

20-sim 5.1 Reference Manual

© 2023, Controllab Products B.V.

Authors: Ir. C. Kleijn, Ir. M. A. Groothuis, H.G. Differ MSc

Disclaimer

This manual describes the modeling and simulation package 20-sim.

Controllab Products B.V. makes every effort to insure this information is accurate and
reliable. Controllab Products B.V. will not accept any responsibility for damage that may
arise from using this manual or information, either correct or incorrect, contained in this
manual.

Information in this document is subject to change without notice. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Controllab
Products B.V.

Windows is a registered trademark of the Microsoft Corporation, USA.

MATLAB is a registered trademark of The MathWorks, Inc., USA.

Portions of this software are copyright © 2023 The FreeType Project (www.freetype.org).
All rights reserved.

Reference

Kleijn, C., Groothuis, M.A., Differ H.G.

20-sim 5.1 Reference Manual

Enschede, Controllab Products B.V., 2023

Information

Controllab Products B.V.

Address: Hengelosestraat 500

7521 AN Enschede

the Netherlands

Phone: +31-85-7731872

Internet: www.20sim.com

www.controllab.nl

E-mail: info@20sim.com

http://www.freetype.org)

i20-sim 5.1 Reference Manual

Table of Contents

Welcome to 20-sim1 1

What is new in 20-sim?2 2

Requirements3 4

Privacy Statement4 5

Installation5 7

Versions5.1 7

Requirements5.2 8

Installing 20-sim5.3 8

Uninstalling5.4 11

Deactivation5.5 11

Unattended Installation5.6 12

Unattended Uninstall5.7 12

Matlab5.8 12

Quick Tour6 15

Running a Simulation6.1 15

Variables, Parameters, Initial Values and Constants6.2 17

Hierarchy6.3 18

Language6.4 20

Editor7 21

Introduction7.1 21

Using Models7.2 30

Compiling7.3 65

Icon Editor7.4 75

Global Parameters and Variables7.5 78

Interface Editor7.6 82

Domains, Quantities and Units7.7 86

FMI Support7.8 92

ii20-sim 5.1 Reference Manual

Simulator8 96

Introduction8.1 96

Running a Simulation8.2 98

Run Properties8.3 126

Language Reference9 136

Introduction9.1 136

Keywords9.2 146

Types9.3 157

Functions9.4 162

Operators9.5 234

Statements9.6 258

Matrices and Vectors9.7 274

Advanced Topics9.8 278

Toolboxes10 285

Toolboxes10.1 285

3D Mechanics Toolbox10.2 286

Animation Toolbox10.3 324

Control Toolbox10.4 360

Frequency Domain Toolbox10.5 404

Scenario Manager10.6 436

Mechatronics Toolbox10.7 452

Real-Time Toolbox10.8 520

Time Domain Toolbox10.9 531

Scripting Toolbox10.10 573

Unity Toolbox10.11 591

Library11 610

Bond Graph11.1 610

Iconic Diagrams11.2 661

Signal11.3 1006

Modeling Tutorial12 1239

iii20-sim 5.1 Reference Manual

Friction12.1 1239

Bond Graphs12.2 1249

Iconic Diagrams12.3 1280

Index 1295

1. Welcome to 20-sim

120-sim 5.1 Reference Manual

1 Welcome to 20-sim

This manual describes 20-sim 5.1 in full detail. It is intended as a detailed reference to
the software. If you are a first time user you are advised to read the Getting Started
manual first. If you are an experienced 20-sim user, you can read the change notes first
and then search the topic of your interest.

2. What is new in 20-sim?

220-sim 5.1 Reference Manual

2 What is new in 20-sim?

20-sim 5.1 has been updated with many small improvements and three large additions:

1. the extension of the 3D Mechanics Editor to allow parametric design;

2. a new tool called the Scenario Manager to define and run simulations automatically;

3. a new and faster simulation engine that generates its the simulation instructions
based on the supported CPU instruction set (e.g. prefer AVX2 instructions when
supported).

General

1. You can now store models as a processed model file. This means you don't have to
process / compile these files before starting the simulator.

2. Loading and Processing large models has been speeded up.

Editor

1. A selected submodel is now better visible with a bold orange outline and better
visible (centered) in the Editor when you click Go Up.

2. Navigate through the model hierarchy with ENTER and Backspace for
submodel down and up.

3. Use the Home, End, PgUp, and PgDown keys for scrolling large models easily.

Simulator

1. You choose a Speed Factor for realtime simulation.

2. Plots can be disabled to save memory.

Python Scripting

1. New functions for loading and saving a processed model file.

2. New functions for loading and saving a simulation state.

3. The mouse coordinates are visible in the footer. This is useful when placing
submodels in the Editor using scripting.

Octave Scripting

1. Support for Octave 8.1.0/8.2.0/8.3.0

C-Code Generation

1. You can now make code templates that support not just one data type (real) but
four (boolean, integer, real, string). A template has been added for the Arduino that
supports this. Also 20-sim 4C 3.0 will support this for the Bachmann template. As a
result, the generated C-code of your model is more efficient, both in performance
and in resource usage.

2. What is new in 20-sim?

320-sim 5.1 Reference Manual

Bug-fixes and Improvements

In addition to the above mentioned items, 20-sim 5.1 received more than 180 bug-fixes
and minor improvements since 20-sim 5.0. See the 20-sim website for the full list of
changes.

3. Requirements

420-sim 5.1 Reference Manual

3 Requirements

20-sim is supported on on computers that meet the following requirements:

Operating System: Windows 7, 8, 8.1 and 10 (32-bit or 64-bit).

Processor requirements: 20-sim requires a CPU with SSE2 support. Supported: Intel
Pentium 4 and above, AMD Athlon x64 and above.

Memory: >= 3 GB

Available Disk Space: 690 MB.

4. Privacy Statement

520-sim 5.1 Reference Manual

4 Privacy Statement

Controllab Products B.V. takes your privacy seriously. This privacy statement explains
what personal data 20-sim collects from you and how we use it.

How do we collect data from you?

Controllab Products B.V. processes your personal data when you activate/deactivate 20-
sim using a license key. Controllab Products B.V. uploads your 20-sim license to an on-
line activation server (registerserver.net). This activation server stores information
about the number of license activations and on which computers 20-sim is activated.

What type of information is collected from you?

20-sim collects the following details from your computer to check / activate and
deactivate your 20-sim license:

Computer details

Host Name

IP-address

Unique computer finger print calculated from serial numbers of several computer
hardware components

20-sim Version Number

Date & time of the activation/deactivation

Controllab Products B.V. uploads your 20-sim license to an on-line activation server.
Your 20-sim license embeds the following personal data:

Company / Personal details

Company Name (or First Name and Last Name for personal licenses)

Department Name

License Key

How is your information used?

The activation data is used to activate your 20-sim license key and to lock it to your
computer. This data is processed in an automatic process running on our activation
server to check and activate your 20-sim license. Controllab Products does not use your
data for other purposes than license activation.

Controllab Products B.V. employees can access this data to provide support for license
activation issues and transferring your license to a different computer.

Can this information be removed?

On your request (please contact us by e-mail or phone) we can remove all of your
personal data from our servers. Note that without this data, there is no license key
backup on our activation server anymore. This means that on-line activation is not
possible anymore.

4. Privacy Statement

620-sim 5.1 Reference Manual

Questions?

If you have questions concerning this privacy statement, contact Controllab Products
B.V.

5. Installation

720-sim 5.1 Reference Manual

5 Installation

5.1 Versions

20-sim is available in two versions: Viewer and Professional.

Viewer/Demonstration version: This is a freeware version that allows you to load
and run models and evaluate the package. Saving of models is not possible in this
version.

Personal: This version is for use at home, for students and personal education. Not
for commercial, government, academic or other organizational use. This version is
limited to models with maximum of 500 equations and a maximum of 3000 variables.

Professional: This is the full version of 20-sim with standard toolboxes.

Next to the standard toolboxes that come built-in with 20-sim, additional toolboxes can
be purchased. The table below shows in detail the options that are available:

 20-sim with standard
toolboxes

Viewer Personal Professional

Library Models v* v v

Number of Variables unlimited < 3000 unlimited

Number of Equations unlimited < 500 unlimited

3D Mechanics Toolbox v* v v

Animation Toolbox v* v v

Control Toolbox v* v v

Frequency Domain Toolbox v* v v

Scenario Manager x v v

Mechatronics Toolbox v* v v

Real Time Toolbox v* v v

Time Domain Toolbox v* v v

Scripting Toolbox x v v

Additional toolboxes

20-sim Unity Toolbox x x p

v = included
p = has to be purchased separately

5. Installation

820-sim 5.1 Reference Manual

v* = included but no saving possible
x = not available

20-sim is installed, using an Installation Manager that will lock 20-sim to your computer.
There are three types of licenses available:

Free : The demonstration version comes with a license that is not locked to your
computer. No actions have to be taken after installation of the program.

Single License: A single license locks 20-sim to a specific computer. After
installation you have to register to get a valid license.

Floating License: A floating license allows multiple users to work with 20-sim at the
same time. After installation you have to register to get a valid license.

5.2 Requirements

20-sim is guaranteed to work on computers that will meet the following requirements:

Operating System: Windows 10, Windows 11

Processor requirements:

20-sim requires a CPU with SSE2 support.

Supported Intel CPUs:

Pentium 4,D,M (since 2001)

Core 2 Duo/Quad/Extreme (since 2006)

Core i3/i5/i7/i9 (1st generation 2008 and newer; tested up-to 13th

generation)

Xeon

Supported AMD CPUs:

Athlon x64 (K8, 2003-2014),

Athlon Phenom (K10, 2017-2023),

Athlon Bulldozer (2011-2017)

Zen core (2017-present): Ryzen 1st gen and newer.

Available Disk Space: 690 MB.

5.3 Installing 20-sim

20-sim can be downloaded from the website www.20sim.com. This is an installation file

that will install 20-sim on your computer. The first 4 steps are equal for all users.

Depending on the type of license (single, floating) you have to follow different steps to

activate 20-sim.

http://www.20sim.com

5. Installation

920-sim 5.1 Reference Manual

1. Download and Install 20-sim on your computer.

2. During Installation you will be asked to install the (optional) Python 3.7 package.
We advise to keep the default setting: Yes.

3. Start 20-sim (from the Windows Start Menu choose 20-sim 5.1).

If a valid license of 20-sim 5.1 was activated before, the program will start
automatically. If you have not installed 20-sim before, the License Activation dialog will
open:

20-sim License Activation Dialog.

4. If you have a valid license key or license file, press the Activation button to enter
your license key or browse for the license file.

If you do not yet have a valid license, press the Trial License button request an trial
license or press the Buy button to purchase a license. If you want to continue in Viewer
mode (no save functionality), just close the dialog without activating 20-sim.

5. Select which kind of license you have and who should use the license.

5. Installation

1020-sim 5.1 Reference Manual

License installation dialog.

Single License

If you are using a single license, you have to enter a license key or license file.

6. On the next dialog, select I received a license key by e-mail and enter the key
in the next dialog. When you received a license file, you have to enter the
location of the license file.

Single License dialog.

You will be asked for confirmation (click Activate Now) and activation will be carried
out. After a successful activation process the License Information dialog will show the
new license.

Web Activation dialog.

5. Installation

1120-sim 5.1 Reference Manual

Floating License

Installing a floating license (Administrator)

If you are using a license that is shared by more users (floating license, also known as
concurrent license or server license), you have enter the received license key and a
location on the server (a normal Windows shared folder) first. This location on the server
should be accessible to all users and have read/write permission. The floating license will
be stored at the selected location.

6. On the next dialog, select First Installation and then enter the license key and
the location on the server (Windows share).

On the location that you have given, a license file 20sim.lic will be installed. Remember
the location of this file because every new user of 20-sim will need to enter it. You will
be asked for confirmation (click Activate Now) and activation will be carried out. After
a successful activation process the License Information dialog will show the new license.

Using a floating license (Other users, Administrator)

If you are using a floating license that was already installed you have to enter the
location of the license file.

7. On the next dialog, select Administrator already installed server license and

then enter the license location (the location of the file 20sim.lic).

After a successful entry of the location of the license location, the License Information
dialog will show the new license.

5.4 Uninstalling

You can uninstall 20-sim by clicking the Uninstall command from the 20-sim start menu.

Warning: Uninstallation of 20-sim will not deactivate your license. If you want to move
20-sim to another computer, you have to deactivate your license first before
uninstalling.

5.5 Deactivation

If you want to move 20-sim to another computer, you have to deactivate your license
before uninstalling the program. On the new computer you can then install the program
and activate the license. To deactivate your license:

1. From the Windows Start menu open 20-sim.

2. From the Help menu choose License Activation.

3. Press the Activation button.

4. Choose Deactivate Current License.

5. Installation

1220-sim 5.1 Reference Manual

You will be asked for confirmation and deactivation will start. After a successful
deactivation, your version of 20-sim has turned into the demonstration version. You can
now uninstall the software and reinstall it.

5.6 Unattended Installation

An unattended installation is an installation that is performed without user interaction
during its progress or with no user present at all.
To perform an unattended installation the default 'program files' installation directory run
the following command on the 20-sim installer:

20sim.exe /S

It is possible to set an alternative installation directory by specifying the /D argument. It
must be the last parameter used in the command line and must not contain any quotes,
even if the path contains spaces. Only absolute paths are supported.

20sim.exe /S /D=D:\My Installation Files\20-sim 5.1

5.7 Unattended Uninstall

An unattended uninstall is an uninstall that is performed without user interaction during
its progress or with no user present at all.
To perform an unattended uninstall from the default 'program files' installation directory
run the following command on the 20-sim uninstaller:

C:\Program Files (x86)\20-sim 5.1\Uninstall.exe /S

5.8 Matlab

In 20-sim you can exchange data with Matlab / Simulink in various ways:

Export models as m-files

Export models as dll-files

Export a variable to Matlab

Export a parameter to Matlab

Pass a variable value to Matlab every simulation step

Load a variable value from Matlab every simulation step

Pass a command line string to Matlab every simulation step

Export linear systems to Matlab

Import Linear Systems from Matlab

Troubleshooting

If this fails check if the following three points have been fulfilled.

5. Installation

1320-sim 5.1 Reference Manual

1. Have the correct version of 20-sim and Matlab

To make a connection with Matlab, make sure you have 20-sim 4.1.3.8 or higher
installed and a recent version of Matlab (2007 or above).
64-bit versions of Matlab are supported starting with 20-sim 4.6.

2. Check if it works

To make the connection to Matlab, Matlab needs to be registered as a COM-component.
Not all Matlab versions register the COM-component automatically.

1. In 20-sim, open the Simulator (Ctrl+R)

2. Open the Tools menu

3. Click the Matlab button

If Matlab starts (be patient this could take some time), the Matlab COM automation
server is registered properly and you are finished. In case the error message "Could not
start Matlab. Make sure that Matlab is installed and that the Matlab COM automation
server is enabled.", proceed with step 3 and 4.

3. Enable the Matlab COM automation server

To make the connection to Matlab, Matlab needs to be registered as a COM-component.
This can be done in the following manner from the command line (run: cmd):

matlab /regserver

The COM-registration only, is not enough for 20-sim to find the DLL's of Matlab. The next
step (setting the PATH variable) must be performed also

4. Matlab registration in PATH

The standard registration of Matlab in the PATH is the following (assuming Matlab is
installed in Program Files and the used version of Matlab is R2015b):

C:\Program Files\MATLAB\R2015b\bin

The following path should be added too in case of a 32-bit version of Matlab:

C:\Program Files\MATLAB\R2015b\bin\win32

In this additional path some important DLL's are present that are necessary to make the
connection. for example: libeng.dll. Please check if this DLL is present at this path. If not
try to find this DLL in your Matlab installation and add the found path to the PATH
environment.

Changing the PATH environment variable can be done in the following manner:

1. From "My Computer", right mouse button: Properties:

2. On Windows: choose Advanced Properties and go further as Admin

5. Installation

1420-sim 5.1 Reference Manual

3. Choose the tab: Advanced

4. Choose: Environment Variables.

6. Quick Tour

1520-sim 5.1 Reference Manual

6 Quick Tour

6.1 Running a Simulation

The best way to get started with 20-sim is to open the Getting Started manual. Here we
will quickly explain the basics of 20-sim and then give detailed help on all the parts of
the program. To open an model and run a simulation, you can best open an example
model.

1. Start 20-sim.

20-sim consists of two main windows (Editor and Simulator) and a lot of tools. The Editor
opens when you start 20-sim. In the Editor you can create your models.

The 20-sim Editor.

2. Select the Library tab to open the Library Browser (shows the 20-sim library).

6. Quick Tour

1620-sim 5.1 Reference Manual

3. In the Library Browser select Examples - Control - Standard Control - Discrete
Controller and drag an drop this model to the main drawing. like:

The 20-sim Editor with the model DiscreteController.emx loaded.

5. In the Model menu select Start Simulator. Now the Simulator will be opened.

The 20-sim Simulator with the model DiscreteController.emx loaded.

In the Simulator you can run a simulation and show the results in plots and animations.
The Simulator contains various tools to analyze the simulation results.

6. Quick Tour

1720-sim 5.1 Reference Manual

6. In the Simulation menu select Run. Now a simulation run will be performed. Your
Simulator should look like:

The 20-sim Simulator with the simulation results.

6.2 Variables, Parameters, Initial Values and Constants

Equations are the foundation for all models in 20-sim. At the lowest level of a model you
will always find equations. Equations can be entered in the 20-sim Editor. An example
equation model is shown below:

constants

 real g = 9.81 {m/s2}; // gravity

parameters

 real m = 1.0 {kg}; // mass

 real g = 9.8 {m/s2}; // gravity

 real K = 2.0 {N/m}; // spring constant

 real f = 1.0 {N.s/m}; // friction parameter

variables

 real v {m/s}; // velocity

 real interesting x {m}; // position

 real Fm {N}; // net-force applied to the mass

 real Fs {N}; // spring force

 real Fd {N}; // damper force

equations

 Fm = -m * g - Fs - Fd;

 v = (1/m) * int(Fm, 0);

 x = int(v, 0);

 Fs = K * x;

 Fd = f * v;

6. Quick Tour

1820-sim 5.1 Reference Manual

A 20-sim equation model starts with the declaration of parameters and variables. In the
Equation section, the equations are entered. An equation is simply a variable on the left
part of the equal sign and variables or functions at the right side. During a simulation,
the equations are calculated over and over again, many time steps, while the resulting
variable values are be shown in plots.

You can inspect equations by opening an example model, select one of the blocks with
you mouse pointer and select "Go Down "from the right mouse menu. If you repeat this
you will always see an equation model at the lowest level.

Variables

Variables can change value during a simulation. You can inspect the current value of a
variables in the Variable Chooser.

Parameters

Parameters have a fixed value that you can change before a simulation in the
Parameters/Initial Values Editor.

Constants

Constants are symbolic representations of numerical quantities that do not change
during or in between simulation runs.

Initial Values

Some functions like an integral or a hold have an initial value. These initial values can be
entered in the equation model (see int-function with a zero initial value in the example
above: v = (1/m)*int(Fm, 0)) or be changed before a simulation in the the Parameters/
Initial Values Editor.

6.3 Hierarchy

Any main model (or system) in 20-sim may be described as a composition of lower
level submodels. These submodels themselves may again be described as a composition
of lower level submodels etc. The lowest level consists of elementary submodels, which
do not consist of submodels themselves.

6. Quick Tour

1920-sim 5.1 Reference Manual

20-sim supports

hierarchic model. The lowest model in the hierarchy is always an equation model.

You can inspect this in the Editor. If you click the Model tab at the left of the Editor, the

Model Browser shows complete model hierarchy: a tree like structure showing all the

submodels that are used in the model. If you open the example model Examples\Control

\Standard Control\FluidLevelControl the tree will look like:

The Model Browser at the left of the Editor shows the complete model hierarchy.

6. Quick Tour

2020-sim 5.1 Reference Manual

Tip

To travel through the hierarchy, click any model in the tree and press ENTER to go

down. Press Backspace to go up.

You can also select a submodel in the Graphical Editor and click Go Up or Go Down

 from the Model menu.

When a model is very large you may want to use the Go Back or Go Forward

buttons from the Model menu to travel back and forth between branches in the

hierarchy.

6.4 Language

You can set the language of the 20-sim menus: Settings - Language. Only the 20-sim
tool language will change, not the help files.

Set the 20-sim tool language.

7. Editor

2120-sim 5.1 Reference Manual

7 Editor

7.1 Introduction

Editor7.1.1

20-sim consists of two main windows and many tools. The first window is the Editor and
the second is the Simulator. The Editor is used to enter and edit models. The Editor
opens automatically when you start 20-sim:

The 20-sim Editor.

The Editor consists of four parts:

Model tab / Library tab: The Model tab shows the model hierarchy, i.e. the
composition of all the elements of the model. The Library tab shows the 20-sim
library.

Graphical Editor / Equation Editor: At the lowest level of the hierarchy this editor
will show the model equations. In the higher levels this editor will show the graphical
parts of your model.

Output tab / Process tab / Find tab: The Output tab shows the files that are
opened and stored. The Process tab shows the compiler messages. The Find tab
shows the search results.

Interface tab / Icon tab / Globals tab: The Interface tab shows the interface
(inputs, outputs, ports) of a selected model. Double clicking it will open the Interface
Editor. The Icon tab shows the icon of a selected model. Double clicking it will open
the Icon Editor. The Globals tab will show the global parameters and variables of

your model. Double clicking it will open the Global Relations Editor.

Using the Editor

7. Editor

2220-sim 5.1 Reference Manual

The best way to find your way around the Editor is to read the Getting Started manual. It
contains a number of topics that will explain the basics of entering equation models,
graphical models and run a simulation.

Equation Editor7.1.2

Equations models are the models at the lowest level in the model hierarchy. A model
without an interface (inputs, output, ports), will have no hierarchy and is thus
automatically an equation model. If you have opened an equation model, the right part
of the Editor shows the Equation Editor. In the Equation Editor you can enter and edit
equation models.

Equation model with the Equation Editor (right part).

Use

Put your mouse in the Equation Editor and start typing. If you click on the buttons of the
taskbar, sample code is inserted. Read the language reference section to find out more.

Color Syntax Highlighting

Functions, Variables etc. are given special colors to distinguish them from the other text.

Auto Indent

If a line is indented (using the tab), the next line will start at the same indentation. You
can remove indentation by clicking the Backspace button.

Multi-Line Tabbing

You can give multiple lines of code a new indentation by clicking the tab button. Select
all the lines and click Shift-tab to remove.

Variables Pane

The Variables pane at the right side of the Equation Editor shows the actual variable and
parameter values of a model.

7. Editor

2320-sim 5.1 Reference Manual

Equation Editor Taskbar7.1.3

When you select an equation model, the corresponding equations are show in the
Equation Editor. A special button bar, called the taskbar, is part of the Equation Editor.

The taskbar helps you to enter functions, statements, templates etc.

The taskbar of the Equation Editor.

Statements: click on this button to insert if-then-else expressions and more.

Functions: click on this button to insert functions.

Specials: click on this button to insert special functions.

Operators: click on this button to insert operators.

Units: click on this button to insert quantities and units.

Declarations: click on this button to insert declarations of parameters, variables

and more.

Constants: click on this button to insert predefined constants.

7. Editor

2420-sim 5.1 Reference Manual

Graphical Editor7.1.4

If you have opened a graphical model, the right part of the Editor shows the Graphical
Editor. In the Graphical Editor you can enter and edit block diagram models, iconic
diagram models and bond graphs.

Graphical model with the Graphical Editor (right part).

Use

Select models from the Model Library and drag them to the Graphical Editor.
You can use the buttons of the taskbar, to connect the models and change their
position.
Drag and drop image files (bitmaps, svg images,..) to enhance the appearance of
your model.
Use the buttons of the taskbar, to create your own drawings.

7. Editor

2520-sim 5.1 Reference Manual

Graphical Editor Taskbar7.1.5

Taskbar

When you view or enter a graphical model in 20-sim it is shown in the Graphical Editor.
A special button bar, called the taskbar, is part of the Graphical Editor. The taskbar helps

 you to select models, connect them and manipulate them. You can also use the taskbar
to enter drawing objects. The taskbar is also part of the Icon Editor.

The taskbar of the Graphical Editor.

Selection Mode: Click this button to select models and objects

Insert Terminals: (Icon Editor only) Click this button to insert terminals.

Connection Mode: (Graphical Editor only) Click this button create connections

between models.

Line: Click this button to draw lines.

Spline: click this button to draw splines.

Rectangle: click this button to draw rectangles.

Ellipse: click this button to draw ellipses.

Text: click this button insert text.

Bitmap: click this button insert bitmaps and images in svg format.

Line Color: click this button to set the line color of a selected object.

Fill Color: click this button to set the fill color of a selected object.

Rotate and Mirror: click this button to rotate or mirror a selected object.

Arrange and Group: click this button to group objects, put them to the front etc.

Line Styles: click this button to select the line style of selected objects.

Zoom: click this button to select the zoom factor. You can also click Ctrl + mouse

wheel to zoom in and out.

View Menu

7. Editor

2620-sim 5.1 Reference Manual

Choose Colors: Choose the line color, text color color and shadow color of selected
items in the model.
Show Name: Show the submodel name right,left, top down or hide.
Port Names: Show the port names of the submodels
Causality Info: Show the causality of the iconic diagram and bond graph connections.
Orientation Info: Show the orientation of the connections.
Show Terminals: Show the terminals of the models. With the Show Terminals option
selected, you can change the location and properties of the terminals directly in the
Editor (no need to open the Icon Editor).

Search7.1.6

If you make the Editor wide enough, you will see at the top right a Search box. You can
enter terms here and search them throughout the model. The results are displayed in
the Find tab at the bottom of the Editor.

Using the Find Box to quickly search the model.

1. In the search box, type the item you want to search and click ENTER.

2. In the list with found items in the Find tab, click on the item that you were searching
for.

Now 20-sim will jump to the submodel where the searched item was listed.

Scope: The search scope depends on which level of the model you are in. Only the
current submodel and all submodels below are searched. Select the top element in
the Model Browser (Model tab at the left of the Editor) to search the whole model.

Library: The 20-sim Library is always searched.

Help Files: The 20-sim Help Files are always searched.

Jump: The Find tab shows the found items with a blue hyperlink. Click on the
hyperlink to quickly jump to the corresponding model.

Find again (F3): Click the F3 button to quickly jump through the found items in the
Find tab.

7. Editor

2720-sim 5.1 Reference Manual

Menu: You can also start a search from the menu: Click Edit - Find.

Library7.1.7

In 20-sim, creating models only takes you just a few mouse clicks. By dragging an
element from the library and dropping it in the graphical editor, your model is actually
built the same way as you would draw an engineering scheme. 20-sim supports various
model representations, such as block diagrams and iconic diagrams. These
representations may be combined in one model.

You can find the library at the left of the Editor.

The library contains a various sections:

Bond Graph: bond graph elements

Iconic Diagrams: Physical components

Signal: Block diagram elements

Examples: Example models that show you how you can use models for various
physical domains and applications.

Tutorial: Example models that show you how to perform various tasks in 20-sim

Getting Started: al the models that you need in the lessons of the Getting Started
manual.

7. Editor

2820-sim 5.1 Reference Manual

Custom libraries

You can create your own model libraries in 20-sim:

1. From the Tools menu click Options - Folders - Library Folders.

2. Add your folder.

3. Give it a useful name by clicking Edit Label.

4. Click OK to close the dialog.

Then you can add your own library models to the library:

1. Select the submodel that you want to store in your library.

2. From the File menu select Save Submodel.

3. Store the submodel in your library folder.

The next time you start up 20-sim, the library will show the new submodel.

Options7.1.8

The general properties of 20-sim models are shown in the Options dialog.

From the Settings menu choose the Options command.

From the Tools menu choose the Options command.

Editor

Fonts: Enter the default fonts used in graphical models (Editor) and equation models
(Equation Editor).

Syntax Highlighting Threshold: Select the number of characters that should be
submitted for color syntax highlighting. If this number is too large, the editor may
become very slow.

Undo Buffer Memory Size: Increase the amount of memory used for the undo
buffer if you want to store more undo actions.

Submodel Colors: Check this option to turn Gradient Fill on. This option will
apply a slight vertical gradient to all blocks with a background color.

Plots

You can choose the default settings for a simulation plot in this tab.

Default Line Thickness: Enter the default plot line thickness.

Folders

You can choose the location of libraries and files in the Folders tab.

Library Folders: Enter the library paths and corresponding library names here. The
libraries are shown in the Library tab.

7. Editor

2920-sim 5.1 Reference Manual

C-code Folders: C-code can be generated for various targets. For each target a file
targets.ini defines how the C-code should be generated. You can enter the locations
of ini-files here.

Matlab-Code folders: 20-sim models can be exported to Matlab. Similar to C-code
generation, a file targets.ini defines how the code should be generated. You can enter
the locations of ini-files here.

Model Template Folders: You can enter the location of model templates.

DLL Search Folders: If a 20-sim model is using a DLL-function that is stored on a
different location from the model itself, you can enter the location here.

Scripting Server

20-sim uses the XML-RPC protocol to communicate with external software and run
scripts. By default, 20-sim will only accept scripting connections from your local
computer (Localhost only option is enabled by default). In most cases the default
settings should be fine. However, for each of these protocols, settings may be changed.
Ask your system administrator for details.

Scripting Client

You can configure specific settings for scripting with Matlab and Octave.

Matlab Session Type
20-sim can communicated with MATLAB through scripts and dedicated functions
(tomatlab, domatlab, frommatlab). The MATLAB session type determines how MATLAB is
started as an automation server:

Shared session: A shared session will open one running version of MATLAB
(minimized window), that can be shared with multiple running versions of 20-sim.

Shared desktop session: A shared desktop session will open one running version of
MATLAB (full desktop session), that can be shared with multiple running versions of
20-sim.

Dedicated session: A dedicated session will open a new running version of MATLAB
for every running versions of 20-sim.

Remark: Note that although the shared desktop session will open MATLAB in desktop
mode, it will not be able to use an existing Matlab session started by the user. If you
want 20-sim to connect to your existing running MATLAB session, enable the
MATLAB Automation Server using the following MATLAB call:

enableservice('AutomationServer',true)

Octave Folder
Enter or select the path where Octave is installed.

7. Editor

3020-sim 5.1 Reference Manual

7.2 Using Models

Open Models7.2.1

Models in 20-sim are stored with the extension .emx. You can open an existing model in
several ways:

1. From the File menu, select Open.

2. Click the Library tab and from the Library drag and drop your model to the
Graphical Editor.

3. Open a Windows Explorer. Drag and drop your model to the Graphical Editor.

You can open Packed Files with the Open dialog by selecting a file with the extension

.emz.

Save Models7.2.2

Models in 20-sim are stored with the extension .emx. You can save an existing model in
several ways.

Main Models

1. From the File menu, select Save: This will save the complete model. If no file
name is known a Save dialog is opened.

2. From the File menu, select Save As: This is essentially the same as the Save
command but now the Save dialog is opened even if a file name is known.

3. From the File menu, select Save a copy As : This is similar to Save As but now a
copy of the file is saved instead. This allows the user to keep on working on the
model while saving intermediate experiments.

During Save As and Save copy As you can choose various formats to store models:

1. emx: The standard format for 20-sim models

2. emp: The processed format for 20-sim model

3. emz: The packed format. This is a zip file that contains all external files that may be
required to run a model.

