock-Discrete](image)

Interface

Outputs
output

Parameters
initial
Initial value of the output.
T
Clock-period.

DTypeFlipFlop

Library
Signal\Logical\Discrete

Use
The initial output of this model is equal to the initial value oldoutput_initial. Otherwise the output signal is equal to the input signal each time the control input changes from false to true.
\[ output = \text{input}; \ (\text{oldcontrol} = \text{false} \text{ and } \text{control} = \text{true}) \]
\[ output = \text{oldoutput}; \ (\text{otherwise}) \]

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>(&lt;= 0.5)</td>
<td>(&gt; 0.5)</td>
<td></td>
</tr>
</tbody>
</table>

| output | 0.0 | 1.0 |

**Interface**

**Inputs**
- **input**
- **control**

**Outputs**
- **output**

**Initial Values**
- **oldcontrol_initial**
  - Initial value of the control signal.
- **oldoutput_initial**
  - Initial value of the output.

**Invertor**

**Library**
Signal\Logical\Discrete

**Use**
Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**

The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>(&lt;= 0.5)</td>
<td>(&gt; 0.5)</td>
<td></td>
</tr>
</tbody>
</table>

| output | 0.0 | 1.0 |
## Interface

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>input</td>
</tr>
<tr>
<td>Outputs</td>
<td>output</td>
</tr>
</tbody>
</table>

## Nand

### Library
Signal\Logical\Discrete

### Use
Domains: Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

### Description
The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input2</th>
<th>input1</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>0.0</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>1.0</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>1.0</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>&lt;= 0.5</td>
</tr>
<tr>
<td>true</td>
<td>&gt; 0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>input1</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

## Interface

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>input1, input2</td>
</tr>
<tr>
<td>Outputs</td>
<td>output</td>
</tr>
</tbody>
</table>
Nor

Library
Signal\Logical\Discrete

Use

Description
The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input1</th>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>&lt;= 0.5</th>
<th>&gt; 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Interface

Inputs
input1
input2

Outputs
output

Or

Library
Signal\Logical\Discrete

Use

Description
The output signal of this model is according the truth table below:
### SetResetFlipFlop

**Library**

Signal\Logical\Discrete

**Use**

Domains: Discrete. **Size:** 1-D. **Kind:** Block Diagrams.

**Description**

The initial output of this model is equal to the initial_value *oldoutput_initial*. Otherwise the output signal is according the truth table below:

<table>
<thead>
<tr>
<th>input1</th>
<th>input2</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>previous output</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>previous output</td>
</tr>
</tbody>
</table>

with
### Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputs</td>
<td>&lt;= 0.5</td>
<td>&gt; 0.5</td>
</tr>
<tr>
<td>output</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

### Interface

#### Inputs

- **control**

#### Outputs

- **output**

#### Initial Values

- **oldcontrol_initial**: Initial value of the control signal.
- **oldoutput_initial**: Initial value of the output.

This model represents a simple logic gate, where the output changes state when the control input changes from false to true. The behavior is defined by the following logic:

- If the control input is false and the output changes to true, then:
  
  \[ \text{output} = \neg \text{oldoutput}; \quad (\text{oldcontrol} = \text{false and control} = \text{true}) \]

- If the control input remains true or the output does not change, then:
  
  \[ \text{output} = \text{oldoutput}; \quad (\text{other otherwise}) \]
Xor

Library
Signal\Logical\Discrete

Use

Description
The output signal of this model is according the truth table below:

<table>
<thead>
<tr>
<th>input2</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>input1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>inputs</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;= 0.5</td>
<td>&gt; 0.5</td>
<td></td>
</tr>
<tr>
<td>output</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Interface

Inputs
input1
input2

Outputs
output
10.3.1 Signal Processing

AmplitudeSensor

Library
Signal\Signal Processing

Use

Description
This model measures the amplitude of harmonic signals, i.e. periodic signals, that go through zero twice every period. For half a period (between the passes through zero) the input signal is monitored. The largest value is stored and given as the absolute output signal, the next half period. That is why this sensor always has an output delay of half a period.

Interface

Inputs
input

Outputs
output
Parameters
initial Initial output value

Maximum

Library
Signal\Signal Processing
Use
Description
This submodel yields the maximum value of an input signal.

Interface

Inputs Description
input Input signal

Outputs
output Maximum value of the input signal

Mean

Library
Signal\Signal Processing
Use
Description
This submodel yields the mean of an input signal using the integral function:

\[ output = \frac{\text{int}(input)}{\text{time}} \]

Interface

Inputs Description
input Input signal

Outputs
output Mean value of the input signal
### Minimum

**Library**
Signal\Signal Processing

**Use**

**Domains:** Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel yields the minimum value of an input signal.

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Minimum value of the input signal</td>
</tr>
</tbody>
</table>

### MovingAverage

**Library**
Signal\Signal Processing

**Use**

**Domains:** Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel yields the average of an input signal over a window T0 (s) using an integral function:

\[
output = \frac{\text{int}(input,0)}{T0}
\]

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>Time window</td>
</tr>
</tbody>
</table>
PhaseSensor

Library
Signal\Signal Processing

Use

Description
This model measures the phase of a harmonic signals (i.e. periodic signals, that go through zero twice every period) with respect to another harmonic signal. Two inputs are used:

- Reference
- Input

The PhaseSensor block measures the zero crossings of both the input and the reference, to assess the phase difference between both. The phase output is the phase of the input signal with respect to the reference signal. The measurement will not work if the input sines have a non-zero mean.

![Graph showing phase measurements](image)

Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>the signal of which the phase is measured</td>
</tr>
</tbody>
</table>
reference with respect to this signal

Outputs
output the measured phase

Parameters
initial Initial output value
allow_negative_phase True: measured phase between -pi and +pi;
False: measured phase between 0 and 2*pi

RootMeanSquare

Library
Signal\Signal Processing

Use

Description
This submodel yields the root mean square of an input signal using an integral function:

\[ output = \sqrt{ \frac{\text{int}(\text{input}^2,0)}{\text{time}}} \]

Interface

Inputs
input

Outputs
output

StandardDeviation

Library
Signal\Signal Processing

Use

Description
This submodel yields the standard deviation of an input signal using an integral function:

\[ output = \sqrt{ \frac{\text{int}( (\text{input} - \text{mean})^2 / \text{time})}{\text{time}}} \]

where mean is the mean of the input
## Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Standard deviation of the input signal</td>
</tr>
</tbody>
</table>

## Variance

### Library
Signal\Signal Processing

### Use
Domains: Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

### Description
This submodel yields the variance of an input signal using an integral function:

\[
\text{output} = \int \frac{(\text{input} - \text{mean})^2}{\text{time}}
\]

where mean is the mean of the input

### Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Variance of the input signal</td>
</tr>
</tbody>
</table>

## 10.3.1 Sources

### 1

#### Constant

### Library
Signal\Sources

### Use
Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

### Description
The output of this model is equal to the parameter C.
\[
    output = C;
\]

**Interface**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>The output is equal to C.</td>
</tr>
</tbody>
</table>

**DataFromFile**

**Library**

Signals\Sources

**Use**


**Description**

This is a masked model which opens the Data Input Wizard when edited. You can use this wizard to open a data file.

**Items**

- **Filename**: Enter the filename of the datafile or use the *Browse* button.
- **Name**: The columns of data.
- **20-sim Name**: The 20-sim name that corresponds with the column data. You can enter any desired name.
- **Variable / Output**: The data may be a variable (useful for plotting in the simulator) or an output of the model (use as an input for other models).

### Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs</td>
<td>user defined outputs</td>
</tr>
</tbody>
</table>

### File format

20-sim supports data files in Comma Separated Values format (.csv). The first line is used as a header describing the column name. Without a proper header line, you have to define the 20-sim variable names for each column yourself. The first column should always contain the time values. The other columns should contain the corresponding data values (see also data).

Example CSV file format with header:

```
"time","x","y"
0.0, 1, 2
0.1, 5, 10
0.2, 6, 11
```

### Joystick

#### Library
Signal\Sources

#### Use

**Domains**: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

#### Description

This model uses the joystick.dll function to get a joystick input.

#### Tips

- Use attempting real-time simulation when using joystick input to prevent the simulation from being calculated to quickly.

#### Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs</td>
<td>Various outputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>Various scaling parameters</td>
</tr>
</tbody>
</table>
Keyboard

Library
Signal\Sources
Use
Description
This model uses the keyboard.dll function to get a keyboard input. The keyboard input is an integer number and displayed by the output signal keycode. The default model has four additional output signals with a default value of zero and a value of 1 when the keyboard arrows are pressed.
Tips
- Inspect the contents of the model and change it to read other keyboard inputs.
- Open the Example model Examples/2D mechanics/ScaraRobotKeyboard to see a demonstration of the keyboard input.
- Use attempting real-time simulation when using keyboard inputs to prevent the simulation from being calculated to quickly.
Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td>left keyboard arrow pressed</td>
</tr>
<tr>
<td>right</td>
<td>right keyboard arrow pressed</td>
</tr>
<tr>
<td>up</td>
<td>up keyboard arrow pressed</td>
</tr>
<tr>
<td>down</td>
<td>down keyboard arrow pressed</td>
</tr>
<tr>
<td>keycode</td>
<td>number of the keyboard input</td>
</tr>
</tbody>
</table>

Parameters
Scale
Various scaling parameters

MotionProfile

Library
Signals\Sources
Use
Description
This is a masked model which opens the old style Motion Profile Wizard when edited. This wizard is kept in 20-sim to allow you to run 20-sim 3.x models. The wizard has been replaced by a new wizard which is far more powerful.
**Interface**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>position</td>
</tr>
<tr>
<td>v</td>
<td>velocity</td>
</tr>
<tr>
<td>a</td>
<td>acceleration</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>stroke</th>
<th>amplitude of the profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
<td>start time of the profile</td>
</tr>
<tr>
<td>stop_time</td>
<td>time when the maximum is reached</td>
</tr>
<tr>
<td>return_time</td>
<td>start time of the return motion</td>
</tr>
<tr>
<td>end_time</td>
<td>finish time of the return motion</td>
</tr>
<tr>
<td>period</td>
<td>period of the profile</td>
</tr>
</tbody>
</table>

**MotionProfile-Wizard**

**Library**

Signals\Sources

**Use**

Domains: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This is a masked model which opens the Motion Profile Wizard when edited. Depending on the selections entered, various motion profiles can be generated.
One

Library
Signal\Sources
Use
Description
The output of this model is equal to one.

output = 1.0;

Interface

Outputs Description
output

Pi

Library
Signal\Sources
Use
Description
The output of this model is equal to pi.

output = \pi;

Interface

Outputs Description
output

SignalGenerator-Cycloid

Library
Signal\Sources
Use
Description
This model generates a cycloidal step signal:
\[ t\Delta = 2\pi \frac{(\text{time} - \text{start\_time})}{(\text{stop\_time} - \text{start\_time})} \]

\[ \text{output} = 0; \ (t\Delta < 0) \]
\[ \text{output} = \text{amplitude} \frac{(t\Delta - \sin(t\Delta))}{2\pi}; \ (0 \leq t\Delta \leq 2\pi) \]
\[ \text{output} = \text{amplitude}; \ (t\Delta > 2\pi) \]

**Interface**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
<td>The start time of the step.</td>
</tr>
<tr>
<td>stop_time</td>
<td>The stop time of the step.</td>
</tr>
<tr>
<td>amplitude</td>
<td>The amplitude of the step.</td>
</tr>
</tbody>
</table>

**SignalGenerator-FileInput**

**Library**

Signal\Source

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**

This model generates an output by linear interpolation of data read from file. The data on file is stored in columns. The first column contains the time values \((t)\) and the second column contains the corresponding output values \((y)\).

- The time data of the first column needs to be monotonically increasing.
- Discontinuities are allowed, by providing the same time point twice in the table.
- Values outside of the range, are computed by linear extrapolation of the last two points.

**file:**

<table>
<thead>
<tr>
<th>time</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>-1</td>
</tr>
<tr>
<td>2.5</td>
<td>-1</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>5.5</td>
<td>1.75</td>
</tr>
<tr>
<td>7</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Example of an input file.

The input file must be an ASCII (text) file and should consist at least two columns of data. The first column (number 0) should always contain the time values. The other columns (number 1, 2, 3, etc.) should contain the corresponding data values. The parameter column is used to specify which column is used for as output data.

The various values must be separated by a comma, a space or a tab. Each new set of time and data values must start on a new line. No comment or other text may be part of the file. The filename of the input file can be specified using the complete path (e.g. c:\data\data.tbl). When no path is given, the file is assumed to be in the experiment directory.

Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Filename of the input file.</td>
</tr>
<tr>
<td>column</td>
<td>column number.</td>
</tr>
</tbody>
</table>

Example

Example data.tbl file with header and 1 column with data:

"time","y"
0.0, 0.5
0.5, -1
2.5, -1
3.6, 9

SignalGenerator-Gaussian Noise

Library
Signal\Sources

Implementations
frequency_limited_FOH
frequency_limited_ZOH
unlimited

Use

Description - frequency_limited_FOH
This model generates a gaussian noise signal with gaussian distribution and variance 1 and random seed s. The noise is multiplied by the parameter amplitude.
output = amplitude*gauss(1,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

**Interface - frequency_limited_FOH**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>output scaling factor: does not influence the distribution</td>
</tr>
<tr>
<td>frequency</td>
<td>frequency band of the noise</td>
</tr>
</tbody>
</table>

**Description - frequency_limited_ZOH**

This model generates a gaussian noise signal with gaussian distribution and variance 1 and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

**Interface - frequency_limited_ZOH**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>output scaling factor: does not influence the distribution</td>
</tr>
<tr>
<td>frequency</td>
<td>frequency band of the noise</td>
</tr>
</tbody>
</table>

**Description - unlimited**

This model generates a gaussian noise signal with gaussian distribution and variance 1 and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal has no frequency limitation.

**Note**

It is advised only to use this implementation with fixed step integration methods such as Euler and Runge Kutta 2/4. If you run this implementation with a variable step integration method, simulations may get very slow!
Interface - unlimited

Outputs
output

Parameters
seed          random seed
amplitude     output scaling factor: does not influence the distribution

Limitations
seed must be a number in the region <0,65000>.

Random Seed

20-sim generates a sequence of random numbers for each simulation differently depending upon the value of the random seed parameter. The random noise function and gaussian noise function are affected by this. The default value of the random seed is 0. The maximum value is 65000.

Default value (0)
When the random seed value is 0 (default value), 20-sim generates a new sequence of random numbers for each simulation and for each new random function. E.g. when two random functions with default random seed value (0) are used in one model, they will generate different sequences of random numbers during a simulation.

Other values (>0)
When the random seed value is chosen larger than zero, 20-sim generates the same sequence of random numbers for each simulation. Moreover 20-sim will generate the same sequence of random numbers for each random function that uses the same random seed parameter (>0). E.g. when two random functions with random seed value 50, are used in one model, they will generate the same sequence of random numbers during a simulation.

SignalGenerator-Pulse

Library
Signal\Sources

Use

Description
This models yields a pulse signal:
output = 0; (time < start_time)
output = amplitude; (start_time <= time <= stop_time)
output = 0; (time >= stop_time)

**Interface**

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
</tr>
<tr>
<td>stop_time</td>
</tr>
<tr>
<td>amplitude</td>
</tr>
</tbody>
</table>

**SignalGenerator-Ramp**

**Library**

Signal\Sources

**Use**

Domains: Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**

This models yields a ramp signal:

\[
\begin{align*}
output &= 0; (time < start_time) \\
output &= slope * \text{ramp}(start_time); (time \geq start_time)
\end{align*}
\]

**Interface**

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
</tr>
<tr>
<td>slope</td>
</tr>
</tbody>
</table>

**SignalGenerator-Random**

**Library**

Signal\Sources

**Implementations**

frequency\_limited\_FOH
frequency\_limited\_ZOH
unlimited
Use

Description - frequency_limited_FOH
This model generates a random (noise) signal with values between \(-\text{amplitude}\) and \(+\text{amplitude}\) and random seed \(s\). The

\[
\text{output} = \text{ran}(\text{ampl}, \text{seed});
\]

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_FOH

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>(-\text{amplitude} \leq \text{output} \leq +\text{amplitude})</td>
</tr>
<tr>
<td>frequency</td>
<td>frequency band of the noise</td>
</tr>
</tbody>
</table>

Description - frequency_limited_ZOH
This model generates a random (noise) signal with values between \(-\text{amplitude}\) and \(+\text{amplitude}\) and random seed \(s\).

\[
\text{output} = \text{ran}(\text{ampl}, \text{seed});
\]

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_ZOH

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>(-\text{amplitude} \leq \text{output} \leq +\text{amplitude})</td>
</tr>
<tr>
<td>frequency</td>
<td>frequency band of the noise</td>
</tr>
</tbody>
</table>

Description - unlimited
This model generates a random (noise) signal with values between \(-\text{amplitude}\) and \(+\text{amplitude}\) and random seed \(s\).
output = ran(ampl,seed);

The noise signal has no frequency limitation.

**Note**
It is advised only to use this implementation with fixed step integration methods such as Euler and Runge Kutta 2/4. If you run this implementation with a variable step integration method, simulations may get very slow!

**Interface - unlimited**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>-amplitude &lt;= output &lt;= +amplitude</td>
</tr>
</tbody>
</table>

**Limitations**
seed must be a number in the region <0,65000>.

---

**SignalGenerator-Step**

**Library**
Signal\Sources

**Use**
Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This models yields a step signal:

\[
\begin{align*}
\text{output} &= 0; \ (\text{time} < \text{start time}) \\
\text{output} &= \text{amplitude}; \ (\text{time} \geq \text{start_time})
\end{align*}
\]

**Interface**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
<td>The start time of the step.</td>
</tr>
<tr>
<td>amplitude</td>
<td>The amplitude of the step.</td>
</tr>
</tbody>
</table>
**SignalGenerator-StepTime**

**Library**
Signal\Sources

**Use**

**Domains**: Continuous. **Size**: 1-D. **Kind**: Block Diagrams.

**Description**
This model generates an output signal equal to the simulator time step.

**Interface**

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
<tr>
<td>Simulated time.</td>
</tr>
</tbody>
</table>

**Signalgenerator-Sweep**

**Library**
Signal\Sources

**Implementations**
Default
Logarithmic
ZeroMean

**Use**

**Domains**: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description - Default**
The output of this model is a linear sine sweep. The signal starts with angular frequency "omega_start" and ends at an angular frequency "omega_stop".

In the picture below the three available sweep functions are shown. The curve on top shows the linear sine sweep. The middle curve shows the logarithmic sine sweep and the bottom curve shows the linear sine sweep with zero mean.
Interface - Default

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
</tr>
<tr>
<td>stop_time</td>
</tr>
<tr>
<td>amplitude</td>
</tr>
<tr>
<td>omega_start</td>
</tr>
<tr>
<td>omega_stop</td>
</tr>
</tbody>
</table>

**Description - Logarithmic**

The output of this model is a logarithmic sine sweep. Compared to the linear sine sweep the lower frequencies are stretched out and the higher frequencies are squeezed. The signal starts with angular frequency "omega_start" and ends at an angular frequency "omega_stop".

In the picture below the three available sweep functions are shown. The curve on top shows the linear sine sweep. The middle curve shows the logarithmic sine sweep and the bottom curve shows the linear sine sweep with zero mean. The middle curve clearly uses more time for the lower frequencies and less time for the higher frequencies.
Interface - Logarithmic

**Outputs**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_time</td>
<td>The start time of the sweep.</td>
</tr>
<tr>
<td>stop_time</td>
<td>The stop time of the sweep.</td>
</tr>
<tr>
<td>amplitude</td>
<td>The amplitude of the sweep.</td>
</tr>
<tr>
<td>omega_start</td>
<td>The start frequency of the sweep.</td>
</tr>
<tr>
<td>omega_stop</td>
<td>The stop frequency of the sweep.</td>
</tr>
</tbody>
</table>

**Description - ZeroMean**

The output of this model is a linear sine sweep with compensation in the first period to get a zero mean output. A zero mean is important when the signal is integrated twice. To prevent drift the mean should be zero. Double integrals can occur in physical systems. For example when a force sweep is applied to a mechanical system and the position is measured, the mean force should be precisely zero to prevent the system from drifting away. The signal starts with angular frequency "omega_start" and ends at an angular frequency "omega_stop".