Submodels

1. From the File menu, select Save Submodel: This will save the submodel that is
selected in your Graphical Editor.

Encrypted

1. From the File menu, select Save Encrypted: This will allow you to store a model
using encryption. If a submodel was selected, a menu is opened asking you to store

the submodel or the complete model.

7. Editor

3120-sim 5.1 Reference Manual

Encrypted models are useful if you want others to use your 20-sim model,

without seeing the underlying equations. If an encrypted model is loaded in 20-

sim, the Go Down command does not work on that model. The encrypted model is

shown with a lock in the model hierarchy.

Note: You can also encrypt or decrypt models using the Edit menu.

Warning: Once a model is encrypted, you can not decrypt it anymore! So keep

cautious that you always store a non-encrypted original.

Processed

1. From the File menu, select Save Encrypted: This will allow you to store a model
using encryption. If a submodel was selected, a menu is opened asking you to store

the submodel or the complete model.

Encrypted models are useful if you want others to use your 20-sim model,

without seeing the underlying equations. If an encrypted model is loaded in 20-

sim, the Go Down command does not work on that model. The encrypted model is

shown with a lock in the model hierarchy.

Packed Files7.2.3

To get a simulation running in 20-sim, the data stored in various files may be needed:

.emx: model files

.txt: data files (fileinput)

.bmp: bitmap files (for use in 3D Animation)

.dll: external dll-files (user defined external functions)

etc.

You can pack all these files into one zip-file, using the Pack command from the File

menu. With this command 20-sim will check all the files that are used and store them

into a single zip-file. This option is useful for archiving and sending models by e-mail.

Pack

1. When the Pack command is clicked, a Save As dialog appears asking you to
enter a name. Always save with the default extension .emxz because 20-sim
uses this extension to recognize packed files.

7. Editor

3220-sim 5.1 Reference Manual

After the Save As dialog, a 20-sim Pack dialog appears, showing the collected files. In

this dialog you can select the files that should be packed.

2. Select the files that should be packed and click the OK button.

Unpack

You can open Packed Files using the Unpack command from the File menu.

1. When the Unpack command is clicked, an Open dialog appears asking you
open a file. Open a file with the extension .emxz because 20-sim uses this
extension to recognize packed files.

After the Open dialog, a 20-sim Unpack dialog appears. In this dialog you can see the

file that you have selected to unpack and you can choose the method of unpacking.

2. If you want to unpack all files and put them in their original location, select the
option Unpack with full path.

3. If you want to unpack all files and to a specific directory, select the option Unpack to
directory.

4. Select Keep Relative Paths if you want to keep the original folder structure.

Processed Files7.2.4

Before a model can be simulated it has to be processed / compiled. For large models
this can take a while. You can prevent this by saving a model as a processed model:

1. In the Editor From the File menu, select Save As.

2. Choose the extension Processed Model File .emp.

Now the model is stored in its compile form and you can directly open the simulator.

Note: You cannot edit processed models, so make sure that you always store models
using the standard .emx extension.

7. Editor

3320-sim 5.1 Reference Manual

Insert Models7.2.5

You can insert submodels from a library using the built in Library tab:

1. Click the Library tab to open the library.

2. Select the submodel that you want to insert and drag and drop it in the
Graphical Editor.

You can also use a file browser:

1. In the Editor From the File menu, select Open Browser. The File Explorer appears.

2. Select the submodel of interest and drag and drop it in the Graphical Editor.

You can also use a the Insert menu:

1. In the Editor From the Insert menu, select a submodel to insert.

Tips and Tricks

Scroll up and down using you Mouse Wheel.

You can zoom in (F4) and out (F6) by pressing the Crtl-Key and using your Mouse
Wheel.

Use a finer grid by zooming in.

Select multiple objects by keeping the Crtl-Key pressed.

Connecting Models7.2.6

In 20-sim, submodels can be connected using the mouse. When a connection is created
it will be displayed using straight lines. When a connection has been made you can
change it into a smooth line using the right mouse menu. You can change the color of a
connection using the colorbar at the bottom of the Editor. 20-sim supports two types of
mouse use. "Tapping Mode" and "Pressing Mode". In the Tapping Mode you click the
mouse button (do not keep it pressed but quickly "tap" the button) while making a
connection. In the Pressing Mode you keep the mouse button pressed while making a
connection.

Tapping Mode

To connect two submodels using straight lines, you have to:

1. In the toolbar, click to change to connection mode.

2. Put the mouse pointer on top of the first submodel and click the left mouse
button (do not keep it pressed but quickly "tap" the button).

3. Drag the mouse pointer towards the second submodel (you will see a connection
drawn from the first submodel towards the mouse pointer).

4. Put the mouse pointer on top of the second submodel and click the left mouse
button again (do not keep it pressed but quickly "tap" the button).

7. Editor

3420-sim 5.1 Reference Manual

5. While dragging from the first submodel to the second, you can click the left
mouse button (do not keep it pressed but quickly "tap" the button) to
create intermediate points.

Pressing Mode

To connect two submodels using straight lines, you have to:

1. In the toolbar, click to change to connection mode.

2. Put the mouse pointer on top of the first submodel and press left mouse
button (keep it pressed).

3. Drag the mouse pointer towards the second submodel (you will see a connection
drawn from the first submodel towards the mouse pointer).

4. Put the mouse pointer on top of the second submodel and release the left mouse
button.

5. While dragging from the first submodel to the second, you can click the right
mouse button to create intermediate points.

Smooth Line

To connect two submodels using a smooth line, you have to:

1. Make a straight line connection with intermediate points.

2. In the toolbar, click to change to selection mode.

3. Select the connection that was created.

4. From the right mouse menu select "smooth line".

Show Terminals

The connections between models start and end at terminals. When you are in connection

mode (), these terminals are shown. You can explicitly show them by clicking View -
Show Terminals. The way connections behave, depend on the terminals being fixed or
not fixed.

Tips & Tricks

20-sim will automatically detect which connection has to be made: a signals, a bond
or an iconic diagram connection.

Depending on the physical domain, every connection will have a specific color. You
can change these colors in the Units Editor.

You can toggle between connection mode and selection mode by pressing the
space bar.

Connections on a submodel can have a fixed position, or move around the border of
the submodel. This property can be set in the Icon Editor, or by showing the
terminals.

7. Editor

3520-sim 5.1 Reference Manual

Change Models7.2.7

You can change (sub)models by selecting them with your mouse. Here are some tips:

General

Use selection mode (click in the toolbar) to select models, connections etc.

Use connection mode (click in the toolbar) to create connections between
submodels.
Switch between selection mode and connection mode with the space bar.

Submodels

Change submodel name: Select submodel - Right mouse menu - Properties - Name
Delete submodel: Select submodel - click Delete key.
Replace submodel: Select new submodel from the library and drag onto the existing
submodel until it highlights.
Change ports/connections: Select submodel - Right mouse menu - Edit Interface
Change submodel icon: Select submodel - Right mouse menu - Edit Icon

Connections

New connection: Editor in connection Mode -
Change connection: Select connection - Right mouse menu - Add point
Delete connections: Select connection - click Delete key.
Insert submodel into a connection: Select new submodel from the library and drag
onto the existing connection until it highlights.

Various

Add summation: Editor in connection Mode - Click on submodel to start a new
connection - click on existing connection to end new connection - Plus minus.
Add multiply/divide: Editor in connection Mode - Click on submodel to start a new
connection - click on existing connection to end new connection - MulitplyDivide.

Implode / Explode7.2.8

Using the Implode command of the Editor menu you can quickly create a new
submodel out of a set of select submodels.

1. In the toolbar, click to change to selection mode.

2. Select the the submodels.

3. From the Edit menu, click the Implode command.

Using the Explode command of the Editor menu you can quickly open the contents of a

selected submodel in the current model layer.

1. In the toolbar, click to change to selection mode.

2. Select a submodel.

7. Editor

3620-sim 5.1 Reference Manual

3. From the Edit menu, click the Explode command.

Dissolve7.2.9

If you want to delete a submodel from a signal path, but keep the signals/ports

intact, you can use the Dissolve command. The Dissolve command will delete the

submodel and connects the input signal directly to the output.

1. In the taskbar click the Selection Mode button.

2. Select the submodel that you want to delete.

3. From the Edit menu, select Dissolve: This will delete the selected submodel and
move the signals/ports to the next submodel.

Simplify Models7.2.10

Use the Simplify Model command to simplify graphical models according to the following
rules:

Block Diagrams

1. Combining splitters.

2. Combining of multiplications and/or divisions.

Bond Graphs

1. Eliminating junctions.

2. Melt equal junctions.

3. Eliminating double differences.

Iconic Diagrams

1. Eliminating nodes.

To simplify a (sub)model, you have to:

1. Select the complete model or submodel of which you want to simplify.

2. From the Model menu select the Simplify Model command.

7. Editor

3720-sim 5.1 Reference Manual

Navigate Models7.2.11

Model Hierarchy

If you click the Model tab at the left of the Editor, the Model Browser shows complete

model hierarchy: a tree like structure showing all the submodels that are used in the

model.

The Model Browser at the left of the Editor shows the complete model hierarchy.

1. You can travel through the hierarchy, click any model in the tree and press ENTER
to go down. Press Backspace to go up.

2. You can also select a submodel in the Graphical Editor and click Go Up or Go

Down from the Model menu.

3. When a model is very large you may want to use the Go Back or Go Forward
buttons from the Model menu to travel back and forth between branches in the
hierarchy.

Where Am I?

In large model with many levels in the hierarchy, it may be difficults to quickly see
where you are.

1. If you want to see in which submodel you are, click Go Up to jump one level higher
in the hierarchy.

The submodel that was selected will now be displayed with orange thick orange outlines.

7. Editor

3820-sim 5.1 Reference Manual

Zooming

1. In the Editor fromr the View menu you can select Zoom to zoom in and out to see
details or the overview of a model.

2. You can also use the Ctrl-key with the mouse wheel to zoom in and out.

Scrolling

1. Use the scroll bars to navigate from top to bottom or from the left to the right.

2. Use the Home, End, PgUp, and PgDown keys for scrolling large models easily.

7. Editor

3920-sim 5.1 Reference Manual

Add Variable To7.2.12

When you hover your mouse above a connection or on top of a variable, you can use
your right mouse menu to quickly add variables to a plot or copy values to the clipboard.

1. Hover you mouse above the connection or variable.

2. Click the right mouse button

3. From the menu choose: "Add xxxx to" and select your option.

The following options are available:

Plot in Simulator: add the variable to a simulator plot.

Favorites: Make this variable a favorite.

Input Probes: Use this variable as an input probe for linearization.

Output Probes: Use this variable as an output probe for linearization.

Copy: copy the value and unit to clipboard.

Check Models7.2.13

To check a complete model, you have to:

1. From the Model menu select the Check Complete Model command. Now the
complete model will be checked.

If any warnings or errors are found, they are displayed in Process tab of the Editor.

7. Editor

4020-sim 5.1 Reference Manual

In the Process tab the compiler messages are displayed.

2. Put you mouse on top of an error message and click.

20-sim will jump to the part where the error was caused. You can try to solve the error

and check again.

Model Properties7.2.14

The properties of 20-sim models are shown in the Model Properties dialog. You can open
the Model Properties in various ways.

Select the proper model in the Model Browser and then click Properties from the
Right Mouse menu.

Select the model in the Graphical Editor and then click Properties from the Right
Mouse menu.

From the File menu choose the Properties command.

From the Settings menu choose the Model command.

From the Settings menu choose the Submodel command.

Depending if a submodel was selected or a main model, various tabs are visible:

7. Editor

4120-sim 5.1 Reference Manual

The model properties dialog.

Description

In this tab you can enter the name of the submodel and enter various fields to

classify a model. The most important elements are:

Name: Enter a unique name for the model.

Help Page: Enter the location of a help page that should be displayed when

you click F1 or Help.

Version: The version number of the model. The version number can be

displayed in the background and is included if you generate C-code from the

model.

Library

In this tab you can find information on location of the model and some important

properties.

Version: The version of 20-sim that was used to create the model.

Library Path: If the model was stored in a known library, the path is shown.

Library File: The relative location of the submodel in the library or the absolute
location of the model submodel on your computer.

Created: The date of creation.

Main Model / Submodel: Shows if the model is a main model or submodel.

Allow model updates: Allow the Check for Model Updates command to check if there
is an update available for this model.

Replace parameters when this model is used to update another model: If you drag
and drop a model from the library on top of an existing model, it will be replaced.
Select this option if you want the original parameters to be replaced as well.

7. Editor

4220-sim 5.1 Reference Manual

Background Image

In this tab you can specify a background image for the model. If the model is a
graphical model, in the background the image is shown.

None: default, no image shown.

Inherit From Parent: Use the background that was defined one model higher in the
model hierarchy.

Static Bitmap: Specify the bitmap file to be used.

Script File: You can specify a script file if you want to use a dynamic background.

Scaling: Scaling of the background image.

Processing

This tab is only available for main models. 20-sim can operate in two modes: Debug

Mode and Fast Mode. In this tab you can define settings for both modes.

Warnings/Errors

Model contains algebraic variables: See the section on algebraic loops.

Model contains algebraic loops: See the section on algebraic loops.

Algebraic variables solved: See the section on algebraic loops.

Model contains constraint variables: See the section on constraints.

Constraint variables solved: See the section on constraints.

Model contains dependent states: The model contains differential equations which
could not be solved.

Dependent states are transformed: The model contains differential equations which
were solved.

Output is not used: Output signals that are not used for connections to other models.

Input is not used: Input signals that are not used for connections to other models (to
make such models simulate, a zero input value is applied to all not-connected inputs)

Port is not used: Ports that are not connected.

Parameter is not used: Parameters that are defined but not used.

Matrix is assigned a scalar: A matrix is assigned to a scalar.

Variable is not used: Variables that are defined but not used.

Variable Multiple set: Variables that are assigned a value more than once.

Variable is never given a value: Variables that are never assigned a value.

Variable is set but not used: The variable is assigned a value but never used.

Unit Conversion when SI disabled: Not relevant yet.

Unit Conversion when SI enabled: A unit conversion was found.

Unit missing for variable when SI disabled: Not relevant yet.

Quantities Mismatch: Variables with different quantities are compared.

Unit is unknown: A unit has been used that is not available in the Quantities and Units
file.

Equations interpreted as code: Equations can only be valid when interpreted as
sequential code. For example when variables are assigned more then once.

7. Editor

4320-sim 5.1 Reference Manual

Possible loss of data at type conversion: A type conversion has been found that may
lead to loss of precision digits.

Type conversion found: A type conversion has been found.

Conversion of booleans found: A type conversions involving booleans has been
found.

Model optimization

Transform Dependents States: Try to solve differential equations.

Solve algebraic variables: Try to analytically solve algebraic loops.

Remove Redundant Equations: Try to remove equations that do not influence model
behavior.

Optimize Equation Structure: Try to separate equations into an input section, a
dynamic section and an output section.

Optimize Static Expressions: Move expressions with constant output throughout the
simulation to the static part of the model equations.

Optimize Duplicate Expressions: Calculate and expression only once and use the
result everywhere.

Optimize Divisions: Rewrite divisions as multiplications whenever possible.

Simulator

This tab is only available for main models. You can set the simulator properties here.

Initialize variables at start of simulation: You can choose to set any variable that

was not given a proper value, to zero at the start of a simulation. You can also

choose to set the value to NaN to make detection more easy.

Calculate Hold Instruction During Initialization: Calculate an output for hold

functions during the initialization of the a simulation.

Preferred CPU Architecture: In Fast Mode, 20-sim uses the fastest instruction set

available on the CPU. The list presented here shows from top to bottom the

instruction sets that are available on your CPU. The fastest set is listed at the

bottom of the list and selected by default. You can override this selection by

choosing another instruction set. Changing this setting is only recommended for

expert users!

General Properties7.2.15

The general properties of 20-sim models are shown in the Options dialog.

From the Settings menu choose the Options command.

From the Tools menu choose the Options command.

Editor

Fonts: Enter the default fonts used in graphical models (Editor) and equation models
(Equation Editor).

7. Editor

4420-sim 5.1 Reference Manual

Syntax Highlighting Threshold: Select the number of characters that should be
submitted for color syntax highlighting. If this number is too large, the editor may
become very slow.

Undo Buffer Memory Size: Increase the amount of memory used for the undo
buffer if you want to store more undo actions.

Submodel Colors: Check this option to turn Gradient Fill on. This option will
apply a slight vertical gradient to all blocks with a background color.

Plots

You can choose the default settings for a simulation plot in this tab.

Default Line Thickness: Enter the default plot line thickness.

Folders

You can choose the location of libraries and files in the Folders tab.

Library Folders: Enter the library paths and corresponding library names here. The
libraries are shown in the Library tab.

C-code Folders: C-code can be generated for various targets. For each target a file
targets.ini defines how the C-code should be generated. You can enter the locations
of ini-files here.

Matlab-Code folders: 20-sim models can be exported to Matlab. Similar to C-code
generation, a file targets.ini defines how the code should be generated. You can enter
the locations of ini-files here.

Model Template Folders: You can enter the location of model templates.

DLL Search Folders: If a 20-sim model is using a DLL-function that is stored on a
different location from the model itself, you can enter the location here.

Scripting Server

20-sim uses the XML-RPC protocol to communicate with external software and run
scripts. By default, 20-sim will only accept scripting connections from your local
computer (Localhost only option is enabled by default). In most cases the default
settings should be fine. However, for each of these protocols, settings may be changed.
Ask your system administrator for details.

Scripting Client

You can configure specific settings for scripting with Matlab and Octave.

Matlab Session Type
20-sim can communicated with MATLAB through scripts and dedicated functions
(tomatlab, domatlab, frommatlab). The MATLAB session type determines how MATLAB is
started as an automation server:

Shared session: A shared session will open one running version of MATLAB
(minimized window), that can be shared with multiple running versions of 20-sim.

Shared desktop session: A shared desktop session will open one running version of
MATLAB (full desktop session), that can be shared with multiple running versions of
20-sim.

Dedicated session: A dedicated session will open a new running version of MATLAB
for every running versions of 20-sim.

7. Editor

4520-sim 5.1 Reference Manual

Remark: Note that although the shared desktop session will open MATLAB in desktop
mode, it will not be able to use an existing Matlab session started by the user. If you
want 20-sim to connect to your existing running MATLAB session, enable the
MATLAB Automation Server using the following MATLAB call:

enableservice('AutomationServer',true)

Octave Folder
Enter or select the path where Octave is installed.

Check Energetic Behavior7.2.16

If you select the Check Energetic Behaviour command of the Model menu, 20-sim
will check the complete model and generate additional variables. The additional
variables will only be generated for submodels with powerports:

power for every power port.

the net power that flows into the submodel (total sum of all the powers).

the net energy of the submodel (integrated net power)

This command is the same as Check Complete Model command but will generate extra

variables:

Sumodelname\port.power: the net power flow of the port.

Sumodelname\summated_port_power: the net power flow into the model.

Sumodelname\summated_port_energy: the net energy of the model.

You can inspect these variables during simulation in the Variable Chooser.

Analyze Causality7.2.17

Causal analysis is the procedure to get the model equations correct form. For Bond
Graph models this means that the direction of the efforts and flows of the bonds have to
be determined. The result of the analysis is displayed by causal strokes (denoted by |).
For Iconic Diagrams this means that the direction of the across and through variables of
the connections have to be determined. The result of the analysis is displayed by causal
arrows (denoted by ->).

To perform causal analysis you have to:

1. From the Model menu select the Analyze Causality command. Now causality
will be assigned in the complete model.

Bond Graphs

Causal strokes are shown in Bond Graphs automatically.

7. Editor

4620-sim 5.1 Reference Manual

Setting Causality can also be done by hand. Just select a bond and choose Properties
from the right mouse menu. A menu pops up in which you can set causality by hand.
The corresponding causal stroke is displayed in green (denoted by |).

User defined causality (denoted by |).

If 20-sim fails to perform a causal analysis of the model (a causal conflict), the
corresponding bond is displayed red.

A causal conflict (denoted by the red bond).

Some submodels have a preferred causality. If assignment of the preferred causality
is not possible (because of other constraints), the corresponding causal stroke is
displayed in orange (denoted by |).

Preferred causality not assigned (denoted by |).

To see the order in which automatic causality assignment has been performed,
choose Causality Info from the View menu.

Iconic Diagrams

Causality in Iconic Diagrams is only shown when you select the Causality Info
command of the View Menu.

Causal Information shown by arrows.

If 20-sim fails to perform a causal analysis of the model (a causal conflict), the
corresponding connection is displayed red.

7. Editor

4720-sim 5.1 Reference Manual

Show Terminals7.2.18

The connections between models start and end at terminals. In the Graph Editor you can
view these terminals by clicking View - Show Terminals.

Terminals can be shown with the View menu.

1.Put the mouse pointer on a terminal to see its name in the tooltip.

1. With the mouse pointer on a terminal click the left mouse button and keep it
pressed to change the location of the terminal.

2. With the mouse pointer on a terminal click the right mouse button to open the
right mouse menu.

3. From the right mouse menu click Delete to delete the Submodel.

4. From the right mouse menu click Properties to select the Terminal Properties.

This will open the Terminal Properties showing the name of the input, output or port and

the option to fixate the position. With a fixed position, the connections will start or end

exactly at the position of the terminal. Without a fixed position, the connections will point

to the center of the icon and start or end at the border of the icon.

7. Editor

4820-sim 5.1 Reference Manual

You can give a terminal a fixed position.

Fixed and Not-Fixed Terminals

The way connections behave, depends on the terminals having a fixed position
or non-fixed position. This is illustrated in the next figure.

The way connections behave, depends on the terminals being fixed or not-fixed.

1. Not-fixed terminals (at the left in the figure): The connections point from the
middle of one model to the middle of the other model. If more than one
connection is used, these connections are drawn on top of each other. If
one of the models is moved, the connections are drawn with horizontal or
vertical lines as long as possible.

2. Not-fixed terminals (in the middle of the figure) with intermediate points: You
can separate the connections from being drawn on top of each other. Insert
an intermediate points and drag the connection away. If one of the models
is moved, the connections are drawn separately, with horizontal or vertical
lines as long as possible.

3. Fixed terminals connected to not- fixed terminals (at the right of the figure):
If one of the models has fixed terminals, these prevail. If one of the models
is moved, the connections are drawn with horizontal or vertical lines as long
as possible.

7. Editor

4920-sim 5.1 Reference Manual

Tip

You can change the terminals and icon in more detail, using the Icon Editor.

Implementations7.2.19

A model may have various implementations. It means that you can combine several
versions of a submodel and store them in one block. If you drag and drop a submodel
with implementations, 20-sim will ask which one to use.

Using Implementation

A fine example of a model with various implementations is the model
MachineDynamics.emx from the Examples\1D mechanics library. This example model
has several submodels with implementations:

SpringDampers: frameflex and motorflex

SignalGenerator-Sweep: sweep

You can see this in the Model browser at the left of the Editor. The models with
implementations have show the implementation that is currently selected
between brackets.

The selected implementation is shown between brackets in the Model Browser.

You can change the implementation:

1. Select the submodel.

2. From the right mouse menu choose Edit Implementation and select the
implementation that you want to change.

7. Editor

5020-sim 5.1 Reference Manual

3. Make the changes that you want in the submodel.

4. Store the submodel using the Save Submodel command of the File menu.

Inserting Submodels with Implementations

When you drag and drop a model with implementation into the Graphical Editor you will

be asked which implementation to use. In the Model browser, the chosen implementation

is shown between brackets (Default and ZeroMean in the picture above). If you hover

the mouse above a submodel with an implementation, you also see the chosen

implementation between brackets.

Building Submodels with Implementations

You can make submodels with implementations yourself:

1. Select a submodel.

2. From the right mouse menu choose Edit Implementation and Add New.

3. Enter the name of the implementation and click OK.

4. Store the submodel using the Save Submodel command of the File menu.

Changing Implementations

If you change one of the implementations, the other implementations will not be
affected. This may sometimes be annoying. You can circumvent this by:

Updating the Interfaces

1. Select a submodel with an implementation.

2. From the right mouse menu choose Edit Implementation and Update
Interfaces.

This will make the interfaces of all implementations equal to the current one.

Updating the Icons

3. Select a submodel with an implementation.

4. From the right mouse menu choose Edit Implementation and Update Icons.

This will make the icons of all implementations equal to the current one.

7. Editor

5120-sim 5.1 Reference Manual

Continuous-Time and Discrete-Time Models7.2.20

In 20-sim you can model continuous-time systems, discrete-time systems and
combinations of continuous-time systems and discrete-time systems (hybrid) systems.
By default, models in 20-sim are continuous-time, and simulated using continuous-time
integration methods. However, the program will automatically identify discrete-time
parts in a model and simulate them at a fixed rate.

Continuous-Time

Continuous-time models describe real-world processes. To simulate a continuous-time
model, the model will be calculated many steps per second to get a result that is a good
representation of the real-world process. If you model a car suspension system, about
100 steps per second might be sufficient to give a good representation of the behaviour
of the car. If you model an electronics circuit, 100.000 steps per second might be
required. The default integration method in 20-sim will automatically choose the required
steps per second.

Discrete-Time

Discrete-time models describe processes that run on computers at a fixed rate. To
simulated a discrete-time model, you only have to indicate the rate at which the model
should be calculated. This is called the sample rate or sample frequency. The sample
rate of a discrete-time part can be set in the Simulator.

Mixed Models

In 20-sim you can model in continuous-time and discrete-time. Mixed models containing
discrete-time parts and continuous time parts are supported as well. The example below
shows a continuous time model of a PI-controlled system at the top. At the bottom the
same system is shown with a discrete time controller and a continuous-time system. The
discrete-time part is indicated by green input and output lines.

Discrete-time parts of a model are indicated by green inputs and outputs.

Identification of Discrete-Time Parts

In 20-sim every model is continuous-time by default. Discrete-time parts of a model are
identified by the occurrence of special functions:

7. Editor

5220-sim 5.1 Reference Manual

sample

hold

next

previous

sampletime

Normally these functions are hidden in the equations that describe a submodel, but 20-

sim will automatically recognize that the input or output of such a function should be

discrete-time. If the output is discrete-time it is propagated to the next function, which

output is then also "tagged" as discrete-time, and so on until the whole discrete-time

part of a model is identified. A discrete time part of a model is indicated by green inputs

and outputs (see previous picture).

Connection

Continuous-time parts of a model can be connected to discrete-time parts, by using the
functions:

sample: The sample function has a continuous-time input and a discrete-time output.

hold: The hold function has a discrete-time input and continuous-time output.

You can find these functions for example in the following library models:

DA.emx (Discrete to Analog Converter)

AD.emx (Analog to Digital Converter)

Encoder.emx (Optical Encode)

Forbidden Functions

In a discrete part of a model, certain functions are not allowed, because they

are specifically meant for the use in continuous-time models:

algebraic

constraint

ddt

dly

event

eventdown

eventup

frequencyevent

int

limint

tdelay

timeevent

If you use a library model that contains such a function in a discrete-time part,

an error message will be given.

7. Editor

5320-sim 5.1 Reference Manual

Masked Models7.2.21

In 20-sim there are special models which can only be editor by special editors. These
models are called masked models. Masked models are indicated by an pink shadow with
the word mask. If you select a masked model and select Go Down to inspect the
contents, a special editor will be opened. In this editor you can make the desired edits
and update the model. Once the model has been updated successfully the pink
background disappears.

Some examples of masked models.

Working with Multi-Dimensional Models7.2.22

Multi-Dimensional models are models that have connections which are of a size [n,m]
with either n or m larger than one. Here n is the numbers of rows and m is the numbers
of columns. More information on this matrix notation can be found in the topic on
matrices and vectors.

The advantage of multidimensional models is shown in the example below. On top two

submodels are connected by three (single) signals. The same submodels are also shown

below, connected by one multi-dimensional signal of size [3,1]. If these submodels have

to be used a lot, multi-dimensional signals or multi-signals, are easier to use. Multi-

dimensional signals, bonds and connections are shown in 20-sim by double lines.

7. Editor

5420-sim 5.1 Reference Manual

The Secret: Multi-Dimensional Ports

The secret of multi-dimensional models is hidden in the model interface. If you open the
Interface Editor to inspect an interface, you will notice that each port (signal, iconic
diagram or bond graph) has a default size (dimension) of 1 (1 Row, 1 Column). By
increasing the number of rows and/or columns this size can be increased.

Definition of Multi-ports: increase the number of rows or columns.

7. Editor

5520-sim 5.1 Reference Manual

The Trick: Automatic Connection

When two submodels are connected, 20-sim will automatically check for the port-sizes
and create a connection:

1. If the port-sizes are unequal, an error message will be generated.

2. If both ports have size one, a single signal, bond or connection will be drawn.

3. If both ports have a size larger then one, a multi-signal, multi-bond or multi-
connection will be drawn.

The Finishing Touch: Matrices and Vectors

Behind each multi-dimensional submodel, there are equations in the end. To combine
multi-dimensional ports with equations, you can use matrices and vectors. 20-sim has a
large connection of matrix and vector functions and operators, to help you define any
possible matrix equation. For example the gain model in the picture on top, could have
been described as shown below.

Use the matrix and vector notation to define the model equations.

Exporting Models7.2.23

There are several methods to export 20-sim models.

Export to previous versions of 20-sim

7. Editor

5620-sim 5.1 Reference Manual

You can save a model file using the Save command or the Save As command from the
File menu. If you want to save part of you model, use the Save Submodel command
of the File menu. A Save dialog will be opened in which you can enter the model name
and location. At the bottom of the dialog, you can use the Save As Type box to select the
file type:

 Model files (*.emx) Standard 20-sim 4.x format

 Packed files (*.emz) Zipped file including all linked files (e.g. datafiles,

dll's, bitmaps etc.)

 Sidops text files

(*.txt)

Save model as text file.

Export to zip file

You can save a model and all externally linked files into one zip-file, using the Pack
command of the File menu. With the Unpack command of the File menu, you can open
these zip-files.

Export to Clipboard

From the File menu click Export and To File to export a selected model as a drawing
to the clipboard (Windows Enhanced Metafile format).

Export to File

From the File menu click Export and To File to export a selected model as a drawing
to a file (Windows Enhanced Metafile format).

Export to HTML

From the File menu click Export and To HTML to export the model, simulations etc. to
an HTML file for the use in a word processor.

Export to Bitmap

From the File menu click Export and To Bitmap to export a selected model as a
drawing to a file (png format).

Export to Matlab (m-file)

To export 20-sim models to Matlab, from the Editor you have to select the File menu
and then click Export to Matlab/Simulink command. This will open a Matlab-Code
Generation dialog. You can choose to export a complete model or a submodel. In both
cases, three m-files are generated:

ModelName.m: A file containing the model equations and special 20-sim functions.
The model equations are directly translated from the equations that are shown with
the Show Equations command of the Model menu.

ModelName_run.m: An example file showing you how to run a simulation with the
exported model in 20-sim.

ModelName_print.m: This file contains a function that is used in the run file.

Export to Simulink (m-file)

7. Editor

5720-sim 5.1 Reference Manual

20-sim models can be exported to Simulink S-functions. S-functions are block diagram
elements of which the internal description can be an m-file or a dll-file. 20-sim can
export both types. M-files can be opened from within Matlab and are therefore more
accessible. Dll-files are compiled out of C-code, which makes them inaccessible, but a lot
faster. Simulink does not support powerports. Therefore the powerports in a 20-sim
model are translated to input and output ports.