In the picture below the three available sweep functions are shown. The curve on top shows the linear sine sweep. The middle curve shows the logarithmic sine sweep and the bottom curve shows the linear sine sweep with zero mean. The bottom curve differs slightly from the top curve in the first period.
### Interface - ZeroMean

**Outputs**
- output

**Parameters**
- start_time: The start time of the sweep.
- stop_time: The stop time of the sweep.
- amplitude: The amplitude of the sweep.
- omega_start: The start frequency of the sweep.
- omega_stop: The stop frequency of the sweep.

---

**SignalGenerator-Time**

**Library**
Signal\Sources

**Use**
- **Domains**: Discrete, Continuous
- **Size**: 1-D
- **Allowed in**: Block Diagrams

**Description**
This model generates an output signal equal to the (simulated) time.
output = time;

**Interface**

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**SignalMonitor**

**Library**

Signal\Block Diagram, Signal\Sources

**Use**

**Domains**: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**

This model shows the value of its input in the Simulator. When you open the Simulator (select Properties and Plot) the input of this model is automatically selected as plotvariable. As label for this variable the local name of the SignalMonitor model is chosen. It is therefore advised to give each SignalMonitor model a useful name (select the model, click the right mouse button and select Attributes from the right mouse menu).

**Interface**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

The value of the input is shown in the Simulator using the local name of the model as label.

**WaveGenerator-Cosine**

**Library**

Signal\Sources

**Use**

**Domains**: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**

This model generates a cosine wave.

\[
output = amplitude * \cos(omega * time);
\]

**Interface**

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
output

Parameters
amplitude The amplitude of the wave.
omega The angular frequency of the wave.

WaveGenerator-PhasedSine

Library
Signal\Sources
Use
Description
This model generates a sine wave with phase shift.

\[
\text{output} = \text{amplitude} \times \sin(\omega \times \text{time} + \text{phase});
\]

Interface

Outputs Description
output

Parameters
amplitude The amplitude of the wave.
omega The angular frequency of the wave.
phase The phase shift of the wave.

WaveGenerator-Saw

Library
Signal\Source
Use
Description
This model generates a saw wave.
output = upward ramp; (each cycle)

Interface

Outputs
output

Parameters
amplitude The amplitude of the wave.
omega The angular frequency of the wave.

WaveGenerator-Sine

Library
Signal\Sources

Use

Description
This model generates a sine wave:

\[ output = \text{amplitude} \times \sin(\omega \times \text{time}); \]

Interface

Outputs
output

Parameters
amplitude The amplitude of the wave.
omega The angular frequency of the wave.

WaveGenerator-Square

Library
Signal\Sources

Use

Description
This model generates a block wave:
output = amplitude; (first wave halve)
output = 0; (second wave halve)

**Interface**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>amplitude</td>
<td>The amplitude of the wave.</td>
</tr>
<tr>
<td>omega</td>
<td>The angular frequency of the wave.</td>
</tr>
</tbody>
</table>

**WaveGenerator-SquareExp**

**Library**
Signal\Sources

**Use**
Domains: Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This model generates a non-ideal block wave. The steepness of the edges are defined by the rise time. The rise time is defined as 63% of the amplitude being reached.

![Exponential Block](image)

The output can be described as an exponential function:
\[ \text{output} = \text{amplitude} \cdot (1 - \exp(\text{time}/\text{rise}\_\text{time})); \text{ (first wave halve)} \]
\[ \text{output} = \text{amplitude} \cdot \exp(\text{time}/\text{rise}\_\text{time}); \text{ (second wave halve)} \]

### Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>amplitude</td>
<td>The amplitude of the wave.</td>
</tr>
<tr>
<td>omega</td>
<td>The angular frequency of the wave.</td>
</tr>
<tr>
<td>rise_time</td>
<td>Rise time</td>
</tr>
</tbody>
</table>

---

**WaveGenerator-Triangle**

**Library**

Signal\Sources

**Use**

Domains: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**

This model generates a triangular wave.

\[ \text{output} = \text{upward ramp}; \text{ (first wave halve)} \]
\[ \text{output} = \text{downward ramp}; \text{ (second wave halve)} \]

### Interface

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>amplitude</td>
<td>The amplitude of the wave.</td>
</tr>
<tr>
<td>omega</td>
<td>The angular frequency of the wave.</td>
</tr>
</tbody>
</table>
Zero

Library
Signal\Sources
Use
Description
The output of this model is equal to zero.

\[ output = 0.0; \]

Interface

Outputs	Description
output | 

10.3.1 Stochastic
2

Mean

Library
Signal\Signal Processing
Use
Description
This submodel yields the mean of an input signal using the integral function:

\[ output = \frac{\text{int}(\text{input})}{\text{time}} \]

Interface

Inputs	Description
input | Input signal

Outputs	Description
output | Mean value of the input signal
SignalGenerator-Gaussian Noise

Library
Signal\Sources

Implementations
frequency_limited_FOH
frequency_limited_ZOH
unlimited

Use

Description - frequency_limited_FOH
This model generates a gaussian noise signal with gaussian distribution and variance 1 and random seed s. The noise is multiplied by the parameter amplitude.

\[ \text{output} = \text{amplitude} \times \text{gauss}(1, \text{seed}); \]

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_FOH

Outputs
output

Parameters
seed random seed
amplitude output scaling factor: does not influence the distribution
frequency frequency band of the noise

Description - frequency_limited_ZOH
This model generates a gaussian noise signal with gaussian distribution and variance 1 and random seed s. The noise is multiplied by the parameter amplitude.

\[ \text{output} = \text{amplitude} \times \text{gauss}(1, \text{seed}); \]

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_ZOH

Outputs
output

Parameters
seed random seed
amplitude: output scaling factor: does not influence the distribution
frequency: frequency band of the noise

**Description - unlimited**
This model generates a gaussian noise signal with gaussian distribution and variance 1 and random seed s. The noise is multiplied by the parameter amplitude.

\[
output = amplitude \times \text{gauss}(1, seed);
\]

The noise signal has no frequency limitation.

**Note**
It is advised only to use this implementation with fixed step integration methods such as Euler and Runge Kutta 2/4. If you run this implementation with a variable step integration method, simulations may get very slow!

**Interface - unlimited**

**Outputs**
output

**Parameters**
seed: random seed
amplitude: output scaling factor: does not influence the distribution

**Limitations**
seed must be a number in the region <0,65000>.

**Signalgenerator-Random**

**Library**
Signal\Sources

**Implementations**
frequency_limited_FOH
frequency_limited_ZOH
unlimited

**Use**

**Description - frequency_limited_FOH**
This model generates a random (noise) signal with values between -amplitude and +amplitude and random seed s. The

\[
output = \text{ran}(\text{ampl}, seed);
\]
10. Library

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

**Interface - frequency_limited_FOH**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>-amplitude &lt;= output &lt;= +amplitude</td>
</tr>
<tr>
<td>frequency</td>
<td>frequency band of the noise</td>
</tr>
</tbody>
</table>

**Description - frequency_limited_ZOH**

This model generates a random (noise) signal with values between -amplitude and +amplitude and random seed $s$.

$$output = ran(ampl,seed);$$

The noise signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two noise samples are interpolated (first order hold).

**Interface - frequency_limited_ZOH**

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>random seed</td>
</tr>
<tr>
<td>amplitude</td>
<td>-amplitude &lt;= output &lt;= +amplitude</td>
</tr>
<tr>
<td>frequency</td>
<td>frequency band of the noise</td>
</tr>
</tbody>
</table>

**Description - unlimited**

This model generates a random (noise) signal with values between -amplitude and +amplitude and random seed $s$.

$$output = ran(ampl,seed);$$

The noise signal has no frequency limitation.

**Note**

It is advised only to use this implementation with fixed step integration methods such as Euler and Runge Kutta 2/4. If you run this implementation with a variable step integration method, simulations may get very slow!
**Interface - unlimited**

**Outputs**
- output

**Description**

**Parameters**

- seed: random seed
- amplitude: -amplitude <= output <= +amplitude

**Limitations**

- seed must be a number in the region <0,65000>.

**SignalGenerator-RandomInteger**

**Library**
- Signal\Stochastic

**Use**

- **Domains:** Discrete, Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**

This model generates uniformly distributed random integers in the range \([0, m-1]\), where \(m\) is an integer. All output random variables are independent and identically distributed. With the parameter random seed you can choose to make the distribution variable or fixed for each simulation run.

![RandomInteger](image)

*RandomInteger output with a frequency of 1 Hz and \(m = 5\).*

The output signal is limited to a maximum frequency, which can be adjusted (parameter). Values in-between two samples are interpolated (first order hold).
Interface

Outputs

output

Parameters

seed | random seed
m | the output range [0, m-1]
frequency | frequency band of the output

Limitations
seed must be a number in the region <0,65000>.

SignalGenerator-VariableBlock

Library
Signal\Stochastic

Use

Description
This model generates a block signal that alternates between 0 and 1. The mean time interval of a section is given by the parameter meanTimeInterval. The distribution of the time interval is uniform between [0, 2*meanTimeInterval]. With the parameter random seed you can choose to make the distribution variable or fixed for each simulation run.
10. Library

**VariableBlock output with a mean time interval of 1 s.**

**Interface**

**Outputs**
- output

**Parameters**
- meanTimeInterval: mean time (s) before the output signal changes
- seed: random seed

**Limitations**
- seed must be a number in the region <0,65000>.

**SignalGenerator-VariablePulse**

**Library**
- Signal\Stochastic

**Use**
- **Domains**: Discrete, Continuous. **Size**: 1-D. **Allowed in**: Block Diagrams.
Description
This model generates a pulse train with a pulse value of 1. The pulse width is given by the parameter \textit{pulseLength}. The mean time interval between two pulses is given by the parameter \textit{meanTimeInterval}. The distribution of the time interval is uniform between $[0, 2 \times \textit{meanTimeInterval}]$. With the parameter \textit{random seed} you can choose to make the distribution variable or fixed for each simulation run.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{variable_pulse.png}
\caption{VariablePulse output with a pulse length of 0.3 s and a mean time interval of 1 s.}
\end{figure}

Interface

Outputs
\begin{itemize}
\item \textit{output}
\end{itemize}

Parameters
\begin{itemize}
\item \textit{meanTimeInterval} \hspace{1cm} mean time \{s\} before the output signal changes
\item \textit{pulseLength} \hspace{1cm} length of the pulse \{s\}
\item \textit{seed} \hspace{1cm} random seed
\end{itemize}

Limitations
\begin{itemize}
\item \textit{seed} must be a number in the region \textless 0,65000\textgreater.
\end{itemize}
**StandardDeviation**

**Library**
Signal\Signal Processing

**Use**
**Domains:** Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel yields the standard deviation of an input signal using an integral function:

\[
output = \sqrt{ \int \frac{(input - mean)^2}{time} }
\]

where mean is the mean of the input

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Standard deviation of the input signal</td>
</tr>
</tbody>
</table>

**Variance**

**Library**
Signal\Signal Processing

**Use**
**Domains:** Continuous. **Size:** 1-D. **Allowed in:** Block Diagrams.

**Description**
This submodel yields the variance of an input signal using an integral function:

\[
output = \int \frac{(input - mean)^2}{time}
\]

where mean is the mean of the input

**Interface**

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>Variance of the input signal</td>
</tr>
</tbody>
</table>
### 10.3.1 Transfer Functions

#### Using Transfer Functions

The Transfer Functions library contains a number of predefined transfer functions and a general transfer function model that opens the Linear System Editor.

#### Without Dead Time

<table>
<thead>
<tr>
<th>name</th>
<th>formula</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearSystem</td>
<td>-</td>
<td>Any Linear System without time delay</td>
</tr>
<tr>
<td>FO</td>
<td>$Y(s) = \frac{k}{\tau s + 1} \cdot U(s)$</td>
<td>First Order</td>
</tr>
<tr>
<td>FOL</td>
<td>$Y(s) = \frac{k(st + 1)}{st + 1} \cdot U(s)$</td>
<td>First Order with Lead Time</td>
</tr>
<tr>
<td>FOLA</td>
<td>$Y(s) = \frac{k(s \tau + 1)}{s \tau + 1} \cdot U(s)$</td>
<td>First Order with Lag</td>
</tr>
<tr>
<td>SOI</td>
<td>$Y(s) = \frac{k}{s(\tau s + 1)} \cdot U(s)$</td>
<td>Second Order with Integrator</td>
</tr>
<tr>
<td>SOO</td>
<td>$Y(s) = \frac{k}{(\tau_1 s + 1)(\tau_2 s + 1)} \cdot U(s)$</td>
<td>Second Order Overdamped</td>
</tr>
<tr>
<td>SOOL</td>
<td>$Y(s) = \frac{k(\tau_L s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)} \cdot U(s)$</td>
<td>Second Order Overdamped with Lead Time</td>
</tr>
<tr>
<td>SOU</td>
<td>$Y(s) = \frac{k}{\tau^2 s^2 + 2\zeta \tau s + 1} \cdot U(s)$</td>
<td>Second Order Underdamped</td>
</tr>
<tr>
<td>SOUO</td>
<td>$Y(s) = \frac{\omega^2 \kappa}{s^2 + 2\zeta \omega s + \omega^2} \cdot U(s)$</td>
<td>Second Order Underdamped, Omega Description</td>
</tr>
</tbody>
</table>

#### With Dead Time

<table>
<thead>
<tr>
<th>name</th>
<th>formula</th>
<th>description</th>
</tr>
</thead>
</table>

---

20-sim 4.7 Reference Manual
10. Library

ZOD
\[ Y(s) = k e^{-\theta s} U(s) \]
Zero Order plus Dead Time

FOD
\[ Y(s) = \frac{k e^{-\theta s}}{\tau s + 1} U(s) \]
First Order plus Dead Time

SOID
\[ Y(s) = \frac{k e^{-\theta s}}{s(\tau s + 1)} U(s) \]
Second Order with Integrator plus Dead Time

SOOD
\[ Y(s) = \frac{k e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} U(s) \]
Second Order Overdamped plus Dead Time

SOOLD
\[ Y(s) = \frac{k(\tau s + 1) e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} U(s) \]
Second Order Overdamped with Lead Time plus Dead Time

SOUD
\[ Y(s) = \frac{k e^{-\theta s}}{\tau^2 s^2 + 2\zeta \tau s + 1} U(s) \]
Second Order Underdamped plus Dead Time

SOUDO
\[ Y(s) = \frac{\omega^2 k e^{-\theta s}}{s^2 + 2\zeta \omega s + \omega^2} U(s) \]
Second Order Underdamped plus Dead Time, Omega description

Linear System

Library
Signal\TransferFunctions

Use

Description
When you select this model and click Go Down a special editor opens (Linear System Editor), allowing you to enter a linear system in State Space form, as a Transfer Function or by adding poles and zeros:
10. Library

Interface

Inputs
input

Outputs
output

Initial Values
The model has internal states that are not accessible.

Parameters
Parameters are entered by the Linear System Editor.
**TransferFunction**

**Library**
Signal\Transfer Functions

**Implementations**
FO
FOL
FOLA
SOI
SOO
SOU
SOUO
SOOL

**Use**

**Description - FO**
This model describes a first order process determined by $k$ and $\tau$. The transfer function of this process is:

$$Y(s) = \frac{k}{\tau s + 1} \cdot U(s)$$

**Interface - FO**

**Inputs**
- **Description**
  - input

**Outputs**
- **output**

**Initial Values**
- **state_initial**
  - The initial value of the output.

**Parameters**
- **k**
  - Proportional gain [].
- **tau**
  - Process time constant [s].

**Description - FOL**
This model describes a first order process with lead time determined by the parameters $k$, $\tau$ and $\tau_L$. The transfer function of this process is:
\[ Y(s) = \frac{k(s\tau_L + 1)}{s\tau + 1} \cdot U(s) \]

**Interface - FOL**

**Inputs**

input

**Outputs**

output

**Initial Values**

state_initial Internal state.

**Parameters**

k Proportional gain [\( \text{[]} \)].
tau Process time constant [s].
tauL Lead time constant [s].

**Description - FOLA**

This model describes a first order process with lag determined by the parameters \( k \), \( \tau \) and \( \tau_L \). The transfer function of this process is:

\[ Y(s) = \frac{k(s\tau + 1)}{s\tau_L + 1} \cdot U(s) \]

**Interface - FOLA**

**Inputs**

input

**Outputs**

output

**Initial Values**

state_initial Internal state.

**Parameters**

k Proportional gain [\( \text{[]} \)].
tau Process time constant [s].
tauL Lag time constant [s].
Description - SOI
This model describes a second order process with integrator determined by the parameters k and tau. The transfer function of this process is:

\[ Y(s) = \frac{k}{s(\tau s + 1)} \cdot U(s) \]

Interface - SOI

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state1_initial</td>
<td>Internal state.</td>
</tr>
<tr>
<td>state2_initial</td>
<td>The initial value of the output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Proportional gain [ ].</td>
</tr>
<tr>
<td>tau</td>
<td>Process time constant [s].</td>
</tr>
</tbody>
</table>

Description - SOO
This model describes an overdamped second order process determined by the parameters k, tau1 and tau2. The transfer function of this process is:

\[ Y(s) = \frac{k}{(\tau_1 s + 1)(\tau_2 s + 1)} \cdot U(s) \]

Interface - SOO

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state1_initial</td>
<td>Internal state.</td>
</tr>
<tr>
<td>state2_initial</td>
<td>The initial value of the output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
</table>
Proportional gain $[\text{\text{ }}]$
First process time constant $[\text{s}]$
Second process time constant $[\text{s}]$

**Description - SOU**
This model describes an underdamped second order process, determined by the parameters $k$, $\tau$ and $\zeta$. The transfer function of this process is:

$$Y(s) = \frac{k}{\tau^2 s^2 + 2\zeta \tau s + 1} \cdot U(s)$$

**Interface - SOU**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
</tr>
</tbody>
</table>

**Initial Values**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state1_initial</td>
</tr>
<tr>
<td>state2_initial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal state.</td>
</tr>
<tr>
<td>The initial value of the output after the dead time has passed.</td>
</tr>
</tbody>
</table>

**Parameters**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k$</td>
</tr>
<tr>
<td>$\tau$</td>
</tr>
<tr>
<td>$\zeta$</td>
</tr>
</tbody>
</table>

Proportional gain $[\text{\text{ }}]$
Natural period of oscillation $[\text{s}]$
Damping factor $[\text{\text{ }}]$

**Description - SOUO**
This model describes an underdamped second order process, determined by the parameters $k$, $\omega$ and $\zeta$. The transfer function of this process is:

$$Y(s) = \frac{\omega^2 k}{s^2 + 2\zeta \omega s + \omega^2} \cdot U(s)$$

**Interface - SOUO**

**Inputs**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
</tbody>
</table>

**Outputs**
Initial Values

- state1_initial: Internal state.
- state2_initial: The initial value of the output after the dead time has passed.

Parameters

- k: Proportional gain []
- omega: Natural frequency [rad/s]
- zeta: Damping factor []

Description - SOOL

This model describes an overdamped second order process with lead time determined by the parameters k, tau1, tau2 and tauL. The transfer function of this process is:

\[ Y(s) = \frac{k(\tau_2 s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)} \cdot U(s) \]

Interface - SOOL

Inputs

- input

Outputs

- output

Initial Values

- state1_initial: Internal state.
- state2_initial: The initial value of the output.