To export 20-sim models to Simulink with an m-file description, from the Editor select
the File menu and then click Export to Matlab/Simulink command. This will open a
Matlab-Code Generation dialog. You can choose to export a complete model or a
submodel. In both cases, two files are generated:

ModelName_.mdl: The exported 20-sim model based on a m-file that describes the
model.

ModelName.m: An m-file that contains the model equations and special 20-sim
functions. The model equations are directly translated from the equations that are

shown with the Show Equations command of the Model menu.

Export to Simulink (dll-file)

To export 20-sim models to Simulink with an dll-file description, from the Simulator you
have to select the Tools menu and then click the C-code generation command. This
will open the C-code Generation dialog where you can choose to export to a Simulink S-
function.

If you select the OK button, ANSI C-Code will be generated and compiled into a dll-

function. Some files will be generated of which two are needed in Simulink:

ModelName_.mdl: The exported 20-sim model based on a dll-file that describes the
model.

ModelName.dll: A dll-file that contains the model equations and special 20-sim
functions. The model equations are directly translated from the equations that are

shown with the Show Equations command of the Model menu.

Export as Functional Mockup Unit (FMU-file)

20-sim supports the FMI standard. See FMI Support for the details. In 20-sim, you can
export several types of Co-Simulation FMUs. See the FMU Export page for the required
steps.

Encrypt Models7.2.24

You can encrypt submodels to prevent others to inspect the contents.

1. In the Editor select a submodel.

2. From the Editor menu select Encrypt model.

7. Editor

5820-sim 5.1 Reference Manual

Now you will be asked to enter a password. Please take care to store the passw ord in

a safe location, so you can decrypt it later.

3. Enter a password.

Now you will get a question whether the user is a allowed to generate C-code
for this encrypted submodel? If you want the users of this model to generate C-
code choose yes. If you want to disclose the code of the submodel and prevent
C-code generation, choose no.

Note: You can also encrypt a complete model using the Save Encrypted
command.

Decrypt Models7.2.25

You can remove the encryption of model with the Decrypt Models command:

1. In the Editor select the submodel that is encrypted. You can recognize it from
the lock symbol.

7. Editor

5920-sim 5.1 Reference Manual

The lock symbol in the model menu shows that a submodel is encrypted.

2. From the Editor menu select Decrypt Model.

You can remove an encryption by selecting Decrypt Model.

Now you will be asked to enter a password. This is the password that has been
used to previously encrypt it. Enter the password and the encryption is
removed.

Documentation Editor7.2.26

The Documentation Editor can be open from the File menu in the 20-sim Editor by
clicking Document. The Document Editor can be used to generate an html document that
can be used for Word Processors and Presentation software.

The Document Editor will generate an html document that is fully hyperlinked. From a
table of contents you can click to go to the desired part of the document. You can also
click in pictures to go to the desired submodels.

7. Editor

6020-sim 5.1 Reference Manual

The 20-sim Documentation Editor.

General Items

File: Select the output file.

Source: Select the whole model or parts of it.

Submodel: If documentation of a part of the model should be documented,
select the desired submodel.

Model

Table of Contents: Select this option to start the document with a table of contents.

Information: Information on the creation date, user, file location etc.

Structure: The model hierarchy (list of all submodels, their submodels etc.).

SubModel

Information: Information on the creation date, user, file location etc.

Icon: The picture of the submodel icon.

Interface: The inputs, outputs and ports.

Implementation: The model implementation with equations at the lowest level.

Simulation

Constants: List of the constants that are used in the model.

Parameters: List of the parameters that are used in the model.

Initial Values: List of the starting values of the states of the model.

Plots: Show pictures of the plots.

Plot Properties: Show the plot settings.

Frequency Response: Show the frequency responses.

Favorite Parameters: List of the favorite parameters that are used in the model.

Favorite Variables: List of the favorite variables.

7. Editor

6120-sim 5.1 Reference Manual

Variables: List of the variables.

Run: list of the run settings.

Multiple Run: List of the multiple run settings.

Check for Model Updates7.2.27

Most 20-sim models will be built using predefined submodels from a library. You can use
the Check for Model Updates command of the Models menu to see if there are updates
of these submodels. A window will open, showing you all the predefined library
submodels.

Items

Library Paths: This part shows the libraries that are included in the search for
predefined submodels. You can select or deselect these libraries. You can add
your own libraries in the General Properties window.

Models: This part shows all the submodels of which a match has been found in
the libraries.

Model Name: The local name of the submodel.

Status: Shows if the match is older, equal or newer.

Original Filename: Original name of the submodel file.

Original Directory: Original location of the submodel file.

Model Time Stamp: Time when the used model was saved.

Library Time Stamp: Time when the library model was saved.

Note

The Check for Model Updates command will only check the time stamp of a model. If
you have changed a submodel, without saving it, the time stamp is not altered.

7. Editor

6220-sim 5.1 Reference Manual

To prevent models from being included in the updates check, switch off the Allow
model updates option of the Model properties.

If you are not sure if a submodel should be changed, open the new library submodel
in a separate Editor first.

Backgrounds7.2.28

Graphical models may be shown with a background picture. In the Editor from the
Settings menu choose the Model command to define the settings.

Static Backgrounds

Static backgrounds are just bitmaps files that you can define.

Dynamic Backgounds

Dynamic Background are .svg files in which you can enter 20-sim tokens (e.g. the model
name, date, creator etc.). The tokens are replaced by 20-sim and then the .svg file has
to be converted into a bitmap image. 20-sim uses the open source software Inkscape
(http://inkscape.org) to make this conversion.

To get a clear understanding of this mechanism, have a look at the example model
Examples\Tips and Tricks\Background images\BackgroundImage.emx. You can open it
from the model library. In this model backgrounds are explained.

In the same folder where the model is stored, a background image named
background.svg can be found. This an image file which contains 20-sim specific tokens
like %SUBMODELNAME% and %DESCRIPTION%. These tokens will be automatically
replaced by 20-sim. Have a look at the example model to see the list of available
tokens.
In the same folder where the model is stored, an .xml file named
inkscape_background.xml can be found. This is a script file that replaces the tokens
and converts the .svg file into a png bitmap, using inkscape.

To create your own dynamic backgrounds:

1. Create an .svg image with the tokens that you want to use. Store it in the folder
where your model is located.

2. Copy the .xml file inkscape_background.xml to your own .xml file and make it refer
to the new .svg file. Store it in the folder where your model is located.

3. In the 20-sim model open the Model Properties. In the Background Image tab,
select Script File and enter the name of your .xml file.

Naming Conventions7.2.29

In 20-sim the following naming conventions are used:

Files

All files in 20-sim follow the standard windows naming conventions for filenames.

20-sim model files (*.emx)

http://inkscape.org

7. Editor

6320-sim 5.1 Reference Manual

3D animation scenery files (*.scn)
3D Mechanics model files (*.3dm)

Equations

All elements in 20-sim that will become part of the model equations should follow these
naming conventions:

A name may consist of characters
(abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRTSUVWXYZ), numbers
(1234567890) or corresponding Unicode foreign language characters and numbers.
A name may not start with a number.
Names are case sensitive
Spaces are not allowed

Not allowed:
Reserved words
Mathematical symbols etc.)
Drawing symbols and other symbols (£#° ? etc.)

Examples of these elements are:

Model names: models in 20-sim have a name that can be changed in the Model
Properties.
Constant names can be entered in the Equation Editor.
Parameter names can be entered in the Equation Editor.
Variable names can be entered in the Equation Editor.
Port names can be entered in the Interface Editor.

3D Mechanics Editor

All name in the 20-sim 3D Mechanics Editor should follow these conventions:

A name may consist of characters
(abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRTSUVWXYZ) and/or numbers
(1234567890) and/or underscore (_)
A name should start with a character.

Plots, Labels Etc.

Elements that will not end up in the model equations can have any name.

Keyboard Shortcuts7.2.30

This is a list of keyboard shortcuts in the graph editor.

File

Command Shortcut

Open File Ctrl + O

Print Ctrl + P

Save File Ctrl + S

Current Page

Command Shortcut

Zoom in F4

7. Editor

6420-sim 5.1 Reference Manual

Zoom reset F5

Zoom out F6

Zoom to fit F7

Editing

Command Shortcut

Undo Ctrl + Z

Redo Ctrl + Y

Cut Ctrl + X

Copy Ctrl + C

Paste Ctrl + V

Duplicate Ctrl + D

Delete Del

Dissolve Ctrl + Del

Select All Ctrl + A

Send to Front Alt + Shift + F

Send to Back Alt + Shift + B

Group (drawing elements only) Ctrl + G

Ungroup (drawing elements only) Ctrl + U

Rotate Left Alt + Shift + L

Rotate Left Alt + Shift + R

Rotate Left Alt + Shift + H

Mirror Vertical Alt + Shift + V

Edit / Rename Submodel F2

Toggle selection / connect mode Space

Toggle Show Terminals Ctrl + T

Navigation

Command Shortcut

Go Back Alt + Left

Go Up Alt + Up

Go Down Alt + Down

Go Forward Alt + Right

Actions

Command Shortcut

Start Simulator Ctrl + R

Search

Command Shortcut

Find Ctrl + F

Find Again F3

Help

Command Shortcut

Current Selected Item F1

7. Editor

6520-sim 5.1 Reference Manual

Open Help File Ctrl + H

7.3 Compiling

Compiling Models7.3.1

When you enter a model and open the Simulator or when you select the Check
Complete Model command of the Model menu, the model will be compiled. During
compilation, 20-sim will perform a number of tasks.

Error Checking

Type checking: 20-sim will search for illegal type conversion and possible loss of
data.

Unit Checking: Many models in 20-sim use units and quantities. 20-sim will check for
a proper use of these units and quantities.

Optimizing Model Structure

Analyze causality: determine the causal order of equations.

Integral Form: Equations are changed to integral form as much as possible.

Solving differential equations: Differential equations are solved directly if possible.

Solving Algebraic Loops: Algebraic loops are solved to their analytical solution, where
possible.

Optimizing Equation Structure: Some equations have to be calculated only once
during each simulation step, because they do not influence the model dynamics.
Depending on their relation to the model dynamics (needed for or a result of) these
equations are calculated before the model dynamics (input equations) or after the
model dynamics (output equations)

Remove redundant equations: A lot of model equations are just assignments like
var1 = var2, where one variable is already known. 20-sim reduces these equations

from the model and maps the unknown variables to known variables.

After these tasks a complete equation model is created, which can be inspected using

the Show Equations command of the Model menu. After the complete equation model

has been created the following tasks are applied:

Compiling

Find the correct order of execution: All equations will split up into their most simple
form and rewritten into the correct order of execution.

Interpreter Code: Create interpreter like code out of the equations. This is low level
code that can be understood by the simulation algorithms.

7. Editor

6620-sim 5.1 Reference Manual

Machine Code: When you have the Built-In compiler option selected, the interpreter
code is compiled into platform specific 32-bit machine code. This code uses the full
power of native Pentium and 486 instructions. The result is a dramatic increase of
simulation speed: 100% to 400 %, depending on the kind of model used!

Simulation Code

The resulting code, either interpreter code or machine code, is used in the Simulator to
perform simulation runs with and therefore also know as simulation code. As we have
learned, the simulation code can be quite different from the original model equations. To
denote the function of each original model variable in the simulation code, 20-sim uses
the following names:

independent rate

independent state

dependent rate

dependent state

algebraic loop in

algebraic loop out

interesting variable

hidden variable

Causal Form7.3.2

Equations within 20-sim may be entered in random form. During compilation, 20-sim will
automatically try to rewrite equations into a causal form and set them in a correct order.
I.e. a form where all output variables are written as function of input variables. Consider
for example the following model:

variables
real u,z;

equations
u = sin(time);
u = cos(z);

Here the (input) variable u is given by the equation u = sin(time). Consequently the
(output) variable z should be written as a function of u. This is exactly what 20-sim will
try to do while compiling the model into simulation code. I.e. the function cos will be
inverted and the model will be rewritten to:

variables
real u,z;

equations
u = sin(time);
z = arccos(u);

Some functions cannot be inverted. Consequently not all equations can be rewritten. 20-
sim will report this to the user, during model checking.

7. Editor

6720-sim 5.1 Reference Manual

Fixed Causality

For some models there is only one causal form. For example a simple iconic diagram
model that describes coulomb friction can be written as:

parameters
real Rc;

equations
p.F = Rc*abs(p.v);

Here p.F denotes the force and p.v denotes the velocity of the powerport p. The equation
cannot be rewritten to a form where p.F is the input. This can be explicitly stated, by
giving the powerport p a fixed causality. During compilation 20-sim will try to keep the
model in this fixed form. If this is not possible an error message will be generated.

Fixed causality has the highest priority for assigning causality. During compilation 20-sim
will first assign all models with a fixed causality, then all models with a preferred
causaility, then all models with a likes causality and then all models with an indifferent
causality.

Preferred Causality

For some models there is a preferred causal form. For example the iconic diagram
model that describes a spring can be written as:

parameters
real k;

equations
p.F = (1/k)*int(p.v);

Here p.F denotes the force and p.v denotes the velocity of the powerport p. The equation
is written in integral form which is preferred. Consequently the preferred input is the
velocity. Should the force be the input, the equation must be rewritten to a differential
form, which is leads to less efficient simulation. This can be explicitly stated, by giving
the powerport p an preferred causality. During compilation 20-sim will try to keep the
model in this preferred form. If this is not possible the equations will be rewritten to the
less preferred form.

Preferred causality has a lower priority than fixed causality. During compilation 20-sim
will first assign all models with a fixed causality and then all models with a preferred,
likes and indifferent causality.

Likes Causality

For some models there is a causal form which is liked more than the other. For example
the iconic diagram model that describes a parasitic volume can be written as:

effortincausality(p) then
p.phi = 0;

else
volume_ratio = int(p.phi/V);
p.p = B * volume_ratio + p_initial;

end;

7. Editor

6820-sim 5.1 Reference Manual

Here p.phi denotes the volume flow and p.p denotes the pressure of the powerport p.
The equation is written in integral form which is liked. Consequently the preferred output
is the pressure. Should the pressure be the input, the equation gives a zero flow as
output. During compilation 20-sim will first try to keep all models the liked form. If this is
not possible the equations will be rewritten to the other form.

Likes causality has a lower priority than preferred causality. During compilation 20-sim
will first assign all models with a fixed causality and then all models with a preferred,
likes and indifferent causality.

Indifferent Causality

For some models the causal form is not known beforehand. For example the iconic
diagram model that describes a damper can be written as:

parameters
real d;

equations
p.F = d*p.v;

Here p.F denotes the force and p.v denotes the velocity of the powerport p. There is no
preferred input (force or velocity). This can be explicitly stated, by giving the powerport
p an indifferent causality. During compilation 20-sim will determine whether p.F or p.v is
the input variable and consequently rewrite the equations.

indifferent causality has a lower priority than likes causality. During compilation 20-sim
will first assign all models with a fixed causality and then all models with a preferred,
likes and indifferent causality.

Setting Causality

For some models, the equations are too complex to analyze causality. To help 20-sim,
using the right causality, you can set causality for every port in the Interface Editor.

Integral Form7.3.3

Consider the following first order linear model:

This model can be described by the dynamic equation:

output = int(input - K*output)

Now look at the following model:

7. Editor

6920-sim 5.1 Reference Manual

This model can be described by the dynamic equation:

output = (input - ddt(output))/K

Note that we can rewrite this equation as:

ddt(output) = input - K*output

or

output = int(input - K*output)

This is the same equation as the previous model! Apparently, both models are the same!
Both models can therefore be described by the dynamic equations:

ddt(output) = input - K*output
output = int(input - K*output)

We call the first equation the differential form (no integrals). The second equation is
called the integral form (no derivatives). In 20-sim, models can be entered in integral
form as well as the differential form.

Solving Differential Equations

During compilation, 20-sim will automatically try to rewrite equations into the integral
form, since this leads to more efficient simulation. Sometimes an integral form cannot be
found. Then algorithms will be applied to solve the differential directly. For example an
equation like:

output = ddt(sin(a*time))

will be replaced by the following equation (applying the chain rule and using the known
derivative for the sine function):

output = a*cos(a*time)

Sometimes a differential cannot be solved directly. Then only the Backward-
Differentiation Methods can be used for simulation.

Simulation Code

After compilation simulation code is generated. The equation in integral form:

output = int(input - K*output)

will be written as:

7. Editor

7020-sim 5.1 Reference Manual

independent state = output
independent rate = input - K*output

and can be handled by all integration methods. The equation in differential form:

ddt(output) = input - K*output

will be written as:

dependent rate = input - K*output
dependent state = output

and can only be handled by the Backward-Differentiation Methods.

Algebraic Loops7.3.4

An algebraic loop in a model is a loop consisting of elements without "memory like"
functions. To calculate the variables in this loop, the variable values themselves are
needed. Consider the following example of an algebraic loop in an amplifier with
negative feedback:

Standard derivation of a simulation model would yield:

x = K*(u-x)

The variable x depends on its own value and must be solved by iteration. In 20-sim
every simulation algorithm is accompanied by an iteration routine. Fortunately 20-sim is
able to solve many algebraic loops at equation level. For this model this leads to the
analytic solution the system:

x = K*u/(1+K)

Simulating algebraic loops

Although 20-sim contains a sophisticated algorithms to find analytic solutions, the
occurrence of unbreakable loops can not always be prevented. The occurrence of
algebraic loops may lead to an increase of simulation time, or even stop simulation when
iteration fails.

The best solution for these problems is to have a critical look at the model and change
the order of calculations in a model. Possible solutions are:

Algebraic Loops occur when the order of calculations is arbitrary. When an algebraic
loop occurs in an equation model or in a set of equation models, you may change the
order of calculation by rewriting the equations. The calculation order in bond graph
models can be changed by introducing hand-defined causality.

7. Editor

7120-sim 5.1 Reference Manual

Introduce ‘parasitic’ energy storage elements (e.g. a small mass, a small capacitor
etc.) to break an algebraic loop. These elements introduce however, large poles in
the state equations, which might increase the simulation time considerably.

Delete elements in the algebraic loop which are not relevant for the model’s
simulation output (e.g. small dampers, very stiff springs etc.). Care should however
be taken, since correct deletions are not always possible and require considerable
modeling skill and intuition.

Combine dual elements. Sometimes elements of the same type can be combined by
adding the parameter values (e.g. combining a mass m1 and a mass m2 to a mass
m1 + m2). This will in most cases decrease the amount of algebraic loops.

Order of Execution7.3.5

Equations within 20-sim may be entered in random form. During compilation, 20-sim will
automatically try to rewrite equations into a correct order of execution. I.e. a form
where all output variables are written as function of input variables and output variables
of previous lines. Consider for example the following equations:

variables
real u,z;

equations
z = sin(u);
u = cos(time);

Here the (input) variable z is given as a function of u. Consequently u should be
calculated first. This is exactly what 20-sim will try to do while compiling the model into
simulation code. I.e. the equations will be executed as:

u = cos(time);
z = sin(u);

Code Blocks

Equations in a code block are not reordered. A code block is a set of equations inside a
statement. Suppose we have the following equations:

if condition then
code block 1
...
...

else
code block 2
...
...

end;

To prevent incorrect executions of the if-statement, the equations of the code blocks will
not be separated. Inside a code-block, equations can are not rewritten into an new order
of execution. E.g. the following equations:

7. Editor

7220-sim 5.1 Reference Manual

if time > 10 then
z = sin(u);
a = z^2;
u = cos(time);

end;

Will be not be reordered and therefore not correctly executed! To get correct code,
enter code blocks in a correct order, e.g.:

if time > 10 then
u = cos(time);
z = sin(u);
a = z^2;

end;

Prevent Order Changes

To make all equations a code block you can use the code section. E.g.

parameters
real y = 8;

variables
real x1, x2, x3;

code
x1 = time;
x2 = sin(time);
x3 = y*x1;

Integration Steps

Some integration algorithms do more calculations before generating the next output
value. These calculations are called minor steps, the output generation is called a major
step. During a minor step, all model equations are executed. In most cases you will not
notice this because only the results of the major step are shown in the simulator. There
are however, exceptions. The next topic will discuss this in more detail.

Integration Steps7.3.6

Some integration methods do more calculations before generating the next output value.
These calculations are called minor steps, the output generation is called a major
step.

integration method minor steps

Euler

0

Backward Euler variable

Adams-Bashford 2 0

Runge Kutta 2 1

7. Editor

7320-sim 5.1 Reference Manual

Runge-Kutta 4 3

Runge Kutta Dormand Prince 8 variable

Runge-Kutta-Fehlberg variable

Vode Adams variable

Backward Differentiation Formula (BDF) variable

Modified Backward Differentiation Formula

(MBDF)

variable

Execution of Equations

During a minor step, all model equations are executed. In most cases you will not notice
this because only the results of the major step are shown in the simulator. There is one
exception. If you use equations like

variables
real y;

initialequations
y = 0;

equations
y = y + 1;

you will find that the value of y depends on the integration method that is used. The

reason is obvious once your realize that the equations are executed during minor steps.

If you use a Runge Kutta 2 integration method, there is one minor step during which y is

increased and one major step during which y is increased again!

Major

To prevent an equation from being calculated during minor steps, you can us the
predefined variable major. This variable will return the boolean false when calculations
are performed for a minor step and will return true when calculations are performed
during a major step. The major variable is used for example in the library model
Amplitude Sensor:

7. Editor

7420-sim 5.1 Reference Manual

parameters
real initial = 0.0;

variables
real prev, peak;

initialequations
peak = initial;
prev = 0;
output = initial;

code
if major then

peak = max([abs(input), peak]);
if (input > 0 and prev < 0) or (input < 0 and prev > 0) then

output = peak;
peak = 0;

end;
prev = input;

end;

Note that the initial values are set in the initialequations section, because we do no want

the variables to be set to zero at every integration step. Instead of an equations section,

a code section is used to prevent 20-sim from rewriting the equations in a different

order.

Show Equations7.3.7

During processing a complete set of equations is generated of each model. To inspect
these equations or copy them for use in other programs, you have to:

1. From the Model menu select the Check Complete Model command.

2. From the Model menu select the Show Equations command.

Now a window is popped up showing all the model equations.

The model equations after compiling.

7. Editor

7520-sim 5.1 Reference Manual

7.4 Icon Editor

Icon Editor7.4.1

The Icon Editor is a vector oriented drawing editor that can be used to create custom
made icons for any 20-sim model. You can also use the Icon Editor to change the
appearance of existing models.

The 20-sim Icon Editor can be used to create custom made model icons.

Open

1. In the Editor select the model that you want to give a new appearance.

2. From the Tools menu select Icon Editor,

3. or from the right mouse menu select Edit Icon,

4. or at the bottom left of the Editor click the Icon tab and in the Icon tab double
click.

7. Editor

7620-sim 5.1 Reference Manual

Use

1. Use the taskbar buttons or the menu commands to insert objects and edit these
objects.

2. If you are satisfied with the icon, insert the terminals.

3. From the Icon Editor menu, select File and Update.

4. Close the Icon Editor.

Grid

When you move objects, a grid is applied. A finer grid is obtained when you zoom in
using the mouse wheel

Tips and Tricks

Scroll up and down using you Mouse Wheel.

You can zoom in (F4) and out (F6) by pressing the Crtl-Key and using your Mouse
Wheel.

Use a finer grid by zooming in.

Select multiple objects by keeping the Crtl-Key pressed.

Terminals7.4.2

Most submodels will contain ports (i.e an input signal, an output signal or a power port).
If you are creating submodel icons, you want to indicate the connection points of these
ports. These connection points are called terminals. In the Icon Editor you can define the
position of the terminals.

1. In the taskbar click the Terminal button .

2. Click with the mouse pointer on the position where you want to insert a terminal.

If you have multiple inputs, outputs or ports, a menu will open to ask you which input,

output or port should be selected.

7. Editor

7720-sim 5.1 Reference Manual

The inputs, outputs and ports are indicated by rectangles.

The terminals are visible in the drawing as small rectangles.

3. You can select a terminal and from the right mouse menu click Properties.

This will open the Terminal Properties showing the name of the input, output or port and

the option to fixate the position. With a fixed position, the connections will start or end

exactly at the position of the terminal. Without a fixed position, the connections will point

to the center of the icon and start or end at the border of the icon.

You can give a terminal a fixed position.

7. Editor

7820-sim 5.1 Reference Manual

Tip

1.You can see the terminals of a model in the Editor. Go to the View menu and select
Show Terminals.

2.With the Show Terminals option selected, you can change the location and properties
of the terminals directly in the Editor (no need to open the Icon Editor).

7.5 Global Parameters and Variables

Introduction7.5.1

If you want to share parameter values or variable values between submodels, you can
use signals from one submodel to the others. This is not always desired and it will
increase the effort that you have to make in connecting submodels.

Using globals is an alternative for sharing values. By defining a parameter or variable
global, we can instruct 20-sim that a parameter or variable value is shared between
submodels.

Using Globals

If you want to share parameters or variables between submodels, you have to:

1. Add the keyword global to definition of the parameter or variable.

2. Define the scope of the globals, i.e. which models share the same parameters and
variables?

Global Parameters and Variables7.5.2

By adding the keyword global to a parameter or variable in the Equation Editor, its value
is shared all over the model. It means that various submodels can use the same
parameter or variable, but you only have to assign the value once. In equation models,
the keyword global is added after the definition of the data type:

parameters
real global par1 = 100 {Hz};
real global par2 ;

variables
real global var1;
real global var2;

..

..

Parameters can only be assigned a value once. The same goes for variables. In only
one submodel the global variable can be assigned a value using an equation. If
parameters or variables are assigned more than once, 20-sim will generate an error.

Scope

By default, global parameters and variables and valid in the entire model. However, the
scope can be limited to a certain branch in your model tree.

7. Editor

7920-sim 5.1 Reference Manual

Changing Global Parameters Values

You can change the value of a global parameter in the Parameters/Initial Values Editor.
By default, global parameters and variables and valid in the entire model. In the
Parameters/Initial Values Editor you will find the parameters at the top level of the
hierarchy. If the parameter has a scope, you will find it in the specific branch of the
model hierarchy.

Scope7.5.3

By adding the keyword global to a parameter or variable in the Equation Editor, its value
is shared all over the model. For certain models this is not wanted. You may want the
parameter or variables only to be shared in a certain branch of the model hierarchy.
This is known as limiting the scope of a global parameter or variable to a branch.

Example

Suppose we have model "RaceCar.emx" with a model hierarchy that consists of front
wheels, rear wheels and a car body. The front wheels may consist of a left and a right
wheel and each wheel has a tire, a rim and a suspension. In the picture below you can
see the model hierarchy in the tree at the left of the Editor.

Suppose the tire and the rim models share the same parameter diameter. We can make
this parameter global, so we have to specify the value only once. However for a racecar
the diameter of the front wheels may be different from the diameter of the rear wheels.
In that case we can limit the scope of the global parameter diameter to the branch
FrontWeels. This is done in the Global Relations Editor at the left bottom of the Editor as
shown in the picture above.

Global Realtions Editor

You can limit the scope by using the Global Relations Editor. In this editor you can enter
parameters or variables. All global parameters or variables in the same branch of the
model hierarchy will share the same value.

7. Editor

8020-sim 5.1 Reference Manual

OneUp

You can limit the scope by using the keyword oneup. This will allow you to define the
values of a global parameter or global variable in a submodel.

Whole Model

If no parameter or variable is defined using the Global Relations Editor, the scope is the
whole model. I.e. global parameters and variables are shared across the whole model.

Global Relations Editor7.5.4

The Global Relations Editor is used to restrict the scope of global parameters and
variables. You can find the Global Relations Editor at the lower left of the Editor by
selecting the Globals tab.

1. In the Editor, go to the Model Hierarchy at the left and select the submodel,
you want to add global parameters or variables for.

2. Select the Globals tab at the lower left of the Editor.

Select the Globals tab, put your mouse pointer on top and click Edit Global Relations.

3. Put your mouse pointer in the middle of the tab. From the right mouse menu
select Edit Global Relations.

This will open the Global Relations Editor. You can use this editor to enter parameters,
variables and equations.

7. Editor

8120-sim 5.1 Reference Manual

Use the Global Relations Editor to enter parameters, variables and
equations.

You can enter parameters, variables and equations here just like in the Equations Editor.

4. Do not add the keyword global!

In the Global Relations Editor, you should not add the keyword global. If you do, the
scope is not limited anymore.

Errors

If you have made errors in the Global Relations Editor:

1. Click Check Complete Model. Any error will be then be displayed in the
Process tab.

2. Click on the error in the Process tab and you will see it highlighted in
the Global Relations Editor.

7. Editor

8220-sim 5.1 Reference Manual

7.6 Interface Editor

Interface Editor7.6.1

The Interface Editor can be used to define the interface, i.e. the input signals, output
signals and power ports of a submodel.

The 20-sim Interface Editor can be used to define the model interface.

Open

1. In the Editor select the model of which you want to change the interface.

2. From the Tools menu select Interface Editor,

3. or from the right mouse menu select Edit Interface,

4. or at the bottom right of the Editor click the Interface tab and in the Interface
tab double click.

Use

1. Use the Edit menu to add ports to the list.

2. Select a port from the list and change its properties (make it an input signal,
output signals and power ports etc.)

3. From the Interface Editor menu, select File and Update.

7. Editor

8320-sim 5.1 Reference Manual

4. Close the Interface Editor.

Tips

1. Use the Move Up and Move Down buttons to order the list of ports.

Port Properties7.6.2

From the Edit menu select Add Port. A new port will now be added to the list. If you
select the port in the list you can change its properties

Name: Enter the name of the port.

Type: Select the port-type: Signal, Iconic Diagram or Bond Graph.

Signal

Size: If the signal is multi-dimensional, enter the number of rows and columns.

Orientation: Choose input signal or output signal.

Quantity: If the signal represents a physical quantity, you can choose the quantity
from a predefined list.

Unit: If the signal represents a physical quantity, you can choose the corresponding
unit from a predefined list.

Type: The default type of a signal is a real number. Choose out of real, integer or
boolean.

Iconic Diagram

Size: If the port is multi-dimensional, enter the number of rows and columns.

Orientation: Choose an input or output orientation for the port.

Domain: Choose the physical domain of the port. The most general domain is power.
Depending on your choice you will see the two variables (Across and Through)
associated with the port.

Causality: Select the causality of the port.

Separate High/Low Terminals: You may choose this option for models with a velocity
difference, voltage difference etc.

Any Number of Terminals: You may choose this option for models with a variable
number of connections.

Bond Graph Port

Size: If the port is multi-dimensional, enter the number of rows and columns.

Orientation: Choose an input or output orientation for the port.

Domain: Choose the physical domain of the port. The most general domain is power.
Depending on your choice you will see the two variables (Effort and Flow) associated
with the port.

7. Editor

8420-sim 5.1 Reference Manual

Causality: Select the causality of the port.

Orientation7.6.3

In the Interface Editor you can set the orientation of a ports. In the Editor this
orientation can be made visible by setting the Orientation Info command from the View
menu. Depending on the type of port the orientation has a different meaning.

Signals: For signals the orientation indicates the direction of the associated variable :
input or output.

Bond Graphs: The orientation of a bond graph port is the direction of the half arrow
at the end of a bond. It indicates the direction of the positive power flow.

Iconic Diagrams: The orientation of an iconic diagram port also indicates the direction
of the positive power flow.

If you select the top of the list in the Interface Editor, you can choose the Port Relations

tab to set multiple port relations:

Equal / Not equal: The equal and not equal restrictions can be used to specify that a
port p1 must have the same or opposite orientation as port p2.

Causality7.6.4

A powerport is always characterized by two variables. One of these variables should be
an input and one of these variables should be an output. The choice of input and output
variable is called causality. In the Interface Editor you can set the causality of the ports
of a submodel. The following causal forms can be chosen:

1. Fixed out: One of the two variables is always an output variable.

2. Preferred out: One of the two variables is preferably an output variable.

3. Likes: Same as preferred out but with lower priority: one of the two variables is
preferably an output variable

4. Indifferent: A powerport with an indifferent causality restriction can have both
variables as output.

During processing, the assignment of the causal forms goes with the rank in the list. First

all elements with a fixed out assignment are set, then the elements with a preferred out

assignment, then with a likes assignment and finally with an indifferent assignment.

If you select the top of the list in the Interface Editor, you can choose the Port Relations

tab to set multiple port restrictions:

Equal / Not equal: The equal and not equal restrictions can be used to specify that a
powerport p1 must have the same or opposite causality as powerport p2. This is
denoted as p1 equal p2 and p1 notequal p2 respectively.

One_out: The restriction One_out should only be used for bond graph ports. It is
used to indicate that at a one or zero junction, only one bond may have an effort out
causality.

7. Editor

8520-sim 5.1 Reference Manual

One_in: The constraint restriction One_in should only be used for bond graph ports.
It is used to indicate that at a one or zero junction, only one bond may have an effort
in causality.

In the Editor this causality can be made visible by setting the Causality Info command
from the View menu.

Ports with more than one Terminal7.6.5

By default, an iconic diagram port is a port where power can be exchanged between a
component and its environment in terms of an across variable and a through variable.
Such a port is represented by one terminal (connection point). However, there are two
special cases where it is desirable to define an iconic diagram port that has more than
one terminal.

Separate High / Low Terminals

Consider, as an example, an mechanical spring. The power that flows into such a
component is uniquely determined by the velocity difference between the two terminals
of the component and the common force that acts upon both ends. Because of this one
could say that there is one port, whose power is determined by one across value (the
velocity difference) and one through value (the common force), but is represented by
two terminals. To support this, 20-sim allows you to define a special type of iconic
diagram port by indicating that is has Separate High / Low Terminals. The two terminals
of the connection are named high and low. If the port is named p, the formal equations
are:

fixed in orientation:

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

fixed out orientation:

p.F = p_high.F = p_low.F
p.v = - p_high.v + p_low.v

In 20-sim these equations are automatically derived.

Any Number of Terminals

Consider, as an example, a mass. A characteristic of this component is that you can
connect many springs and dampers to it. Implicitly, one expects that the net force (i.e.,
the summation of the forces applied by the connected components) will be applied to the
mass, and that it will have a single velocity. To support this, 20-sim allows you to define
a special type of iconic diagram port by indicating the kind to be Any Number of
Terminals. The terminals of the connection are named 1, 2, 3 etc.. If the port is named
p, the formal equations are:

fixed in orientation:

p.v = p1.v = p2.v = p3.v =
p.F = sign1*p1.F + sign1*p2.F + sign1*p3.F +

fixed out orientation:

7. Editor

8620-sim 5.1 Reference Manual

p.v = p1.v = p2.v = p3.v =
p.F = -sign1*p1.F - sign1*p2.F - sign1*p3.F -

with

sign = 1 when p1 has a fixed in orientation etc.

sign = -1 when p2 has a fixed out orientation etc.

In 20-sim these equations are automatically derived.

7.7 Domains, Quantities and Units

Domains, Quantities and Units Editor7.7.1

At various modeling levels you can use information on physical domains, quantities and
units. This information is stored in the file QuantitiesAndUnits.ini in the 20-sim bin
directory. To edit this information you can use the Domains, Quantities and Units Editor.
When opened, the editor automatically reads the file QuantitiesAndUnits.ini. When closed
the editor asks you where to store the file. Note that any changes made become
effective after 20-sim has been restarted.

The Domains, Quantities and Units Editor.

You can start the Domains, Quantities and Units Editor by selecting the Units Editor

command from the Tools menu. In the editor a tree-like structure is shown indicating

the available Domains, Quantities and Units.

1. You can select every items in the tree for editing.

7. Editor

8720-sim 5.1 Reference Manual

2. Use the Add or Delete button to add new items or delete existing item.

3. Use the Find button to find items in the tree.

Domains7.7.2

In the Interface Editor every powertport (Iconic Diagram or Bond Graph) can be
assigned a physical domain. 20-sim will use this information to prevent that ports of
different physical domains may be connected. More popular: in this way you can never
connect a translation model to an electric component.

Use the Interface Editor to assign a physical domain to a port.

In the Interface Editor you can select the physical domain that you want to assign to a

port. The editor will show the corresponding port variables and the notation that should

be used in the model equations.

The tables below show the available domains and their respective port variables.

 power domain across through

 Power

Mechanical

across

velocity

through

force

7. Editor

8820-sim 5.1 Reference Manual

Translation

Rotation

Pneumatic

Thermal

Electric

Hydraulic

Magnetic

velocity

angular velocity

pressure

temperature

voltage

pressure

magnetomotoric force

force

torque

air flow

entropy flow

current

volume flow

magnetic flux

For the power domains the variables multiply to power. There are also some domains

defined where the variables do not multiply to power. These are called pseudo

domains. The following pseudo domains are defined.

 pseudo domain across through

 Pseudo Pneumatic

PseudoThermal

PseudoThermalH

PseudoHydraulic

pressure

temperature

temperature

pressure

mass flow

heat flow

enthalpy flow

mass flow

You can enter new (pseudo) domains in the Domains, Quantities and Units Editor. If the

port is defined as a bond graph port, effort and flow are used to indicate the domain

variables. The corresponding tables are shown below.

 power domain effort flow

 Power

Mechanical

Translation

Rotation

Pneumatic

Thermal

Electric

Hydraulic

Magnetic

effort

force

force

torque

pressure

temperature

voltage

pressure

magnetomotoric force

flow

velocity

velocity

angular velocity

air flow

entropy flow

current

volume flow

magnetic flux

 pseudo domain effort flow

 Pseudo Pneumatic

PseudoThermal

PseudoThermalH

PseudoHydraulic

pressure

temperature

temperature

pressure

mass flow

heat flow

enthalpy flow

mass flow

7. Editor

8920-sim 5.1 Reference Manual

Quantities and Units7.7.3

In 20-sim, to every constant, parameter and variable a quantity may be assigned. Well
known quantities are for example position, velocity, time and energy. 20-sim will use
these quantities to check the validity of (basic) equations. The value of a quantity can be
expressed in a specific unit. The quantity time can for example be expressed in the unit
second or in the unit minute:

 quantity unit multiplication to SI unit

 Time second (SI unit)

minute

hour

day

year

1

60

3600

86400

31556926

 Position meter (SI unit)

foot

inch

yard

1

0.3048

0.0254

0.9144

In 20-sim a quantity can be expressed in every desired unit. To prevent conversion

problems, internal calculations are always performed in standard SI-units. Therefore

non-SI units are stored with a multiplication factor. When a variable has a unit, the

unit can also have common engineering prefixes. For example, a parameter m {kg}

with a value of 0.1 can be selected in the Parameters / Initial Values Editor. If you click

on the unit, you can select other units to enter the mass.

You can use the units in the Parameters / Initial Values Editor to select a desired unit.

You can enter new quantities and units in the Domains, Quantities and Units Editor.

7. Editor

9020-sim 5.1 Reference Manual

Editing Domains7.7.4

You can edit existing domains or add new domains in the Domains, Quantities and Units
Editor. In the Domains section you can add new domains or edit existing domains. Each
domain has several edit fields:

Domain name: If you click on a selected domain in the tree, you can edit the name.

Description: Enter a description of the domain.

Quantities: You can enter quantities of these variables in the quantities section.

Mechanical Domain: Select this button if your domain is part of the mechanical
domain.

Pseudo Domain: Select this button if your domain is a pseudo domain.

Color: Double-click the color box to change the color of a domain.

In some domains the integrated effort/flow variables and differentiated effort/flow

variables are of a specific quantity. You can enter these quantities in the according edit

fields. For some domains these values have no meaning and you can leave the edit

fields blank.

Editing Quantities7.7.5

You can edit existing quantities or add new quantities in the Domains, Quantities and
Units Editor. In the Quantities section you can add new quantities or edit existing
quantities. Each quantity has several edit fields:

Quantity name: If you click on a selected quantity in the tree, you can edit the name.

Description: Enter a description of the quantity.

Variable name: This name is used for display purposes. For example if one of the
variables of a port p has the quantity length it will be denoted as p.x.

SI Symbol: Enter the official SI-symbol here. Enter combinations as nominator/
denominator (e.g. Electric Resistance: kg.m2/A2.s3)

Units: Every quantity can be expressed in several unique units (i.e. a unit can be
assigned to one quantity only). You can enter new units here or edit existing units
that belong to the selected quantity.

Unit Symbol: For display purposes every unit has a specific symbol. It is shown here
in a read-only field.

A quantity can have an alias name. Enter this alias as a subentry of the main quantity.

This alias name refers to the main quantity and therefore to the same associated units.

7. Editor

9120-sim 5.1 Reference Manual

Editing Units7.7.6

You can edit existing units or add new units in the Domains, Quantities and Units Editor.
In the Units section you can add new units or edit existing units. Each unit has several
edit fields:

Unit name: If you click on a selected unit in the tree, you can edit the name.

Description: Enter a description of the unit.

Quantity: Choose the quantity to which the unit should be associated. A unit can be
associated to one quantity only.

Symbol: For display purposes every unit has a specific symbol.

Multiplications: A quantity can be expressed in several units. To prevent conversion
problems, internal calculations are always performed in standard SI-units. Therefore
non-SI units are stored with a multiplication factor. You can enter the multiplication
factor here.

Allow Symbol Prefixes: Some units can be expressed with symbol prefixes. Select
the check box to allow the use of prefixes. 20-sim supports the following
prefixes:

 prefix symbol value

 femto f 10-15

 pico p 10-12

 nano n 10-9

 micro u 10-6

 milli m 10-3

centi c 10-2

deci d 10-1

hecto h 102

 kilo k 103

 mega M 106

 giga G 109

 tera T 1012

Example

parameters

 real mylength = 1 {cm}; // equal to: 0.01 {m}

7. Editor

9220-sim 5.1 Reference Manual

7.8 FMI Support

FMI Standard7.8.1

FMI Standard

20-sim supports the Functional Mock-up Interface (FMI) standard (http://fmi-
standard.org/) for tool independent exchange of simulation models. The FMI defines an
interface to be implemented by an executable called FMU (Functional Mock-up Unit). The
FMI functions are called by a simulation environment to create one or more instances of
the FMU and to simulate them, typically together with other models. An FMU may either
have its own solvers (FMI for Co-Simulation) or require the simulation environment to
perform numerical integration (FMI for Model Exchange). The FMI standard has currently
two versions FMI 1.0 and FMI 2.0.

A simulation tool that can import and simulate one or more FMUs is a FMI master. The
FMU is a FMI slave.

FMI Support in 20-sim

20-sim implements the FMI 2.0 interface for Co-Simulation. 20-sim supports both
importing and exporting FMUs. You can import an FMU in 20-sim as a special submodel
and you can export a 20-sim submodel as an FMU. 20-sim implements an FMI master
algorithm to run an FMU inserted into your model.

20-sim 5.1 supports:

Import
FMI 2.0 Co-Simulation FMU

Export
FMI 1.0 Co-Simulation FMU (Standalone)
FMI 2.0 Co-Simulation FMU (Standalone)
FMI 2.0 Co-Simulation FMU (Tool-wrapper)

with:

Standalone: This FMU can be exported from a 20-sim submodel using C-code
generation. It does not depend on the original 20-sim model or your 20-sim license
and can be used standalone. However, this type of FMU can only be exported if the
submodel is exportable as C-code.

Tool-wrapper: This FMU can be exported from a 20-sim model with a Co-
simulation Interface. A tool-wrapper FMU is a communication FMU that opens the
original model in the modelling tool and takes care of remotely executing the co-
simulation steps inside 20-sim. It uses the 20-sim Scripting Toolbox to communicate
with 20-sim to exchange inputs/outputs and parameters.

http://fmi-standard.org/
http://fmi-standard.org/

7. Editor

9320-sim 5.1 Reference Manual

Co-simulation Interface7.8.2

The 20-sim tool-wrapper FMU uses 20-sim and its simulator to simulate the model. To
exchange input and output signals between 20-sim and the FMI master (co-simulator),
you will need to extend your model with special variables that can be set or read by the
FMI master. These variables are the co-simulation inputs and outputs. They can be
defined in the model in an equation section called externals:

externals

real global export mycosimOutput;

real global import mycosimInput;

To make it possible to set or read a parameter by the co-simulation engine, it should be
marked as 'shared':

parameters

// shared design parameters

real mycosimParameter ('shared') = 1.0;

The next step is to export a tool-wrapper FMU for the prepared model. See FMU Export
for the details.

FMU Import7.8.3

You can import an FMU directly in 20-sim for co-simulation within 20-sim itself. Presently
20-sim can only import FMI 2.0 co-simulation FMUs. Follow these steps to import an FMU
in 20-sim:

1. Copy/move the FMU to the same folder as your model. This is not required but
recommended to prevent embedding hardcoded paths in your model.

2. Using Windows Explorer, drag the FMU file on your 20-sim model (see the Figure
below). Alternatively, you can use the menu option Insert, Submodel, FMI 2.0 Co-
simulation Import to import an FMU.

7. Editor

9420-sim 5.1 Reference Manual

This creates a new submodel with a blue icon that acts as an FMU wrapper. FMU inputs
and outputs are translated into 20-sim submodel inputs and outputs. FMU parameters
(scalar variables with causality “parameter”) are also available in 20-sim. This means
that you can alter the default values of these FMU parameters in 20-sim. The altered
FMU parameters are transferred to the FMU during the initialization mode phase of the
FMU.

FMU Export7.8.4

20-sim can export two types of FMUs:

Standalone FMU

This FMU can be exported from a 20-sim submodel using C-code generation. It does not
depend on the original 20-sim model or your 20-sim license and can be used standalone.
However, this type of FMU can only be exported if the submodel is exportable as C-code.

To export a Standalone FMU:

1. Select a submodel

2. Select the File menu

3. Select Export

4. Select the option FMI 1.0 Co-Simulation FMU Export (standalone) or FMI 2.0 Co-
Simulation FMU Export (standalone)

5. This will ask for a Folder in which your FMU will be generated

Limitations:

The following 20-sim language features that are not supported, (or are only partly
supported) for standalone FMU export, are:

Hybrid models: Models that contain both discrete- and continuous time sections
cannot be generated at once. However, it is possible to export the continuous and
discrete blocks separate.

File I/O: The 20-sim “Table2D” block is supported; the “datafromfile” block is not
yet supported.

External code: Calls to external code are not supported. Examples are: DLL(),
DLLDynamic() and the MATLAB functions.

Variable delays: The tdelay() function is not supported due to the requirement for
dynamic memory allocation.

Event functions: timeevent(), frequencyevent() statements are ignored in the
generated FMU.

Fixed-step integration methods: Euler, Runge-Kutta 2 and Runge-Kutta 4 are
supported.

Variable-step integration methods: Only Vode-Adams is supported.

Implicit models: Models that contain unsolved algebraic loops are not supported.

7. Editor

9520-sim 5.1 Reference Manual

Tool-wrapper FMU

This FMU can be exported from a 20-sim model with a Co-simulation Interface. A tool-
wrapper FMU is a communication FMU that opens the original model in the modelling tool
and takes care of remotely executing the co-simulation steps inside 20-sim. It uses the
20-sim Scripting Toolbox to communicate with 20-sim to exchange inputs/outputs and
parameters.

To export a Tool-wrapper FMU for your 20-sim model:

1. Extend the model with a co-simulation interface. See the page Co-simulation
Interface for the details.

2. Select the File menu

3. Select Export

4. Select the option FMI 2.0 Co-Simulation FMU Export (Toolwrapper)

8. Simulator

9620-sim 5.1 Reference Manual

8 Simulator

8.1 Introduction

Simulator8.1.1

20-sim consists of two main windows and many tools. The first window is the Editor and
the second is the Simulator. The Editor is used to enter and edit models. The Simulator is
used to simulate and analyze the models. The Simulator is opened in the Editor by
clicking the Start Simulator button from the Model menu.

The Simulator is used to carry out simulations, show the results and analyze them.

The Simulator consists of three parts:

Simulator Tree: This is the tree at the left. Here plots and plot windows can be added.

Simulation Plot: This is the graph in the middle. Here the simulation results are
shown.

Output tab: The Output tab shows warnings and messages.

Settings

After the model has been successfully entered, it must be checked and compiled to
generate simulation code. This is done in 20-sim automatically when you open the
Simulator or when you check a model. In some cases the model contains errors which
have to be solved by adapting the model. Errors in 20-sim are presented in the Process
tab at the bottom of the Editor. After a successful compilation of a model that is created
in the Editor you can open the Simulator. In the Simulator you have to enter specific
settings:

Parameters / Initial Values.

Run Properties.

8. Simulator

9720-sim 5.1 Reference Manual

Plot Properties.

Running

After the settings have been entered you can run the simulation.

Plotting

Simulation results can be shown in 20-sim as:

Numerical Plots:

Time Domain (default)

Frequency Domain (FFT Analysis & Linearization)

Animation in a Graphical Model

3D Animation

Debugging

If you experience problems during simulation you have to resolve them in a debugging
session.

Analysis

After a successful simulation you can analyze your model using various tools:

Parameter Sweeps

Curve Fitting

Optimization

Sensitivity Analysis

Monte Carlo Analysis

Variation Analysis

FFT Analysis

Linearization

Message Log

The bottom of the Simulator shows a tab named Output. This tab contains the Message
Log which shows all the messages, warnings and errors, that are generated during a
simulation.

8. Simulator

9820-sim 5.1 Reference Manual

8.2 Running a Simulation

Parameters and Initial Values8.2.1

The Parameters/Initial Values Editor is used to edit the constants, parameters and initial
values of a model. Parameters and initial values can be changed during simulation,
constants cannot be changed. To open the Parameters/Initial Values Editor, you have to:

1. In the Simulator, choose Properties - Parameters or in the Editor, choose
Model - Show Parameters.

The Parameters/Initial Values Editor.

The parameter items (Name, Value, Quantity, Unit, Description, Kind, Arithmetic Type,
Attributes, Value) of the parameters and initial values are listed in right part of the
window. The list of parameters and initial values that is displayed depends on the
selected submodel in the left part of this window.

Items

Model Hierarchy: The left part displays the complete model hierarchy. At each
level of the hierarchy, submodels can be selected. The right part of the
window then shows the parameters and initial values of that submodel. To
see all parameters and initial values, select the top level of the hierarchy, i.e.
the main model listed on top.

Parameters and Initial Values: The order of the parameters or initial values in
the list depends on the order in which the submodels were originally entered
in the Editor. Click on the name box to make the order to alphabetical. Drag
the name box to change the width of the parameters list.

8. Simulator

9920-sim 5.1 Reference Manual

Value: You can change the default value of a parameter or initial value in the
value list. Select the parameter or initial value (mouse) and enter the desired
value. Use the Enter key to quickly run through a list of parameters.

Unit: If available, select the desired Unit from the drop down list.

Attributes: Parameter may bee limited in range or made read only. If so, these limits

are listed in the Attributes.

From Matlab / To Matlab: Use the buttons to import or exports parameter
values from or to Matlab.

Expand Vectors/Matrices: Select this option to see the individual members of
matrices and vectors.

Show Hidden: Hidden parameters are by default not visible. Select this option to show
hidden parameters.

Import: Use this button to import the parameter values from another model.

Commands

If you select a model or submodel in the hierarchy tree several command are available
using the right mouse menu:

Copy Parameters (for parameters or Constants): Of the selected (sub)model, copy

the parameter name, value and other properties to clipboard for use in a
spreadsheet or file.

Copy Initials (for Initial Values): Of the selected (sub)model, copy the initial value

name and other properties to clipboard for use in a spreadsheet or file.

Initials to Zero: Of the selected (sub)model, set the initial values to zero.

If you select a parameter, initial value or several command are available using the right
mouse menu:

Copy Value: Copy the value to clipboard.

Copy with Unit: Copy the value and unit to clipboard.

Copy Specified: Specify what to copy to the clipboard.

Note

All equations in 20-sim are calculated using standard SI-units. You can however
enter parameters, using whatever Unit you like. In the Parameters/Initial Values

Editor, you can change the unit using the little drop down list next to the Value

box.

The description of a parameter can be specified in the parameters part of the
equation description of a model.

To see a global parameter, select the top level of the hierarchy, i.e. the main model
listed on top.

8. Simulator

10020-sim 5.1 Reference Manual

Run Properties8.2.2

The Run Properties Editor can be used to choose the integration method used for
simulation. An integration method is the algorithm that calculates the model equations
during each simulation and generates the output values for the simulation plots. The
default integration method is the Backward Differentiation Formula (BDF).

The most important properties that you can set are:

1.Start: the starttime of the run.
2.Finish: the finishtime of the run
3.Integration Method: The integration method that is used.
4.Step Size: If you click the Set Properties button, you can set the (maximum) step size.
5.Accuracy: If you click the Set Properties button, you can set the absolute and relative

error.

To open the Run Properties Editor, you have to:

1. From the Properties menu select the Run command.

The Run Properties Editor.

Initially, the fields in the Run Properties Editor contain default values if no experiment
was loaded. Two or more tabs can be selected:

Simulator: This tab shows the general simulation settings.

8. Simulator

10120-sim 5.1 Reference Manual

Discrete Systems: This tab is only visible when discrete systems are part of your
model. It contains the settings for the sample frequency.

Algebraic Relations Solver: This tab is only visible when your model contains
algebraic loops that could not be solved during processing.

Integration Method: The last tab contains the specific settings for the selected
integration method.

More / Less

Using the More button you can set advanced settings:

Event handling

Realtime Simulation

Realtime simulation is useful when you want a simulation to run as fast as the real time.
E.g for 20-sim models that are used for training simulators or models which are coupled
to external devices that run in real time.

Attempting Realtime Simulation: Section the On option, to run a simulation as
fast as the real time or a multiple that you can set with the Speed Factor.

Maximum Allowed Lost Time: With variable step simulation, a large model may
not always run fast enough to run real time during the whole simulation. You can set
the number of ms delay that is allowed.

Finish

Plots8.2.3

The simulation plots are shown in the simulator tree at the left of the simulator
window.

You can open additional plots in 20-sim.

8. Simulator

10220-sim 5.1 Reference Manual

You can expand the simulator tree to see the plot windows. A plot window can contain
one or more plots. A plot contains one or more curves. The curves show the simulated
values of a chosen variable or parameter.

Plot Windows

A plot window contains the simulator tree and one or more plots. In the simulators tree,
using the right mouse menu you can add or delete plot windows. You can also open a
new plot window using the View menu of the Simulator.

Plot

You can add plots to a plot window. 20-sim supports the following plots:

1. Plot: a standard plot showing one or more variables.

2. 3D Animation: a 3D Animation showing objects in 3D.

3. FFT Plot: a plot showing the FFT transform.

Using the right mouse menu you can quickly:

Add, delete, cut, copy and paste plots.

Change the appearance of a plot by selecting Plot Properties.

Hide and Show plots.

Disable and Enable plots.

Move plots Up and Down.

Rename plots

Note: With hide plot, the plot information is still calculated during simulation. If you use
a large amount of plots this will affect memory space. With disable plot, the information
is not calculated during simulation. This will save memory.

Curve

Each plot may contain one or more curves. Using the right mouse menu you can quickly:

Add, delete, copy and paste curves.

Move curves Up and Down.

Change the variable by selecting Curve Properties.

8. Simulator

10320-sim 5.1 Reference Manual

Plot Properties8.2.4

The Plot Properties Editor can be used to enter the plot specifications. To open the Plot
Properties Editor, you have to:

1. From the Properties menu select the Plot command.

The Plot Properties Editor.

The editor shows three tabs which can be used to set the properties of the plot and the x
and y variables.

Plot Properties Tab

The Plot Properties Tab shows the general settings that accompany a plot. A preview is
shown in the lower part of the tab.

Plot Title: Select this option to add a title to the plot. In the text box you can
type the desired title. Use the radio buttons to display the title to the left, in
the middle or to the right of the plot.

Color Themes: Use this option to select a different theme for the plot.

Colors: Click the drop down list and choose the colors for the various plot
options.

Grid: Select this option to show the grid.

Background

Windows Default: Select this option to get the default Windows background.

8. Simulator

10420-sim 5.1 Reference Manual

3D Look: Select this option to get a plot with 3D Look (sunken edges).

Axes:

Select the options Logarithmic X and Logarithmic Y to show logarithmic plots.

Show X-Values: Use this option to show or hide the X-axis values.

Show Legend: Use this option to show to show a legend.

Fonts: Click the Title, Values and Labels buttons to select the font options for
the title, values and labels.

Apply To: You can select here to apply the changes to: 1) All plots in the
model, 2) Al plots in the window, 3) only this plot or 4) Set it as default for all
future plots.

X-Axis Tab

The X-Axis Tab can be used to specify the variable plotted along the X-axis.

The X-Axis tab of the Plot Properties Editor.

Variable Name: The time, a variable or a parameter can be chosen as the X-
axis variable. Click the button on the right (Choose) to open the Variable
Chooser and select the desired variable or parameter. You can also type the
variable name directly.

Label: Enter the label that should be printed below the X-axis.

Show Unit: Select this option to display the unit of the chosen variable.

8. Simulator

10520-sim 5.1 Reference Manual

Scaling

Manual: Fix the scale of the X-axis by selecting a minimum and maximum
value in the From and To boxes.

Post: During the simulation run, the scale for the variable along the axis is
fixed. When the run is finished or has been interrupted by the user, the
minimal and maximal scale values are automatically updated and the plot
is redrawn to make sure all calculated points are displayed.

Automatic: When a variable reaches the end of the scale, during
simulation, the the minimal and maximal scale values are automatically
updated and the plot is redrawn to make sure all calculated points are
displayed.

Clip to Bounds: When a variable reaches the end of the scale, during
simulation, the the minimal and maximal scale values are automatically
updated and the plot is redrawn to make sure all calculated points are
displayed. When the run is finished or has been interrupted by the user,
the minimal and maximal scale values are automatically updated to show
the plot at maximum scope.

Show Values: Use this option to show or hide the X-axis values.

Y-Axis Tab

The Y-Axis Tab is used to specify the curves that should be shown in the plot. For each
selected curve, a tab is shown, displaying the settings of that curve.

8. Simulator

10620-sim 5.1 Reference Manual

The Y-Axis tab of the Plot Properties Editor.

Curves

Add Curve: Add a new tab to specify a new curve to be displayed in the plot.

Delete Curve: Delete the selected tab. As a result, the curve specified in the
tab will not be displayed in the plot, and the settings are lost.

Variable Name: Use this box to connect a variable to a curve. One of the
dynamic variables of the model can be selected or a parameter. Click the
button on the right (Choose) to open the Variable Chooser and select the
desired variable or parameter. You can also type the variable name directly.

Label: Enter the name of the curve. This label is also printed next to the the Y-
axis.

Show Unit: Select this option to display the unit of the chosen variable.

Line Properties

Line Style: Select the desired line style of the curve.

Thickness: Select the desired line thickness of the curve. You can set the
default line thickness in the General Properties dialog.

Color: Select the desired line color of the curve.

8. Simulator

10720-sim 5.1 Reference Manual

Order: In the plot a line is drawn from plot point to plot point. You can
choose the line to be of two orders of interpolation:

Zero: the line consists only of horizontal and vertical parts.

First: the line consists of straight parts.

Tick Style Properties

Tick Style: Each calculated point of a curve, can be displayed by a special
marker. Select here the desired marker.

Min. Distance (pixels): To prevent markers from being drawn on top of each
other, you can set the minimum distance between markers. Points that
are to close to a previous marker are not drawn with a marker.

Color: Select the marker.

Multiplication/Offset: add an optional scaling and offset to the selected
variable before displaying in the plot

m: scale (multiply) the selected variable with this value before plotting.

a: Y-axis offset before scaling

b: Y-axis offset after scaling

Scaling: Scaling can be selected for each curve individually or combined for all
curves.

Shared Y Axes: Select this option to use one Y-axis scale for all curves.

Manual: Fix the scale of the variable by selecting a minimum and maximum
value in the From and To boxes.

Post: During the simulation run, the scale for the variable along the axis is
fixed. When the run is finished or has been interrupted by the user, the
minimal and maximal scale values are automatically updated and the plot
is redrawn to make sure all calculated points are displayed.

Automatic: When a variable reaches the end of the scale, during
simulation, the the minimal and maximal scale values are automatically
updated and the plot is redrawn to make sure all calculated points are
displayed.

Clip to Bounds: When a variable reaches the end of the scale, during
simulation, the the minimal and maximal scale values are automatically
updated and the plot is redrawn to make sure all calculated points are
displayed. When the run is finished or has been interrupted by the user,
the minimal and maximal scale values are automatically updated to show
the plot at maximum scope.

Show Values: Select or de-select this option to show or hide the name and
scale of a curve.

Separate X-Axis: If you want another x-axis than specified in the X-axis tab,
click the Choose button to select the desired variable.

8. Simulator

10820-sim 5.1 Reference Manual

Running a Simulation8.2.5

After specification of the Parameters/Initial Values, the Run Properties and Plot
Properties you can start a simulation run by choosing the appropriate command from
the Simulation menu.

Run: Select the Run command to start or continue a simulation run. Once a
run is started, the Stop command becomes active. The run can be interrupted
by selecting this command.

Stop: Use the Stop command to interrupt a simulation. Once a simulation has
stopped it can be continued by selecting the Start Simulation command.

Clear

All Runs: Select the Clear All Runs command to clear all runs that were
performed, from the graphical screen and from the computer memory.

Last Run: Select the Clear Last Run command to clear the run that was
performed last, from the graphical screen and from memory.

Previous Runs: Select the Clear Previous Runs command to clear all runs,
but the last, from the graphical screen and from memory.

One Step: Use the One Step command to calculate one new simulation point.
Using this command repeatedly, allows you to run a simulation step by step.

Brute Force: Using the Brute Force command, curves are displayed after
complete calculation of a simulation run. This saves time (re)drawing curves
during calculations and therefore considerably speeds up simulation.

Multiple Run: Select the Multiple Run command to start multiple runs needed
for the Time Domain Toolbox. Runs can be interrupted by selecting the Stop
command.

Replay

3D Animation: Any 3D Animation that was performed during a simulation
run, can be quickly replayed using this option.

Real Time 3D Animation: Any 3D animation that was performed during a
simulation run, can be replayed in real time (i.e. frames are skipped if
necessary) using this option.

Read Datafile: Use the Read Data File command to read previously stored

simulation runs from file.