Parameters

- k: Proportional gain []
- tau1: First process time constant [s]
- tau2: Second process time constant [s]
- tauL: Lead time constant [s]
TransferFunctionWithDeadTime

Library
Signal\Transfer Functions

Implementations
ZOD
FOD
SOID
SOOD
SOUD
SOOLD
SOUDO

Use

Description - ZOD
This model describes a first zero process plus dead time determined by $k$ and $\theta$. The transfer function of this process is:

$$Y(s) = ke^{-\theta s} \cdot U(s)$$

Interface - ZOD

Inputs
input

Outputs
output

Parameters
$k$ Proportional gain [].
$\theta$ Dead time [s].

Description - FOD
This model describes a first order process plus dead time determined by $k$ tau and $\theta$. The transfer function of this process is:

$$Y(s) = \frac{ke^{-\theta s}}{\tau s + 1} \cdot U(s)$$
**Interface - FOD**

**Inputs**
- input

**Outputs**
- output

**Initial Values**
- state_initial
  - The initial value of the output after the dead time has passed.

**Parameters**
- k
  - Proportional gain [ ].
- tau
  - Process time constant [s].
- theta
  - Dead time [s].

**Description - SOID**
This model describes a second order process with integrator plus dead time determined by the parameters k and tau. The transfer function of this process is:

\[ Y(s) = \frac{k}{s(\tau s + 1)} U(s) \]

**Interface - SOID**

**Inputs**
- input

**Outputs**
- output

**Initial Values**
- state1_initial
  - Internal state.
- state2_initial
  - The initial value of the output after the dead time has passed.

**Parameters**
- k
  - Proportional gain [ ].
- tau
  - Process time constant [s].
- theta
  - Dead Time [s].
Description - SOOD
This model describes an overdamped second order process plus dead time determined by the parameters k, tau1 and tau2. The transfer function of this process is:

\[ Y(s) = \frac{k e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} \cdot U(s) \]

Interface - SOOD

Inputs  
Description  
input  

Outputs  
output  

Initial Values  
state1_initial  Internal state.  
state2_initial  The initial value of the output after the dead time has passed.

Parameters  
k  Proportional gain [].  
tau1  First process time constant [s].  
tau2  Second process time constant [s].  
theta  Dead Time [s].

Description - SOUD
This model describes an underdamped second order process plus Dead Time, determined by the parameters k, tau and zeta. The transfer function of this process is:

\[ Y(s) = \frac{k e^{-\theta s}}{\tau^2 s^2 + 2\zeta \tau s + 1} \cdot U(s) \]

Interface - SOUD

Inputs  
Description  
input  

Outputs  
output  

Initial Values
state1_initial: Internal state.
state2_initial: The initial value of the output after the dead time has passed.

Parameters
k: Proportional gain [\].
tau: Natural period of oscillation [s].
zeta: Damping factor [\].
theta: Dead Time [s].

Description - SOOLD
This model describes an overdamped second order process with lead time plus dead time determined by the parameters k, tau1, tau2 and tauL. The transfer function of this process is:

\[ Y(s) = \frac{k(\tau_2 s + 1)e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} U(s) \]

Interface - SOOLD

Inputs
input

Outputs
output

Initial Values
state1_initial: Internal state.
state2_initial: The initial value of the output after the dead time has passed.

Parameters
k: Proportional gain [\].
tau1: First process time constant [s].
tau2: Second process time constant [s].
tauL: Lead time constant [s].
theta: Dead Time [s].

Description - SOUDO
This model describes an underdamped second order process plus Dead Time, determined by the parameters k, omega and zeta. The transfer function of this process is:
\[ Y(s) = \frac{\omega^2 k e^{-\theta s}}{s^2 + 2\zeta \omega s + \omega^2} U(s) \]

**Interface - SOUDO**

**Inputs**
- input

**Outputs**
- output

**Initial Values**
- state1_initial: Internal state.
- state2_initial: The initial value of the output after the dead time has passed.

**Parameters**
- k: Proportional gain \([\]\).
- omega: Natural frequency \([\text{rad/s}]\).
- zeta: Damping factor \([\]\).
- theta: Dead Time \([\text{s}]\).

### 10.3.1 Various

#### 4

**Library**
- Signal\Various

**Use**
- **Domains**: Continuous, Discrete. **Size**: 1-D. **Allowed in**: Block Diagrams.

**Description**
This model generates a sound whenever the input is true. The sound must be stored on a .wav-file. At every simulation point where the input is true, the sound is restarted. This may result in the sound not to be heard because of every restart. Therefore it is best to make the input only true at one simulation point. This is demonstrated in the Examples library by the model:

Examples\Tips and Tricks\PlaySound
## Interface

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>wave</td>
<td>Boolean: If true, a sound is played</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sting: File name of the .wav-file (including the path)</td>
</tr>
</tbody>
</table>
11 Modeling Tutorial

11.1 Friction

11.1.1 Introduction

In all machines incorporating parts with relative motion, friction is present. Friction is a natural resistance to relative motion between two contacting bodies. At particular locations in machines, friction is an undesirable property. Friction can lead to bad performance for example a servo system. At other locations, friction plays an important role and is desirable, as is the case for example in actions as walking and grasping and in a brake system.

In most systems, friction has a negative influence on the performance of the system. Under certain conditions, friction in a system can result in effects like a steady state error, tracking errors, especially nearby velocity reversals (reversal bump effect: getting stuck when moving through zero velocity), limit cycles (hunting) and/or stick-slip.

To overcome these negative effects, insight in friction phenomena, and proper models of these phenomena are useful. This chapter will give attention to these aspects of friction and describe the friction models that are available in the 20-sim library.

11.1.2 Normal Force

Assume a mass is dragged over a surface and experiences friction.

\[ F_t = F_n \times f(x, v, \ldots) \]

where \( f \) is the friction function which depends on the displacement \( x \), velocity \( v \) etc.

In most cases a normal force is available (disk breaks, surface friction, clutches etc.). Therefore all models in the 20-sim friction library are described with a normal force input. For those models that do not experience a normal force (bearings), a unity normal force \( F_n = 1 \) [N] is applied.
11.1.3 Friction Phenomena

There are different phenomena of friction. The following friction phenomena are described in the friction models in 20-sim:

- **static friction**: the torque or force necessary to initiate motion from rest (the so-called break-away force); it is often larger than the Coulomb friction,

- **Coulomb friction (kinetic friction, dynamic friction)**: the friction component that is only dependent of the direction of velocity, not of the magnitude of the velocity,

- **viscous friction**: the friction component that is proportional to velocity and goes to zero at zero velocity,

- **Strubeck friction (Strubeck effect)**: the friction phenomenon that arises from the use of fluid lubrication and gives rise to decreasing friction with increasing velocity at low velocity,

- **pre-sliding displacement (Dahl effect)**: the spring-like behavior of friction that causes a displacement linear dependent on the applied force if this applied force is less than the break-away force,

- **varying break-away force (rising static friction)**: the dependence of the break-away force on the rate of increase of the applied force,

- **frictional lag**: the delay in the change of the friction force as a function of a change in the velocity.

Beside the friction phenomena mentioned above, some other effects with respect to friction are reported in the literature. These effects are not incorporated into the 20-sim library of friction models:

- **Time-dependent friction**: From experiments it is known that friction changes with time. These changes of friction with time are due to such things as loss of lubricant, deformation of the surface material, change in temperature due to generated heat and/or accumulation of wear debris.

- **Position-dependent friction**: A dependence of the friction on the position of a system is another effect that is experimentally observed and is well known by a lot of researchers. This position-dependency is caused by spatial inhomogeneities in the transmission of the system due to contact geometry and/or loading which varies as a function of position. As the load varies, the normal force between the sliding surfaces varies, causing a varying friction (friction is linear dependent on the normal force). By preloading the transmission elements and roller bearings this dependency of friction on the load can be decreased.

- **Direction-dependent friction**: A lot of researchers have found the friction to be dependent on the direction of the motion of a system. Different Coulomb and viscous friction levels in the left and right directions of a single, linear motion have been observed experimentally on many occasions. Theoretically, this may be due to anisotropies in material or geometry.
11.1.4 Wet and Dry Friction

Wet Friction
Most machines are lubricated in order to decrease the effects of friction. But in most cases, this is not sufficient and significant friction effects remain.

There are four regimes of lubrication in a system with grease or oil in which the phenomena act that are mentioned in the previous section: static friction, boundary lubrication, partial fluid lubrication and full lubrication. Each of these four regimes contribute to the dynamics of the system. In the figure below, these four regimes are given in the plot of the friction force as a function of the sliding velocity, sometimes referred to as the Stribeck curve.

A description of the four regimes is:

**Regime 1: Static friction and pre-sliding displacement**
Although in this regime of static friction there is no sliding, because of the fact that contacts between two surfaces are compliant, there are small motions when a force is applied. The contact between two surfaces can be seen as an elastic contact. The displacement is an approximately linear function of the applied force (a spring-like behavior), up to a critical force at which breakaway occurs and sliding begins. The transition from the elastic contact with pre-sliding displacement in static friction to sliding is not abrupt: first sliding starts at the boundary of a contact and then it propagates toward the center.

**Regime 2: Boundary lubrication**
In this regime the sliding velocity is very low and is not adequate to build a fluid film of the lubricant between the sliding surfaces. The boundary layer of the surfaces serves to provide lubrication. In most cases, the friction in this boundary lubrication regime is higher than in case of fluid lubrication, as is the situation in regimes three and four.

**Regime 3: Partial fluid lubrication**
Lubricant is brought into the load-bearing region between the sliding surfaces through motion. Some lubricant is expelled by pressure arising from the load, but as a result of the viscosity not all of the lubricant will escape and thus a thin film of lubricant is formed between the sliding surfaces. Not at all places of the contact of the surfaces this film will exist; at some places there is still solid-to-solid contact: there is partial fluid lubrication. As the velocity becomes larger, more lubricant will be brought between the surfaces and less solid-to-solid contacts will exist. This explains the descending friction force when the velocity increases, called the Stribeck effect.
There is a time lag between a change in the velocity or load conditions and the change in friction to a new steady state level: the phenomenon of frictional lag takes place. This effect is a consequence of the state in the frictional contact that does not come to its new equilibrium instantly: it takes time for the lubricant to be brought or removed between the load bearing region of the sliding surfaces.

**Regime 4: Full fluid lubrication**

In this regime the solid-to-solid contacts are all eliminated. The wear is reduced by orders of magnitude. The viscosity of the lubricant is determinative for the friction force and the friction phenomenon now at work is the well-behaved viscous friction, besides the Coulomb friction.

The four dynamic regimes of friction in the plot of friction force as a function of sliding velocity.

**Dry Friction**

Dry friction is friction between two bodies in absence of contaminations of the contact surfaces. This is an ideal situation which is not possible to achieve in real systems, due to the fact that chemical reactions will occur at the surfaces. Therefore dry friction will show some of the effects described above. Some special effects due to the use of lubricants, such as the Stribeck effect and sometimes viscous friction will not be significant in dry friction.
11.1.5 Static and Dynamic Phenomena

The friction phenomena can be grouped in static and dynamic phenomena:

- **static friction phenomena:**
  - static friction
  - Coulomb friction (dynamic friction)
  - viscous friction
  - Striebeck friction (Striebeck effect)

- **dynamic friction phenomena:**
  - pre-sliding displacement (Dahl effect)
  - rising static friction (varying break-away force)
  - frictional lag

Static friction models only have a static dependency on velocity. Even when the applied force is very small, the result is a non-zero velocity. This means a significant displacement is found after some time. Therefore static friction models should only be used in systems where the applied forces are large (>> static friction), or change sign often.

Dynamic friction models incorporate a spring like behavior for small forces. I.e. no significant displacement is found when the applied force is smaller than the static friction.

**Coulomb friction**

Static friction phenomena only have a static dependency on velocity. The first static friction model was the classic model of friction of Leonardo Da Vinci: friction force is proportional to load, opposes the direction of motion and is independent of contact area. Coulomb (1785) further developed this model and the friction phenomena described by the model became known as *Coulomb friction*. The model is given in the figure below.

The friction force can be described as:
\[ F_f = F_n \times \mu_c \times \text{sign}(v); \]

with \( \mu_c \) the **Coulomb friction coefficient**. The Coulomb friction model is, because of its simplicity, often used. In many textbooks is is also referred to as **dynamic friction** and \( \mu_s \) described as the **dynamic friction coefficient**.

**Static Friction**

Morin (1833) introduced the idea of static friction: friction force opposes the direction of motion when the sliding velocity is zero.

\[
F_{f_{\text{max}}} = F_n \times \mu_s; \\
F_{f_{\text{min}}} = -F_n \times \mu_s;
\]

with \( \mu_s \) the **static friction coefficient**.

**Viscous friction**

Reynolds (1866) developed expressions for the friction force caused by the viscosity of lubricants. The term viscous friction is used for this friction phenomenon.

\[
\text{The viscous friction model.}
\]

The friction force can be described as:
\[ F_f = F_n \times \mu_v \times v; \]

with \( \mu_v \) the **viscous friction coefficient**.

**Coulomb plus Viscous friction**

This viscous friction combined with the Coulomb friction gave the model given in the figure below.

![The Coulomb plus viscous friction model.](image)

**Static plus Coulomb plus Viscous friction**

When static friction is added, a friction model appears that is commonly used in engineering: the **Static plus Coulomb plus Viscous friction model**. This model is depicted in the figure below.

![The static, Coulomb plus viscous friction model.](image)

**Static plus Coulomb plus Viscous plus Strubeck friction**

Strubeck (1902) observed that for low velocities, the friction force is decreasing continuously with increasing velocities and not in a discontinuous matter as described above. This phenomenon of a decreasing friction at low, increasing velocities is called the Strubeck friction or effect. The model including **Static, Coulomb, Viscous and Strubeck friction** is given below.
The Stribeck effect is described by the parameter $v_{st}$ which is the characteristic Stribeck velocity. It denotes the sliding velocity where only a 37% of the static friction is active. In other words, small values of $v_{st}$ give a fast decreasing Stribeck effect and large values of $v_{st}$ give a slow decreasing Stribeck effect.

**Continuous Functions**

All these friction models above show a discontinuity at zero velocity. At zero velocity the friction force as a function of only velocity is not specified. What for example should the friction force be at zero velocity in the Coulomb friction model? The discontinuous behavior of this model near zero velocity is sometimes approximated with a continuous function, for example:

$$F = \tanh(slope \cdot v);$$

and the inverse

$$v = \arctanh(F)/slope;$$

with $slope$ a very large constant. The use of continuous functions results in straightforward models that are easy to simulate for large forces and velocities. For small forces and velocities, the the slope parameter has to be chosen sufficiently high, to avoid creep (the model starts to move, even when the applied force is smaller than the static or Coulomb friction force). This results in stiff models, which are hard to simulate.

**LuGre friction model**

The LuGre model is inspired by the bristle interpretation of friction (surfaces are very irregular at the microscopic level and two surfaces make contact at a number of asperities, which can be thought of as elastic bristles), in combination with lubricant effects.
Friction is modeled as the average deflection force of elastic springs. When a tangential force is applied the bristles will deflect. If the deflection is sufficiently large, the bristles start to slip. The average deflection at steady state slip is determined by the velocity, so that for low velocities the steady state deflection, and therefore the friction force, decreases with increasing velocity. This corresponds to more lubricant being forced into the interface, and pushing the surfaces apart, as the velocity increases. This produces the Stribeck effect. The model also includes rate dependent friction phenomena such as varying break-away force and frictional lag. The model behaves like a well damped spring with a stiffness at zero speed for small motions.

### 11.1.6 Comparison of Friction Models

In order to get insight in the friction phenomena, a friction model should incorporate as much friction phenomena and behave as much as real friction. In the table below an overview of the different models of the 20-sim library with respect to the friction phenomena is given.

<table>
<thead>
<tr>
<th></th>
<th>Coulomb model</th>
<th>Coulomb, viscous model</th>
<th>static, Coulomb, viscous model</th>
<th>static, Coulomb, viscous, Stribeck model</th>
<th>LuGre model</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>static friction phenomena</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulomb</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>viscous</td>
<td></td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>static</td>
<td></td>
<td></td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Striebeck</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td><strong>dynamic friction phenomena</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre-sliding displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>varying break-away force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>frictional lag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

From this overview it can be seen that all friction phenomena are incorporated in the LuGre model. From the literature, it is known that the behavior of the LuGre model is much alike real friction.
For most engineering applications, a static friction model, for example a static, Coulomb, viscous friction model, is sufficient. If all friction effects should be modeled, the LuGre friction model seems best suited.

### 11.1.7 Literature


11.2 Bond Graphs

11.2.1 Dynamic Systems

An important aspect in mechatronic systems is the dynamic behavior, i.e. the behavior of the system as function of time. Especially in systems that display swift changes or systems that should behave accurately, the dynamic behavior is important. It is therefore useful to predict the dynamic behavior of a system. Modeling and simulation is useful for making such predictions.

There are various methods of modeling and simulating dynamic systems. A well known one is the Lumped Parameter Method.

With the Lumped Parameter Method, the dynamic behavior of a system is concentrated in discrete points. The interaction of these points gives us insight in the behavior of the real system. The more discrete points are used the more accurate the model will be.

There are various ways to represent lumped parameter models. Well known representations are iconic diagrams, differential equations, block diagrams and bond graphs.

Let's consider the suspension of a car. A lumped parameter model starts with the identification of the various lumps (or parts or components) of this system. We start with the car body. It is supposed to be a rigid body and therefore this part is represented with the icon of a mass. The suspension of the car is represented by a spring damper combination. The wheel is considered to have a significant mass and to be elastic. This component is therefore represented by a mass and spring icon. Finally the road is modeled by path generator function. The resulting ideal physical model (IPM) is shown below.
11.2.2 Bond Graphs

Bond graphs are a network-like description of physical systems in terms of ideal physical processes. With the bond graph method we split up the system characteristics into an (imaginary) set of separate elements. Each element describes an idealized physical process. To facilitate drawing of bond graphs, the common elements are denoted by special symbols.

Look again at the car suspension example. In the picture below at the right a bond graph is shown that has been entered in 20-sim. All elements of the ideal physical model have corresponding elements in the bond graph. The connections between the elements in the bond graph, which are known as bonds, represent ideal energy transfer between the elements, i.e. no energy is stored, generated or dissipated. Bonds are drawn with harpoons (the half arrows).

For the mechanical domain, ideal velocity sources are in bond graphs denoted by the symbol $S_f$. Dampers are denoted by an $R$, springs by a $C$ and masses by a $I$. With a $I$ a structural connection of elements is denoted and with a $0$ a velocity difference is denoted.

A bond graph describes a physical system as a number of physical concepts (the elements) connected by energy flows (the bonds).

11.2.3 Effort and Flow

A bond between two elements transfers power from one element to the other. This flow of energy can be described in many ways. For bond graphs a uniform approach is chosen:

The flow of energy between two elements (and thus a bond) is always characterized by two variables, of which the product is power. According to the bond graph notation, these variables are called effort ($e$) and flow ($f$).
The effort and flow variables make up a combination that is typical for a physical domain. The product of effort and flow is always power. We call such a pair of variables \textit{power conjugated variables}. For example voltage and current are used for electrical networks and force and velocity are used for mechanical (translation) systems. The table below shows the variables for the domains that are currently supported in 20-sim.