Copy States: With the Copy States command the current independent state

variables can be imported as new initial values. Current state variables are the state
variables at the end of a simulation run or at the point where a simulation run was
interrupted.

8. Simulator

10920-sim 5.1 Reference Manual

Numerical Values8.2.6

In every simulation plot you can inspect the numerical values by selecting the Numerical
Values command of the View menu. The Numerical Values window, can also be popped
up by double clicking the left mouse button, while pointing the mouse at a curve in the
plot.

The Numerical Values window will pop up and display the numerical values of all plotted
variables as a function of time. The last variable shown is always the X-axis variable
(usually time).

The Numerical Values window.

Run Number: The run number indicates the run of which the numerical values
are shown. The highest number indicates the last run simulated. Lower
numbers are used for previous runs. To select another run number, type in
the number of interest or point in the plot at the curve of interest. In the
simulation plot, previous runs are shown with fading colors.

8. Simulator

11020-sim 5.1 Reference Manual

List: The list shows all variables that are shown in the plot and their
corresponding X-values and Y-values. The variable that is currently selected
is pointed out by an arrow in the plot.

Scroll-bar: Use the scroll-bar to change the selected x-axis variable value
(usually time).

Find: With the Find button, the global maximum etc. of the selected variable
can be found. The following functions can be selected:

Global Maximum

Global Minimum

Next Local Maximum

Next Local Minimum

Previous Local Maximum

Previous Local Minimum

Mark: Click the Mark button to store he set of numerical values. If you drag the
scroll-bar to find a new set of values, the relative changes will be displayed as well as
a first order derivative.

Variable Chooser8.2.7

The Variable Chooser can be used to select and inspect any dynamic variable of the
loaded model. The names, kinds, types, values, quantities, units and descriptions of the
variables of the loaded model are listed in right part of the window. The list of dynamic
variables displayed, depends on the selected (sub)model in the left part of this window.
The left part displays the complete model hierarchy.

The Variable Chooser shows all variables of a model.

8. Simulator

11120-sim 5.1 Reference Manual

Items

Model Hierarchy: The model hierarchy shows several keys:

Model: At each level of the hierarchy, submodels can be selected and
inspected. The right part of the window then shows the variables that are
part of that submodel. To see all variables including time, select the top
level of the hierarchy, i.e. the main model listed on top. Click on one of the
variable items (Name, Value, Quantity, Unit, Description, Kind, Arithmetic
Type, Value) to order the variables alphabetically.

Input Probes/Output Probes: In the Frequency Response dialog pairs of input

variables and output variables can be selected for linearization. If input variables
have been selected they are shown under the input probes key. If output
variables have been selected they are shown under the output probes key.

Favorites: variables that are used a lot can be added to the favorites key
for easy use.

Variables: Select the desired variable from the list (use your mouse pointer),
select the desired Unit from the drop down list and click OK to close the
window.

Minimum and Maximum values: If you run a simulation in Debug Mode ,

the minimum and maximum value of every variable is show n.

Unit Selection: If a quantity was assigned to the selected variable with multiple units

(e.g. position -> m , mm , inch , etc.) you can switch units by the unit selection

 at the bottom of the variable list.

Attributes: Variables may bee limited in range or made read only. If so, these limits
are listed in the Attributes.

Expand Vectors/Matrices: Select complete vectors and matrices or only their
elements.

To Matlab: Use the button to export a variable value to Matlab. You
will be asked to enter a Matlab variable. Data will be exchanged between this
Matlab variable and the variable that is selected in 20-sim.

Show Variables: Select the specific kind of variables (Variables, States/Rates,
Alias Variables, Dependent/Algebraic, Hidden Variables, Knots) that should be
displayed in the Variables list.

Actions

If you select a variable in the list and use the right mouse menu several actions can be
performed:

Add to Favorites: add the selected variable to the favorites list.

Add to Input Probes: Add the variable to the list of inputs for linearization. This list is
used in the Frequency Response dialog.

Add to Output Probes: Add the variable to the list of outputs for linearization. This list
is used in the Frequency Response dialog.

Copy: copy the variable value to clipboard.

8. Simulator

11220-sim 5.1 Reference Manual

Copy with Unit: copy the variable value and corresponding value to clipboard.

Copy Specified: Specify the items that should be copied and then copy to clipboard.

Tips

1. All equations in 20-sim are calculated using standard SI-units. You can however
display the results, using whatever Unit you like. In the Variable Chooser, you can
change the unit using the little drop down list just above the Show Variables section.

2. To see global variables, select the top level of the hierarchy, i.e. the main model
listed on top.

3. To quickly find some variables out of the list, add the keyword interesting in the
equation description. In the Variables list, de-select States, Rates, Algebraic Loops,
Dependent States and Dependent Rates. Then only the interesting variables are
shown.

4. When using large models, opening the Variable Chooser may take some time. Use
the General Properties window to set the maximum number of variables that should
be shown.

5. To hide variables from the list, add the keyword hidden in the equation description.
Hidden variables are not visible in the Variable Chooser.

6. When you open the Variables Chooser from a plot, it will also show the parameters
of a model or submodel, to allow parameters to be plotted.

8. Simulator

11320-sim 5.1 Reference Manual

Debugging8.2.8

20-sim has various tool to help you to pinpoint and resolve problems that may occur
during a simulation.

Switch to Debug Mode: 20-sim is operating in Debug Mode when you see the

Debug Mode button . If your Simulator or Editor is in Fast Mode click
on the button to change to Debug Mode.

Recompile your model: In the editor select Check Complete Model from the Model

menu. This will recompile your model in Debug mode and show a maximum of
warnings. If any warning looks suspicious, solve this first.

Breakpoints: Set breakpoints to monitor time or conditions between variables.

Run to the breakpoint: Use the Run command from the Simulation menu to run
the simulation to a breakpoint. As soon as the breakpoint has been reached,
the simulation will halt. The Output tab at the bottom of the Simulator will display
which breakpoint was active.

Simulate Step-by-Step: Use the command One Step from the Simulation menu to
simulate do one simulation step for the complete model.

Inspect the Results: After each step, open the Variable Chooser to inspect the

various variables of the model. You can also switch to the Editor to inspect results
at model level:

Submodels: Select a specific submodel and choose parameters or variables to
inspect the parameters and variables of that submodel.

Equation submodels: Put the mouse pointer on top of an equation and point
to a variable or parameter of interest. A box will appear, showing the
numerical value associated with that variable or parameter.

Use the mouse pointer to inspect numerical values.

Graphical submodels: Put the mouse pointer on top of a signal, bond or
connection. A box will appear, showing the numerical value associated with that
signal, bond or connection.

8. Simulator

11420-sim 5.1 Reference Manual

Use the mouse pointer to inspect numerical values.

Breakpoints8.2.9

20-sim allows you define stops in a simulation called breakpoints. You can set
breakpoints using the Breakpoint Editor. This editor can be opened by selecting the
Breakpoints command from the Properties menu in the Simulator.

Setting Breakpoints.

You can run a simulation from breakpoint to breakpoint, using the Continue command
from the Simulation menu.

Breakpoints are useful when problems occur during simulation. By defining an
appropriate breakpoint and using the Run command, you can run a simulation until the
point where the problem occurs. You can continue the simulation using single steps or
just running it again.

8. Simulator

11520-sim 5.1 Reference Manual

Items

Add/Delete: Use the Add and Delete buttons to add or delete breakpoints.
When you add a breakpoint, an editor will be opened to enter the breakpoint
conditions.

Breakpoints: The Breakpoints list shows the entered breakpoints.

Enter the ... skip before stopping: A breakpoint may occur more than once
before it should stop the simulation run. Enter here the number of times to
skip the breakpoint.

When: A breakpoint may occur more than once during a simulation run. With
this option you can select the breakpoint to be active only once or always.

Active: Use this option to make a breakpoint effective or not.

Edit Condition: When a breakpoint is selected in the breakpoints list, you can
edit it, using the Edit Condition button. This will open an editor which helps
you to enter the breakpoint condition.

Import: Import breakpoints from another model.

Note

Breakpoints are only active when 20-sim is operating in Debug Mode!

New Simulation Plot8.2.10

You can open additional plots by selecting the New Plot Window command from the View
menu of the simulator. Or hover your mouse on top of the Plot Windows item in the
Simulator tree and use your right mouse menu.

You can open additional plots in 20-sim.

Every plot will have a menu bar and buttons to allow you to enter the settings for the
plot and running a simulation.

8. Simulator

11620-sim 5.1 Reference Manual

New 3D Animation Plot8.2.11

You can open additional 3D Animations by selecting the New 3D Animation Window
command from the View menu of the simulator.

You can open additional plots in 20-sim.

Every 3D Animation will have a menu bar and buttons to allow you to enter the settings
for the plot and running a simulation. More information on 3D animation can be found in
the 3D Animation Toolbox.

Arrange Plots8.2.12

A Plot Window can contain multiple plots with multiple curves. It can also contain a mix
of curve plots and 3D animation plots.

Change the plot window layout

By default, 20-sim will auto-arrange plots row-wise, then column-wise. It is possible to
change the tile options to:

Tile Horizontal

Tile Vertical

Strip Chart

Strip Chart is a special version of Tile Vertical with a common X-axis for all plots.

To change the tile options, right-click on the plot window in the Plot Windows tree and
select the menu Tile Plots.

8. Simulator

11720-sim 5.1 Reference Manual

Change the plot tile options

Reorder plots and curves

To change the order of plots within a plot window, you can drag-drop plots in the tree. It
is also possible to move a plot from one plot window to another in this way.
Moving curves within plots and between plots is also possible via drag-drop.

8. Simulator

11820-sim 5.1 Reference Manual

Resample Curves8.2.13

Select the Resample Curves command from the View menu to sample a simulation run
with a fixed sample time. This is useful if you want to use your simulation results in other
programs that need data with a fixed time step. An example is given below where a
curve (red dots) is shown that is simulated with a variable step integration method.
Resampling with a sample time of 0.1 s will result in a curve with only the blue dots.

Use the Resample Curves command to get equidistant timing in the plot.

Selection of the Resample Curves command of the View menu pops up the Resample
Curves dialog. You can enter the amount of data that you want to resample and the
sample time or frequency.

8. Simulator

11920-sim 5.1 Reference Manual

The Resample Curves dialog.

Note

To get simulation data with a fixed time step, using a fixed step integration method is not
enough, because this data may contain additional steps generated by time or state
events. Only the Resample Curves command will guarantee fixed time step
data!

Copy States8.2.14

To get the same model behavior, compared to the end of the previous run, we have to
copy the states of a model to the initial values.

When you use the Copy States command of the Simulation menu, 20-sim overwrites
the initial values of the functions ddt, int, limint and resint with their current output
states. This can be done at the end of a simulation run or at any point where a
simulation run was interrupted.

Tip 1

You can reset the initial values to zero by using the Reset Initials command from the
Simulation menu.

Tip 2

For some models, behavior at some operating point or "steady state" is of interest. Use
the Copy States command to create simulation that directly starts at working level:

8. Simulator

12020-sim 5.1 Reference Manual

1. Run a simulation from t = 0 [s] until the operating point is reached. Use the
Copy States command to store the states as new initial values. Now save the
experiment using some special name.

2. Now each time you open this experiment, simulations directly start at
operating point.

States

Consider the following first order linear model:

This model can be described by the dynamic equation:

output = int(0) + int(f(input,output))
with:

int(0) = the initial value of the integral
f(input,output) = input - K*output

In more general terms this equation can also be described as:

state = int(0) + int(rate)
rate = f(input, state)

When we start to simulate this model at t = 0 [s] the value of the integral is zero. The
state is therefore equal to the initial value int(0):

state(0) = int(0)

At the end of a simulation, the integral may be unequal to zero. The state is therefore
equal to:

state(end) = int(0) + int(rate(end)).

In other words, the value of the state is characteristic for the behavior of the model. To
start a new simulation with the same behavior, we have to change the initial value to:

int(0) = state(end)

This is valid for all dynamic models: The states of a model are characteristic for its
behavior. To get the same behavior, compared to the end of a previous run, we have to
copy the states to the initial values.

8. Simulator

12120-sim 5.1 Reference Manual

Reset Initial Values8.2.15

Initial Values define the starting point of any simulation. You can reset the initial values
to zero by using the Reset Initials command from the Simulation menu.

Speeding Up Simulations8.2.16

Debug Mode and Fast Mode

By default, 20-sim models are simulated in the debug mode, which is indicated by the

Debug Mode button at the left top of the Simulator. In the Debug Mode the Simulator, checks

on divisions by zero and all other kinds of problems and gives proper w arnings w hen something goes

w rong. This is very help for debugging a model but slow dow n the speed of the Simulator considerably.

If your model runs f ine you can change the Debug Mode button to Fast Mode . Now 20-sim

w ill use all tricks to give you the highest simulation speed possible.

Settings

In the Editor you can click Settings - Model - Processing to open the General
Properties and see the checks and settings for the Debug Mode and Fast Mode.
Changing these settings is only recommended for expert users!

In the Editor you can click Settings - Model - Simulator to change the instruction set
used by the CPU during simulation in Fast Mode. Changing this setting is only
recommended for expert users!

Exporting Simulations8.2.17

There are several methods to export simulation results:

1. Export Plot to Clipboard or File.

2. Export Experiment To Clipboard.

3. Export Data to File.

Export to Clipboard or File

From the File menu, you can choose Export Plot to MetaFile or Export Plot to Clipboard to
export a drawing of the simulation plot.

Export High Resolution Plot to Clipboard or File

Simulation plots can be very dense. To limit the file size, by default not all details are
exported to clipboard or to file. If you need a detailed plot, from the File menu, you can
choose Export High Resolution Plot to Clipboard or Bitmap. Another option is to use the
right mouse menu, when the mouse on top of a plot and select High Resolution Export.

8. Simulator

12220-sim 5.1 Reference Manual

Export Experiment To Clipboard.

From the File menu, you can choose Export Experiment to Clipboard to export all plot
settings. A dialog will be opened asking you to specify the settings that should be copied.
You can select:

Parameters

Initial Values

Plot Specifications

Run Specifications

Multiple Run Specifications

Export Data Specifications

BreakPoints

Export Data to File

From the File menu, you can choose Save Data To File to export the plotted values to a
data file. A file dialog window will pop up asking you to enter a filename. You can choose
from the following file formats:

Comma Separated File (*.csv): This is the default format and can be used for
exporting data to spreadheet programs such as Microsoft Excel or Open Office Calc.

20-sim data file (*.n): This is the standard 20-sim format.

Data Files (*.dat): The standard ANSI format for data files.

Tip

You can use the Export Data To File command to store simulation results of time
consuming simulations. For later use you can use the Import From Data File command to
read the result from file.

Importing Simulations8.2.18

There are several methods to import simulation results:

1. Import experiment.

2. Import simulation data.

Export Plot Settings

From the File menu, you can choose Import Experiment to import the simulation settings
from another model. The setting contain all the necessary information that you need to
define a simulation:

parameters

run porperties

plot properties

...

Import Data File

From the File menu, you can choose Import Data From File to import a previously saved
simulation plot. A window will pop up allowing you to specify the filename and variables
that should be plotted.

8. Simulator

12320-sim 5.1 Reference Manual

Import data from file.

If the file contains a header describing the variables inside, they will be shown in the
variables dialog.

Filename: You can select an existing filename using the browse button or type
one. Data can be read as text file or as binary format.

Read Header: Select this button if you want extra information (variable names
etc.) to be read from the data file.

Variables: The variables box shows the number of columns that were found in
the data file. Each column must be matched with a variable that is shown in
the plot. Click with the mouse on a column number to select it. Then click the
Match Variable button. This opens a Variable Chooser in which you can select
a variable. When a header was used when storing the data file, this
matching is done automatically.

Match Variable: Use this button to select a matching variable for each column
in the variables box.

Plot Variables: Use the Delete button to delete a selected variable

Plot Variables: Use this button to put the same variables as shown in the plot
into the columns of the variables box.

Up/Down: Use the Up and Down buttons to change the order of the variables
shown in the list.

8. Simulator

12420-sim 5.1 Reference Manual

Tip

You can use the Export Data To File command to store simulation results of time
consuming simulations. For later use you can use the Import From Data File command to
read the result from file.

Full Screen Mode8.2.19

You can show simulation plots and 3D Animations in full screen mode.

1. Put your mouse on top of a plot or animation.

2. From the right mouse menu, select Toggle Full Screen.

To remove the full screen mode:

1. From the right mouse menu, select Toggle Full Screen or press the
Escape key.

Keyboard Shortcuts8.2.20

This is a list of keyboard shortcuts in simulator.

Navigation

Command Shortcut

Save 20-sim project Ctrl + S

Current Page

Command Shortcut

Zoom in F4

Zoom normal F5

Zoom out F6

Zoom to fit F7

Control

Command Shortcut

Clear Simulation Ctrl + E

Next Camera Ctrl + A

Process Frequency Response Ctrl + F

Replay Simulation Ctrl + Q

Replay Datafile Ctrl + D

Run Simulation Ctrl + R

Stop Simulation Ctrl + T

One Step Simulation Ctrl + W

Brute Force Simulation Ctrl + Shift + R

Dynamic Error Budgetting Ctrl + B

8. Simulator

12520-sim 5.1 Reference Manual

Help

Command Shortcut

Help Contents F1

Training Simulators8.2.21

Training simulators are simulation models that run real-time and can be used to train
people. 20-sim has some features that allow you to turn 20-sim into a training simulator.
The example model KnuckleBoomCraneKeyboard will show you how it works:

1.Go to the Examples Library and look into the 3D Mechanics folder or in the search bar
enter KnuckleBoomCraneKeyboard. The Find tab will show the results. Click on the link
to jump to the model.

2.Drag and drop the model to the editor. The keyboard inputs are shown in the model.
3.Run a simulation and use the keyboard inputs to move the crane.

Developing your own training simulator is not difficult. All you have to do is:

1. Develop a model, that will mimic your training system.

2. Allow manual inputs, by keyboard or joystick. The library of 20-sim contains special
blocks for keyboard input or joystick input which you can use.

3. Run the simulation in real-time.

4. Use 3D animations to show views of your system.

5. Run the 3D-Animations in full screen.

Tips

Use transparency to show or hide parts of your 3D animation.

8. Simulator

12620-sim 5.1 Reference Manual

8.3 Run Properties

Simulator Tab8.3.1

The Simulator tab is the first tab of the Run Properties Editor. This tab shows the general
simulation settings:

The 20-sim Run Properties.

Items

Timing (seconds):

Start: the start time of a simulation run (default: 0)

Finish: the finish time of a simulation run (default: 10)

Event delta: the accuracy for spotting state events. This option can only be

selected if a model contains state events.

8. Simulator

12720-sim 5.1 Reference Manual

Integration Methods: 8 numerical integration methods are available, each with
its own parameters. The parameters can be changed by clicking the Set
Properties button or selecting the tab on top of the editor.

Euler

Backward Euler

Adams-Bashford 2

Runge Kutta 2

Runge-Kutta 4

Runge Kutta Dormand Prince 8

Runge-Kutta-Fehlberg

Vode Adams

Backward Differentiation Formula (BDF)

Modified Backward Differentiation Formula (MBDF)

Output After Each: This is the plot interval. Use this option to generate output
only after each equidistant time interval has passed. For each interval, the
exact simulation point is used (if available) or the nearest point is used (if not
available, for example when using variable step algorithms).

Related Options

BreakPoints: Click this button to open the Breakpoints Editor.

General Properties: Click this button to open the General Properties Editor.

More: Click this button to set advanced options:

Endless: Select this option if you do not want the simulation to stop.

Attempting Real-Time simulation: Select this option if you want the
simulation to run as fast as the real time. You can choose the option
Catch up with lost time and set the Maximum allowed lost time.

Tips

Use Attempting Real-Time simulation when you have keyboard input or joystick input
in your model.

8. Simulator

12820-sim 5.1 Reference Manual

Discrete System Tab8.3.2

The Run Properties Editor can be used to edit the sample frequency of a discrete-time
system in the model. 20-sim automatically detects the existence of discrete systems in a
model. For each discrete system, one extra tab (Discrete System) is shown in the Run
Properties Editor.

The Discrete Systems tab.

Items

Identified with: Each discrete system in a model is assigned a unique identifier.
20-sim detects discrete systems by looking for discrete functions and
variables:

1. sample

2. hold

3. next

4. previous

5. sampletime

When a function has been found, the elements of the corresponding discrete
system are identified by propagation of the equations. In order of appearance in
the model, the discrete system is assigned a unique identifier:

1. sample -> the variable that is assigned to the output of the sample function.

2. hold -> the variable that is assigned to the output of the hold function.

3. previous -> the discrete state corresponding with the previous function.

8. Simulator

12920-sim 5.1 Reference Manual

4. next -> the discrete state corresponding with the next function.

5. sampletime -> the variable that is equal to the sampletime.

Timing (Standard): Each discrete system has a default sample frequency of 1
Hz. You can change this frequency to any desired value:

Discrete Time Interval (s): The sample interval (in s) of the discrete system

Frequency (Hz): The sample frequency (in Hz) of the discrete system.

Timing (Advanced): For discrete-time control loops that interact with physical
continuous-time systems through sensors (analog to digital) and actuators
(digital to analog) the specific timing is important. Click the Advanced button to
specify this timing.

Advanced Discrete System Settings8.3.3

The Advanced Discrete System Settings dialog can be used to set the timing for discrete-
time control loops that interact with physical continuous-time systems through sensors
(analog to digital) and actuators (digital to analog). You can open the dialog by:

1. In the Simulator from the Properties menu, click Run to open the Run
Properties Editor.

2. Select the Discrete System tab and click the Advanced Settings button.

In the Advanced Discrete System Settings dialog you can specify the timing of control
loops with a fixed sampletime (click Global Time) and control loops with a variable
sampletime (click Previous Sample Event Time).

Fixed Sampletime

When you click the Global Time option the following window appears.

8. Simulator

13020-sim 5.1 Reference Manual

Advanced settings for discrete systems.

The window shows the timing diagram for a fixed sampletime control loop. The loops
starts with an clock interrupt from a timer. It will take some time before the interrupt is
handled and generally some calculations are performed before the sensor signals
(sample) are read. This delay is represented by the sample delay which is divided in a
fixed time and a variable time part. The control loop will proceed and perform the
necessary calculations to generate the actuator output (hold). These calculations will
take some time, which is represented by the fixed time hold delay. After this action the
control loops will come to a halt until the next clock interrupt is generated.

If the control loops is properly designed it will know the task it is performing when a
clock interrupt is getting in. E.g. if it is still calculating the actuator outputs when clock
interrupt is getting in, an error will be generated, specifying that the sampletime is too
small to perform all necessary calculations.

Items

Sample Delay:

Fixed: Enter the fixed sample delay here.

Variable: Enter the variable delay here. You can chose from two
distributions:

Uniform: The delay is uniformly distributed between the given minimum
and maximum.

Gaussian: The delay has a given mean and standard deviation.

Hold Delay: Enter the fixed hold delay here.

Action on Sample Missed: An error will be generated when the total delay is
larger than the sampletime or when the total delay is negative.

8. Simulator

13120-sim 5.1 Reference Manual

Variable Sampletime

When you click the Previous Sample Event Time option the following window
appears.

Variable sample time.

The window above shows the timing diagram for a variable sampletime control loop. It
performs the same tasks as a fixed sampletime control loop, but will start the next loop
as soon as the previous loop was finished. The variable sampletime control loop does
not use a clock interrupt!

Items

Sample Delay:

Fixed: Enter the fixed sample delay here.

Variable: Enter the variable delay here. You can chose from two distributions:

Uniform: The delay is uniformly distributed between the given minimum and
maximum.

Gaussian: The delay has a given mean and standard deviation.

Hold Delay: Enter the fixed hold delay here.

Action on Sample Missed: Only an error will be generated when the total delay is
negative.

8. Simulator

13220-sim 5.1 Reference Manual

Algebraic Relations Solver Tab8.3.4

The Algebraic Relations Solver tab of the Run Properties Editor is visible when your
model contains algebraic loops that could not be solved during processing. In the tab,
you can specify the tolerance of the algebraic solver algorithm. For each model
evaluation, this solver tries to solve the algebraic loop relations, while standard
integration algorithms, such as Euler, can be use to evaluate the model equations.

The Algebraic Relations Solver tab.

Euler8.3.5

This is the explicit Euler method. It is a single-step explicit method, which needs one
model calculation per time step. The size of the time step is fixed. This simulation
algorithm requires 1 parameter to be specified:

Step Size: the step time of the integration algorithm (default: 0.01).

Backward Euler8.3.6

This is a combination of the implicit Backward Euler method and the explicit Forward
Euler method. It is a single-step implicit method, which needs one model calculation per
time step. With the parameter alpha the combination is defined:

 alpha combination

 -1 100% Forward Euler explicit

 0 50% Forward Euler, 50 % Backward Euler explicit

 1 100% Backward Euler implicit

8. Simulator

13320-sim 5.1 Reference Manual

Step Size: the step time of the integration algorithm (default: 0.01).

Relative Tolerance: Relative tolerance for the rootfinding in the Backward Euler
method.

Alpha: Choose between Forward Euler (alpha = -1), Trapezoidal (alpha = 0)
and Backward Euler (alpha = 1).

Adams-Bashford8.3.7

This is the trapezoidal rule. It is a single-step explicit method, which needs only two
model calculations per time step. The size of the time step is fixed. This simulation
algorithm requires 1 parameter to be specified:

Step Size: the step time of the integration algorithm (default: 0.1).

Runge Kutta 28.3.8

This is an explicit single-step second-order derivatives method which needs 2 model
calculations per time step. It is the simple form of the classical Runge-Kutta method. The
size of the time step is fixed. This simulation algorithm requires 1 parameter to be
specified:

Step Size: the step time of the integration algorithm (default: 0.01).

Runge-Kutta 48.3.9

This is an explicit single-step fourth-order derivatives method which needs 4 model
calculations per time step. It is the classical Runge-Kutta method. The size of the time
step is fixed. This simulation algorithm requires 1 parameter to be specified:

Step Size: the step time of the integration algorithm (default: 0.01).

Runge-Kutta-Fehlberg8.3.10

This is an explicit variable-step 4/5-order derivatives method, primarily designed to
solve non-stiff and mildly stiff differential equations. Because the method has very low
overhead costs, it will usually result in the least expensive integration when solving
problems requiring a modest amount of accuracy and having equations that are not
costly to evaluate. This simulation algorithm has 4 parameters:

Integration Error (required)

Absolute: The absolute integration error, valid for every state variable
(default: 1e-6).

Relative: The relative integration error, valid for every state variable
(default: 1e-6).

Step Size (not required)

Initial: The step size for the first simulation step (default: 0.01).

Maximum: The maximum size of a simulation step (default: 1).

8. Simulator

13420-sim 5.1 Reference Manual

Runge Kutta Dormand Prince 88.3.11

This is an explicit variable-step 8-order derivatives method, primarily designed to solve
non-stiff and stiff differential equations. This simulation algorithm has 4 parameters:

Integration Error (required)

Absolute: The absolute integration error, valid for every state variable
(default: 1e-6).

Relative: The relative integration error, valid for every state variable
(default: 1e-6).

Step Size (not required)

Initial: The step size for the first simulation step (default: 0.01).

Maximum: The maximum size of a simulation step (default: 1).

Vode Adams8.3.12

This is the explicit variable-step stiff integration algorithm of Cohen and Hindmarsh. This
method is specially suited for explicit models that combine high and low frequency
vibrations with little damping (so called "stiff" models). This simulation algorithm has 4
parameters:

Integration Error (required)

Absolute: The absolute integration error, valid for every state variable
(default: 1e-6).

Relative: The relative integration error, valid for every state variable
(default: 1e-6).

Maximum Step Size (not required): The maximum size of a simulation step
(default: 1).

Multistep Method (required): The variable step integration method that is used.
A BDF method is default and best suited for stiff systems.

Iteration Type (required): The method used for iteration loops (algebraic
relations). The Newton method is default and best suited for stiff systems.

Backward Differentiation Formula (BDF)8.3.13

This is an implicit multi-step variable-order first-order derivatives method. It is Gear's
backward differentiation formula, which is up to fifth order, so 1 to 5 model calculations
are needed per time step. The code of the Dassl library is used. It is suitable for models
having derivative causalities and/or algebraic loops. This simulation algorithm has 4
parameters:

Integration Error (required)

Absolute: The absolute integration error, valid for every state variable
(default: 1e-5).

Relative: The relative integration error, valid for every state variable
(default: 1e-5).

8. Simulator

13520-sim 5.1 Reference Manual

Step Size (not required)

Initial: The step size for the first simulation step (default: 0.1).

Maximum: The maximum size of a simulation step (default: 1).

Note

Undamped models are not simulated properly with this method.

The default values are suitable for problems with time constants of order of
magnitude of 0.1 to 1. Initial Step Size and Maximal Step Size influence the
behavior of the method and should be tuned with care.

Modified Backward Differentiation Formula
(MBDF)

8.3.14

This is an implicit multi-step variable-order first-order derivatives method. It is Gear's
backward differentiation formula, which is up to fifth order, so 1 to 5 model calculations
are needed per time step. The code of the Dassl library is used. It is suitable for models
having derivative causalities and/or algebraic loops. The MBDF allows the use of
constraint variables when proper initial values are used.

This simulation algorithm has 4 parameters:

Integration Error (required)

Absolute: The absolute integration error, valid for every state variable
(default: 1e-5).

Relative: The relative integration error, valid for every state variable
(default: 1e-5).

Step Size (not required)

Initial: The step size for the first simulation step (default: 0.1).

Maximum: The maximum size of a simulation step (default: 1).

Note

This is the only method that supports the use of the constraint function.

The MeBDFi method cannot handle contraints that do not influence the model.
Therefore 20-sim will check at the beginning of the simulation if contraints have been
properly defined. The contraints that do not influence the model are set to zero
automatically. If you do not want to use this check, deselect the Smart Contraint

Solving option.

Undamped models are not simulated properly with this method.

The default values are suitable for problems with time constants of order of
magnitude of 0.1 to 1. Initial Step Size and Maximal Step Size influence the
behavior of the method and should be tuned with care.

9. Language Reference

13620-sim 5.1 Reference Manual

9 Language Reference

9.1 Introduction

Language Reference9.1.1

Every (sub)model has an implementation. This can be a composition of lower level
submodels, which themselves are composed of lower level submodels etc. At the bottom
of this hierarchy the submodels consist of a set of mathematical equations (equation
submodel). These submodels are therefore known as equation submodels.

All equations used in 20-sim are described in the language SIDOPS+. A simple equation

model written in SIDOPS+ is shown below:

9. Language Reference

13720-sim 5.1 Reference Manual

A simple equation model in 20-sim.

You will find out that in most cases the SIDOPS+ language is equal to standard

mathematical notation. Regardless of your modeling background, you can learn quickly

to build your own equation models. 20-sim comes with over 80 built-in functions that do

most of the work for you. To learn more about equation models, have a look at the

following sections:

1. Model Layout

2. Keywords (Constants, Parameters, Variables, Equations)

3. Data Types

4. Operators

5. Functions

6. Statements

Equation Model Layout9.1.2

The general layout of an equation model is:

constants

// enter your constants here, for a description see constants

parameters

// enter your parameters here, for a description see parameters

variables

9. Language Reference

13820-sim 5.1 Reference Manual

// enter your variables here, for a description see variables

initialequations

// enter your initial equations here, for a description see initialequations

code

// enter your equations here, for a description see code

equations

// enter your equations here, for a description see equations

finalequations

// enter your final equations here, for a description see finalequations

At least one equations or one code section is required. The other sections are optional.

Equations9.1.3

The body of an equation model consists of the keywords initialequations, code, equations
and finalequations, each followed by one or more equations. Equations are relations
between variables indicated by an equal (=) sign:

y = x + 1;
z + y = sin(time*2*pi*f);
g = ddt(g + z, g_initial);

An equation can be combination of operators, functions, power-port variables, inputs and
outputs (port names), constants, parameters and variables. Equations in 20-sim follow
the standard mathematical notation.

Rules

The following rules must be obeyed when specifying equations:

1. An equation may span more than one line but must always be finished by a
semicolon (;).

2. Parentheses () may be used to indicate grouping as in ordinary mathematical
notation, e.g.
u = sin(time*f*2*3.1415 + (a + b)/c);

4. Extensions like .e or .f are used to indicate the effort and the flow variables of
powerports. These extensions are not allowed for any other type of identifier (i.e.
inputs, outputs, constants, parameters or variables).

5. 20-sim has some predefined variables which have a special meaning.

6. Each variable must be assigned a value exactly once.

7. Errors are shown automatically after checking in the Process tab. Double clicking on
the error text will make 20-sim jump to the error, which is then colored red.

Execution Order

1. Equations within 20-sim may be entered in random order. During compilation, 20-
sim will automatically try to rewrite equations into a correct order of execution.

9. Language Reference

13920-sim 5.1 Reference Manual

2. Some integration algorithms do more calculations before generating the next output
value. These calculations are called minor steps, the output generation is called a
major step. During a minor step, all model equations are executed. In most cases
you will not notice this because only the results of the major step are shown in the
simulator, but in some cases this may cause unwanted results.

Equation Sections9.1.4

In 20-sim equations can be divided in four sections: initialequations, equations, code and
finalequations.

Initialequations

The initialequations section should contain all equations that should calculated before the
simulation run. The equations are calculated once. The equations in this section form a
code block, i.e. the equations themselves and the order of the equations are not
rewritten during compilation and executed sequentially. The results of the initialequations
section are not shown in the simulator plots and can therefore not be inspected in the
Numerical Values window!

Example

The initialequations section is used in the library model Spring Damper (stiffness):

parameters
real k = 10.0 {N/m};
real m = 1.0 {kg};
real b = 0.05 {};

variables
real x {m};
real d {damping,N.s/m};

initialequations
d = 2*b*sqrt(k*m);

equations
x = int (p.v);
p.F = k * x + d*p.v;

As you can see in the initialequations section the damping d is calculated out of the

relative damping b, mass m and stiffness k.

Equations

The equations section contains all standard equations. They do not have to be entered in
a sequential form. They are rewritten during compilation to get the correct order of
execution. The resulting code is calculated every simulation step. You can see the use of
the equations section in the example above.

Code

The code section contains a code block. A code block contains all equations that must be
calculated sequentially, i.e. the equations themselves and the order of the equations are
not rewritten during compilation. The resulting sequential code is calculated every
simulation step.

Example

The code section is used in the library model Spring Damper (stiffness):

9. Language Reference

14020-sim 5.1 Reference Manual

parameters
real initial = 0.0;

variables
real prev, peak;

initialequations
peak = initial;
prev = 0;
output = initial;

code
if major then

peak = max([abs(input), peak]);
if (input > 0 and prev < 0) or (input < 0 and prev > 0) then

output = peak;
peak = 0;

end;
prev = input;

end;

Finalequations

The finalequations section should contain all equations that should be calculated after a
simulation run. The equations are calculated once. The equations in this section form a
code block, i.e. the equations themselves and the order of the equations are not
rewritten during compilation and executed sequentially. The results of the finalequations
section are not shown in the simulator plots and can therefore not be inspected in the
Numerical Values window!

Example

The finalequations section is used in the library model DoMatlab-Final:

parameters
string command = '';

finalequations
// send the command to the workspace
doMatlab (command);

As you see you can give the parameter command any value, which is then exported to

Matlab at the end of the simulation run.

Using Port Names9.1.5

To use port variables in equations, you must use the port names that are defined in the
Interface Editor.

Signal Ports

For signal ports, you can directly use the port names. The example below, shows the
library model Differentiate-SVF.emx. In the Interface Editor, two ports are defined with
the names input and output. In the equations these names are used.

9. Language Reference

14120-sim 5.1 Reference Manual

The Interface tab shows the contents of the Interface Editor.

Power ports

Power ports describe the flow of power and are always characterized by two variables:
the power-port variables. For bond graph ports the extensions .e and .f are used to
indicate these variables. For iconic diagram ports many aliases are known, for example
.u and .i for the electric domain. You can use these power-port variables in equations by
typing the port name followed by a dot and the extension.

You can always find the correct extensions by opening the Interface Editor and selecting
a port. The example below, shows the library model Friction.emx. In the Interface
Editor, one power port is defined with the name p. As shown, the correct description of
both variables is p.v and p.F.

Double clicking in the Interface tab will open the Interface Editor.

The equation description of this model (see below) shows the use of the variables p.v
and p.F.

9. Language Reference

14220-sim 5.1 Reference Manual

 In the equations the port variables p.F and p.v are used.

Reserved Words9.1.6

While entering equations, the 20-sim Editor will automatically detect reserved words. You
can recognize reserved words, because they will be shown with a different color:

element color

keywords black

data types black

functions blue

statements black

predefined variables blue

20-sim knows the following reserved words:

9. Language Reference

14320-sim 5.1 Reference Manual

- , * , .* , ./ , .^ , / , ^ , + , < , <= , <> , == , > , >= , abs, adjoint, Adjoint, algebraic,

and, antisym, arccos, arccosh, arcsin, arcsinh, arctan, arctanh, atan2, bitand, bitclear,

bitcmp, bitget, bitinv, bitor, bitset, bitshift, bitshiftright, bitxor, boolean, by, ceil, code,

collect, columns, constants, constraint, cos, cosh, cross, data, ddt, delta, det, diag,

direct, discrete, div, dll, dlldynamic, dly, do, doMatlab, effortincausality, else, end, equal,

equations, event, eventdown, eventup, exp, exp10, exp2, export, externals, eye, false,

finalequations, first, floor, flowincausality, for, frequencyevent, from, fromMatlab, gauss,

global, hidden, hold, homogeneous, if, import, initialequations, inner, int, integer,

interesting, inverse, inverseH, limint, limit, log, log10, log2, major, max, min, mod,

msum, mul, next, nonlinear, norm, norminf, not, or, parameters, previous, ramp, ran,

random, real, realtime, repeat, resint, return, round, rows, sample, sampletime,

settoolsetting, sign, sin, sinh, skew, sqr, sqrt, step, stopsimulation, string, sum, sym,

table, tan, tanh, tdelay, then, tilde, time, timeevent, to, toMatlab, trace, transpose, true,

trunc, type, types, until, variables, warning, while, xor

White Space9.1.7

Like C and other programming languages, 20-sim does not recognize white space
(spaces and tabs, carriage returns) except in a string. We recommend that you use
white space to make your model easier to follow. For example, the following model is
dense and difficult to read:

variables
real y,u;

equations
y = step(1);
u = -step(1);
if time > 5 then y = -ramp(1); u = ramp(1);
else y = ramp(1); u = -ramp(1); end;

Adding white space with indentation makes the same code much easier to read:

variables
real y;
real u;

equations
y = step(1);
u = -step(1);

if time > 5 then

y = -ramp(1);
u = ramp(1);

else
y = ramp(1);
u = -ramp(1);

end;

9. Language Reference

14420-sim 5.1 Reference Manual

Writing Comments9.1.8

20-sim gives you several options to create comments in a model. You can use each
option add explanatory text to your model or to exclude ("comment out") certain parts
of your model for testing and debugging purposes.

Block Quotes ("...")

You can enclose a block of text between quotes ("). This method makes it easy to write
a comment over multiple lines:

"This is a line of sample code that shows you how to
use the 20-sim comments"

Programming (/*...*/)
You can enclose a block of text between the constructs /* and */. This method is used
often in programming and also allows to write a comment over multiple lines:

/*This is a line of sample code that shows you how to
use the 20-sim comments*/

Single Line Comment (//...)

A option often used in programming is to insert // into a line. The compiler ignores
everything to the right of the double slashes on that line only.

// This is a line of sample code showing the
// 20-sim comments.

You can begin comments anywhere in a model. 20-sim will automatically recognize
comments and color it green.

State and Time Events9.1.9

Normally an integration algorithm uses a fixed time step or a variable step, depending
only on the model dynamics. In some cases, the algorithm is forced to perform
calculations at a specific time.

Time Events

The most simple form of forced calculation is calculation at a specific time. This is called
a time event. The following functions cause time events.

function description

timeevent Forces the integration algorithm perform a calculation at a specific
time.

frequencyevent Forces the integration algorithm perform a calculation at a specific
frequency.

sample , hold, next,

previous

These functions introduce a discrete system in a model. A discrete
system forces the integration algorithm to perform calculations
every sampletime.

9. Language Reference

14520-sim 5.1 Reference Manual

State Events

Sometimes the integration algorithm must iterate to find the next calculation step. This is
called a state event. The following functions cause state events.

function description

event Forces the integration algorithm to find the exact point where the
input crosses zero.

eventup Forces the integration algorithm to find the exact point where the
input crosses zero from a negative to a positive value.

eventdown Forces the integration algorithm to find the exact point where the
input crosses zero from a positive to a negative value.

limint Forces the integration algorithm to find the exact point where the
output become larger or smaller than the minimum and maximum
parameters.

resint Forces the integration algorithm to find the exact point where the
input becomes zero.

To find the exact point where simulation should be performed iteration is used. The
accuracy of the iteration can be set by the event delta parameter in the Run Properties
window.

Using Brackets and Newlines9.1.10

You can use brackets and newlines in various ways to create order in your equations.

Parenthesis ()

Parentheses may be used to indicate grouping as in ordinary mathematical notation,
e.g.:

u = sin(time*f*2*3.1415 + (a + b)/c);

If a lot of parenthesis are used, it may be hard to see the grouping. You can always put
your mouse pointer next to a parenthesis and have the group highlighted.

Square Brackets []

Square Brackets are used to indicated matrix sizes and matrix elements:

9. Language Reference

14620-sim 5.1 Reference Manual

parameters
integer p[6,6] =

[1,0,0,0,0,0;0,2,0,0,0,0;0,0,2,0,0,0;0,0,0,5,0,0;0,1,0,0,5,0;0,1,0,0,0,6];
variables

real v[3];
equations

v = p[4:6,6];

Newlines

Newlines, tabs and white spaces can be used to make your equations more readable.
E.g for the parameter example from above we could also write:

parameters
integer p[6,6]; = [

1,0,0,0,0,0;
0,2,0,0,0,0;
0,0,2,0,0,0;
0,0,0,5,0,0;
0,1,0,0,5,0;
0,1,0,0,0,6
];

9.2 Keywords

Keywords9.2.1

Before the actual equations, three sections can be entered denoted by the keywords
constants, parameters and variables. This is shown in the example below:

constants
real basefrequency = 60;
real pi = 3.14159265;

parameters
real amplitude = 1;

variables
real plot;

equations
plot = amplitude * sin (basefrequency*2*pi * time);

Constants9.2.2

Constants are symbolic representations of numerical quantities that do not change
during or in between simulation runs. Constants must be defined in 20-sim, using the
constants keyword. After the keyword, lines with constant declarations can be entered.
Every line must be finished by a semicolon (;). An example is given below:

constants
real V = 1 {volume, m3}; // the volume of barrel 1
real hidden D = 0.5 {length, m}; // the length of part 1
...

9. Language Reference

14720-sim 5.1 Reference Manual

Types

20-sim currently supports four types of constants: boolean, integer, real and string.
These types must be specified explicitly. The use of the type real is shown in the
example above.

Hidden

To prevent users from inspecting constants, the keyword hidden can be applied. This
keyword should follow the data type.

Constant names

Constant names can consist of characters and underscores. A constant name must
always start with a character. Constant names are case-sensitive. No reserved words
may be used for constants. If a reserved word is used, an error message will pop-up
while checking the model. In the example above the names V and D are used.

Constant Values

It is advised to assign every constant a value. Otherwise 20-sim will assign a default
value (0, false or an empty string), which can easily lead to misinterpretations. Unlike
parameter values, constant values cannot be overridden in the Simulator.

Quantity and Unit

If a constant is known to represent a physical value, you can define the corresponding
quantity and unit. 20-sim will use this information to do a unit check on equations. The
use of quantities and units is optional. In the example above the quantities volume and
length are used with the units m3 and m.

Example

constants
real pi = 3.14159265359;
real two pi = 6.28318530718;
integer i = 10 {length,m}; // vehicle length
integer j = 1 {time,s};

constants

string filename = 'data.txt';
integer i = 1;
real state = 0.0;
boolean t = true, f = false;

Tip

You can easily enter constants by using the Add button in the Equation Editor
Taskbar.

You can easily select quantities and units by using the Units button of the
Equation Editor Taskbar.

Use the 20-sim naming convention for contstant names.

9. Language Reference

14820-sim 5.1 Reference Manual

Predefined Constants9.2.3

Some constants in 20-sim have a predefined value. These constants do not have to be
declared in the constants section of a model. You can add your own predefined constants
in the file Constants.ini in the 20-sim bin-directory.

Standard

pi 3.1415926535897932384626433832795

exp1 2.71828182845904523536028747135266

twopi 6.28318530717958647692528676655901

sqrt2 1.41421356237309504880168872420969

log2 0.6931471805599453094172321214581766

Physics

g_n 9.80665 {m/s2} Standard acceleration of gravity

G 66.7259e-12 {N.m2/kg2} Newtonian constant of gravitation

c_0 299.792458e6 {m/s} Speed of light (vacuum)

mu_0 1.256637061435917295385057
3533118e-6 {H/m}

Permeability (vacuum)

epsilon_0 8.854188e-12 {F/m} Permittivity (vacuum)

h 6.6260755e-34 {J.s} Planck constant

m_p 2.17671e-08 {kg} Planck mass

l_p 1.61605e-35 {m} Planck length

t_p 5.39056e-44 {s} Planck time

e 1.60217733e-19 {C} Elementary charge

R_H 25812.8056 {Ohm} Quantized Hall resistance

mu_B 9.2740154e-24 {J/T} Bohr magneton

mu_N 5.0507866e-27 {J/T} Nuclear magneton

Ry 10973731.534 {1/m} Rydberg constant

a_0 5.29177249e-11 {m} Bohr radius

N_A 6.0221367e+23 {1/mol} Avogadro constant

m_u 1.6605402e-27 {kg} Atomic mass constant

F 96485.309 {C/mol} Faraday constant

k 1.380658e-23 {J/K} Boltzmann constant

sigma 5.67051e-08 {W/m2.K4} Stefan-Boltzmann constant

b 0.002897756 {m.K} Wien constant

R 8.31451 {J/mol.K} Molar gas constant

V_m 0.0224141 {m3/mol} Molar volume (ideal gas)

n_0 2.686763e+25 {1/m3} Loschmidt constant

m_e 9.1093897e-31 {kg} Electron mass

m_p 1.6726231e-27 {kg} Proton mass

m_n 1.6749286e-27 {kg} Neutron mass

9. Language Reference

14920-sim 5.1 Reference Manual

Conversion
Constants

eV 1.60217733e-19 {J}; Electron volt

u 1.6605402e-27 {kg} Atomic mass unit

atm 101325 {Pa} Standard atmosphere

deg 0.017453292519943295769236
9076848861 {rad}

Angular degree

Parameters9.2.4

Parameters are symbolic representations of numerical quantities which can only be
changed after simulation has been stopped. They can therefore be changed in between
of simulation runs, or after the user has (temporarily) stopped the simulation.

Parameters must be defined in 20-sim, using the parameters keyword. After the
keyword, lines with parameter declarations can be entered. Every line must be finished
by a semicolon (;) and may be followed by comment with a description of the
parameter. An example is given below:

parameters
real V = 1 {volume, m3}; // the volume of barrel 1
real hidden D = 0.5 {length, m}; // the length of part 1
real x (range=<-1,1>) = 0.1 {m}; // the position of part x with a

min-max range
real global L = 3.1 {m}; // A global parameter, can be used in

other models, but should be assigned a value only once
real favorite P = 1.1 {V}; // A parameter, that is made

favorite: it will appear in the favorites list for quick selection
...

Change Parameter Values

Parameters can be assigned default values. These values can be changed in the code.
However, a quicker way to change parameter values is to open the Parameters/Initial
Values Editor.This editor will allow you to quickly changes parameter values and run a
simulation.

Types

20-sim currently supports four types of parameters: boolean, integer, real and string.
These types must be specified explicitly. The use of the type real is shown in the
example above.

Hidden

To prevent users from inspecting parameters or decreasing the list of parameters, the
keyword hidden can be applied. This keyword should follow the data type.

Global

To use the same parameter in other submodels, the keyword global can be applied. This
keyword should follow the data type. Note that the keywords oneup and global are
mutually exclusive. Only one can be used.

9. Language Reference

15020-sim 5.1 Reference Manual

OneUp

The keyword oneup should be used after the type (real, boolean, integer) and keyword
hidden and before the name of the parameter. It is used to limit the scope of a
parameter. Note that the keywords oneup and global are mutually exclusive. Only one
can be used.

Favorite

To quickly find a parameter in the Parameters/Initial Values Editor the keyword favorite
can be applied. This keyword should follow the data type.

Parameter Names

Parameter names can consist of characters and underscores. A parameter name must
always start with a character. Parameter names are case-sensitive. No reserved words
may be used for parameters. If a reserved word is used, an error message will pop-up
while checking the model. In the example above the names V and D are used.

Ranges

Right after a parameter name you can enter annotations for the minimum value, range
etc. Examples:

parameters
real V (min=0.1) = 1 {volume, m3}; // the volume of

barrel 1, minimum volume = 0.1 m3
real R (max=100) = 20 {ohm}; // the

resistance, maximum value = 100 ohm
real x (range=<-10,10>) = 0.5 {length, m}; // the position of part

x, range from -10 to 10 m
real D (readonly=true) = 0.1 {m}; // the diameter of the

the tube, readonly

Quantity and Unit

If a parameter is known to represent a physical value, you can define the corresponding
quantity and unit. 20-sim will use this information to do a unit check on equations. The
use of quantities and units is optional. In the example above the quantities volume and
length are used with the units m3 and m.

Comment

If comment is added at the end of the parameter declaration, it is shown in the Variable
Chooser to facilitate the selection between variables.

9. Language Reference

15120-sim 5.1 Reference Manual

Example

parameters
real p1 = 12, p2, state = 1.1;
integer i = 10 {length,m}; // vehicle length
integer j = 1 {time,s};

parameters

string filename = 'data.txt'; // This comment appears as a description in
the Parameters/Initial values editor.

integer i = 1; // Just a parameter
real state; // Initial velocity [m/s]
boolean t = true; // T = true

Tip

You can easily enter parameters by using the Add button in the Equation Editor
Taskbar.

You can easily select quantities and units by using the Units button of the
Equation Editor Taskbar.

Use the 20-sim naming convention for parameter names.

Annotations9.2.5

Introduction

Annotations are properties that can be applied to parameters and variables. Thy have to
be entered between brackets, separated by commas, right after the parameter or
variable name.

Readonly

The readonly property can only be applied to parameters. You can use it to prevent a
parameter value to be changed in the Parameters Editor.

real y (readonly=true) = 20 {kg}; // the mass y, cannot be
changed value in the parameters editor

Ranges

Parameters and Variables can be limited in range or restricted by annotations.

real x (range=<-1,1>) = 0.1 {m}; // the position of part x with a
min-max range

Annotations start (and end with a bracket). Various elements can be included inside the
brackets, separated by semicolons. Annotation have to be placed right after the
parameter name. The following annotations are supported:

min=0
max=10,1
range=<-17,2.345>
range = [0,1]

9. Language Reference

15220-sim 5.1 Reference Manual

range = <,0>

Brackets mean "equal or". So

range = [0,1]

means equal or larger than zero and smaller or equal to 1. If one of the element of a
range is omitted, this means infinity. So

range = [0,]

means equal to zero or larger. Larger than or smaller can also be used. So:

range = <0,1>

means larger than zero and smaller than 1. And

range = <0,>

means larger than zero.

View

Integers can be entered using a decimal, hexadecimal or binary notation. They are by
default, displayed using their decimal notation. You can use the annotations to show an
integer in their hexadecimal or binary notation.

integer x ('view=hex') = 0xE2F3; // the integer is entered in
hexadecimal notation

integer y ('view=hexadecimal');
integer z ('view=binary) = 0b11011;

Note

The ranges are only checked in debug mode.
No spaces are allowed between the brackets.
Readonly does only apply for parameters.

Variables9.2.6

Variables are symbolic representations of numerical quantities that may change during
simulation runs. Variables must be defined in 20-sim, using the variables keyword. After
the keyword, lines with variable declarations can be entered. Every line must be finished
by a semicolon (;). An example is given below:

9. Language Reference

15320-sim 5.1 Reference Manual

variables
real interesting V {volume, m3}; // the volume of barrel 1
real hidden D {length, m}; // the length of part 1
real x (min=0.0) {m}; // the position of part x with a

minimum value of 0.0
...

Types

20-sim currently supports four types of variables: boolean, integer, real and string.
These types must be specified explicitly. The use of the type real is shown in the
example above.

Interesting

By adding the keyword interesting after the variable type, a variable will be given
special focus in the Variable Chooser. The Variable Chooser shows the complete list of
variables of a model and is used to select variables for plotting. The keyword interesting
is shown in the variable list, making it easier to find variables of special interest.

Hidden

To prevent users from inspecting variables or decreasing the list of variables, the
keyword hidden can be applied. This keyword should follow the data type.

Global

To use the same variable in other submodels, the keyword global can be applied. This
keyword should follow the data type.Note that the keywords oneup and global are
mutually exclusive. Only one can be used.

OneUp

The keyword oneup should be used after the type (real, boolean, integer) and keyword
hidden and before the name of the variable. It is used to limit the scope of a variable.
Note that the keywords oneup and global are mutually exclusive. Only one can be used.

Favorite

To quickly find a variable in the Variable Chooser the keyword favorite can be applied.
This keyword should follow the data type.

Variable Names

Variable names can consist of characters and underscores. A variable name must
always start with a character. Variable names are case-sensitive. No reserved words
may be used for variables. If a reserved word is used, an error message will pop-up
while checking the model.

Annotations

Right after a variable name you can enter annotations for the minimum value, range etc.

Variable Values

Variables cannot be assigned default values.

Quantity and Unit

If a variable is known to represent a physical value, you can define the corresponding
quantity and unit. 20-sim will use this information to do a unit check on equations. The
use of quantities and units is optional. In the example above the quantities volume and
length are used with the units m3 and m.

9. Language Reference

15420-sim 5.1 Reference Manual

Comment

If comment is added at the end of the variable declaration, it is shown in the Variable
Chooser to facilitate the selection between variables.

Predefined Variables

20-sim has some predefined variables which have a special meaning.

Example

variables
real interesting p1,p2,state;
integer i;
integer j;

variables

string filename;
integer interesting i;
real interesting state;
boolean t,f;

Tip

Use the 20-sim naming convention for variable names.

Predefined Variables9.2.7

Some variables in 20-sim have a predefined value. These variables do not have to be
declared in the variables section of a model.

time

The variable time is equal to the simulated time. It can for example be used in functions
such as:

u = sin(time*f*2*3.1415);

starttime

The variable starttime is equal to the Start value of the Simulator Run Properties
(typically 0.0 {s}).

finishtime

The variable finishtime is equal to the Finish value of the Simulator Run Properties (e.g.
10.0 {s}). It can be used for example to execute some actions just before finishing the
simulation:

if (time >= finishtime - 1.0) then

// do some action

end;

realtime
The variable realtime contains the elapsed wall-clock time (in seconds) from the start of
the simulation. It can be used to monitor if the simulation runs slower, equally fast or
faster than real time.

if (time >= realtime) then

9. Language Reference

15520-sim 5.1 Reference Manual

// simulation is realtime or faster than realtime

else

// simulation is slower that real time

end;

sampletime

The variable sampletime is equal to the sampletime. It is only meaningful when it is used
in an equation model that is part of a discrete loop in your model. 20-sim will
automatically detect, which loop the model belongs to and assign the proper value to the
variable sampletime.

stepsize

The variable stepsize contains the actual stepsize of the integration routine. It can be
used to monitor the variable step sizes of methods like BDF and Vode Adams.

random

The variable random will yield a random variable uniformly distributed in the interval [-
1,1]. E.g.:

u = random;

true

The variable true will return the boolean value true.

false

The variable false will return the boolean value false.

major

Some integration algorithms, will perform model calculations at one or more
intermediate points before calculating the next output value. To prevent equations being
calculated, at these intermediate steps, you can use the variable major. This variable
will return the boolean false when calculations are performed for an intermediate step
and will return true when calculations are performed for the output values.

Example

....

if major then

sim_steps = sim_steps + 1; // this equation is not evaluated at

intermediate points
end;

....

Global Parameters and Variables9.2.8

By adding the keyword global to a parameter or variable in the Equation Editor, its value
is shared all over the model. It means that various submodels can use the same
parameter or variable, but you only have to assign the value once. In equation models,
the keyword global is added after the definition of the data type:

9. Language Reference

15620-sim 5.1 Reference Manual

parameters
real global par1 = 100 {Hz};
real global par2 ;

variables
real global var1;
real global var2;

..

..

Parameters can only be assigned a value once. The same goes for variables. In only
one submodel the global variable can be assigned a value using an equation. If
parameters or variables are assigned more than once, 20-sim will generate an error.

Scope

By default, global parameters and variables and valid in the entire model. However, the
scope can be limited to a certain branch in your model tree.

Changing Global Parameters Values

You can change the value of a global parameter in the Parameters/Initial Values Editor.
By default, global parameters and variables and valid in the entire model. In the
Parameters/Initial Values Editor you will find the parameters at the top level of the
hierarchy. If the parameter has a scope, you will find it in the specific branch of the
model hierarchy.

OneUp9.2.9

The keyword Oneup is used to restrict the scope of global parameters and variables. It
allows you to use submodels to define the values of global parameters or global
variables as an alternative to the Globals Relations Editor.

Example

In the example model Accumulator Test (type Accumulator Test in the search box to find
it in the Examples library) four hydraulic circuits are used. All models in the circuits
share the same parameters for the fluid properties such as density, bulk modulus etc.
This is done by making them global.

9. Language Reference

15720-sim 5.1 Reference Manual

The blue submodel Fluid Properties, defines the values of these global parameters. The
model internally used the OneUp keyword. The equations of the submodel are:

parameters
real oneup kin_viscosity (range= <0,>) = 2.7e-5 {m2/s};
real oneup rho (range= <0,>) = 865.0 {kg/m3};
real oneup B (range= <0,>) = 1.6e9 {Pa};
real oneup p_vapour (range= <-1e5,>) = -99900.0 {Pa};

The keyword OneUp limits the scope of a global parameter or variable to the branch that
shares contains the submodel where it is defined. In this example this is the model layer
that contains the Fluid Properties model and all of the hydraulic circuits that you see.

OneUp

The keyword oneup should be used after the type (real, boolean, integer) and before the
name of the parameter or variable.

Note

The keywords oneup and global are mutually exclusive. Only one can be used.

9.3 Types

Data Types9.3.1

For all parameters, variables, initial conditions etc. 20-sim supports the following data
types:

1. Boolean

2. Integer

3. Real

4. String

The declaration of data types can be done in the constants, parameters and variables
sections of the model. E.g.:

9. Language Reference

15820-sim 5.1 Reference Manual

parameters
real a = 1;
integer B[2,2];

variables
string c;
boolean yesno;

Declaration of data types in equations is not allowed. E.g.:

real v = sin(t*a + b); // This is not allowed!

Hidden

To prevent users from inspecting variables, parameters or constants (e.g. for encrypted
models) or decreasing the list of parameters and variables, the keyword hidden can be
applied. This keyword should follow the data type. For example:

parameters
real hidden a = 1;
integer hidden B[2,2];

variables
string hidden c;
boolean hidden yesno;

Interesting

To allow for a quick selection of variables in the Variable Chooser, the keyword
interesting can be applied for variables. This keyword should follow the data type. For
example:

parameters
real a = 1;
integer B[2,2];

variables
string interesting c;
boolean interesting yesno;

Interesting variables are shown, even when all options are deselected in the Variable
Chooser. This makes it possible to quickly select variables out of a large list.

Boolean9.3.2

Either true (1) or false (0). Variables of this type should not be used to store any other
values. Like C++, 20-sim evaluates non-zero values as true; only the value of zero is
evaluated as false. Normally, the value of one is used to indicate true.

Examples

boolean a;
boolean b = true;
boolean c = false;
boolean D[2,2] = [true,true;false;false];
a = b and c;

9. Language Reference

15920-sim 5.1 Reference Manual

Limitations

When used in standard functions, booleans are treated as reals with value 0 or 1. An
equation like:

boolean a = true;
real c;
c = sin(a);

would yield c equal to 0.8415. Try to avoid these constructions, since they lead to
confusions.

Integer9.3.3

Signed four-byte integer. It can hold any decimal value between -2147483648 and
+2147483647. Integer is the recommended data type for the control of program loops
(e.g. in for-next loops) and element numbering.

Notations

Integer values can be entered using the following notation:

Decimal: any combination using the symbols 0,1,2,3,4,5,6,7,8 and 9.
Binary: starting with "0b" followed by any combination using the symbols 0 and 1.
Hexadecimal: starting with "0x" followed by any combination using the symbols
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F.

Annotations

The value of an integer is displayed by default (e.g. in the Parameters Editor) in the
decimal notation. You can use Annotations to display integers in their hexadecimal or
binary notation.

Example

parameters
integer i = 1,j = 2;
integer B[2,2] = [1,2;3,4];
integer x ('view=hexadecimal') = 0xE2F4;
integer y ('view=binary') = -0b111011;

variables
integer b;

equations
b = B[i,j] * x * y;

Limitations

When used in standard functions, integers are treated as reals. An equation like:

parameters
integer c;

equations
c = 10*sin(time);

would yield c equal to 0.8415. Try to avoid these constructions, since they lead to
confusions. Us the round function instead:

9. Language Reference

16020-sim 5.1 Reference Manual

parameters
integer c;

equations
c = round(10*sin(time));

Real9.3.4

Signed 64 bit floating point number. The maximum representable number is
1.7976931348623158e+308. The minimum positive value unequal to zero is
2.2250738585072014e-308. If reals exceed this range during simulation, the numerical
values window will display the values 1.#INF (positive infinite) or -1.#INF (negative
infinite).

Example

real a = 0.0;
real b = 1.04e-31,c = -3198.023e-64;
real B[2,2] = [1.2,22.4;3.0e3,-4.023e-6];

Limitations

In practice, during simulation, real should not exceed 1e-100 .. 1e100 to prevent
instability in the integration algorithms.

String9.3.5

A string is an array of characters. There is no limit to the amount of characters a String
may contain. Simple string concatenation (e.g. concatenation that can be done during
processing) is allowed. Strings must always be entered between single quotes ('). A
single quote can be escaped with a second quote, so if a single quote should be part of
the string, it needs to be typed twice.