<table>
<thead>
<tr>
<th>Domain</th>
<th>effort (e)</th>
<th>flow (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>effort $e$</td>
<td>flow $f$</td>
</tr>
<tr>
<td>mechanical (translation)</td>
<td>force $F$ [N]</td>
<td>velocity $v$ [m/s]</td>
</tr>
<tr>
<td>mechanical (rotation)</td>
<td>torque $T$ [Nm]</td>
<td>angular velocity $\omega$ [rad/s]</td>
</tr>
<tr>
<td>pneumatic</td>
<td>pressure $p$ [Pa]</td>
<td>volume flow $\phi$ [m$^3$/s]</td>
</tr>
<tr>
<td>thermal</td>
<td>temperature $T$ [K]</td>
<td>entropy flow $dS$ [J/Ks]</td>
</tr>
<tr>
<td>electric</td>
<td>voltage $u$ [V]</td>
<td>current $i$ [A]</td>
</tr>
<tr>
<td>hydraulic</td>
<td>pressure $p$ [Pa]</td>
<td>volume flow $\phi$ [m$^3$/s]</td>
</tr>
<tr>
<td>magnetic</td>
<td>current $i$ [A]</td>
<td>voltage $u$ [V]</td>
</tr>
<tr>
<td>pseudothermal</td>
<td>temperature $T$ [K]</td>
<td>heat flow $dQ$ [W]</td>
</tr>
</tbody>
</table>

\textit{The effort and flow variables for several domains.}

To most general domain is power. Bonds of this domain can connected to elements of all domains. For the thermal domain there is one pair of effort and flow, $T$ and $dS$, that multiplies to power. The pair $T$ and $dQ$ however, is more often used but does not multiply to power. Therefore the domain with these variables is called pseudothermal.

\textbf{Note}

- There is a direct relation between the across and through variables of an iconic diagram an the effort and flow variables of a bond graph:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Non-mechanical domains</th>
<th>Mechanical Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>across variable</td>
<td>effort</td>
<td>flow</td>
</tr>
<tr>
<td>through variable</td>
<td>flow</td>
<td>effort</td>
</tr>
</tbody>
</table>

\textit{The relation between across and through variables and effort and flow variables.}
11. Modeling Tutorial

- 20-sim propagates domains. If a bond of the general power domain is coupled with an element of the electrical domain, it automatically becomes an electrical bond. The other end of the bond can then only be connected to another element of the electrical domain.
- If you want to use a bond of a domain that is not supported or has variables other than across and through, use the general power domain. The across and through variables can then be used as an alias for your own variables.

11.2.4 Bonds

The power of a bond is positive when both effort and flow have a positive value or both effort and flow have a negative value (power = effort × flow).

To denote the orientation, i.e. the direction of positive power, we use the harpoon at the end of a bond. An element with an inward bond connected, consumes power when the product of effort and flow is positive.

\[ \text{A bond as power connection.} \]

When two elements are connected by a bond, one element will always determine the effort, while the opposite element will always determine the flow. The element that determines the effort, gets an enforced flow from the other element.

We can therefore also see a bond as a bilateral signal connection (effort-signal and flow-signal), of which the directions are opposite to each other.

With direction we mean the direction of the flow of information, just like in a block diagram. In a block diagram the effort and flow variables, which together form the flow of power, are not shown as a couple. This breaks up the symmetry between the physical system and the the structure of the model.

\[ \text{A bond as a bilateral signal flow.} \]

The interpretation of a bond as a bilateral signal flow, does not fix the individual direction of the effort and the flow. It only means the direction of the effort and flow are opposite. For the derivation of a simulation model out of a bond graph however, the individual directions are of importance.
To indicate the individual direction of the effort and flow, we use a small stroke (causal stroke) perpendicular to the bond. This stroke indicates the direction of the effort. The direction of the flow is opposite.

The choice of the direction of signals, also known as causality, depends on the element that is connected to the bond.

### 11.2.5 Standard Elements

To facilitate drawing of bond graphs, the common elements are denoted by special mnemonic symbols. The elements can be divided in several classes:

- **Junctions**: (0 junction, 1 junction) elements that couple energy between various other elements.
- **Buffers**: (C,I) elements that store energy.
- **Dissipators**: (R) elements that dissipate energy.
- **Sources**: (Se,Sf) elements that generate energy.
- **Modulated Sources**: (MSe, MSf) elements that generate energy (driven by signals).
- **Transformers and Gyrators**: (TF, GY) elements that convert energy (ideally).
- **Modulated Transformers and Gyrators**: (MTF, MGY) elements that convert energy (driven by signals).
- **Other elements**: other elements and user defined elements.

### 11.2.6 Orientation

The orientation of a bond, i.e. the direction of the half arrow, denotes the direction of positive power. An element with an incoming bond consumes power when the product of effort and flow is positive. For R, C and I-elements an incoming bond is the standard orientation. For sources the standard orientation is outgoing, because a source supplies power to the rest of the system. For the TF and GY-element the standard orientation is one incoming bond and one outgoing bond, since this reflects the natural flow of power. For the other bonds in a model, as much as possible an orientation from source to load is applied.

### 11.2.7 Bonds and Signals

Bonds Graph models are useful when describing systems with powerflow. In mechatronic systems these systems are usually coupled to systems that handle (powerless) signals. These systems are more conveniently described by block diagrams. Bond graphs can be combined with block diagrams. The coupling can be performed by special submodels.

**Sensors**

In general a sensor measures the flow, the effort, the integral of the flow or the integral of the effort. Sensors can be found in the 20-sim bond graph library.

| EffortSensor       | FlowSensor       | Psensor       | Qsensor       |
Junctions
In 20-sim 1 junctions have a signal output which is equal to the flow. From a 1 junction a signal can be drawn which can be used as input for a block diagram. In a similar way an effort signal can be drawn from a 0 junction.

Modulated Elements
The result of a block diagram can be converted into power by means of a generator. In a bond graph model, this can be done by connecting a signal to modulated source elements. These elements convert input signals into efforts or flows. Other elements that use a signal input are modulated transformers and modulated gyrators.

Example
An example model where a bond graph and a block diagram are coupled is shown in the picture below. As can be seen an effort signal is measured at the 0 junction. In the block diagram part it is processed and fed back into the bond graph at the modulated effort source.
11.2.8 Simplification of Bond Graph Models

When a bond graph model has been created by converting all elements of the iconic diagram into bond graph elements and connecting the elements, simplifications can be performed. This can be easily done by applying the following set of rules (the bonds that have no half arrow, are allowed in both orientations).

1. Eliminate loose junctions.

2. Eliminate junctions.

3. Melt equal junctions.

4. Eliminate sources with a zero output.

5. Eliminate junction in combination with a sign change on the source element.
6. Eliminate a double difference (two 0-junctions coupled with two 1-junctions)

Note
Simplification rules 1, 2, 3 and 6 can be performed automatically in 20-sim using the Simplify Model command.

11.2.9 Causality

Causal analysis is the determination of the direction of the efforts and flows in a bond graph model. The result is a causal bond graph which can be considered as a compact block diagram. From causal bond graph we can directly derive an equivalent block diagram. In 20-sim causality is assigned automatically. To create a causal bond graph 20-sim will perform the following steps.

1. Apply causality for all elements with fixed causality (Se,Sf,Mse,MSf,user defined models), i.e. assign a causal stroke to all bonds connected to elements with fixed causality.

2. Apply, as much as possible, causality for elements that have a constraint causality (0 junction, 1 junction, TF,GY,MTF,MGY,user defined models).

3. Apply causality for an arbitrary element with preferred causality (C,I,user defined models). If possible, let this be the preferred causality. Now iterate step 2 and 3 as far as possible.

4. Apply causality for an arbitrary element with indifferent causality (R,user defined models). If this causality is not fixed, choose a causality arbitrarily. Now iterate step 2, 3 and 4 as far as possible.

In many cases, the bond graph model is causal after step 2. However, sometimes as causal conflict occurs. This means the model is not correct arithmetically. Often this points out an ill-defined model. Redefinition of the ideal physical model will solve the problem. Sometimes the model is only causal after step 4. This means the model contains an algebraic loop. Models with algebraic loops are generally hard to simulate.
Example

Causal assignment will be illustrated by an example. We will manually create a causal bond graph out of the following model:

1. Apply fixed causality:

2. Apply constraint causality. This step is not yet applicable.

3. Apply preferred causality. We can choose between the two I-elements. Let's select the left one and assign causality in its preferred form:

4. Apply constraint causality. The 1 junction on the left has one bond with effort-out causality (seen from the 1 junction). The other bonds connected must therefore have effort-in causality (seen from the 1 junction). In a same way we can now assign causality for the GY-element:

5. Apply preferred causality. Only the right I-element is left. We can assign causality in its preferred form:
6. Apply constraint causality. The 1 junction on the right has one bond with effort-out causality (seen from the 1 junction). The other bonds connected must therefore have effort-in causality. Therefore we can assign causality for the R-element:

11.2.1 Creating a Bond Graph model

There are various methods described in literature to convert a ideal physical model into a bond graph. The simplest method is a direct conversion of the parts of the ideal physical model into bond graph elements. It is based on the fact that for every physical domain, junctions have a special interpretation. This allows us to make tables of ideal physical model parts and their direct representation as bond graph elements. The drawback of the method is that it is not generally applicable: for physical domains that are not described here, the user is referred to other methods.

1. Create an ideal physical model.
2. Replace each part of the ideal physical model with corresponding bond graph elements. Standard replacements are shown in the tables of this tutorial.
3. Select the bond graph elements in the 20-sim library and drag and drop them to the 20-sim editor.
4. Connect the elements according to the ideal physical model.
5. Simplify the bond graph according to the given rules.
6. Compile the bond graph model and run a simulation.
11.2.1 From Iconic Diagram to Bond Graph

There are various methods described in literature to convert a iconic diagrams into bond graph models. The simplest method is a direct conversion of iconic diagrams into bond graph elements. It is based on the fact that for every physical domain, junctions have a special interpretation. This allows us to make tables of iconic diagrams and their direct representation as bond graph elements. The drawback of the method is that it is not generally applicable: for physical domains that are not described here, the user is referred to other methods.

- Mechanical Domain
- Electrical Domain

11.2.1 Iconic Diagrams to Bond Graphs (Electrical Domain)

In the electrical domain, terminals and knots can be replaced by 0 junctions. With this knowledge and the description of various icons a table can be created that shows icons of electrical elements and their equivalent bond graph elements. The method of creating a bond graph model is:

1. Create an iconic diagram of the electrical system.
2. Reference points or grounds are split up as much as possible.
3. Replace every element of the diagram by its bond graph equivalent using the conversion table.
4. Replace every knot that has been left by a 0 junction.
5. Connect all elements and junctions with bonds according to the layout of the electrical system.
6. Simplify the resulting bond graph model, using the given set of simplification rules.

Example

The method will be illustrated by an example. We will convert an electrical circuit into a bond graph model.

1. Create an iconic diagram

2. Split up reference points.
3. Replace elements by bond graph equivalents. Note that we have arranged the orientation of the bonds (the direction of the half arrow) as much as possible in the direction of the power flow from the source to the load elements.

4. Replace every knot that has been left by a 0 junction. In this model no knots have been left. Step 4 is therefore not applicable.

5. Connect all elements and junctions with bonds, according to the layout of the electrical system. A comparison between the iconic diagram and the bond graph model clearly shows the symmetry between both representations. It is obvious that any change or addition in the iconic diagram, can be easily implemented in the bond graph model.

7. Simplify the resulting bond graph model. First we eliminate the Sources (Se elements) with zero output.
8. Eliminate loose junctions.

The simplified model does not show a direct symmetry with the iconic diagram. It does give a clear insight in the flows of power from the voltage source to the other elements.


The simplified model does not show a direct symmetry with the iconic diagram. It does give a clear insight in the flows of power from the voltage source to the other elements.

11.2.1 Iconic Diagrams to Bond Graphs (Mechanical Domain)

In the mechanical domain, both translational and rotational, terminals and knots can be replaced by 1 junctions. With this knowledge and the description of various icons a table can be created that shows icons of mechanical elements and their equivalent bond graph elements. The method of creating a bond graph model is:

1. Create an iconic diagram of the mechanical system.
2. Reference points or grounds are split up as much as possible.
3. Replace every element of the diagram by its bond graph equivalent using the conversion table.
4. Replace every knot that has been left by a 1 junction.
5. Connect all elements and junctions with bonds, according to the layout of the mechanical system.
6. Simplify the resulting bond graph model, using the given set of simplification rules.
Example
The method will be illustrated by an example. We will convert an mechanical structure (translational) into a bond graph model.

1. Create an iconic diagram

2. Split up reference points. In this diagram this is not possible.

3. Replace elements by bond graph equivalents. Note that we have arranged the orientation of the bonds (the direction of the harpoon) as much as possible in the direction of the power flow from the source to the load elements.

4. Replace every knot that has been left by a 1 junction.
5. Connect all elements and junctions with bonds, according to the layout of the mechanical system. A comparison between the iconic diagram and the bond graph model clearly shows the symmetry between both representations. It is obvious that any change or addition in the iconic diagram, can be easily implemented in the bond graph model.

6. Simplify the resulting bond graph model. First we eliminate the Sources (Se elements) with zero output.

7. Eliminate loose junctions.
8. Eliminate junctions.

The simplified model does not show a direct symmetry with the iconic diagram. It does give a clear insight in the flows of power from the force source to the other elements.

### 11.2.1 From Bond Graph to Block Diagram

With a causal bond graph model, equivalent block diagram models can easily be derived. To create a block diagram, the following steps have to be performed.

- Change bonds by equivalent bilateral signals.
- Replace elements by corresponding block diagram symbols. Use the correct effort and flow description which can be found in the element tables. As an example both descriptions for the R-element are given.
Replace the junctions by signal summation points and signal splitters. If correct, the bonds have already been replaced by effort and flow signals. Out of these signals and the junction description you can derive the effort and flow equations for the junction. As an example the conversion for a 1 junction is shown.

**Example**

As an example in the figure below a causal bond graph model is shown.

Using the given set of rules and the element descriptions an equivalent block diagram models is found, which is shown below.

The resulting block diagram model can be simplified by combining blocks and elimination of loops. Out of the block diagram, easily a set of dynamic equations can be deduced.
11.2.1 From Bond Graph to Equations

With a causal bond graph model, equivalent dynamic equations can easily be derived. To create the dynamic equations, the following steps have to be performed.

- Denote for every bond its effort and flow pair. You can use names that are obvious or methodically use numbers. Some examples are shown at the right.

- Replace elements by corresponding dynamic equations. Use the correct effort and flow description which can be found in the element tables. As an example descriptions for the R-element are given.

- Replace the junctions by the correct equations. For 0 junctions the efforts are equal. All flows of the bonds pointing towards the 0 junction should be added and all flows of the bonds pointing from the 0 junction should be subtracted. For 1 junctions the flows are equal. All efforts of the bonds pointing towards the 0 junction should be added and all efforts of the bonds pointing from the 0 junction should be subtracted. Some examples are shown at the right.

- Rearrange the equations by removing redundant variables.

Example

As an example in the figure below a causal bond graph model is shown. We will derive the set of dynamic equations out of this model.
11. Modeling Tutorial

Denote all efforts and flows. This is shown below:

\[ \begin{align*}
\text{Se: } & \quad u_{in} = \text{constant} \quad i_{in} = \text{free} \\
\text{R: } & \quad u_r = Re \ i_r \\
\text{I: } & \quad i_i = \left(\frac{1}{L}\right) \int u_i \\
\text{1 junction: } & \quad i_{in} = i_r = i_i = i_m \\
\text{GY: } & \quad u_m = k_m \ \omega_m \\
& \quad T_m = k_m i_m \\
\text{I: } & \quad T_j = \left(\frac{1}{J}\right) \int \omega_j \\
\text{R: } & \quad T_r = d \ \omega_r \\
\text{1 junction: } & \quad \omega_m = \omega_j = \omega_r \\
& \quad T_m - T_j - T_r = 0
\end{align*} \]

2. Write the dynamic equations of the elements and junctions:

\begin{tabular}{ll}
\textbf{elements} & \textbf{equations} \\
Se & \( u_{in} = \text{constant} \), \( i_{in} = \text{free} \) \\
R & \( u_r = Re \ i_r \) \\
I & \( i_i = \left(\frac{1}{L}\right) \int u_i \) \\
1 junction & \( i_{in} = i_r = i_i = i_m \) \\
GY & \( u_m = k_m \ \omega_m \) \\
& \( T_m = k_m i_m \) \\
I & \( T_j = \left(\frac{1}{J}\right) \int \omega_j \) \\
R & \( T_r = d \ \omega_r \) \\
1 junction & \( \omega_m = \omega_j = \omega_r \) \\
& \( T_m - T_j - T_r = 0 \)
\end{tabular}

3. Reduce the amount of equations. We replace the equalities of the 1 junctions: \( i_{in} = i_r = i_l = i_m = i \) and \( \omega_m = \omega_j = \omega_r = \omega \).
The resulting dynamic equations can be used for simulation. 20-sim can automatically extract the dynamic equations out of a bond graph model. The equations can be shown using the Show Equations command or used in the Simulator for simulation.

### 11.2.1 Creating your own Elements

In 20-sim you can easily create your own bond graph elements. The process of creation consists of three parts:

1. For any bond connected to your submodel an internal port has to be defined. For each port you have to specify some data:
   - The physical domain.
   - The size.
   - The orientation.
   - The causality.
2. Create the icon for the component. This can be done with a specialized drawing editor.
3. Create the element description. This can be done by (differential) equations or by a bond graph.

### 11.2.1 Bond Graph Literature

A vast number of publications and books on bond graph modeling have been issued. Here is only referred to some well known books. A comprehensive collection of bond graph literature can be found on the Internet pages of prof. F. Cellier (http://www.ece.arizona.edu/~cellier/bg.html) and the mirror site at the Glasgow University (http://www.eng.gla.ac.uk/bg/).

Alan J. Blundell (1982)
Bond Graphs for Modelling Engineering Systems

Peter C. Breedveld, Geneviève Dauphin-Tanguy (1992)
Bond Graphs for Engineers

François Edouard Cellier (1991)
Continuous System Modeling

Dean C. Karnopp, Ronald C. Rosenberg (1968)
Analysis and Simulation of Multiport Systems - The Bond Graph Approach to Physical Systems Dynamics
M.I.T. Press.

Dean C. Karnopp, Ronald C. Rosenberg (1974)
System Dynamics: A Unified Approach

Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg (1990)
System Dynamics: A Unified Approach - 2nd Edition

Lennart Ljung, Torkel Glad (1994)
Modeling of Dynamic Systems
Prentice Hall, Englewood Cliffs, N.J.

Henry M. Paynter (1961)
Analysis and Design of Engineering Systems

Ronald C. Rosenberg, Dean C. Karnopp (1983)
Introduction to Physical System Dynamics

Nobuhide Suda (1988)
System Dynamics
Koronasha, Tokyo. (in Japanese)

Jean U. Thoma (1982)
Grundlagen und Anwendungen der Bonddiagramme
Girardet Taschenbuch GT20, Essen, Germany.

Jean U. Thoma (1989)
Simulation by bond graphs - Introduction to a Graphical Method
Springer-Verlag, New York.
11.2.1 Standard Elements

8

0 and 1 junctions

Junctions couple one or more elements of a model in a power continuous mode: no energy is stored or dissipated. Examples are a series junction or parallel junction in an electrical network, a fixed connection between two mechanical parts etc. Two types of junctions exist: 0 junctions and 1 junctions.

0 junction

\[ e_1 = e_2 = e_3 \]
\[ f_1 - f_2 - f_3 = 0 \]

The 0 junction represents a coupling where all efforts of the connected bonds are equal. As a consequence of the property of power continuity the sum of the flows must be equal to zero. The orientation of the bonds determines the sign of the flow summation: all flows of the bonds pointing towards the 0 junction should be added and all flows of the bonds pointing from the 0 junction should be subtracted. This summation corresponds to the Kirchhoff current law for electrical networks. The equality of the efforts, limits the causality. Only one bond may have an "effort-in" causality (the stroke pointed towards the 0 junction). All other bonds must have (seen from the 0 junction) an "effort-out" causality (stroke pointing from the 0 junction). In other words: the 1 junction has a constraint causality.
1 junction

The 1 junction is the dual form of the 0 junction (effort and flow are opposite). The 1 junction represents coupling where all flows of the connected bonds are equal. As a consequence of the property of power continuity the sum of the efforts must be equal to zero. The orientation of the bonds determines the sign of the flow summation: all efforts of the bonds pointing towards the 1 junction should be added and all efforts of the bonds pointing from the 1 junction should be subtracted. This summation corresponds to the Kirchhoff voltage law for electrical networks. The equality of the flows, limits the causality. Only one bond may have an "effort-out" causality (the stroke pointing from the 1 junction). All other bonds must have (seen from the 1 junction) an "effort-in" causality (stroke pointing to the 1 junction). In other words: the 1 junction has a constrained causality.