Example

parameters
string c = 'C:\data.txt';
string b = 'This is a string with a '' single quote';

variables
real d;
string name;

equations
if time > 10 then stopsimulation (b); end;
d = table(c,1);
name = c + ' // file';
toMatlab (d, name)

Limitations

Strings may only be used as input for some special functions (e.g. table).

9. Language Reference

16120-sim 5.1 Reference Manual

Typecasting9.3.6

Type casting is a way to convert a variable from one data type to another data type. For
example from real to boolean or from real to integer. Typecasting can be done in
equations using the data type between parentheses:

variables
real t;
boolean b;

equations
t = if time > 10 then 1.33 else 0 end;
b = (boolean) t;

In the example above the real variable s is converted to the boolean variable b. In 20-
sim the C-code style type casting is used. An integer or real value of 0 is converted to
True and a non zero value is converted to false.

Typecasting is done automatically in 20-sim, but when the data type is not given a
warning will be generated:

variables
real s;
boolean b;

equations
s = if time > 10 then 1.33 else 0 end;
b = s;

In the example above the warning "Possible loss of data when converting from real to
boolean in equation b = s;" will be given. To prevent this warning, use typecasting with
parenthesis as shown in the top example.

9. Language Reference

16220-sim 5.1 Reference Manual

9.4 Functions

Functions9.4.1

In 20-sim you can use all kind of functions to describe your equations. They are
classified according to the list below.

1. Arithmetic

2. Discrete

3. Event

4. Expansion

5. Extern

6. Matrix

7. Port

8. Source

9. Trigonometric

Arithmetic9.4.2

abs

Syntax

Y = abs(X);

Description

Returns the absolute value of X or the elements of X.

Examples

X abs(X)

1 1

2.1 2.1

-2.6 2.6

-1e-102 1e-102

[1.1,2.7;-3.6,-4] [1.1,2.7;3.6,4]

Limitations

X and Y must have the same size.

For scalars, the abs function can also be written as: Y = |X|;

9. Language Reference

16320-sim 5.1 Reference Manual

algebraic

Syntax

y = algebraic(x);

Description

y becomes equal to x. This function forces the integration algorithm to find a solution by
using the algebraic loop solver. Normally when algebraic loops occur in a model, 20-sim
will itself will break the algebraic loop using the algebraic loop solver internally. You can
use this function to break an algebraic loop at a user-defined position.

Examples

u = sin(time);
a = algebraic(y);
y = K*(u - a);

Note
Be very careful with this function. In most cases the symbolic engine of 20-sim will find
and exact solution which will lead to much faster simulation!

ceil

Syntax

Y = ceil(X);

Description

Rounds X or the elements of X to the nearest integers greater than or equal to X.

Examples

X ceil(X)

1 1

2.1 3

-2.6 -2

3.4 4

[1.1,-2.7;3.5,-4.1] [2,-2;4,-4]

Limitations

X and Y must have the same size.

constraint

Syntax

y = constraint(x);

Description

9. Language Reference

16420-sim 5.1 Reference Manual

This function iteratively assigns a value to y such that x approaches zero within a given
error margin. It only works in combination with the MBDF simulation method! The
function is very useful for entering constraints in physical systems and inverse
dynamics.

Examples

This example makes a velocity vm equal to a reference velocity vs:

vs = sin(time); // reference velocity
v = vm - vs; // If v = 0 then the mass follows the reference
velocity
F = constraint(v); // Make F have a value that yields a zero velocity v
vm = (1/m)*int(F); // mass

ddt

Syntax

y = ddt(x,init);

Description

Returns the derivative value of x with respect to the time. The initial value of y is equal
to the value of init.

Method

20-sim will always try to rewrite equations in such a way that only integrals are used
(integral form). This is done automatically and means all integration methods can be
applied. Sometimes an integral form cannot be found. Then only the Backward-
Differentiation Method can be used for simulation.

Examples

equation integral form integration

ddt(x,0) = u - k*x; x = int(u - k*x); All methods

x = ddt(sin(time),0); not possible! Only BDF

Limitations

When no integral form can be found, the use of the derivative function can introduce
noisy signals or may even cause signals to exceed the data range.

derivative

Syntax

y = derivative(x,base);

Description

Returns the derivative value of x with respect to base. E.g:

9. Language Reference

16520-sim 5.1 Reference Manual

variables
real x, y, z;

equations
x = sin (time);
y = derivative (x, time);
z = derivative (x^2, x);

Limitations

20-sim will use its symbolic engine to solve the derivative and rewrite it to a closed
form. If no solution is found, and error message is generated.

dly

Syntax

y = dly(x,init);

Description

y is equal to the value of x, one simulation-time step delayed. The initial value of y is
equal to init

Example

x = sin(time*0.3);
y = dly(x, 1.0);

Limitations

x,y and init must be scalars.

energyfunction

Syntax

H = energyfunction(x, v, F, E);

Description

Returns the partial derivative of an energy function and the derivative of the energy
variable. Used for port hamiltonian functions.

F = d(E)/dx
v = ddt(x) or x = int(v);

x and v have a causal relation: one of them should be an input and one of them should
be an output.

Example

In this example the potential energy of a spring is given by the variable E. E is defined
as a function of the variable x.

9. Language Reference

16620-sim 5.1 Reference Manual

parameters
real k = 1000 {N/m};

variables
real H {J}; // spring energy (potential)
real x {m};
real v {m/s};
real F {N};
real E {J};

equations
v = sin (time);
E = 0.5*k*x^2;
H = energyfunction (x , v, F , E);

20-sim will (symbolically) solve this to:

F = d(E)/dx = 0.5 * k * 2 * x

and

x = int(v)

Limitations

The partial derivative of the energy function should exist and will be symbolically
solved by 20-sim.
If the variable x is and input for the function, the time derivative to yield the variable
v will be symbolically solved if possible.
The function only accepts scalar inputs.

exp

Syntax

Y = exp(X);

Description

Returns the exponential function of X or the elements of X.

y = ex;

Examples

X exp(x)

1 2.718282 (= e1)

2.1 8.166170 (= e2.1)

-2.6 0.074274 (= e-2.6)

[1,2.1;-2.6,1] [2.718282,8.166170;0.074274,2.7

18282]

(= [e1,e2.1;e-2.6,e1])

9. Language Reference

16720-sim 5.1 Reference Manual

Limitations

X and Y must have the same size.

exp10

Syntax

Y = exp10(X);

Description

Returns the exponential function (base 10) of X or the elements of X.

y = 10x;

Examples

X exp10(x)

1 10 (= 101)

2.1 125.89 (= 102.1)

-2.6 0.00251 (= 10-2.6)

[1,2.1;-2.6,1] [10,125.89;0.00251,10]

(= [101,102.1;10-2.6,101])

Limitations

X and Y must have the same size.

exp2

Syntax

Y = exp2(X);

Description

Returns the exponential function (base 2) of X or the elements of X.

y = 2x;

Examples

X exp2(x)

1 2 (= 21)

2.1 4.8709 (= 22.1)

9. Language Reference

16820-sim 5.1 Reference Manual

-2.6 0.16494 (= 2-2.6)

[1,2.1;-2.6,1] [2,4.8709;0.16494,2]

(= [21,22.1;2-2.6,21])

Limitations

X and Y must have the same size.

floor

Syntax

Y = floor(X);

Description

Rounds X or the elements of X to the nearest integers less than or equal to X.

Examples

X floor(X)

1 1

2.1 2

-2.6 -3

3.4 3

[1.1,-2.7;3.5,-4.1] [1,-3;3,-5]

Limitations

X and Y must have the same size.

initialvalue

Syntax

Y = initialvalue(X);

Description

Returns the initial value of X or the elements of X. Value should be assigned to X first.

Examples

X initialvalue(X)

1 1

sin(time) 0

[cos(time); sin(time)] [1;0]

Limitations

X and Y must have the same size.

9. Language Reference

16920-sim 5.1 Reference Manual

int

Syntax

y = int(x,init);

Description

Returns the integral of x with respect to the time. The initial value of y is equal to the
value of init. This initial value is optional. If no value is entered, a default initial value of
0 is used.

Examples

y = int(x,0);
z = int(sin(time*w + p) - cos(time*x + z) , b);

limint

Syntax

y = limint(x,min,max,init);

Description

Returns the integral of x with respect to the time. The initial value of y is equal to the
value of init. The output of this integral is limited between a maximum and minimum
bound given by the parameters min and max.

This function forces the integration algorithm to find the exact point where the gets
saturated. If the integral is in saturated condition and the input changes sign, the output
wanders away from the bounds immediately.

The limitedIntegrator block is used for the prevention of wind-up in PI and PID
controllers in control applications. It is also used in kinematics, electrical circuits, process
control, and fluid dynamics.

Examples

x = 10*sin(time*10);
y = limint(x,-1,1,0);

limit

Syntax

y = limit(x,a,b);

Description

This function limits the signal x between a minimum of a and a maximum of b.

9. Language Reference

17020-sim 5.1 Reference Manual

Examples

x = 10*sin(time);
y = limit(x,-5,5);

Limitations

a,b,x and y must be scalars. a must be smaller than b.

log

Syntax

y = log(x);

Description

Returns the natural logarithm of X or the elements of X.

Examples

X log(X)

1 0

2.1 0.6931

4 1.3863

[1,2.1;4,1] [0,0.6931;1.3863,0]

-2.6 not allowed!

9. Language Reference

17120-sim 5.1 Reference Manual

Limitations

X and Y must have the same size. X or the elements of X must be larger than zero.

log10

Syntax

Y = log10(X);

Description

Returns the base 10 logarithm of X or the elements of X.

Examples

X log10(X)

1 0

50 1.6990

100 2

[1,50;100,1] [0,1.6990;2,0]

-2.6 not allowed!

Limitations

X and Y must have the same size. X or the elements of X must be larger than zero.

log2

Syntax

Y = log2(X);

Description

Returns the base 2 logarithm of X or the elements of X.

Examples

X log2(X)

1 0

2.1 1.0704

4 2

[1,2.1;4,1] [0,1.0704;2,0]

-2.6 not allowed!

Limitations

X and Y must have the same size. X or the elements of X must be larger than zero.

9. Language Reference

17220-sim 5.1 Reference Manual

resint

Syntax

y = resint(x,newoutp,reset,init);

Description

Returns the integral of x with respect to the time. The initial value of y is equal to the
value of init. The output of this integral is reset to the value of newoutp when the
Boolean argument reset is TRUE.

Examples

x = 1;
reset = event(sin(time));
y = resint(x,0,reset,0);

or

x = 1;
reset = if y > 10 then true else false end;
y = resint(x,0,reset,0);

round

Syntax

Y = round(X);

Description

Rounds X or the elements of X to the nearest integer.

Examples

X round(X)

1 1

2.1 2

-2.6 -3

3.7 4

[1.1,-2.7;3.5,-4.1] [1,-3;4,-4]

Limitations

X and Y must have the same size.

9. Language Reference

17320-sim 5.1 Reference Manual

sign

Syntax

Y = sign(X);

Description

Returns the sign of X or the elements of X.

X = < 0 : Y = -1
X = 0: Y = 0
X > 0: Y = 1

Examples

X sign(X)

1 1

2.1 1

-2.6 -1

0 0

[1,2.1;-2.6,0] [1,1;-1,0]

Limitations

X and Y must have the same size.

square

Syntax

Y = sqr(X);

Description

Returns the square of X or the elements of X.

Examples

X sqr(X)

1 1 (= 12)

2.1 4.41 (= 2.12)

-2.6 6.76 (= -2.62)

0 0 (= 02)

[1,2.1;-2.6,0] [1,4.41;6.76,0]

(= [12,2.12;-2.62,02])

9. Language Reference

17420-sim 5.1 Reference Manual

Limitations

x and y must be scalars.

sqrt

Syntax

X = sqrt(Y);

Description

Returns the square root of X or the elements of X.

Examples

X sqrt(X)

1 1

2.1 1.44913

4 2

[1,2.1;4,1] [1,1.44913;2,1]

-1 not allowed!

Limitations

X and Y must have the same size. X or the elements of X must be larger than or equal
to zero.

tdelay

Syntax

y = tdelay(x,delaytime);

Description

Returns the (continuous) signal x delayed for an absolute time (given by delaytime). The
initial value of y for time = 0 to delaytime is equal to zero. This block is intended to
model a continuous delay in a continuous simulation. Use the Unit Delay block to model
a digital delay.

Examples

x = 10*sin(time*10);
y = tdelay(x,2);

Limitations

x,y and delaytime must be scalars. delaytime must be a positive constant value.

9. Language Reference

17520-sim 5.1 Reference Manual

trunc

Syntax

Y = trunc(X);

Description

Rounds X or the elements of X towards zero (i.e. the function trunc removes the
fraction).

Examples

X trunc(X)

1 1

2.1 2

-2.6 -2

3.4 3

[1.1,-2.7;3.5,-4.1] [1,-2;3,-4]

Limitations

X and Y must have the same size.

Discrete9.4.3

hold

Syntax

y = hold(x,init);

Description

The hold function implements a zero order hold function operating at a specified
sampling rate. It provides a mechanism for creating a continuous output signal y out of a
discrete input signal x. The initial value of y is equal to the value of init.

9. Language Reference

17620-sim 5.1 Reference Manual

Examples

x = sin(time*0.3);
y = sample(x);
z = previous(y);
u = hold(z,-1);

Limitations

x and y must be scalars. x be a discrete signal. y is a continuous signal. 20-sim will
automatically detect the existence of discrete signals. Each chain of discrete signals will
be assigned a specific sampletime. You can set this sample time to any desired value in
the Simulator (choose Properties, Simulation and Discrete System).

next

Syntax

y = next(x,init);

Description

The next function allows you to make constructs like:

x(k+1) = x(k) - 0.1 + u(k)

where k is the kth sample. Using the next function, this can be entered in 20-sim as:

next(x,0) = x - 0.1 + u;

Limitations

x and y will become discrete signals. 20-sim will automatically detect the existence of
discrete signals. Each chain of discrete signals will be assigned a specific sample time.
You can set this sample time to any desired value in the Simulator (choose Properties,
Simulation and Discrete System).

9. Language Reference

17720-sim 5.1 Reference Manual

previous

Syntax

y = previous(x,init);

Description

The previous function delays the input signal x and holds it for one sample interval. It is
equivalent to the z-1 discrete time operator.
The init argument is the first value for y at t=0 {s}.

Examples

x = sin(time*0.3);
y = sample(x);
z = previous(y);
u = hold(z);

Limitations

x and y will become discrete signals. 20-sim will automatically detect the existence of
discrete signals. Each chain of discrete signals will be assigned a specific sample time.
You can set this sample time to any desired value in the Simulator (choose Properties,
Simulation and Discrete System).

sample

Syntax

y = sample(x,init);

Description

9. Language Reference

17820-sim 5.1 Reference Manual

The sample function implements a sample and hold function operating at a specified
sampling rate. It provides a mechanism for discretizing a continuous input signal. The
initial value of y is equal to the value of init. This initial value is optional. If no value is
entered, a default initial value of 0 is used.

Examples

x = sin(time*0.3);
y = sample(x);
z = previous(y);
u = hold(z);

Limitations

x and y must be scalars. x represents a continuous signal and y represents a
discrete signal.

y will become a discrete signals. 20-sim will automatically detect the existence of
discrete signals. Each chain of discrete signals will be assigned a specific sample
time. You can set this sample time to any desired value in the Simulator (choose
Properties, Simulation and Discrete System).

9. Language Reference

17920-sim 5.1 Reference Manual

Event9.4.4

event

Syntax

y = event(x);

Description

y becomes true when x is zero. This function forces the integration algorithm to find the
exact point where the input crosses zero. This is called a state event.

Examples

x = sin(time*omega +phi);
y = event(x);

Limitations

y must be a boolean, x must be an expression yielding a scalar.

eventdown

Syntax

y = eventdown(x);

Description

y becomes true when x is zero. This function forces the integration algorithm to find the
exact point where the input crosses zero from a positive to a negative value. This is
called a state event.

Examples

x = sin(time*omega +phi);
y = eventdown(x);

Limitations

y must be a boolean, x must be an expression yielding a scalar.

eventup

Syntax

y = event(x);

Description

y becomes true when x is zero. This function forces the integration algorithm to find the
exact point where the input crosses zero from a negative to a positive value. This is
called a state event.

9. Language Reference

18020-sim 5.1 Reference Manual

Examples

x = sin(time*omega +phi);
y = eventup(x);

Limitations

y must be a boolean, x must be an expression yielding a scalar.

frequencyevent

Syntax

y = frequencyevent(p,o);

Description

y becomes true every time when p [s] have passed. The function starts after an offset
of o [s]. The offset parameter is optional. This function is a time event function.

Examples

parameters
real period = 0.1 {s};
real offset = 0.005 {s};

variables
boolean y,z;

equations
y = frequencyevent(1); // y = true every second
z = frequencyevent(period,offset); // z = true at 0.005 s, 0.105 s, 0.205 s

etc.

Limitations

y must be a boolean, p and o must be a parameter or a constant.

timeevent

Syntax

y = timeevent(x);

Description

y becomes true when time is equal to x. This functions forces the integration algorithm
to do a calculation when time y becomes true. This is a time event function.

Examples

The example code below forces the integration algorithm, to do a calculation at the start
of the step:

x = step(start_time);
y = timeevent(start_time);

Limitations

y must be a boolean, x must be an expression yielding a scalar.

9. Language Reference

18120-sim 5.1 Reference Manual

Expansion9.4.5

equal

Syntax

equal([x1,x2, ...,xn]);

Description

This function is used to make all elements of a matrix equal. It returns the equations x2
= x1, x3 = x1, .. , xn = x1. During processing the equations will be automatically
reshaped into a proper causal form. This function is created for use in library models
that use a matrix with unknown size which results from the collect function.

Examples

Suppose we have m bonds connected to a submodel, collected in a port p. We could
then use the function:

collect(p.e);

During processing this equation will be expanded as:

[p.e1;p.e2;...;p.n];

If we use the equal function:

equal(collect(p.e));

this results in:

equal([p.e1;p.e2;...;p.n]);

which will be expanded in:

p.e2 = p.e1;
p.e3 = p.e1;
..
p.en = p.e1

Limitations

This function is designed for a special class of models and should be used by
experienced users only!

9. Language Reference

18220-sim 5.1 Reference Manual

mul

Syntax

y = mul([x1,x2, ...,xn]);

Description

This function is used for multiplication of variables of which one may be unknown. It
returns the equation y = x1 * x2 * .. * xn. During processing this equation will be
automatically reshaped into a causal form.

This function is created for use in library models that have unknown inputs such as
MultiplyDivide model. Try to avoid the use of this function!

Examples

equations after reshaping (processing)

x1 = 1;

x2 = 2;

1 = mul([x1,x2,x3]);

x1 = 1;

x2 = 2;

x3 = (1/x1)/x2;

y = sin(time);

x2 = 2;

y = mul([x1,x2]);

y = sin(time);

x2 = 2;

x1 = y/x2;

Limitations

This function is designed for a special class of models and should be used by
experienced users only! y, x1, x2, ..,xn must be scalars. n may be 1 or higher1

sum

Syntax

y = sum([x1,x2, ...,xn]);

Description

This function is used for summation of variables of which one may be unknown. It
returns the equation y = x1 + x2 + .. xn. During processing this equation will be
automatically reshaped into a causal form.

This function is created for use in library models that have unknown inputs such as
PlusMinus model. Try to avoid the use of this function!

Examples

equations after reshaping (processing)

x1 = 1;

x2 = 2;

0 = sum(x1,x2,x3);

x1 = 1;

x2 = 2;

x3 = x1 + x2;

9. Language Reference

18320-sim 5.1 Reference Manual

y = sin(time);

x2 = 2;

y = sum(x1,x2);

y = sin(time);

x2 = 2;

x1 = y - x2;

Limitations

This function is designed for a special class of models and should be used by
experienced users only! y, x1, x2, ..,xn must be scalars. n may be 1 or higher.

Use the function msum if you want to use a standard summation of multiple
variables.

External9.4.6

data

Syntax

y = data(filename,column);

with:
filename the filename of the data file

column the column number starting with 0 for the first column (time)

Description

This function generates an output by linear interpolation of data read from file. The data
on file is stored in columns. The first column contains the time values (t) and the second
column contains the corresponding output values (y).

The time data of the first column needs to be monotonically increasing.

Discontinuities are allowed, by providing the same time point twice in the table.

Values outside of the range, are computed by linear extrapolation of the last two
points.

The first argument (filename) of this function must be a parameter of the type string and
is used as a reference to a filename. This reference can be specified using the complete
path or relative to the model directory. The second argument (column) of this function
must be a parameter of the type integer denoting a whole number. It is used to denote
the column number.

9. Language Reference

18420-sim 5.1 Reference Manual

table

0

0.5

2.5

3.5

4.5

5.5

7

8

(example):

-0.5

-1

-1

 0

 1

 1.75

 2.5

 2.5

The input file must be an ASCII (text) file or a Comma Separated Values (.csv) file and
should consist at least two columns of data. The first column (number 0) should always
contain the time values. The other columns (number 1, 2, 3, etc.) should contain the
corresponding data values. The parameter column is used to specify which column is
used for as output data.

The various values must be separated by a space, a tab or a comma. Each new set of
time and data values must start on a new line. No comment or other text may be part of
the file. The filename of the input file can be specified using the complete path (e.g. c:

\data\data.tbl). When no path is given, the file is assumed to be in the same

directory as your model.

The first row may contain names for the columns. Names should be indicated by
quotation marks (").

Example

parameters

string filename = 'data.txt';

integer col = 2;

variables

real y;

equations

y = data(filename,col);

Example data.txt file with header:

"time","x","y"

0.0, 1, 2

0.1, 5, 10

0.2, 6, 11

Limitations

y must be a scalar. from_file must be string parameter. x must be an integer parameter.

9. Language Reference

18520-sim 5.1 Reference Manual

dll

Syntax

y = dll(filename, functionname, x);

Description

Given a function (functionname) of a dll (filename), the dll function returns the output
values (y) for a given input (x).

Users can write their own source code using a native compiler such as Visual C++ or
Borland C++. With these compilers it is possible to create DLLs with user defined
functions that have an input- output relation which can be embedded in simulation code.

Example

parameters

string filename = 'example.dll';

string function = 'myFunction';

variables

real x[2], y[2];

equations

x = [ramp(1); ramp(2)];

y = dll(filename, function, x);

Limitations

filename and functionname must be string parameters. Note that the size of Y and X
(scalars or matrices) must correspond with the size that is expected for the given dll-
function.

Search Order

20-sim uses the following search order for the dll-file:

1. The bin directory of 20-sim (usually C:\Program Files\20-sim 5.1\bin).

2. The current directory.

3. A directory that is entered in list of paths in the General Properties dialog (choose
Tools - Options - Folders - DLL Search Paths). Use this option to store DLL's in a
central location.

4. The Windows system directory.

5. The Windows directory.

6. The directories that are listed in the PATH environment variable.

The simplest place to put the DLL-file is the bin directory, but it is always possible to give
a complete path for the DLL filename.

Code generation notice

20-sim allows for code generation of the 20-sim model. In case of a DLL call, 20-sim
cannot generate the complete code for a DLL call since it only knows the DLL file name,
function name and arguments and not the internal DLL code.

9. Language Reference

18620-sim 5.1 Reference Manual

Therefore, in the generated code, the dll(dll_name, function_name, in) will be generated

as:

%dll_name%_%function_name%(double *inarr, int inputs, double *outarr,

int outputs, int major)

Where %dll_name% and %function_name% are replaced with the actual DLL and

function name. You have to add the C-code implementation of this function yourself to

the generated code before you can compile it.

Writing Static DLL's

Almost every compiler that can build Windows applications, can also build dll-files
containing dll-functions. For two compilers an example will be given how to build the
static dll's (i.e. dll functions that do not contain internal model states) in combination
with 20-sim. The two compilers are: Visual C++ and Borland C++ .

When the simulator has to call the user defined dll for the first time the dll is linked and
the appropriate function is called. At the end of the simulation run the dll will be
disconnected from the simulator. In general the dll-function called by the simulator has
the following syntax in 20-sim:

Y = dll(filename,functionname,X);

For example (equation model):

parameters

string dll_name = 'example.dll';

string function_name = 'myFunction';

variables

real in[2],out[2];

equations

in = [ramp(1),ramp(2)];

out = dll(dll_name, function_name, in);

The name of the function is the actual name which was given to the corresponding string
parameter. The return value of the function determines whether the function was
successful or not. A return value of 0 means success, every other value error. When a
nonzero value is returned the simulation stops after finishing its current simulation step.
The parameters given to the function correspond directly to the 20-sim parameters:
double pointers for the inputs and outputs point to an array of doubles.

Function arguments

The user-function in the dll must have certain arguments. The function prototype is like
this:

int myFunction(double *inarr, int inputs, double *outarr, int outputs,

int major)

9. Language Reference

18720-sim 5.1 Reference Manual

where

inarr: pointer to an input array of doubles. The size of this array is given by
the second argument.

inputs: size of the input array of doubles.

outarr: pointer to an output array of doubles. The size of this array is given by
the fourth argument.

outputs: size of the output array of doubles.

major: boolean which is 1 if the integration method is performing a major
integration step, and 0 in the other cases. For example Runge-Kutta 4
method only has one in four model evaluations a major step.

Initializing the DLL-file

When the dll is linked to the simulator it is often useful to perform some initializations.
There are several ways to perform these initializations.

Method 1

When the simulator has attached the dll-file it automatically searches for a function with
the name ‘int Initialize()’. If this function is found it is called. The return value is checked
for success, 1 means success, 0 means error. At the end of the simulation run just
before the dll-file is detached the simulator searches for a function called ‘int
Terminate()’. In this function the necessary termination action can be performed like
cleaning up allocated memory.

At the start of every run the simulator also searches a function with the name 'int
InitializeRun()'. If it is found it is called the same way the Initialize function was called.
At the end the same happens with the function 'int TerminateRun()'. This is very useful in
multiple run simulations, in this case the dll-file is linked only once with the simulator,
and only once the Initialize and Terminate functions are called. But for every subsequent
run the InitializeRun and TerminateRun functions are called so every run can be
initialized and terminated gracefully. In this case in the Terminate function collection of
multiple run data could be collected and saved for example.

So suppose you have a multiple run with 2 runs, the following functions (if they exist)
will be called in the dll-file in this order:

Initialize()

InitializeRun()

TerminateRun()

Terminate()

Method 2

Using the DLLEntryPoint function. This function is automatically called when the library is
linked or detached. Both in Visual C++ and in Borland C++ this function has the same
syntax. However when using visual C++ as the compiler, our simulator which is build
with Visual C++ does not seem to be able to call this function. So the framework as
given below only works with a Borland C++ dll.

// Every dll has an entry point LibMain || DllEntryPoint

9. Language Reference

18820-sim 5.1 Reference Manual

// and an exit point WEP (windows exit point).

BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll, DWORD fdwRreason, LPVOID

plvReserved)

{

 if (fdwRreason == DLL_PROCESS_ATTACH)

 {

 return 1; // Indicate that the dll was linked successfully.

 }

 if (fdwRreason == DLL_PROCESS_DETACH)

 {

 return 1; // Indicate that the dll was detached successfully.

 }

 return 0;

}

Method 3
When using an object oriented language it is possible to have a global variable which is
an instance of a class. When linking the dll-file to the simulator the constructor function
of this global variable will be called automatically. In this constructor the initialization can
be performed. When the dll-file is detached the destructor of the global variable is
called. Some care should be taken with this method of terminating. E.g. if the user is
asked for a filename using a FileDialog this sometimes causes the complete application
to crash. The reason for this is that some of the dll-files contents was already destructed
and that some functionality may not work anymore resulting in an application error. The
solution for this problem is tot use method 1 of initialization and destruction.

Frame work for a Visual C++ dll-file implementation.

#include <windows.h>

#define DllExport __declspec(dllexport)

extern "C"

{

 DllExport int myFunction(double *inarr, int inputs, double *outarr,

int outputs, int major)

 {

 ... // function body

 return 0; // return successful

 }

 DllExport int Initialize()

 {

 ... // do some initializations here.

 return 0; // Indicate that the dll was initialized successfully.

 }

 DllExport int Terminate()

 {

 ... // do some cleaning here

 return 0; // Indicate that the dll was terminated successfully.

 }

}

Frame work for a Borland C++ dll-file implementation.

#include <windows.h>

9. Language Reference

18920-sim 5.1 Reference Manual

extern "C"

{

 int _export myFunction(double *inarr, int inputs, double *outarr, int

outputs, int major)

 {

 ... // function body

 return 0; // return successful

 }

 int _export Initialize()

 {

 ... // do some initializations here.

 return 0; // Indicate that the dll was initialized successfully.

 }

 int _export Terminate()

 {

 ... // do some cleaning here

 return 0; // Indicate that the dll was terminated successfully.

 }

}

// Every dll has an entry point LibMain || DllEntryPoint

// and an exit point WEP.

BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll, DWORD fdwRreason, LPVOID

plvReserved)

{

 if (fdwRreason == DLL_PROCESS_ATTACH)

 {

 ... // do some initializations here.

 return 1; // Indicate that the dll was initialized successfully.

 }

 if (fdwRreason == DLL_PROCESS_DETACH)

 {

 ... // do some cleaning here

 return 1; // Indicate that the dll was initialized successfully.

 }

 return 0;

}

Note

Make sure that Borland C++ does not generate underscores in front of the exported

function names! This can probably be found in the compiler settings.

Working example

Here is a complete working example of how to use a dll-function from within the
simulator. This code will compile with Visual C++ or gcc. See the Borland C++
framework how to write this code in Borland C++.

/* Example C++ DLL for 20-sim */

#include <windows.h>

#include <math.h>

9. Language Reference

19020-sim 5.1 Reference Manual

#include <fstream>

#include <stdio.h>

#define DLLEXPORT __declspec(dllexport)

using namespace std;

ofstream outputStream;

#ifdef _MSC_VER

#define snprintf _snprintf

#endif

extern "C"

{

 char g_lasterrormessage[255]; /* Used to store a DLL error message

 for transfer to 20-sim */

 const char* g_modelpath;

 /**

 * This is an example of a function that can be called in your 20-sim

 * model using the dll() Sidops call

 *

 * @param inarr This double array contains all inputs that will be

 * send from 20-sim to the other side

 * @param inputs 20-sim tells the dll how many elements inarr[]

 * contains.

 * @param outarr Result from this dll function that will be returned

 * to 20-sim

 * @param outputs 20-sim tells the dll how many elements it expects

 * (and allocated) in outarr.

 * @param major 1=major integration step, 0=minor step (e.g. an

 * intermediate integration method step in Runge Kutta

 * 4)

 **/

 DLLEXPORT int myFunction(double *inarr, int inputs, double *outarr,

int outputs, int major)

 {

 // Check the sizes of our input and output arrays

 if (inputs != outputs)

 {

 snprintf(g_lasterrormessage, 255, "%s: expects that the number of

inputs is equal to the number of outputs.", __FUNCTION__);

 return 0; // Failure

 }

 for (int i = 0; i < inputs; i++)

 {

 outarr[i] = cos(inarr[i]);

 outputStream << inarr[i] << " " << outarr[i] << " ";

9. Language Reference

19120-sim 5.1 Reference Manual

 }

 outputStream << endl;

 return 1; // Success

 }

 /****** Initialization and cleanup ******/

 /* Note 1:

 * The Initialize(), InitializeRun(), Terminate() and TerminateRun()

 * functions are optional.