0 junction

Suppose we have the following 0 junction with one bond (1) pointing towards the junction and two bonds (2 and 3) pointing from the junction.

1. For a 0 junction the efforts are always equal! This means:
   \[ e_1 = e_2 = e_3 \]

2. The junction is power continuous. For the figure above this means:
   \[ e_1 \times f_1 = e_2 \times f_2 + e_2 \times f_2 \]

3. Combining 1 and 2 yields:
   \[ f_1 - f_2 - f_3 = 0 \]
The last equation can also be derived with a rule of thumb: All flows of the bonds pointing *towards* the 0 junction should be added and all flows of the bonds pointing *from* the 0 junction should be subtracted.

The first equation, limits the causality. Only one bond may have an *effort-in* causality (the stroke pointed towards the 0 junction). All other bonds must have (seen from the 0 junction) an *effort-out* causality (strokes pointing from the 0 junction). For the example junction this means three possible causal forms can exist:

\[ f_1 = f_2 + f_3 \]
\[ e_1 = e_3 = e_2 \]
\[ e_2 = e_3 = e_1 \]

**1 junction**

Suppose we have the following 1 junction with one bond (1) pointing towards the junction and two bonds (2 and 3) pointing from the junction.

\[ e_1 \]
\[ f_1 \]
\[ 1 \]
\[ f_2 \]
\[ f_3 \]
\[ e_2 \]
\[ e_3 \]

1. For a 1 junction the flows are always equal! This means:
   \[ f_1 = f_2 = f_3 \]
2. The junction is power continuous. For the figure above this means:
   \[ e_1 \times f_1 = e_2 \times f_2 + e_2 \times f_2 \]
3. Combining 1 and 2 yields:
   \[ e_1 - e_2 - e_3 = 0 \]

The last equation can also be derived with the rule of thumb: All effort of the bonds pointing *towards* a 1 junction should be added and all efforts of the bonds pointing *from* the 1 junction should be subtracted.
The first equation, limits the causality. Only one bond may have an *flow-in* causality (the stroke pointed from the 1 junction). All other bonds must have (seen from the 1 junction) a *flow-out* causality (strokes pointed towards the 1 junction). For the example junction this means three possible causal forms can exist:

![Graph showing three possible causal forms.](image)

**Buffers**

Buffers are bond graph elements that can store energy. There are two types of buffers: *C-elements* and *I-elements*. The table below shows the effort and flow descriptions that belong to these elements. The parameters "C" and "I" are the *buffer constants*, which determine a linear buffer behavior. Examples of C-elements are a mechanical spring and an electrical capacitor. Examples of an I-element are a mechanical inertia and an electrical inductance.

<table>
<thead>
<tr>
<th>Element Type</th>
<th>Bond Graph Element</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>C-element</strong></td>
<td><img src="image" alt="C-element bond graph" /></td>
<td>( f = C \frac{de}{dt} )</td>
</tr>
<tr>
<td>Effort-in causality</td>
<td>( e )</td>
<td>( f )</td>
</tr>
<tr>
<td>Effort-out causality</td>
<td>( e )</td>
<td>( f )</td>
</tr>
<tr>
<td><strong>I-element</strong></td>
<td><img src="image" alt="I-element bond graph" /></td>
<td>( e = \frac{1}{I} \int f )</td>
</tr>
<tr>
<td>Effort-in causality</td>
<td>( e )</td>
<td>( f )</td>
</tr>
<tr>
<td>Effort-out causality</td>
<td>( e )</td>
<td>( f )</td>
</tr>
</tbody>
</table>

Buffer elements do not fix the direction of the effort and flow. Both effort-in as well as effort-out causality is allowed. With simulation however, we prefer to avoid differentiation. In other words, with the C-element the effort-out causality is *preferred* and with the I-element the effort-in causality is *preferred*. 

---

20-sim 4.7 Reference Manual

1182
Resistance

A resistance, \( R \), dissipates free energy. This energy of any arbitrary domain is transported \textbf{irreversibly} to the thermal domain. This means the power towards a resistance is always positive. In the table below the effort and flow description of the resistance is shown. Examples of a resistance are a mechanical damper and an electrical resistor.

<table>
<thead>
<tr>
<th>R-element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>effort-in causality</td>
<td>( e )</td>
<td>( f = (1/R) \cdot e )</td>
</tr>
<tr>
<td>effort-out causality</td>
<td>( f )</td>
<td>( e = R \cdot f )</td>
</tr>
</tbody>
</table>

The direction of effort and flow is not restricted for a resistance and there is no preferred form for the equation. In other words: the R-element has a \textit{indifferent causality}.

Sources

Sources represent the interaction of a systems with its environment. There are two types of source elements: effort sources (Se) and flow sources (Sf).

In the table below the effort and flow description of the source elements is shown. Examples of a flow source are an electrical current source and a hydraulic pump that generates a constant flow of liquid. Examples of an effort source are an electrical voltage source and a constant mechanical force.

<table>
<thead>
<tr>
<th>element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>effort source</td>
<td>Se ( e )</td>
<td>( e = c ), ( f = \text{free} )</td>
</tr>
<tr>
<td>flow source</td>
<td>Sf ( f )</td>
<td>( f = c ), ( e = \text{free} )</td>
</tr>
</tbody>
</table>

The direction of effort and flow for sources are restricted. In other words: the \( Se \)-element (effort-out) and \( Sf \)-element (effort-in) have a \textit{fixed causality}.
Modulated Sources

Next to the standard effort and flow sources, that generate a constant effort and flow, bond graph modeling also allows the use of so called modulated sources. In these sources the resulting effort or flow are equal to a (fluctuating) value provided by an input signal. Two types of modulated sources are known: the modulated effort source $\text{MSe}$ and the modulated flow source $\text{MSf}$. In the table below the effort and flow description of the source elements is shown.

<table>
<thead>
<tr>
<th>element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>modulated effort source</td>
<td>$\text{MSe}$</td>
<td>$e = u$, $f = \text{free}$</td>
</tr>
<tr>
<td>modulated flow source</td>
<td>$\text{MSf}$</td>
<td>$f = u$, $e = \text{free}$</td>
</tr>
</tbody>
</table>

The direction of effort and flow for sources are restricted. In other words: the MSe-element (effort-out) and MSf-element (effort-in) have a fixed causality.

Transformers and Gyrators

Transformers and gyrators are bond graph elements that can convert energy ideally, as well in one physical domain as well as between one physical domain and another. A transformer is denoted by the mnemonic code $\text{TF}$ and a gyrator by the code $\text{GY}$. In the table below the effort and flow equations are shown. The parameters $r$ and $n$ are the transformation ratio and gyration ratio. An example of a transformer is a mechanical gear. An example of a gyrator is a DC-motor.

<table>
<thead>
<tr>
<th>TF-element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>effort-in causality</td>
<td>$\text{TF}$</td>
<td>$f_1 = (1/n) f_2$, $e_2 = (1/n) e_1$</td>
</tr>
<tr>
<td>effort-out causality</td>
<td>$\text{TF}$</td>
<td>$f_2 = n f_2$, $e_1 = n e_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GY-element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>effort-in causality</td>
<td>$\text{GY}$</td>
<td>$f_1 = (1/r) e_2$, $f_2 = (1/r) e_1$</td>
</tr>
<tr>
<td>effort-in causality</td>
<td>$\text{GY}$</td>
<td>$e_1 = r f_2$, $e_2 = r f_1$</td>
</tr>
</tbody>
</table>
11. Modeling Tutorial

The directions of the flow and effort are partly fixed for a transformer. Like the 1 junction and the 0 junction, the causality is constraint. For a transformer, an effort-in causality on the incoming bond results in an effort-out causality on the outgoing bond and vice-versa. For a gyrator, an effort-in causality on the incoming bond results in an effort-in causality on the outgoing bond and vice-versa.

Modulated Transformers and Gyrators

Next to transformers and gyrators with a fixed transformation ratio and gyration ratio, in bond graphs also modulated transformers (MTF) and modulated gyrators (MGY) are supported. In these models the transformation ratio of gyration ratio are equal to a (fluctuating) value provided by an input signal. In the table below the effort and flow equations are shown.

<table>
<thead>
<tr>
<th>MTF-element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
</table>
| effort-in causality | ![MTF](image)       | $f_1 = (1/u) f_2$  
|                  |                    | $e_2 = (1/u) e_1$  |
| effort-out causality | ![MTF](image)     | $f_2 = u f_2$     
|                  |                    | $e_1 = u e_2$     |

<table>
<thead>
<tr>
<th>MGY-element</th>
<th>bond graph element</th>
<th>equation</th>
</tr>
</thead>
</table>
| effort-in causality | ![MGY](image)     | $f_1 = (1/u) e_2$  
|                  |                    | $f_2 = (1/u) e_1$  |
| effort-in causality | ![MGY](image)     | $e_1 = u f_2$     
|                  |                    | $e_2 = u f_1$     |

The directions of the flow and effort are partly fixed for a modulated transformer. Like the 1 junction and the 0 junction, the causality is constraint. For a transformer, an effort-in causality on the incoming bond results in an effort-out causality on the outgoing bond and vice-versa. For a gyrator, an effort-in causality on the incoming bond results in an effort-in causality on the outgoing bond and vice-versa.
11.3 Iconic Diagrams

11.3.1 Dynamic Systems

An important aspect in mechatronic systems is the dynamic behavior, i.e. the behavior of the system as function of time. Especially in systems that display swift changes or systems that should behave accurately, the dynamic behavior is important. It is therefore useful to predict the dynamic behavior of a system. Modeling and simulation is useful for making such predictions.

There are various methods of modeling and simulating dynamic systems. A well known one is the Lumped Parameter Method.

With the Lumped Parameter Method, the dynamic behavior of a system is concentrated in discrete points. The interaction of these points gives us insight in the behavior of the real system. The more discrete points are used the more accurate the model will be.

There are various ways to represent lumped parameter models. Well known representations are iconic diagrams, differential equations, block diagrams and bond graphs.

Let's consider the suspension of a car. A lumped parameter model starts with the identification of the various lumps (or parts or components) of this system. We start with the car body. It is supposed to be a rigid body and therefore this part is represented with the icon of a mass. The suspension of the car is represented by a spring damper combination. The wheel is considered to have a significant mass and to be elastic. This component is therefore represented by a mass and spring icon. Finally the road is modeled by path generator function. The resulting ideal physical model (IPM) is shown below.

![Iconic diagram of a car suspension.](image)

11.3.2 Iconic Diagrams

If we can represent the various parts of an ideal physical model by predefined models or components modeling is easy. In 20-sim a large library of components is available allowing you to create a model just by selecting the proper components and connect them according to the ideal physical model. To make modeling even more easy, the components are displayed in the editor by icons which look like the corresponding parts.
of the ideal physical model. In 20-sim these kind of models are called iconic diagrams (sometimes other simulation tools refer to this kind of modeling as component based modeling). 20-sim can automatically compute simulation code out of an iconic diagram and start a simulation.

Look again at the car suspension example. In the picture below at the right an iconic diagram is shown that has been entered in 20-sim. As you can see, the iconic diagram similar to the ideal physical model. Each component of the iconic diagram represents a physical process. For example the mass component represents the law of motion \( F = m\dot{a} \) and the spring represents the linear spring equation \( F = kx \). The connections between the components in the iconic diagram represent ideal energy transfer between those components, i.e. no energy is stored, generated or dissipated.

![A iconic diagram model of a car suspension.](image)

An iconic diagram describes a physical system as a number of physical concepts (the components) connected by energy flows (the connections).

### 11.3.3 Across and through

A connection between two components transfers energy from one component to the other. This flow of energy can be described in many ways. In 20-sim a uniform approach is chosen:

The flow of energy between two components of an iconic diagram can be characterized by two variables, of which the product is power. These variables are called \( \text{across (a)} \) and \( \text{through (t)} \).

![Across and through as variables of a connection.](image)

The across and though variables make up a combination that is typical for a physical domain. For example voltage and current are used for electrical networks and force and velocity are used for mechanical (translation) systems. The table below shows the variables for the domains that are currently supported in 20-sim.

<table>
<thead>
<tr>
<th>Domain</th>
<th>across (a)</th>
<th>through (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The across and through variables for several domains.

The most general domain is power. Connections of this domain can be used for all domains. For the thermal domain there is one pair of across and through, $T$ and $dS$, that multiplies to power. The pair $T$ and $dQ$ however is more often used but does not multiply to power. Therefore the domain with these variables is called pseudothermal. 

There is a direct relation between the across and through variables of an iconic diagram and the effort and flow variables of a bond graph:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Non-mechanical domains</th>
<th>Mechanical Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>across variable</td>
<td>effort</td>
<td>flow</td>
</tr>
<tr>
<td>through variable</td>
<td>flow</td>
<td>effort</td>
</tr>
</tbody>
</table>

The relation between across and through variables and effort and flow variables.

Note

- 20-sim propagates domains. If a connection of the general power domain is tied to a component of the electrical domain, it automatically becomes an electrical connection. The other end of the connection can then only be tied to another component of the electrical domain. In this way it is prevented to connect components of different physical domains.

- If you want to use a connection of a domain that is not supported or has variables other than across and through, use the general power domain. The across and through variables can then be used as an alias of your own variables.
11.3.4 Connections

When two components in an Iconic Diagram are connected, one component will always compute the across variable, while the opposite component will always determine the through variable.

We can therefore also interpret a connection as a bilateral signal connection (across-signal and through-signal), of which the directions are opposite to each other.

With "direction" we mean the computational direction, just like signals in a block diagram. In a block diagram the across and through variables, which together form the flow of power, are not shown as a couple. This breaks up the symmetry between the physical system and the structure of the model.

The interpretation of a connection as a bilateral signal flow, does not fix the individual direction of the across variable and the through variable. It only means the direction of the across variable and through variable are opposite.

The specific computational direction of across and and through variables is called causality. In 20-sim an advanced algorithm detects the possible causalities of each submodel and tries to combine these in such a way, that optimal simulation code will be generated. The result can be inspected using the Causality Info command from the View menu. The result of this command is shown in the example below. The computational direction of forces and velocities is clearly shown for all the connections.

11.3.5 Orientation (Across)

When simulating, you have to know how across and through variables are oriented to make a correct interpretation of what is happening. 20-sim can show the orientation when you select the Orientation Info option of the View menu.

Across variables in the Top Level

Across variables in the top level of a model are always defined with respect to a single global reference. In the picture below an electrical iconic diagram is shown with three voltages (u1 = 5 V, u2 = 3 V and u3 = 1 V). This means these voltages are all defined with respect to the same reference, e.g., the ground u = 0 V.
All variables values of a connection can be easily inspected during simulation by placing the mouse pointer on top of that connection as shown below. The connection between the mass and the spring (see picture below) shows an across value \( v = 0.84 \text{ m/s} \). This means the point where the mass and spring are connected has a global velocity of \( v = 0.84 \text{ m/s} \).

In the figure below the connection between the capacitor and the resistor shows a negative voltage of \( u = -2e-5 \text{ V} \).

**Across variables in Submodels**

In submodels you have to inspect how across variables are defined. For example, an ideal electrical resistor (see figure below) uses separate high and low terminals. The internal equations are:

\[
\begin{align*}
 p.u &= p\_high.u - p\_low.u; \\
 p\_high.i &= p\_low.i = p.i; \\
 p.u &= R \cdot p.i;
\end{align*}
\]

where \( p\_high \) and \( p\_low \) are the ports to the connections at both sides of the resistor. \( p\_high.u \) and \( p\_low.u \) are voltages defined with respect to the global reference, but \( p.u \) is the voltage difference between the high and low port and therefore not defined with respect to the global reference.
The definition of across variables depends on the definition of number of terminals of a port, which is shown in the Type Editor. To inspect the ports, put the mouse pointer on top of the Type section and select edit type from the right mouse menu.

**Note**

- The geometrical layout of the iconic diagram does not have a meaning. If a resistor is drawn upside down, its current is still defined with respect to the resistor (flowing towards or from). If a mass is drawn upside down, its force is still defined with respect to that mass (pulling or pushing).
- To show or hide the orientation of an Iconic Diagram select or deselect the Orientation Info option of the View menu.

### 11.3.6 Orientation (Through)

When simulating, you have to know how across and through variables are oriented to make a correct interpretation of what is happening. 20-sim can show the orientation when you select the Orientation Info option of the View menu.

**Through variables in connections**

Through variables in connections are always defined with respect to the components they are connected with. 20-sim automatically assigns an orientation for these through variables. This orientation can be made visible by selecting the Orientation Info command of the View Menu.

**Non-mechanical**

Through variables that are not of the mechanical domain are always shown with an arrow in the connection. The arrow indicates the direction of the positive flow. The figure below shows a negative current: \( i = -2e-5 \) A. This means the current flows in the opposite direction of the arrow.
Mechanical

Through variables of the mechanical domain are always shown with two arrows. The arrows indicate the direction of the positive force. The figure below shows a positive force: $F = 0.45$ N. This means the spring pushes with a force of $F = 0.45$ [N] upon the mass and the mass pushes with a force of $F = 0.45$ N upon the spring (note: a negative force would mean pulling instead of pushing).

This interpretation of forces in 20-sim is only valid when a positive velocity defined from the left to the right, and from the bottom to the top!

Through Variables in Submodels

In submodels, you have to use the Type Editor to find out how through variables are defined. For example an ideal mass (see next figure) uses the option any number of terminals for its port (inspect the port in the Type Editor). The port equations are:

\[
p.F = p1.F + p2.F \\
p.v = p1.v = p2.v;
\]

The internal equations are:

\[
p.v = (1/m)\ast\text{int}(p.F) \; ; \\
x = \text{int}(p.v);
\]

where $p1$ and $p2$ are the ports to the connections at both sides of the mass. $p1.v$ and $p2.v$ are velocities defined with respect to the global reference. However, $p.F$ (see also in the figure below) is the sum of the forces applied on both sides.
The definition of through variables depends on the definition of number of terminals of a port, which is shown in the Type Editor. To inspect the ports, put the mouse pointer on top of the Interface tab and select Edit from the right mouse menu.

**Note**

- The geometrical layout of the iconic diagram does not have a meaning. If a resistor is drawn upside down, its current is still defined with respect to the resistor (flowing towards or from). If a mass is drawn upside down, its force is still defined with respect to that mass (pulling or pushing).
- To show or hide the orientation of an Iconic Diagram select or deselect the Orientation Info option of the View menu.

### 11.3.7 Global Reference

20-sim iconic diagram models do not contain geometrical information. It is not important how a model is drawn, but how the elements are connected. To make a correct interpretation of the simulation results, the definition of references has to be known.

**Across**

Across variables in the top level of a model are always defined with respect to a single global reference. For all domains this global reference is equal to 0. The interpretation of this reference is up to the user. For example a zero pressure could be the absolute vacuum or the air pressure at ground level. For most physical domains, unless specified otherwise, a standard interpretation is used. This is shown in the table below.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Across (a)</th>
<th>Global Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>across a</td>
<td>zero</td>
</tr>
</tbody>
</table>
Through variables in connections are always defined with respect to the components they are connected with.

Non-Mechanical
Through variables that are not of the mechanical domain are always shown with an arrow indicating the direction of the positive flow.

Mechanical
Through variables of the mechanical domain are always shown with two arrows indicating the direction of the positive force. Since mechanical variables are often geometrically interpreted, these arrows assume a positive velocity from the left to the right and from the bottom to the top.

See for example the system shown above. Look at the connection between the spring and the fixed world. Most users will correctly interpret a positive force as one that "makes the mass slow down". The same model is shown below. To prevent an incorrect interpretation such as a positive force "makes the mass accelerate", the arrows are pointing inwards.

This interpretation is only valid when you assume that a positive velocity is from the left to the right and from the bottom to the top!
11.3.8 Causality

The connection between two components describes the flow of power from one to the other. This power flow is always described by across and through variables. For example an electrical connection can be described by the variables voltage $u$ and current $i$ ($u*i =$ power). Each Iconic Diagram component creates a causal relation between these variables. E.g. an electric resistor can be described by the equation:

$$u = i*R;$$

where $R$ is the resistance. Here the voltage is a function of the current. In 20-sim we say the component has a voltage out causality. This causality is not fixed. We can easily invert the equation:

$$i = u/R;$$

Now the component has a current out causality. Which of the two equations will be used for the simulation depends on the other components.

In 20-sim an advanced algorithm detects the possible causalities of each model and tries to combine these in such a way, that optimal simulation code will be generated. You can help this algorithm by manually setting the causality of ports.

11.3.9 Ports

A port is a location where a component can exchange information (in case of a signal port) or power (in case of a power port) with its environment. So, it is the port that defines the connection with a component. A port is an important concept, as it allows you to describe the properties of the connection that can be made to the component, i.e., its direction, size, domain, etc. Ports can be defined in 20-sim using the Type Editor.
Port Variables

All ports of a submodel are shown in the Type window of the 20-sim Editor. In the figure below an electrical Resistor is shown with one power port \( p \). Each port has an across and through variable. In 20-sim these variables are denoted with the extensions \( .a \) and \( .t \). You can also use the names that are specific for a certain domain. For the electrical domain the extensions \( .u \) and \( .i \) are used. You can see an example in the figure below (Implementation section) where equations are defined using the variables \( p.u \) and \( p.i \).
Port Properties

Ports can be added and defined in the 20-sim Type Editor. You can open the Interface Editor in the Interface tab (right mouse menu). The Interface Editor of the Resistor is shown below.
Port Properties

Iconic Diagram Ports have several properties:

- **Name**: The name of the port.
- **Type**: Next to Iconic diagram ports, 20-sim also knows bond graph ports and signal ports.
- **Size**: The standard size of a port and corresponding connection is 1 but you can also define ports with larger sizes.
- **Orientation**: The orientation of a port defines how the through variable is connected.
  - **Input**: A positive through variable will act upon a component in the positive direction (mechanical domain) or flows into the component (non-mechanical domain).
  - **Output**: A positive through variable will act upon a component in the negative direction (mechanical domain) or flows from the component (non-mechanical domain).

Note: The port orientation and the orientation of the corresponding connection can be made visible in 20-sim by arrows.

- **Domain**: The physical domain of the port.
- **Causality**: The causality of the port variable (across and through). You have to define here what should be the input variable (across or through) and what should be the output variable (across or through).
By default, an iconic diagram port is a port where power can be exchanged between a
compONENT and its environment in terms of an across variable and a through
variable. Such a port is represented by one terminal. However, there are two special
cases where it is desirable to define an iconic diagram port that has more than one
terminal. These are the Separate High / Low Terminals port and the Any Number of
Terminals port. These options are only for advanced users!

- **Separate High / Low Terminals**: Select the port to have two terminals. Only for
  experienced users!
- **Any Number of Terminals**: Select the port to have any number of terminals. Only for
  experienced users!

### 11.3.1 Ports with more than one Terminal

#### 0

By default, an iconic diagram port is a port where power can be exchanged between a
component and its environment in terms of an across variable and a through variable.
Such a port is represented by one terminal (connection point). However, there are two
special cases where it is desirable to define an iconic diagram port that has more than
one terminal.

**Separate High / Low Terminals**

Consider, as an example, a mechanical spring. The power that flows into such a
component is uniquely determined by the velocity difference between the two terminals
of the component and the common force that acts upon both ends. Because of this one
could say that there is one port, whose power is determined by one across value (the
velocity difference) and one through value (the common force), but is represented by
two terminals. To support this, 20-sim allows you to define a special type of iconic
diagram port by indicating that is has Separate High / Low Terminals. The two terminals
of the connection are named high and low. If the port is named p, the formal equations
are:

**fixed in orientation**

\[
p.t = p1.t = p2.t \\
p.a = p_{high}.a - p_{low}.a
\]

**fixed out orientation:**

\[
p.t = p1.t = p2.t \\
p.a = -p_{high}.a + p_{low}.a
\]

In 20-sim these equations are automatically derived.

**Any Number of Terminals**

Consider, as an example, a mass. A characteristic of this component is that you can
connect many springs and dampers to it. Implicitly, one expects that the net force (i.e.,
the summation of the forces applied by the connected components) will be applied to the
mass, and that it will have a single velocity. To support this, 20-sim allows you to define
a special type of iconic diagram port by indicating the kind to be Any Number of
Terminals. The terminals of the connection are named 1, 2, 3 etc.. If the port is named
p, the formal equations are:
\[ p.a = p1.a = p2.a = p3.a = \ldots \]
\[ p.t = \text{sign}(p1) \cdot p1.t + \text{sign}(p2) \cdot p2.t + \text{sign}(p3) \cdot p3.t + \ldots \]
\[ \text{sign} = 1 \text{ when } p1 \text{ has a fixed in orientation etc.} \]
\[ \text{sign} = -1 \text{ when } p2 \text{ has a fixed out orientation etc.} \]

In 20-sim these equations are automatically derived.

11.3.1 Creating Iconic Diagrams

1. When you understand the concepts of across and through, including orientation, constructing an iconic diagram is easy:
   1. Create an ideal physical model.
   2. Select the components that represent the various parts of the ideal physical model and drag and drop them to the 20-sim editor. Iconic Diagram components can be found in the model library. Some standard components are shown in the tables of this tutorial.
   3. Connect the components according to the ideal physical model.
   4. Compile the model and run a simulation. For a good interpretation of the plots, you must know that across variables are always defined with respect to a global reference and through variables are always defined with respect to the components.

11.3.1 Creating your own Components

2. In 20-sim you can easily create your own components. The process of creation consists of three parts:
   1. For any connection an internal port has to be defined. For each port you have to specify some data:
      - The physical domain.
      - The size.
      - The orientation.
      - The causality.
   2. Create the icon for the component. This can be done with a specialized drawing editor.
   3. Create the component description. This can be done by (differential) equations or by an iconic diagram.
12 Ports

A port is a location where an element can exchange information (in case of a signal port) or power (in case of a power port) with its environment. So, it is the model port that defines the connection with the element. A port is an important concept, as it allows you to describe the properties of the bonds that can be connected to the element, i.e., its direction, size, domain, etc. Ports can be defined in 20-sim using the Interface Editor.

Port Variables

All ports of a submodel are shown in the Interface tab. In the figure below a standard C-element is shown with one power port \( p \). Each bond graph port has an effort and a flow variable. In 20-sim these variables are be denoted with the extensions \(.e\) and \(.f\) and are also known as power-port variables. You can see an example in the figure below where equations are defined using the variables \( p.e \) and \( p.f \).
Port Properties

Ports can be added and defined in the 20-sim Interface Editor. The Interface Editor of the C-element is shown below.

Bond graph ports have several properties:
- **Name**: The name of the port.
- **Type**: Next to bond graph ports, 20-sim also knows iconic diagram ports and signal ports
- **Orientation**: The orientation of a connected bond (indicated by the half arrow).
  - *fixed in orientation*: The bond will point towards the element.
  - *fixed out orientation*: The bond will point from the element to another element.
- **Rows/Columns**: The standard size of a port and corresponding bond is 1 but you can also define ports with larger sizes.
- **Domain**: The domain of the port.
- **Causality**: The preferred causality of the port variable (effort and flow). You have to define here what should be the input variable (effort or flow) and what should be the output variable (effort or flow).
Index

- - -
- 213, 229
- * -
* 160, 212
- . -
./ 214
.^ 215
cse 439
csv 439
ewxz 27
- / -
/ 215
- [ -
[ 246
- ] -
] 246
- ^ -
^ 217
- + -
+ 160, 213, 229
- < -
< 226
<= 226
<> 227
- = -
== 227
- > -
> 228
>= 228
- 0 -
0 566, 1179
0 junction 1180
0-junction 566, 567
- 1 -
1 554, 556, 1179, 1181
1-3-5-7-9 Polynomial 409, 421

1D 807
1-junction 554, 556

- 2 -
20sim 2, 9, 10, 12, 13, 19, 214
20-sim 2, 9, 10, 12, 13, 17, 18, 19, 214, 525, 526, 536, 537, 538, 540
20-sim Dynamic DLL 474
20-sim Filter Editor 382
20-sim library 16
20-sim Model 274
20-sim Scenery 274
20-sim submodel for Arduino/AVR 474
255 315
2D 807
2-D 805
2D Library 805
2D motion 805
2D Springs 826
2D-Animation 311
2D-modelling 842
2D-point-X 846
2DSmallRotation library 805
2dtabel 957

- 3 -
3 degrees of freedom 842
32-bit machine code 51
3-4-5 Polynomial 409, 421
3D Animation 92
3D Animation Properties 293
3D Animation Window 292
3D Body 840
3D Library 840
3D mechanics 2
3D Mechanics Editor 256
3D Points 840
3D Representation 264
3D-body 840
3D-files 309
3D-mass 840
- A -

A 622
ABCD matrix 374
abort 238
Abs 141
Absolute 116, 117, 212, 960
absolute tolerance 380
absolute value 141
AC motor 722, 728
AC synchronous motor 455
acceleration 417, 823, 889
AccelerationActuator 721, 853
AccelerationActuator-Relative 721, 853
AccelerationSensor-Absolute 793, 901
AccelerationSensor-Relative 794, 902
accumulator 715
acmotor 728
ACMotor-TorqueLoop 722
Across 73, 1187
Activation 10
activation function 344
Activation Function Type 346
Active 98
activity 567
Actuated Joints 280
actuator 737, 738, 739, 740, 741, 843, 844, 857, 862, 863, 864
Actuator Model 993
Actuator Properties dialog 289
Actuators 826
AD 1050
Adams-Bashford 116
Add 954
Add New 38
Add to Favorites 94
Add to Input Probes 94
Add to Output Probes 94
Add/Delete 98, 485
Addition 213
Additional Outputs 274

Adjoint 182, 184
Advanced Scripts 533
After the run 474
algebraic 94, 142
algebraic loop in 51
algebraic loop out 51
Algebraic loops 32, 56, 115, 249
algebraic solver 115
algebraic variables 32
Algebraic variables solved 32
Alias 77
alias variable 51
Alias Variables 94
All Runs 92
Allow model updates 32
Allow Symbol Prefixes 77
Always Look up Vector 311
Ambient color 314
Ambient Light 314
amplifier 605
Amplitude 338, 396
amplitudesensor 1098
Analog 1053
analog filter 382
Analog to Digital Convertor 1050
Animations 82
Analyze Causality 37
And 224, 1082, 1090
angle 760
angular acceleration 760
angular velocity (constant) 739, 740
angular velocity (variable) 740, 741
angular velocity = 0 755, 871
Animation Properties 293
ANSI-C Code 474
ANSI-C Function 474
antisym 185
Anti-Windup 993
Any Number of Terminals 71, 1199
Apply Regularization 352
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>arccos</td>
<td>201</td>
</tr>
<tr>
<td>arccosh</td>
<td>202</td>
</tr>
<tr>
<td>Archive</td>
<td>26</td>
</tr>
<tr>
<td>arcsin</td>
<td>200</td>
</tr>
<tr>
<td>arccosh</td>
<td>202</td>
</tr>
<tr>
<td>arcsinh</td>
<td>203</td>
</tr>
<tr>
<td>arctan</td>
<td>203</td>
</tr>
<tr>
<td>arctanh</td>
<td>204</td>
</tr>
<tr>
<td>arduino</td>
<td>2</td>
</tr>
<tr>
<td>Array</td>
<td>247</td>
</tr>
<tr>
<td>Array Division</td>
<td>214</td>
</tr>
<tr>
<td>Array Multiplication</td>
<td>214</td>
</tr>
<tr>
<td>Array Power</td>
<td>215</td>
</tr>
<tr>
<td>Artificial intelligence</td>
<td>342, 347</td>
</tr>
<tr>
<td>As Constraint Joint</td>
<td>280</td>
</tr>
<tr>
<td>As Global Parameter</td>
<td>276</td>
</tr>
<tr>
<td>atan2</td>
<td>205</td>
</tr>
<tr>
<td>Attempting Real-Time simulation</td>
<td>109</td>
</tr>
<tr>
<td>Attenuate</td>
<td>935</td>
</tr>
<tr>
<td>Attenuation</td>
<td>321</td>
</tr>
<tr>
<td>Attributes</td>
<td>293</td>
</tr>
<tr>
<td>Author</td>
<td>32</td>
</tr>
<tr>
<td>Auto Causality</td>
<td>32</td>
</tr>
<tr>
<td>Auto Indent</td>
<td>17</td>
</tr>
<tr>
<td>Auto Recovery Filename</td>
<td>23, 34</td>
</tr>
<tr>
<td>Average</td>
<td>1099, 1125</td>
</tr>
<tr>
<td>Averaging Integration</td>
<td>947</td>
</tr>
<tr>
<td>Avi</td>
<td>299</td>
</tr>
<tr>
<td>B</td>
<td>315</td>
</tr>
<tr>
<td>Back plane</td>
<td>311</td>
</tr>
<tr>
<td>Background Color</td>
<td>301</td>
</tr>
<tr>
<td>Background Image</td>
<td>301</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>49</td>
</tr>
<tr>
<td>Backlash</td>
<td>742, 864, 968</td>
</tr>
<tr>
<td>BackPropagation Networks</td>
<td>343</td>
</tr>
<tr>
<td>Backward Difference</td>
<td>382</td>
</tr>
<tr>
<td>Backward Difference</td>
<td>382</td>
</tr>
<tr>
<td>Backward Differentiation</td>
<td>117</td>
</tr>
<tr>
<td>Backward Euler</td>
<td>115</td>
</tr>
<tr>
<td>Band</td>
<td>367</td>
</tr>
<tr>
<td>Band Pass</td>
<td>367</td>
</tr>
<tr>
<td>Band Stop</td>
<td>367</td>
</tr>
<tr>
<td>Bandwith</td>
<td>1068, 1070</td>
</tr>
<tr>
<td>Base 10 Logarithm</td>
<td>149</td>
</tr>
<tr>
<td>basic libraries</td>
<td>622</td>
</tr>
<tr>
<td>Basic Script</td>
<td>532</td>
</tr>
<tr>
<td>basis function</td>
<td>347</td>
</tr>
<tr>
<td>BDF</td>
<td>117</td>
</tr>
<tr>
<td>bearing</td>
<td>743, 755</td>
</tr>
<tr>
<td>BeltPulley</td>
<td>768, 907</td>
</tr>
<tr>
<td>Bessel</td>
<td>367</td>
</tr>
<tr>
<td>bilateral signal</td>
<td>1189</td>
</tr>
<tr>
<td>bilinear transformation</td>
<td>382</td>
</tr>
<tr>
<td>Bipolar Sigmoid</td>
<td>346</td>
</tr>
<tr>
<td>Bipolar Sigmoid</td>
<td>346</td>
</tr>
<tr>
<td>Bipolar Sigmoid Activation Function Scale</td>
<td>346</td>
</tr>
<tr>
<td>bitand</td>
<td>218</td>
</tr>
<tr>
<td>bitclear</td>
<td>218</td>
</tr>
<tr>
<td>bitcmp</td>
<td>219</td>
</tr>
<tr>
<td>bitget</td>
<td>220</td>
</tr>
<tr>
<td>bitmap</td>
<td>318</td>
</tr>
<tr>
<td>bitset</td>
<td>221</td>
</tr>
<tr>
<td>bitshift</td>
<td>222</td>
</tr>
<tr>
<td>bitxor</td>
<td>223</td>
</tr>
<tr>
<td>Block Diagram</td>
<td>1173</td>
</tr>
<tr>
<td>Block Diagrams</td>
<td>1050</td>
</tr>
<tr>
<td>blue</td>
<td>315</td>
</tr>
<tr>
<td>Bode Plots</td>
<td>338, 396</td>
</tr>
<tr>
<td>body points</td>
<td>840</td>
</tr>
<tr>
<td>Body Properties Dialog</td>
<td>276</td>
</tr>
<tr>
<td>body without rotational inertia</td>
<td>845</td>
</tr>
<tr>
<td>Bond Graph</td>
<td>21, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 1168, 1173, 1175</td>
</tr>
<tr>
<td>Bond Graph Literature</td>
<td>1177</td>
</tr>
<tr>
<td>Bond Graph Models</td>
<td>1164</td>
</tr>
<tr>
<td>Bond Graph Models,Simplification</td>
<td>1164</td>
</tr>
<tr>
<td>Bond Graph,Equations</td>
<td>1175</td>
</tr>
<tr>
<td>Bond Graph,Iconic Diagram</td>
<td>1168</td>
</tr>
<tr>
<td>Bond Graphs</td>
<td>19, 1159, 1167, 1168, 1170</td>
</tr>
</tbody>
</table>
Bond Graphs, Iconic Diagrams 1168, 1170
Case 238
Cast 140
casting 140
Catch up with lost time 109
Causal analysis 37
causal conflict 37
Causal Form 52, 250
causal order 52, 250
Causal Strokes 37, 1189
Causality 52, 70, 243, 244, 250, 1165, 1189, 1195
CCCS 614
C-code Folders 23, 34
C-Code for 20-sim submodel 474
C-Code Generation 23, 34, 474
Cd 622
ceil 142
C-elements 1182
center of stiffness 829
centi 77
Centrifugal Pump 648
changing mass 889
Chebychev 367
check 272
Check Complete Model 31
Check Energetic Behavior 36
Check for Model Updates 48
Check Model 274
checkvalve 668
checkvalve-states 692
Choosing a Motor 470
Chrome 318
Circle 311
circle elements 303, 306, 307, 321
Clear 92
Clear After Every Run 485
Clock 1091
Clock Signal 1083
Clock-Continuous 1083
clock-discrete 1051
clockinterrupt 112
closed chain mechanism 269
Closed Forms 321
Clutch 749
cmabender 594, 854
CMASStretcher 595, 855
code 17, 121, 122
code block 122
Code Blocks 57, 253
code generation 2
Cogging 464
collect 195
Collision 868
Collision-Relative 866
colon 246
Color 76, 315
Color Syntax Highlighting 17
Column 42
Columns 185, 246, 1195
Combining of divisions 30
Combining of multiplications 30
Combining splitters 30
comment 127
Comments 127
Commercial Controllers 998
Company 32
Comparison of Friction Models 1156
compensator 327, 366
Compiling 51
Compiling Models 51
complete set of equations 60, 255
Component Properties 256
Components 1200
computational direction 1189
Cone 307
Confirmation on Delete 23, 34
connecting of joints 272
Connecting Sensors 287
Connecting Submodels 28
connection 630, 761, 892
connection mode 28
Connections 1189
Constant 314, 1103
constant current 619
Constant Values 128
constant voltage 621
Constants 18, 85, 128, 130
constraint 70, 142
constraint equal 70
Constraint Joint 269
constraint not equal 70
Constraint Settings 280
constraint variables 32
Constraint variables solved 32
constraints on motion 813
Continue 98
Continuous Descent 496
continuous pulse 409, 421
Continuous-Discrete Transformations 382
Continuous-Time 40
Continuous-Time and Discrete-Time Models 40
ccontra-rotating shafts 774
ControlledLinearSystem 980
ControlledSystem 981
Controller 362, 363, 364, 365, 366, 1020, 1021, 1022, 1043, 1044, 1045, 1046
Controller Design Editor 327
ccontroller output 988
ccontroller variable 988
Controller-P 1003, 1027
Controller-PD_p 1004, 1027
Controller-PD_s 1005, 1028
Controller-PI 1005, 1029
Controller-PI_sp 1006, 1030
Controller-PI_sp_aw 1007, 1030
Controller-PI_sp_aw_u0 1008, 1031
ccontroller-pi_sp_aw_u0_tr 1009, 1032
Controller-PID_p 1010, 1033
Controller-PID_p_sp 1011, 1034
Controller-PID_p_sp_aw 1012, 1035
Controller-PID_p_sp_aw_u0  1013, 1036  CrossingDown  1062
controller-pid_p_sp_aw_u0_tr  1014, 1037  CrossingUp  1062
Controller-PID_s  1015, 1039  crossover yerk  409, 421
Controller-PID_s_sp  1016, 1039  Cube  304
Controller-PID_s_sp_aw  1017, 1040  Cubic  409, 421
Controller-PID_s_sp_aw_u0  1018, 1041  cumulative power spectral density  402
controller-pid_s_sp_aw_u0_tr  1019, 1042  current  619
controllerwizard  1003
convection 923
Convert 1168
converting from real to boolean  140
Copy  94
Copy from States  485
Copy Initials  85
Copy Parameters  85
Copy Specified  94
Copy States  92, 103
correct order of execution  57, 253
cos  206
cosh  206
co-simulation  44, 78, 79
Cosine  960
Cosine Wave  1120
cost function  524
CostFunction  1047, 1048
CounterbalanceValve  694
counter-moving ports  912
counting  246
coupling  787
CPS  402
crankrod  771, 910
Create Datafile  485
Created  32
Creating  1167, 1200
Creating Components  1200
Creating Elements  1177
Creating,Bond Graphs  1167
Creating,Iconic Diagrams  1200
cross  185
CrossingBoth  1062
current controlled current source  614
Current time  374
CurrentSensor.emx  598
CurrentSource  619
CurrentSource.emx  619
CurrentSource-CCCS  614
CurrentSource-CCCS.emx  614
curve fitting  502
custom libraries  21
CV  988
cyclic  409, 421
Cyclic Motions  409, 421
Cycloid  1108
Cycloidal  409, 421
Cylinder  306, 318, 631
CylinderChamberA  634
cylinderchamberb  635
cylinderdouble  636
cylindersingle  640
CylinderSingleSpringReturn  638
CylinderSpringReturn  632
- D -
D Controller  363
DA  1053
da-delay  1052
Damper  754, 829, 870, 895
Dashed Bonds  32
data  162
Data Files  432
Data Input Wizard  1104
Data Types  137
Datafile  965, 1109
DataFromFile  1104
Davidson Fletcher Powel  496
DB  961
DC Motors  471
DCmotor  596, 729
DC-motor  596, 729
DCmotor.emx  596, 729
Ddt  143
deactivate license  12
deactivation  12
DeadZone  956
deal voltage source  620
Debugger  97
debugging  82
deci  77
declarations  18
Default Lights and Cameras  311
Default Line Thickness  23, 34
Default Shared Y-Axis  23, 34
default value  85
default values  131
degree of freedom  842
degrees of freedom  805, 809
deinstallation  12
Delay  936, 1054
delay-n  1053
Delay-Pade  935
Delay-Step  936
Delay-Time  936
delay-variabletime  937
demonstration  9
Demux  938
denominator  331, 387
Department  32
Dependent  94
dependent rate  51, 54, 252
dependent state  51, 54, 252
dependent states  32
Dependent/Algebraic  94
Derivative  143
Derivative action  991
Derivative Gain Limitation  940, 991
Derivative time  991
description  76, 85
Desired Area of Operation  470
det  186
Determinant  186
diag  186
difference equations  329, 385
Differential  773, 1055
differential equations  329, 385
differential form  54, 252
DifferentialGear  772
Differentiate  939
Differentiate-  939
Differentiate-Calculus  939
Differentiate-Default  941
Differentiate-FO  939
Differentiate-SVF  940
Differentiation  940, 941
Differentiator  363
Diffuse color  314
Digital  1053
digital filter  382
Digital linear controllers  361
Digital linear filters  361
Digital to Analog Convertor  1053
Diode  599, 609
Diode Bridge  609
Diode-Ideal  599
direct  196
Direct acting  989
direct search  496
Direction Up Vector  276
Directional Light  314
discharge coefficient  622
Discrete  382
Discrete Differential  1055
Discrete Integral  1056
Discrete Sample time  329, 385
Discrete System  111, 153
Discrete Time Interval 111
DiscreteDifferential 1055
DiscreteIntegral 1056
Discrete-Time 40
Discrete-Time Models 40
discrete-time system 382
disk space 6
DisplacementMotor 642
displacementmotor-leakage 651
displacementpump 643
displacementpump-leakage 653
dissipative element 551, 560
Dissolve 2, 30
Distribute curves 32
disturbances 327
Div 215, 216
Divide 952
Division 215
DLL 164, 165
dlldynamic 173
dly 144
Do 235, 236
Documentation 535
Documentation Editor 46
DoFromMatlab 1074
Domain 73
domain changes 563
Domain name 76
Domains 72, 73, 76
Domains,Quantities and Units Editor 72
DoMatlab 241, 1076
DoMatlab-Final 1075
DoMatlab-Initial 1075
double acting cylinder 636
Double Click Function 23, 34
DoubleSwitch-Level 600
drag and drop 21, 272
Drawing Rules 809
DTypeFlipFlop 1091
DTypeFlipFlop-Continuous 1084
DTypeFlipFlop-Discrete 1091
Duplication 323
During the run 474
Duty Cycle 464
DXF-files 309
Dynamic Backgrounds 49
Dynamic DLL's 173
Dynamic Error Budgeting 402
Dynamic Model 438
Dynamic Systems 1158, 1186
dynamic variables 94

- E -
Eddy Current 464
Edit Condition 98
Edit Implementation 38
Edit Modes 265
Edit window 261
Editing Domains 76
editor 2, 16, 17
Effort 73, 1159
effort in 243
effort source 552, 561
EffortInCausality 243
EffortSensor 545, 1162
Eigen Frequencies 336, 394
Electric 73, 594
Electric Switch 600, 610
electrical inductance 604
Elements 246, 1177
Eliminating double differences 30
Eliminating junctions 30
Eliminating nodes 30
Else 232, 234
Enable XMLRPC Interface 23, 34
Encoder 796
encrypted 26
end 231, 232, 234, 235, 236
End Angle 404
end plane 301
end position 303
End Time 417
end_time 409, 421
Endless 86, 109
Energy 36, 546
EnergySensor.emx 546
Equal 70, 159, 226, 227, 228
equation 17
equation editor 16, 17, 18
equation model 17
Equation Sections 122
Equations 60, 121, 122, 255, 1175
Equations interpreted as code 32
Equations, Bond Graph 1175
Error 988
error message 31
Errors 31, 32, 97
Euler 115
Euler Parameters 276, 315
event 127, 157, 158, 1062
Event delta 86
eventdown 157
Events 127
eventup 157
Every 23, 34
Examples 21
Execution 57, 253
Execution Order 121
Exp 144
exp10 145
exp2 145
Expand Vectors/Matrices 85, 94
Expand Vectors/Matrices: 94
Explode 29
Exponential 144
Exponential Base 10 145
Exponential Base 2 145
Exponential Window 943
export 44, 46, 78
Export to Matlab 13, 44
Export to Simulink 44
Exporting Simulations 105
External Tracking 993
externals 78
eye 187
- F -
F3 21
fading colors 93
false 134
Fast Fourier Transform 371
Faulhaber 2006 446
favorites 94
femto 77
fft 374
FFT Analysis 371
FFT plot 371
FFT settings 371
FFT Window 374
File Data 162, 181
File Input 965, 1109
FileInput 162
Filename 1104
Files of Type 26
Filter 361, 367, 371, 942, 991, 1067, 1068, 1070
Filter Editor 361, 942
Filtering 382
Final Equations 122
finalequations 121, 122
Find 93
Find again 21
Find box 21
Find tab 16, 21
Finish 86
finish time 134, 161
first 197
First Order Filter 368, 370
Fixation of bodies 813
Fixed Causality 52, 250
fixed in orientation 1195
fixed out 70
fixed out orientation 1195
fixed position  62
fixed sample time  102
Fixed Sampletime  112
fixed time step  102
fixed world  755, 820, 843, 871
FixedWorld  755, 871
Flash  299
Flat  317, 318
Flexible Components  826
FlipFlop  1084, 1088, 1089, 1091, 1095, 1096
Flipping  840
Floating License  9, 10, 12
floating mechanism  276
floor  146
Flow  73, 1159
flow conductance  622
flow in  244
flow source  553, 561
flowcontrolvalve  669
flowcontrolvalve-states  695
Flowincausality  244
FlowSensor  546, 665, 1162
FlowSource  644
flowsource-leakage  654
FMI  2, 44, 78, 80
FMI Import  79
FMU  2, 44, 78, 80
FMU 1.0 export  474
FMU 2.0 export  474
FMU export  78, 80
FMU Import  78, 79
Fonts  23, 34
For  235
For To Do  235
Force  843, 844, 856
force (constant)  856
force (variable)  857
ForceActuator  857
ForceActuator-Relative  857
Force-Relative  856
forces  825
ForceSensor-Relative  903
Fork  911
Form  52, 250
Forward Euler transformation  382
Fourier Analysis  371
fourthreewaydirectionalvalve  670
fourthreewaydirectionalvalve-states  697
FourThreeWayProportionalValve  672
FourThreeWayProportionalValve-States  699
frame  315
frame hierarchy  302
frame rate  299
Frames  311
frames per second  301
free  9
freeze  820, 843
frequency  111, 371, 401
frequency range  371
Frequency Response  378
Frequency Sweep  1116
frequencyevent  158, 1065
Friction  551, 560, 755, 871
friction literature  1157
Friction Phenomena  1149
FrictionRelative  876
FrictionSimple  881
FrictionSimple-Relative  885
From Matlab  85
FromMatlab  242, 1076
front plane  311
Full Screen  107, 292
Functions  18, 141
- G -
G  315, 622
Gain  362, 389, 943, 989
Gain Margin  338, 396
Gain-Phase  401
Gauss  198, 1110, 1126
Gaussian Noise  198, 1110, 1112, 1126
Gear 774

gear box 774

gear ratio 774, 785

gearbox 785

General Modified Sine with Constant Velocity 409, 421

General Properties 301, 317

Generate 20-sim Model 274

Generate Global Parameters 271

Generic Filter 367

Geneva Mechanism 409, 421

Ghost Modes 265

giga 77

Global 63, 65, 135

Global Maximum 93

Global Minimum 93

Global parameters 63, 85, 135

Global Reference 1193

Global Relations Editor 65

global variables 63, 94, 135

globals 63

Globals tab 65

Go Down 24

Go Up 24

Gouroud 317

gradient fill 23, 34

gradient search 496

Graph Animation 324

graphical editor 16, 19

gravity 889

green 315

green input and output lines 40

Ground 603, 923

Ground.emx 603

GY 547

GY-2 583, 585

GY-3 570

GY-element 1184

Gyrator 547, 551, 562

Gyrators 1184

- H -

halt 238

hamming 374

hann 374

Has Damping 280

Has Minimum 280

Has Spring 280

Head Sensor 666

heatcapacity 924

heatflow 929

heatflowsensor 933

hecto 77

Help 1

Help Page 32

Hidden 85, 94, 128, 131, 132, 137, 293

Hidden layer 344

Hidden layers 343

hidden variable 51

Hidden Variables 94

Hide 3D Objects 293

Hierarchical Models 24

hierarchy 24, 302

high 71

High / Low Terminals 71, 1199

High frequency noise 991

High pass 367, 368

High Pass First Order Filter 368

High Pass Second Order Filter 368

high-frequency measurement noise 991

High-frequency roll-off filter 366

Hinge X-rotation 280

Hinge Y-rotation 280

Hinge Z-rotation 280

Histogram 512

H-matrix (4x4) 287

Hold 153, 1057

homogeneous 187

hose 627

How to use the Parameters 436

html document 46
HTTP 23, 34
Hydraulic 73
hydraulic accumulator 715
hydraulic pipe 627
Hydraulic Powersensor 666
HydraulicInertia 626
Hysteresis 464, 969, 976
Hz 111, 1068, 1070

- I -

i 548, 549
I Controller 363
I-2 584
I-3 571
IC-2 550
Icon 24
Icon Editor 16, 61
Icon Size 23, 34
Icon tab 16
Iconic Diagram 1168
iconic diagram models 19
Iconic Diagram Ports 1195
Iconic Diagram,Bond Graph 1168
Iconic Diagrams 21, 594, 1168, 1170, 1186
Iconic Diagrams,Bond Graphs 1168, 1170
ideal capacitor 597
ideal current source 619, 620
ideal cylinder 631
ideal DC-motor 596, 729
ideal electrical inductance 604
ideal electrical resistor 609
ideal mass 889
ideal physical model 1158, 1186
ideal voltage source 621
Identified with 111
I-elements 1182
If 231, 232, 234
If Then 231
If Then Else 232, 234
Image 301
images 19
imaginary 401
impacts 893
Implementation 24
Implementations 38
Implode 29
Import 78, 85, 98
Import Data 401
Import Gain-Phase 401
Import Real-Imag 401
Importing Simulations 106
impulse 198
included toolboxes 9
indentation 302
independent rate 51
independent state 51
indexer 768, 908
indexers 768, 908
indifferent 70
Indifferent Causality 52, 250
Inductor 604
Inductor.emx 604
Inertia 760
initial 116, 117
Initial Equations 122
initial output 998
Initial Values 85
Initial Weights Fill Scale 346
initial yerk 409, 421
initialequations 121, 122
Initialize variables 32
Initialize Variables on Nan 97
Initials to Zero 85
inner 187
Input Equations 51
Input from File 181, 1109
Input is not used 32
input noise 402
input probes 94
input signal 69
insert a submodel 28
Index

Inspect Models 24
installation 10, 527, 536
Installing 20-sim 10
instructions 51
int 147
Integer 137, 138
Integral 147, 1056
Integral Form 54, 252
integral time 990
Integrate 944, 949
Integrate Data 371
Integrate-ExpWindow 943
Integrate-FO 944
integrate-folimited 945
Integrate-Limited 947
Integrate-RectWindow 947
Integrate-Reset 948
Integration Error 116, 117
Integration Methods 86, 109
integrationmethod 161
Integrator 363
interacting form 991
Interesting 94, 132, 137
interesting variable 51
interface 17, 68
Interface Editor 16, 68
Interface tab 16
intermediate points 28
Intermittent 409, 421
Interpreter Code 51
Interval 947
introduction 429, 525
introduction to friction 1148
inverse 188, 950
inverseH 188
inverting equations 52, 250
Invertor 1084, 1092
IPM 1158, 1186
ipython 536
ISA form 991
iterate 127
- J -
Jacobian Matrix 287
jerk 404
Join Parameter Variation 485
Joint Constraint Settings 271
Joint Constraint Settings dialog 271
Joystick 1105
Jump 21, 970
Jump and Rate Limiter 970
Junction 1181
Junctions 1179
- K -
Keyboard 1106
keyboard keys 297
keys 297
Keywords 32, 125, 128
kilo 77
kind 94
- L -
Lag Filter 369
laminar flow 622, 661, 663
LaminarResistance 661
language 17
Language Reference 119, 121, 122, 128, 137, 141, 211, 231
Laplace variable 331, 387
Larger Than 228
Last Run 92
layers 343
Lead Filter 369
leakage 374
Learn after Leaving Spline 347, 352
Learn at each Sample 347, 352
learning rate 346, 347, 352
left-hand frames 311
left-handed 317
Less Than 226
Lever 912, 920
lever ratio 912
Library Folders 23, 34
library names 23, 34
library paths 23, 34
Library tab 16, 263
License 10, 12
License Activation 10
Lightwave Object files 309
Likes 70
Likes Causality 52, 250
limint 147
Limit 147, 971
limitations 9
Limited Integration 147, 947
limited stiffness 840
Limits 461
Line 303, 627
Line Climber 496
Linear 314
Linear Actuators 826
linear differential equations 329, 385
linear feedback anti windup 993
Linear Motors 457
Linear Slides 826
Linear System 950, 1135
Linear System Editor 382, 950, 1135
linear time- invariant models 382
Linearization Explained 377
Linearization moment 32
Linearization Tolerances 380
Linearization Type 32
Linearize at 374
Linearize Model 374
linearized symbolically 805
LinearSystem 1057
linsolve 189
Literature 999
Load Scene 299
Load Weights at Start of Simulation 346, 352
Localhost 23, 34
Locate License File 12
locks 297
Log 148, 961
log10 149
log2 149
Logarithm Base 10 149
Logarithm Base 2 149
Logical Nand 1086
Logical-And 1082, 1090
Logical-Invertor 1084
Logical-Nor 1087
Logical-Or 1087
Logical-Xor 1085
Loop 3D Animation 32
Loop Flushing Valve 675
Loops 56, 249
low 71
Low Pass 367, 370, 1068, 1070
Low Pass First Order Filter 370
Low Pass Second Order Filter 370
Low Terminals 71, 1199
LowPassFilter-BW2Hz 1068
lowpassfilter-bw4 1070
LowPassFilter-BW4Hz.emx 1070
lowpassfilter-fo 1071
lowpassfilter-so 1073
Lumped Parameter Method 1158, 1186
hydraulic line 627
- M -
Machine Code 51
Magnetic 73
Main Model 24, 32
main reference frame 302
major 134
major step 58
Manager 32
Manipulate 297
Manual output 998
Mark 93
Modulated Elements 1162
Modulated flow source 553
Modulated gyrator 551
Modulated Gyrators 1185
Modulated Sources 1184
Modulated transformer 553
Modulated Transformers 1185
ModulatedCurrentSource 620
ModulatedCurrentSource.emx 620
modulatedflowsource 644
modulatedflowsource-leakage 656
modulatedheatflow 930
modulatedpressuresource 645
ModulatedTemperatureSource 930
ModulatedVoltageSource 620
ModulatedVoltageSource.emx 620
Modulus Operator 216
Momentum Constant 346
Monitor 955, 1120
Monte Carlo analysis 92, 512
More 299
motion 272, 404, 421
Motion Profile 404, 1106
Motion profile parameters 421
Motion Profile Wizard 417, 420, 1106
MotionProfile-Wizard.emx 1107
Moving 297
Moving Objects 297
MovingAverage 1100
MR 551
MR-2 586
MR-3 573
MSC% 409, 421
MSC50 409, 421
MSe 552
MSe-2 587
MSe-3 574
MSe-element 1184
MSf 553
MSf-2 588
MSF-3 575
MSf-element 1184
msum 190
MTF 553, 1185
MTF-2 588
MTF-3 576
MTF-element 1185
mul 160
Multi Layer Perceptron 344
multi-bond 42
multi-connection 42
Multi-Dimensional Models 42
Multi-Dimensional Ports 42
Multi-Line Tabbing 17
multiple port restrictions 70
Multiple Run 92, 523
Multiple Run results 92, 485
Multiple Run Wizard 484
multiple-run 92
multiplication 75, 212, 214
multiplication factor 77
Multiplications 77
Multiply 935, 952
MultiplyDivide 160, 952
multiplyH 191
multi-signal 42
Mux 953
- N -
Name 32, 94, 1195
names 85, 128, 131, 132
Naming Conventions 1023
Nand 1086, 1093
nano 77
Natural Logarithm 148
Negate 953
net energy 36
net power 36
net power flow 36
network 342, 347
Network is Discrete 352
Optimize Equation Structure 32
Optimize Static Expressions 32
Optimizing Equation Structure 51
Or 225, 1087, 1094
order 352, 409, 421
Order of Execution 57, 253
Order of Execution 57, 253
Orientation 70, 71, 287, 315, 1162, 1189, 1195
Orientation Info 1189
orifice 661
orifice area 622
Origin 318
OrthoGraphic 311
oscillating 409, 421
oscillating signal generators 409, 421
Other Motors 472
output 1002, 1026
Output After Each 86, 109
output delay 329, 385
Output Equations 51
Output Filename 274
Output is not used 32
Output position 280
output probes 94
Output Sigma 402
output signal 69
Output tab 16
Override the General Spring Damper Values
overshoot 337, 395

- P -
P 1003, 1020, 1043
P Controller 362, 1020, 1043
p_vapour 622
Pack 26, 27, 44
Packed Files 27
Pade Time Delay 935
Pair-wise transfer function 371
Parallel 314
Parallel Form 991
Parameter is not used 32
parameter sweep 92, 485
Parameter Sweeps 485
parameters 85, 131, 432
Parameters/Initial Values Editor 85
Parasitic 719
ParasiticVolume 719
Partial Cubic 409, 421
Partial Trapezoidal 409, 421
Pass Band 367
PD 1020, 1044
PD Controller 363, 1020, 1044
peaks 371
penumbra 314
Permanent Magnet Motorsunction 449
Perpendicular Search 496
Perspective 311
phase 338, 396, 401
Phase Margin 338, 396
phase to phase inductance 458
phase to phase resistance 458
Phased Sine Wave.emx 1121
phasesensor 1101
Phong 317
physical domain 73
Physical Domains 73
physical model 1158, 1186
physical systems 543
pi 271
1005, 1021, 1045, 1108
PI Controller 364, 1021, 1045
pico 77
pictures 19
PID 1022, 1046
PID Compensator 366
PID Control 988
PID Controller 364, 365, 366, 1022, 1046
PID-1 Controller 364
PID-2 Controller 365
piezo actuator 594, 595, 854, 855
PilotOperatedCheckValve 677
Index

PilotOperatedCheckValve-States 704
pipe 627
planar motion 805
Plane Distance 311
PlanetaryGear 776
plant 327, 988
PlaySound 1146
plot 82
Plot Properties Editor 88
plot window 2
Plus 954
PlusMinus 160, 954
Pneumatic 73
point mass 811
point model 815
Polack Ribiere 496
Pole Zero 339, 399
Pole Zero Diagram 339, 399
pole zero notation 333, 391
Poles 333, 382, 391, 950
Poles and Zeros (including root locus) 382
Polynomial 409, 421
Polynomials 331, 387
Port is not used 32
Port Names 123
Port Properties 1195, 1201
Port Relations tab 70
Port Variables 73, 1195
Ports 68, 71, 1195, 1199, 1201
port-size 42
position 276, 287, 315, 417, 822, 850, 889
Position (3x1) 287
Position Sensor 822, 850
Position/Orientation 287
PositionActuator 733, 859
PositionActuator-Relative 730, 858
PositionSensor-Absolute 799, 904
PositionSensor-Relative 800, 904
Position-X 287
Position-Y 287
Position-Z 287
positive direction 809
Possible loss of data 32
Potentiometer 608, 801
Power 36, 73, 217, 825, 962
power flow 36
Power Interaction Port 280
Power ports 123
power sensor 557
power spectral density 371, 402
powerflow 825
power-port variables 121, 123
PowerSensor 666, 802
PowerSplitter 558
powerport 73
pre-act 991
Predefined Constants 130
Predefined Variables 134
preferred 70
Preferred Causality 37, 52, 250
Preferred out 70
Prefilter 327, 371
prefix 77
Prefix Minus Sign 229
Prefix Plus Sign 229
prefixes 75
Prepare Scripting Folder 530
Pressing Mode 28
pressure 622
Pressure Compensator 679, 705
Pressure Reducing Valve 683
Pressure Reducing Valve-states 708
Pressure Relief Valve 681
Pressure Relief Valve-states 709
PressureSensor 667
pressuresource 646
previous 155
Previous Local Maximum 93
Previous Local Minimum 93
Previous Runs 92
privacy 7
process 31, 988
process output 988
Process tab 16
process variable 988
processing 32
processor 6
professional 9
profile 409, 417, 421
Profiles 299, 409, 421
Programming Language 474
Project 32
Projection 311
Properties 264, 293, 1195
Property Page 23, 34
Proportional Band 989
proportional gain 989
PSD 402
Psensor 559, 1162
Pseudo Domain 76
Pseudo Pneumatic 73
PseudoHydraulic 73
PseudoThermal 73
PseudoThermalH 73
PTC 932
Pulse 409, 421, 1112
PV 988
pwm 972
python 525, 536, 537, 538, 540
Python 3.4 10
- Q -
Qsensor 559, 1162
quadratic 314, 374
quanties 85
Quantisize-Round 1059
Quantisize-Truncate 1060
quantities 72, 75, 76, 77
Quantities and Units Editor 72
Quantities Mismatch 32
QuantitiesAndUnits.ini 72
Quantity 77, 94, 128, 131, 132
Quantity name 77
- R -
R 315, 560
R-2 589
R-3 577
RackPinionGear 778, 913
radiation 925
Radius 308
Raising Power 962
Ramp 198, 409, 421, 1113
ran 199
Random 134, 199, 1113, 1127
random form 52, 250
random integers 1129
random noise 199, 1112
random numbers 1112
Random Seed 199, 1112
range 246
ranges 246
Rate 54, 252, 973, 991
Rate Limiter 970, 973
Rates 94
ratio 547, 551
raw Pseudo bonds 32
Ray Tracing 299
Read Datafile 92
real 137, 139, 401
Real Time 3D Animation 92
Real Time Toolbox 473
Real-Imag 401
realtime 134
Real-Time simulation 109
Rectangular Window 947
Rectifier 609
red 315
Reduction Tolerance 382
Redundant Equations 32
Reference Body is Floating option 276
Reference Frame 302, 315
Registration/Update License  12
Regularization  352
Relative  116, 117
relative tolerance  380
Relay  974
RelayHysteresis  976
Remove redundant equations  51
render  317
Rendering  317
Repeat  237
Repeat Until  237
Replace parameters  32
Replay  92
Representation  264
Request License  12
requirements  6
resample  102
Reserved Words  125
reset  990
reset time  990
Resettable Integration  150, 948
resint  150
Resistance  1183
Resistor  551, 560, 609, 931
Resistor.emx  609
resolution  371
resonance frequencies  371
resonant frequencies  371
resonant peaks  371
Restore Default  23, 34
Return Angle  404
Return Time  417
return_time  409, 421
reverse acting  989
rewrite equations  54, 252
rewriting equations  52, 250
rho  622
right hand frames  311
ripple  367, 450
rise time  337, 395
Root Locus Gain  389
root locus plot  339, 399
Root Mean Square  1102
Rotation  73
Rotation (3x3)  287
rotation speed  802
rotational inertia  760, 811
rotational spring  761
round  150
Rounding  1059
Row  42
Rows  192, 246, 1195
Rows/Columns  1195, 1201
RS232  23, 34
Run  82, 92
Run Number  93
Run Properties Editor  86
run tasks  525
Runge Kutta 2  116
Runge Kutta 4  116
Runge Kutta Dormand Prince 8  117
Runge-Kutta-Fehlberg  116
Running a 1-D B-Spline Network  353
Running a Simulation  92
Runtime  122
s  111, 382
Safe Operating Area  464
Sample  154, 155, 1050, 1061
Sample and Hold  1057
sample frequency  40, 111
sample rate  40
sample time  102, 382
Sampletime  134, 155, 1050, 1057, 1061
Sampling  155
Sava As  26
Save  26
Save Encrypted  26
Save Scene  299
Save Weights at End of Simulation  352
Index

SignalGenerator-RandomInteger 1129  sound 1146
SignalGenerator-Step 1115  source 552, 553, 561
SignalGenerator-StepTime 1116  Sources 1183
SignalGenerator-Sweep 1116  SP 988, 1002, 1026
SignalGenerator-Time 1119  Specular color 314
SignalGenerator-VariableBlock 1130  Sphere 305, 318
SignalMonitor 955, 1120  spindle 781, 916
Signals 1162  Spiral 308
Silent stop 238  spline function 347
Simple Transformer 563  Splitter 955
Simplification 30, 1164  Spot Angle 314
Simplification,Bond Graph Models 1164  Spot Exponent 314
Simplify Model 30, 1164  Spot Light 314
simulation 82  Spring 761, 896
Simulation Code 51  Spring Damper 269
simulator 2, 82  Spring Damper Joint 269
Simulink 13, 44, 474  springDamper 762, 897
Simulink S-function 474  spring-damper 762
sin 207  Springs 826
Sine 409, 421, 963  Square 152
Sine Sweep 1116  Square Root 152
Sine Wave 1121, 1122  Square Root with Sign 964
single 9  Square Sign 965
single acting cylinder 632, 634, 638, 640  Square Wave 1122
single license 10  squareroot 964
Single-Step Simulation 92, 97  stall torque 459
sinh 208  Stand-alone ANSI-C 474
SISO 331, 382, 387  Stand-alone C-code 474
size 42, 299  standalone FMU 80
skew 193  standard 9
Skip 98  standard deviation 402, 1102, 1133
SkyHookDamper 895  standard deviations 402
Slides 826  Stand-alone ANSI-C
Small Rotations 805, 808  474
Smart Constraint Solving 118  Standard Elements 1162
Smooth Line 28  standard form 991
Snap to Grid 32  StandardCameras_Orthographic.scn 311
Solo 293  Star and Delta Networks 458
Solve algebraic variables 32  Start 86
Solving Differential Equations 54, 252  Start Angle 404

20-sim 4.7 Reference Manual 1226
Start of simulation 374
start plane 301
start position 303
Start Time 417
start_time 409, 421
starttime 134, 161
state 54, 252
State and Time Events 127
state events 86, 127
State Space 950
State Space Models 329, 382, 385
State Variable Filter 940
Statements 18, 231
States 94
States/Rates 94
state-space description 374
Static and Dynamic Phenomena 1152
Static Backgrounds 49
steady state 103
Steady State Gain 389
steady state value 337, 395
Steepest Descent 496
steepness 459
Step 200, 337, 395, 1115
Step Response 337, 382, 395
Step Size 115, 116, 117
Step-by-Step 98
StepMotor 735
Steps 485
stepsize 134, 161
STF 563
STF-2 592
STF-3 580
stiffness 829, 840
stiffness and damping 271
STL-files 309
Stop 92, 109
Stop Angle 404
Stop band 367
Stop Time 417
stop_time 409, 421
Stopsimulation 238
Storage element 543, 548
Straight Lines 28
String 137, 139
Strip charted 100
Stroke 404, 409, 417, 421
strokes 37
structural connection 761, 892
Submodel 28, 32, 1177
Submodel Colors 23, 34
Submodel Name to be used in 20-sim 274
Submodels 24
Subtract 954
Subtract DC-component 371
Subtraction 213
sum 160
swapbytes 230
Sweep 485, 1116
Switch 238, 600, 610, 977, 978
Switch Case 238
Switch-Break 977
Switch-Default 977
switching 563, 564
Switch-Level 610
Switch-Make 978
Switch-Maximum 978
Switch-Minimum 979
sym 193
Symbol 77
Symbol Prefixes 77
Symbolic Linear Systems 384
Symbolic Linearization 380
Symplectic gyrator 562
sympy 536
Syntax Highlighting Threshold 23, 34
system 988
System Gain 389
system output 988
Index

- T -
Table 181, 965
Table of Contents 46
Tabular Function 965
Tachometer 802
tan 210, 967
tanh 209
Tank 717, 718
Tank with resistance 718
TankNoRes 717
Tapping Mode 28
targets 475, 477
Targets.ini 475, 477
taskbar 16, 18, 19
TCP 23, 34
tdelay 152
Tecnotion 444
Tecnotion motors 444
temperaturesensor 934
temperaturesource 932
tera 77
Terminal 71
terminal inductance 458
terminal resistance 458
Terminals 62, 71, 1199
Texture 318
Texture Offset 318
texture wrap 318
TF 565
TF-2 593
TF-3.emx 580
TF-element 1184
Then 231, 232, 234
Thermal 73, 922
Thermal Duty Cycle 464
Thermal Model 473
ThermalConductance 927
ThermalResistor 928
thermistor 932
ThreeDBody 840
ThreeDFixedWorld 843
ThreeDForceActuator 844
ThreeDForceActuator-Relative 843
ThreeDMass 845
ThreeDPoint-X 846
ThreeDPositionSensor-Y 850
threespringdamper 851
ThreeDZeroForce 852
throttling band 989
Through 73, 1187
tilde 193
Tile Horizontal 100
Tile Vertical 100
Time 134, 1119
Time Delay 152, 936
Time Domain Toolbox 484
Time Events 127
Time window 947
timeevent 158, 1066
timer 112
Timing 86
timingbelt 782, 918
Title 32
To 235
To Matlab 85, 94
ToDoMatlab 1077, 1078
Toggle Full Screen 107
tokens 475, 480
Tolerance 382, 490
Tolerances 32, 374
ToMatlab 240, 1081
ToMatlab-Plot 1078
ToMatlab-Store 1079
ToMatlab-Timed 1080
ToMatlab-TimedPlot 1080
ToMatlab-TimedStore 1081
tool wrapper 44
toolbox 2, 9
toolwrapper 78
Tool-wrapper 80
Index

Torque  737, 825
torque (constant)  737
torque (variable)  738, 739
torque constant  459
torque f  449
Torque.emx  737
TorqueActuator  739
TorqueActuator-Relative  738
Torque-Relative  737
TorqueSensor-Relative  803
Torus  307
trace  194
tracking time constant  993
train  342, 347
Training  347
Training a 1-D B-Spline Network  357
Training Simulators  108
transducer  802
Transfer Function  371, 950
Transfer Functions  331, 382, 387, 1134
TransferFunction  1137
TransferFunctionWithDeadTime  1142
Transform Dependents states  32
transformation  382, 808
transformer  553, 563, 565
Transformer.emx  612
Transformers  1184
Translation  73
translational spring  896
Transmission  785, 920
Transmission-Universal  921
Transparency  318, 321
transpose  195
Trapezoidal  409, 421
Triangle Wave  1124
Trigger Type  1089
Trigger-type Flipflop  1096
TriggerTypeFlipFlop-Continuous  1089
TriggerTypeFlipFlop-Discrete  1096
troubleshooting  13
trunc  153
Truncate  1060
Truncation  967
Tube  307, 308
turbulent flow  622, 661, 664
turns  308, 801
Tustin  382
two port  544, 549
TwoDAccelerationSensor  823
TwoDBody  811, 842
TwoDFixedWorld  820
TwoDForceSensor  825
TwoDLinearActuator-X  835
TwoDLinearSlide-X  831
TwoDPoint-X  815
TwoDPositionSensor  822
TwoDPowerSensor  825
TwoDSpring  829
TwoDVelocitySensor  823
TwoDZeroForce  821
Two-Terminal  71, 1199
TwoTwoWayDirectionalValve  687
twotwowayproportionalvalve  689
twotwowayproportionalvalve-states  714
TwoTwoWayValve-States  712
Type  94, 1195
type cast  2
type conversion  32
Type conversion found  32
Type Editor  1189, 1195, 1201
type of motion  417
typecasting  140
Types  85, 128, 131, 132

- U -

umbra  314
unattended installation  13
Unbalance  765
Uniform distribution  1110, 1126
uninstalling  12
Unipolar Sigmoid  346
Index

Unit 85, 94, 128, 131, 132
Unit Conversion when SI disabled 32
Unit Conversion when SI enabled 32
Unit Delay 144, 155
Unit is unknown 32
Unit missing for variable when SI disabled
Unit name 77
Unit Symbol 77
units 72, 75, 77, 85
Units Editor 72
Universal Joint coupling 787
Universal Notch Filter 371
unload 317
Unlit 317
Unlit Flat 317
Unpack 26, 27, 44
Until 237
Unwrap Phase 338, 396
update another model 32
Updates 48
updating plot 32
use 430
Use as Result 485
Use BDF Integration Scheme 117
Use Built-in Compiler 86
Use Newton Solver 117
- V -
Value 85, 94
Values 85, 128, 131, 485
vapour pressure 622
Variable 94
Variable Chooser 94
Variable is never given a value 32
Variable is not used 32
Variable is set but not used 32
Variable Multiple set 32
Variable name 77
Variable Pulse 1131
variable sampltime 112
variable voltage 620
variabledisplacementmotor 646
variabledisplacementmotor-leakage 657
variabledisplacementpump 647
variabledisplacementpump-leakage 659
variablelaminarresistance 663
variableorifice 664
VARIABLES 94, 132, 134
Variables 94
variance 1103, 1110, 1126, 1133
Variation Analysis 518
VCVS 616
Vector 246, 247, 313
Vectors 42, 94, 246, 318
Velocity 287, 417, 740, 823, 862
Velocity (3x1) 287
velocity (constant) 739, 740, 862
velocity (variable) 740, 741, 863, 864
VelocityActuator 741, 864
VelocityActuator-Relative 740, 863
VelocityActuator-Relative.emx 740
Velocity-Relative 739, 862
VelocitySensor-Absolute 804, 906
VelocitySensor-Relative 805, 906
Velocity-X 287
Velocity-Y 287
Velocity-Z 287
Version 9, 32
version number 32
View Modes 266
viewer 9
Vode Adams 117
voltage 620, 621
voltage constant 459
voltage controlled voltage source 616
VoltageSensorCurrentSensor.emx 614
VoltageSource.emx 621
VoltageSource-VCVS 616
VoltageSource-VCVS.emx 616
Volume 719
Volume-Constant 719
- W -
Warning  31, 239
warnings  31, 32, 97, 140
wav file  1146
WaveGenerator-Cosine  1120
WaveGenerator-PhasedSine  1121
WaveGenerator-Saw  1121
WaveGenerator-Sine  1122
WaveGenerator-Square  1122
Wavegenerator-SquareExp  1123
WaveGenerator-Triangle  1124
weight  347
Welcome  1
Wet and Dry Friction  1150
While  236
While Do  236
White Space  126
whitespace  126
Window  943, 947
Windows Media Video  299
WireFrame  301, 317
Working Point  374
WormGear  789
wrap  318
Writing Comments  127
Writing DLL's  165
Writing Dynamic DLL's  173
Writing your own Scripts  535
- X -
XMLRPC  23, 34
XML-RPC  526
Xor  225, 1085, 1097
X-rotation  280
X-translation  280
X-value  93
X-Y-X Euler  276
- Y -
Y-Axis  318
yellow  295
yerk  409, 417, 421
YouTube  299
Y-rotation  280
Y-translation  280
Y-value  93
- Z -
z  382
Z-1  1054
Z-Axis  318
zero  1125
Zero Junction  564, 1179
Zero Order Hold  153, 1057
ZeroForce  900
zerojunction  566, 567
Zeros  333, 382, 391, 950
Zeros and Poles  382
ZeroTorque  767
zip-file  27
Zooming  311
Z-rotation  280
Z-translation  280
Z-X-Z-Euler  315
20-sim is a modeling and simulation program that runs under Microsoft Windows. With 20-sim you can simulate the behavior of dynamic systems, such as electrical, mechanical and hydraulic systems or any combination of these.

20-sim fully supports graphical modeling, allowing to design and analyze dynamic systems in an intuitive and user friendly way, without compromising power. 20-sim supports the use of components. This allows you to enter models as in an engineering sketch: by choosing components from the library and connecting them, your engineering scheme is actually rebuilt, without entering a single line of math!