 * Implement them when you need to initialize something before the

 * actual experiment is started and to cleanup/reset your DLL

 * functionality for a next run.

 * Note 2:

 * When these functions are implemented, the "continue run"

 * functionality in 20-sim is disabled.

 */

 /**

 * Initialize() [optional]

 *

 * This function is called by the 20-sim simulator BEFORE starting the

 * simulation experiment (and only once in a multiple run experiment)

 * to initialize the dll properly.

 */

 DLLEXPORT int Initialize()

 {

 outputStream.open("c:\\temp\\data.log");

 return 0; // Indicate that the dll was initialized successfully.

 }

 /**

 * InitializeRun() [optional]

 *

 * This function is called by the 20-sim simulator BEFORE starting the

 * simulation experiment (and only once in a multiple run experiment)

 * to initialize the dll properly.

 */

 DLLEXPORT int InitializeRun()

 {

 /* Clear lasterrormessage before every run. */

 snprintf(g_lasterrormessage, 255, "");

 return 0; /* Indicate that the dll was initialized successfully. */

 }

 /**

 * TerminateRun() [optional]

 *

 * This function is called by 20-sim after each finished run

 */

9. Language Reference

19220-sim 5.1 Reference Manual

 DLLEXPORT int TerminateRun()

 {

 /* Cleanup / reset your DLL here for the next run

 * (e.g. in a multiple run experiment)

 */

 return 0; // Indicate that the dll was terminated successfully.

 }

 /**

 * Terminate() [optional]

 *

 * This function is called by 20-sim on a DLL unload

 */

 DLLEXPORT int Terminate()

 {

 outputStream.close();

 return 0; // Indicate that the DLL was terminated successfully.

 }

 /**

 * LastErrorMessage() [optional]

 * Used by 20-sim to fetch a string with the last error that occurred

 * within the DLL

 * @return A char pointer to a string indicating the error message

 */

 DLLEXPORT char* LastErrorMessage()

 {

 return g_lasterrormessage;

 }

 /**

 * RegisterModelPath() [optional]

 * This function is called by 20-sim before Initialize() to learn the

 * DLL where the model is located. It can be used e.g. to find data

 * files stored in the same folder as the model.

 *

 * @param modelPath char pointer to the model directory

 * @return 0 if parameter is set successfully, 1 if not successful.

 */

 DLLEXPORT int RegisterModelPath(const char * modelPath)

 {

 g_modelpath = modelPath;

 }

}

Usage within 20-sim

Suppose the dll has been created as "example.dll". With the following code this model
can be tested:

9. Language Reference

19320-sim 5.1 Reference Manual

parameters
string dll_name = 'example.dll';
string function_name = 'myFunction';

variables
real in[2],out[2];

equations
in = [ramp(1),ramp(2)];
out = dll(dll_name, function_name, in);

Note that the general function "dll" is used. The arguments of this function, dll_name and
function_name, are parameters which are used to denote the dll that should be used and
the function of that dll that should be called. You can load this model from the
Demonstration Models Library:

1.Open the Editor.

2.From the demo library open the model DllFunction.emx (choose File and

Open)

3.Start the simulator (Model menu and Start Simulator).

4.Start a simulation run (select Run from the Simulation menu).

Code generation notice

20-sim allows for code generation of the 20-sim model. In case of a DLL call 20-sim
cannot generate the complete code for a DLL call since it only knows the DLL file name,
function name and arguments and not the internal DLL code.

Therefore, in the generated code, the dll(dll_name, function_name, in) will be generated

as:

%dll_name%_%function_name % (double *inarr, int inputs, double *outarr,

int outputs, int major)

Where %dll_name% and %function_name% are replaced with the actual DLL and

function name. You have to add the C-code implementation of this function yourself to

the generated code before you can compile it.

dlldynamic

Syntax

y = dlldynamic(filename,functionname,x);

Description

Given a function (functionname) of a dll (filename), the dll function returns the output
values (X) for a given input (Y).

Users can write their own source code using a native compiler such as Visual C++ or
Borland C++. With these compilers it is possible to create DLL’s with user defined
functions that have an input- output relation which can be embedded in simulation code.

Examples

parameters

9. Language Reference

19420-sim 5.1 Reference Manual

string dllName = 'demoDynamicDll.dll';

string functionName = 'SFunctionCalculate';

variables

real x[2],y[2];

equations

x = [ramp(1);ramp(2)];

y = dlldynamic(dllName,functionName,x);

Limitations

The filename and functionname must be string parameters. Note that the size of Y and X
(scalars or matrices) must correspond with the size that is expected for the given dll-
function.

Search Order

20-sim uses the following search order for the dll-file:

1. The bin directory of 20-sim (usually C:\Program Files\20-sim 5.1\bin).

2. The current directory.

3. A directory that is entered in list of paths in the General Properties dialog (choose
Tools - Options - Folders - DLL Search Paths). Use this option to store DLL's in a
central location.

4. The Windows system directory.

5. The Windows directory.

6. The directories that are listed in the PATH environment variable.

The simplest place to put the dlldynamic-file is the bin directory, but it is always possible
to give a complete path for the dll filename.

Code generation notice

This function is not supported in Matlab M-code or C-code generation.

Writing Dynamic DLL's

Almost every compiler that can build Windows applications, can also build dll-files
containing dll-functions. For the Visual C++ compiler an example will be given how to
build the dynamic dll's (i.e. dll functions that may contain internal model states) in
combination with 20-sim.

The functions in the DLL are called in a specific sequence. For communication with the
functions and the Simulator Kernel information is passed in a structure. This structure
looks like this:

9. Language Reference

19520-sim 5.1 Reference Manual

struct SimulatorSFunctionStruct
{

double versionNumber;
int nrInputs;
int nrOutputs;
int nrIndepStates;
int nrDepStates;
int nrAlgLoops;
double simulationStartTime;
double simulationFinishTime;
double simulationCurrentTime;
BOOL major;
BOOL initialOutputCalculation;

};

1. Initialize

At the start of the simulation the function

int Initialize()

is called. When this function is not present it is not called. Any initializations of data

structures can be performed here.

2. SFunctionInit

During initialization of the Simulator Kernel the function

int SFunctionInit(SimulatorSFunctionStruct *s)

is called. Return value is 0 means error. every other value succes Argument is a pointer

to the simstructure. On initialization the following fields should be filed in:

nrIndepStates

nrDepStates

nrAlgLoop

The following fields already have valid values:

 simulationStartTime giving the start time of the simulation

 simulationFinishTime giving the finish time of the simulation

 simulationCurrentTime giving the current time (actually the start time at

the moment of initialization)

9. Language Reference

19620-sim 5.1 Reference Manual

3. Initial values for the states

int SFunctionGetInitialStates(double *initialIndepStates,
double *initialDepRates,
double *initialAlgloopIn,
SimulatorSFunctionStruct *simStruct);

Return value is 0 means error. every other value succes. The initial value for the
independent states, dependent rates and algebraic loop variables can be specified by the
DLL in this function. It is just called before the initial output calculation function in step 3.
If all the initial values are zero, nothing has to be specified.

4. Initial Output Calculation

It is possible that the DLL-function can give an initial output. A separate function is called

so that the DLL can calculate it's initial output values. The boolean

initialOutputCalculation in the simulatorSFunction structure is used. Just the sFunction is

called. as in point 5.

5. SFunction calling

Here all the fields of the SimulatorSFunctionStruct are input for the function. The

inputArray, stateArray, outputArray and rateArray are always given as arguments of the

function. Dependent on the number of dependent states and algebraic loop variables

more arguments can be given as shown in the functions below (sFunctionName is the

name defined by the parameter name specified by the user):

Return value is 0 means error. every other value succes

case: no dependent states, no algebraic loop variables

int sFunctionName(double *inputArray,

double *stateArray,

double *outputArray,

double *rateArray,

SimulatorSFunctionStruct *simStruct);

case: dependent states, no algebraic loop variables

int sFunctionName(double *inputArray,

double *stateArray,

double *dependentRateArray,

double *outputArray,

double *rateArray,

double *dependentStateArray,

SimulatorSFunctionStruct *simStruct);

9. Language Reference

19720-sim 5.1 Reference Manual

case: no dependent states, algebraic loop variables

int sFunctionName(double *inputArray,

double *stateArray,

double *algLoopInArray,

double *outputArray,

double *rateArray,

double *algLoopOutrray,

SimulatorSFunctionStruct *simStruct);

case: dependent states, algebraic loop variables

int sFunctionName(double *inputArray,

double *stateArray,

double *dependentRateArray,

double *algLoopInArray,

double *outputArray,

double *rateArray,

double *dependentStateArray,

double *algLoopOutrray,

SimulatorSFunctionStruct *simStruct);

the boolean major in the SimulatorSFunctionStruct determines whether the evaluation of

the model is done at the time output is generated (major == TRUE) or that the model is

evaluated because of determining model characteristics. For example Runge-Kutta4

integration method uses three minor steps before taking a major step where output is

generated. Higher order methods can have different number of minor steps before a

major step is taken.

6. Termination

At the end of the simulation the function:

int Terminate()

is called. When this function is not present it is not called. Any terminations of data

structures can be performed here.

Framework for a Visual C++ dll-file implementation.

#include <windows.h>
#define DllExport __declspec(dllexport)
extern "C"
{

DllExport int dllfunction(double *inarr, int inputs,
double *outarr, int outputs, int major)

9. Language Reference

19820-sim 5.1 Reference Manual

{

... // function body

return 0; // return successful

}

DllExport int Initialize()

{

... // do some initializations here.

return 0; // Indicate that the dll was initialized
successfully.

}

DllExport int Terminate()

{

... // do some cleaning here

return 0; // Indicate that the dll was terminated
successfully.

}
}

Framework for a Borland C++ dll-file implementation.

#include <windows.h>
extern "C"
{

int _export dllfunction(double *inarr, int inputs, double
*outarr, int outputs, int major)

{

... // function body

return 0; // return successful

}

int _export Initialize()

{

... // do some initializations here.

return 0; // Indicate that the dll was initialized
successfully.

}

int _export Terminate()

{

... // do some cleaning here

return 0; // Indicate that the dll was terminated
successfully.

}

}

9. Language Reference

19920-sim 5.1 Reference Manual

// Every dll has an entry point LibMain || DllEntryPoint
// and an exit point WEP.
BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll, DWORD fdwRreason,
LPVOID plvReserved)
{

if (fdwRreason == DLL_PROCESS_ATTACH)

{

... // do some initializations here.

return 1; // Indicate that the dll was initialized
successfully.

}

if (fdwRreason == DLL_PROCESS_DETACH)

{

... // do some cleaning here

return 1; // Indicate that the dll was initialized
successfully.

}

return 0;
}

Working example

Here is a complete working example of how to use a dll-function from within the
simulator. This code will compile with Visual C++. See the Borland C++ framework how
to write this code in Borland C++.

#include <windows.h>

#include "SimulatorSFunctionStruct.h"

/

**

 * in this source file we are gonna describe a linear system which is

defined by

 * the following transfer function description:

 34

Y = ---------------- * U

 s^2 + 6s + 34

or A, B, C, D system:

A = [0, -3.4;

 10, -6];

B = [-3.4;

 0];

C = [0, -1];

9. Language Reference

20020-sim 5.1 Reference Manual

D = 0

which has two poles on (-3 + 5i) and (-3 -5i)

 steady state = 1

 **

********/

#define DllExport __declspec(dllexport)

extern "C"

{

// called at begin of the simulation run

DllExport int Initialize()

{

// you can perform your own initialization here.

// success

return 0;

}

// called at end of the simulation run

DllExport int Terminate()

{

// do some cleaning here

// success

return 0;

}

DllExport int SFunctionInit(SimulatorSFunctionStruct *s)

{

// tell our caller what kind of dll we are

s->nrIndepStates = 2;

s->nrDepStates = 0;

s->nrAlgLoops = 0;

// dubious information, since 20-sim itself does not check

and need this info

s->nrInputs = 1;

s->nrOutputs = 1;

// return 1, which means TRUE

return 1;

9. Language Reference

20120-sim 5.1 Reference Manual

}

DllExport int SFunctionGetInitialStates(double *x0, double *xd0,

double *xa0, SimulatorSFunctionStruct *s)

{

// fill in the x0 array here. Since we specified no

Dependent states, and No algebraic loop variables

// the xd0 and xa0 may not be used.

// initial value is zero.

x0[0] = 0;

x0[1] = 0;

// return 1, which means TRUE

return 1;

}

DllExport int SFunctionCalculate(double *u, double *x, double *y,

double *dx, SimulatorSFunctionStruct *s)

{

// we could check the SimulatorSFunctionStruct here if we

are in an initialization state and/or we are

// in a major integration step.

#if 0

if (s->initialialOutputCalculation)

; // do something

// possibly do some explicit action when we are in a

major step.

if (s->major == TRUE)

; // do something

#endif

dx[0] = -3.4 * x[1] - 3.4 * u[0];

dx[1] = 10 * x[0] - 6 * x[1];

y[0] = -x[1];

// return 1, which means TRUE

return 1;

}

}// extern "C"

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call,

9. Language Reference

20220-sim 5.1 Reference Manual

LPVOID lpReserved

)

{

return TRUE;

}

Use within 20-sim

Suppose the dll has been created as "demoDynamicDll.dll". With the following code this
model can be tested:

parameters

string dllName = 'demoDynamicDll.dll';

string functionName = 'SFunctionCalculate';

equations

output = dlldynamic (dllName, functionName, input);

Note that the general function "dlldynamic" is used. The arguments of this function,

dllName and functionName, are parameters which are used to denote the dll that should

be used and the function of that dll that should be called. You can load this model from

the Demonstration Models Library:

1.Open the Editor.

2.From the demo library open the model DllFunction.emx (choose File and

Open)

3.Start the simulator (Model menu and Start Simulator).

4.Start a simulation run (select Run from the Simulation menu).

settoolsetting

Syntax

status = settoolsetting('key', value)

Description

The settoolsetting() function can b used to change simulator settings from your model

The following values for key are possible:

modelname
modelfilename
modelexperimentname
fastmode
simulationmode
endless
integrationmethod
starttime
finishtime

9. Language Reference

20320-sim 5.1 Reference Manual

eventdelta
outputaftereach
instructionset
integrationmethod.Euler.stepsize
integrationmethod.BackwardEuler.alpha
integrationmethod.BackwardEuler.stepsize
integrationmethod.BackwardEuler.absolutetolerance
integrationmethod.BackwardEuler.relativetolerance
integrationmethod.AdamsBashforth.stepsize
integrationmethod.RungeKutta2.stepsize
integrationmethod.RungeKutta4.stepsize
integrationmethod.RungeKutta8.absolutetolerance
integrationmethod.RungeKutta8.relativetolerance
integrationmethod.RungeKutta8.initialstepsize
integrationmethod.RungeKutta8.maximumstepsize
integrationmethod.RungeKuttaFehlberg.absolutetolerance
integrationmethod.RungeKuttaFehlberg.relativetolerance
integrationmethod.RungeKuttaFehlberg.initialstepsize
integrationmethod.RungeKuttaFehlberg.maximumstepsize
integrationmethod.VodeAdams.absolutetolerance
integrationmethod.VodeAdams.relativetolerance
integrationmethod.VodeAdams.initialstepsize
integrationmethod.VodeAdams.maximumstepsize
integrationmethod.BDFMethod.initialstepsize
integrationmethod.BDFMethod.maximumstepsize
integrationmethod.BDFMethod.absolutetolerance
integrationmethod.BDFMethod.relativetolerance
integrationmethod.MeBDFiMethod.initialstepsize
integrationmethod.MeBDFiMethod.maximumstepsize
integrationmethod.MeBDFiMethod.absolutetolerance
integrationmethod.MeBDFiMethod.relativetolerance

Example

variables

real x, y, dummy;

code

y = int (x);

x = sin (time);

if time > 7 then

dummy = settoolsetting ('integrationmethod.Euler.stepsize',

0.1);

else

if time > 6 then

dummy = settoolsetting

('integrationmethod.Euler.stepsize', 0.01);

else

if time > 5 then

dummy = settoolsetting

('integrationmethod.Euler.stepsize', 1);

end;

end;

9. Language Reference

20420-sim 5.1 Reference Manual

end;

table

Syntax

y = table(file_name,x);

Description

This model uses a one-dimensional table with data points to calculate the output y = f(x)
as a function of the input x. The output y is calculated using linear interpolation between
the table data points.

The input data x of the first column needs to be monotonically increasing.

Discontinuities are allowed, by providing the same input point twice in the table.

Values outside of the table range, are computed by linear extrapolation of the last
two points.

The first argument (file_name) of this function must be a parameter of the type string
and is used as a reference to a filename. This reference can be specified using the
complete path or relative to the model directory. The second argument (x) should be a
real variable.

table

-2.5

-2

0

1

2

3

5

6

(example):

-0.5

-1

-1

 0

 2

 3.0

 4

 4.0

A table must be stored as an ASCII (text) file or a Comma Separated Values (.csv) file
and should consist two columns of data. The first column consists of the x-values and the
second column of the corresponding y-values. Each line of the file may only contain one
x- and one corresponding y-value. The two values must be separated by a space or a
tab. Each new set of x- and y-values must start on a new line. No comment or other text
may be part of the table-file.

9. Language Reference

20520-sim 5.1 Reference Manual

Example

parameters
string filename = 'data.txt';

variables
real y;
real x;

equations
x = ramp(1);
y = table(filename,x);

Example data.txt format:

-2.5, -0.5

-2.0, -1.0

0.0, -1.0

1.0, 0.0

2.0, 2.0

3.0, 3.0

5.0, 4.0

6.0, 4.0

Limitations

x and y must be scalars. from_file must be string parameter.

Matrix9.4.7

adjoint

Syntax

Y = adjoint(T);
Y = adjoint(W,V);

Description

Returns the adjoint matrix [6,6] of a twist or wrench vector T [6,1]:

9. Language Reference

20620-sim 5.1 Reference Manual

or returns the adjoint matrix [6,6] of an angular velocity vector W [3,1] and a velocity
vector V [3,1]:

The adjoint function is useful for dynamics described by twists and wrenches.

Examples

W = [w1 ; w2 ; w3];
V = [v1 ; v2 ; v3];
Y = adjoint(W,V);

Limitations

Y must be of size [6,6], W must always be of size[3,1] , V must have the size [3,1] and
T must have size [6,1].

9. Language Reference

20720-sim 5.1 Reference Manual

Adjoint

Syntax

A = Adjoint(H);
A = Adjoint(R,P);

Description

Returns the adjoint matrix [6,6] of a homogeneous matrix [4,4]:

or returns the adjoint matrix [6,6] of a rotation matrix R [3,3] and position vector P [3]:

The Adjoint function is useful for dynamics described by twists and wrenches.

Examples

 R = [cos(alpha),-sin(alpha),0 ; sin(alpha),cos(alpha),0 ; 0,0,0];
P = [p1 ; p2 ; p3];
A = Adjoint(R,P);

Limitations

H must be of size [4,4], R must always be of size[3,3] , P must have the size [3,1] and A
must have size [6,6].

9. Language Reference

20820-sim 5.1 Reference Manual

antisym

Syntax

y = antisym(A);

Description

Returns an anti-symmetric matrix. This function is equal to:
y = (A - transpose(A))/2;

Examples

A = [1,2;3,4];
Y = antisym(A);

Limitations

A must be a square matrix. Y and A must be of the same size.

columns

Syntax

y = columns(A);

Description

Returns the number of columns of A.

Examples

A = [1,2;3,4;5,6];
y = columns(A);

Limitations

y must be a scalar.

cross

Syntax

Y = cross(A,B);

Description

This functions returns the vector cross product of the vectors A and B. That is Y = A × B
or:

9. Language Reference

20920-sim 5.1 Reference Manual

 Y[1] = A[2]*B[3] - A[3]*B[2]
Y[2] = A[3]*B[1] - A[1]*B[3]
Y[3] = A[1]*B[2] - A[2]*B[1]

Examples

parameters
real A[3] = [1;2;3];
real B[3] = [4;5;6];

variables
real Y[3];

equations
Y = Cross(A,B); // Y = [-3;6;-3]

Limitations

Y, A and B must be column vectors of size 3.

det

Syntax

y = det(A);
or
Y = |A|;

Description

Returns the determinant of the square matrix A.

Examples

A = [1,2;3,ramp(1)];
y = det(A);

Limitations

A must be a square matrix, y must be a scalar.

diag

Syntax

Y = diag(x);

Description

Fills the diagonal elements of the matrix Y with the elements of the columvector x.

Example

variables
real x[3];
real Y[3,3];

equations
x = [1;2;3];
Y = diag(x);

Limitations

Y must be a matrix of size [n,n]. x must be a column vector of size n.

9. Language Reference

21020-sim 5.1 Reference Manual

eye

Syntax

Y = eye(n);

Description

Returns the the n-by-n identity matrix.

Example

Y = eye(3);

Limitations

Y must be a matrix of size [n,n]. n must be an integer value.

homogeneous

Syntax

H = homogeneous(R,P);

Description

Returns the homogenous matrix [4,4] of a rotation matrix R[3,3] and position vector
P[3]:

The homogeneous matrix gives a full coordinate transformation from one reference
frame to another. It can be used for 3D dynamics.

Examples

R = [cos(alpha),-sin(alpha),0 ; sin(alpha),cos(alpha),0 ; ; 0,0,0];
P = [p1 ; p2 ; p3];
H = homogeneous(R,P);

Limitations

R must always be of size[3,3] , P must have the size [3,1] and H must have size [4,4].

inner

Syntax

y = inner(A,B);

Description

9. Language Reference

21120-sim 5.1 Reference Manual

Returns the scalar product of the column vectors A and B. A and B must be vectors of
the same length. Inner(A,B) is the same as transpose(A)*B.

Example

A[3] = [1;2;3];
B[3,1] = [4;5;6];
y = inner(A,B);

Limitations

A and B must be vectors of the same size [n,1] or [n]. y must be a scalar.

inverse

Syntax

Y = inverse(A);

Description

Returns the inverse of square non-singular matrix A.

Examples

A = [1,0;0,1+ramp(1)];
Y = inverse(A);

Limitations

A must be a non-singular square matrix. Y must have the same size as A.

inverseH

Syntax

Y = inverseH(H);
Y = inverseH(R,P);

Description

Returns the inverse of a homogeneous matrix H [4,4]. The homogeneous matrix can be
entered directly or by a rotation matrix R[3,3] and position vector P [3,1].
The size of the inverse Y is also [4,4].

This function uses the special nature of a homogeneous matrix. I.e the inverse can be
computed directly instead of the numerical approach of the standard inverse function.

Examples

H = [cos(alpha),-sin(alpha),0,p1 ; sin(alpha),cos(alpha),0,p2 ; 0,0,0,p3 ; 0,0,0,1];
Y = inverseH(H);
 or
R = [cos(alpha),-sin(alpha),0 ; sin(alpha),cos(alpha),0 ; 0,0,0];
P = [p1 ; p2 ; p3];
Y = inverseH(R,P);

Limitations

H must be a homogeneous matrix of size [4,4], R must always be of size[3,3] , P must
have the size [3,1] and Y must have size [4,4].

9. Language Reference

21220-sim 5.1 Reference Manual

linsolve

Syntax

x = linsolve(A,b [,method]);

Description

This function solves the equation
 A*x = b;

Where A is a square matrix of arbitrary size n and x and b are vectors of size n.
Returns the inverse of square non-singular matrix A.
The last argument is a string that specifies the desired method to use.

method description

lu LU decomposition (default method)

qr QR factorization

cholesky Cholesky factorization

gmres Generalized Minimum Residual

The gmres method allows further steering of the method by specifying method
parameters:

method parameter description

tol Set the desired tolerance to use

maxiter Set the maximum number of iterations to use

ortho Set the method of Gramm-Schmidt orthogonalization:

1 modified Gramm-Schmidt

2 iterative Gramm-Schmidt

3 classical Gramm-Schmidt

4 iterative classical Gramm-Schmidt

The lu, qr and gmres methods allow a non-square matrix A to be entered yielding a
pseudoinverse.

Examples

A = [1,2;0,1+ramp(1)];
b = [1;5];
x = linsolve(A,b);
x2 = linsolve (A, b, 'qr');
x3 = linsolve (A, b, 'gmres tol=1e-8 ortho=4');

Limitations

A must be a non-singular square matrix.

Note

The following equations
A*x = b;
x = inverse(A)*b;
x = (A^-1)*b;

 all lead in the calculation of the inverse of A and will give the same result as

9. Language Reference

21320-sim 5.1 Reference Manual

 x = linsolve(A,b);
 For the inverse calculation, Cramers rule is used. This is a method which is fast for
small matrix sizes. The linsolve function with the gmres method is superior to Cramers
rule for larger matrix sizes.

max

Syntax

y = max(A);

Description

Returns the value of the largest matrix element of A.

Examples

A = [1,2;3,ramp(1)];
y = max(A);

Limitations

y must be a scalar.

min

Syntax

y = min(A);

Description

Returns the value of the smallest matrix element of A.

Examples

A = [1,2;3,ramp(1)];
y = min(A);

Limitations

y must be a scalar.

msum

Syntax

y = msum(A);

Description

Returns the sum of the matrix elements of A.

Examples

A = [1,2;3,4;5,6];
y = msum(A);

Limitations

y must be a scalar.

9. Language Reference

21420-sim 5.1 Reference Manual

multiplyH

Syntax

C = multiplyH(A,B);

Description

Returns the multiplication of two homogenous matrices [4,4] or multiplies one
homogenous matrix [4,4] with one homogeneous position vector [4,1] .

Examples

parameters
real D[4,4] = [1,0,0,1;

0,1,0,0;
0,0,1,0;
0,0,0,1];

real E[4,4] = [1,0,0,2;
0,1,0,3;
0,0,1,0;
0,0,0,1];

real F[4,1] = [1,1,1,1];
variables

real G[4,4];
real H[4,1];

equations
G = multiplyH(D,E);
H = multiplyH(D,F);

Limitations

When A and B are homogeneous matrices [4,4] then C must be a homogenous matrix
[4,4]. When A is a homogenous matrix [4,4] and B is a homogenous position vector
[4,1] then C must also be a position vector [4,1].

norm

Syntax

y = norm(A);
or
Y = ||A||;

Description

Returns the square root of the sum of the squared matrix elements of A:

9. Language Reference

21520-sim 5.1 Reference Manual

Examples

A = [1,2;3,ramp(1)];
y = norm(A);

Limitations

y must be a scalar.

norminf

Syntax

y = norminf(A);

Description

Returns the largest row sum of the absolute values of the matrix A:

Examples

A = [1,2;3,ramp(1)];
y = norminf(A);

Limitations

y must be a scalar.

rows

Syntax

y = rows(A);

Description

Returns the number of rows of A.

Examples

A = [1,2;3,4;5,6];
y = rows(A);

Limitations

y must be a scalar.

9. Language Reference

21620-sim 5.1 Reference Manual

skew

Syntax

Y = skew(X);

Description

Returns the vector product:

Examples

Limitations

X must be a vector of size n. Y must be a matrix of size [n,n].

sym

Syntax

y = sym(A);

Description

Returns a symmetric matrix. This function is equal to:
y = (A + transpose(A))/2;

Examples

A = [1,2;3,4];
Y = sym(A);

Limitations

A must be a square matrix. Y and A must be of the same size.

tilde

Syntax

H = tilde(T);
H = tilde(W,V);

Description

Returns the twist matrix [4,4] of a twist or wrench vector T [6,1]:

9. Language Reference

21720-sim 5.1 Reference Manual

Or returns the twist matrix [4,4] of an angular velocity vector W [3,1] and a velocity
vector V [3,1]:

The tilde function is useful for dynamics described by twists and wrenches.

Examples

W = [w1 ; w2 ; w3];
V = [v1 ; v2 ; v3];
H = tilde(W,V);

Limitations

H must be of size [4,4], W must always be of size[3,1] , V must have the size [3,1] and
T must have size [6,1].

trace

Syntax

y = trace(A);

Description

Returns the sum of the diagonal elements of the matrix A.

Examples

A = [1,2,3;4,ramp(1),6];
y = trace(A);

Limitations

y must be a scalar.

9. Language Reference

21820-sim 5.1 Reference Manual

transpose

Syntax

Y = transpose(A);

Description

Returns the transpose of the matrix A.

Examples

A = [1,2;3,ramp(1)];
Y = transpose(A);

Limitations

With the A matrix of size[n,m] , Y must have the size [m,n].

Port9.4.8

collect

Syntax

y = collect(p.e);
y = collect(p.f);
y = collect(m);

(with p.e and p.f powerportvariables and m a signal)

Description

Some models in 20-sim can have an unknown amount of signals or bonds connected.
They are treated as an array with unknown length.

For example the PlusMinus model can have n signals that must be added and m signals
that must be subtracted. 20-sim treats them as an array plus and an array minus with:

plus = [plus1;plus2;..;plusn] and minus = [minus1;minus2;..;minusm]

To assign an array of unknown length, the collect function is used. It creates an array
with port variables or signals. This function is created for use in library models that have
an unknown amount of bonds or signals connected. Try to avoid the use of this
function!

Examples

Suppose we have m bonds connected to a submodel, collected in a port p. We could
then use the equation:

Y = collect(p.e);

During processing, this equation will be rewritten as:

Y = [p.e1;p.e2;...;p.n];

9. Language Reference

21920-sim 5.1 Reference Manual

Suppose we have a submodel with n input signals connected. We could then write the
equation:

y = sum(collect(input));

During processing, this equation will be rewritten as:

y = sum([output1;output2;...;outputn]);

which is of course equal to:

y = output1 + output2 + .. + outputn;

Limitations

This function is designed for a special class of models and should be used by
experienced users only! The function is only valid when used in a submodel.

direct

Syntax

y = direct(p.e);
y = direct(p.f);

(with p.e and p.f powerportvariables)

Description

This function is equal to the collect function, but utilizes the direction of the bonds
connected to the submodel to sign the powerportvariables. This function is created
specially for the bond graph submodels OneJunction.emx and ZeroJunction.emx. Try to
avoid the use of this function!

Examples

Suppose we have 4 bonds connected to a 0-junction, collected in a port p. p1 and p4 are
pointing towards the junction and p2 and p3 are pointing from the 0-junction. We could
then use the equation:

Y = direct(p.f);

During processing, this equation will be rewritten as:

Y = [p.f1;-p.f2;-p.f3,p.f4];

Which can of course be used in combination with the sum function:

sum(Y) = 0;

To get the 0-junction equation:

9. Language Reference

22020-sim 5.1 Reference Manual

p.f1 - p.f2 - p.f3 + p.f4 = 0;

Limitations

This function is designed for a special class of models and should be used by
experienced users only! The function is only valid when used in a submodel.

first

Syntax

y = first(p.e);
y = first(p.f);
y = first(m);

(with p.e and p.f powerportvariables and m a signal)

Description

Some models in 20-sim can have an unknown amount of signals or bonds connected.
They are treated as an array with unknown length. For example the PlusMinus model can
have n signals that must be added and m signals that must be subtracted. 20-sim treats
them as an array plus and an array minus with:

plus = [plus1;plus2;..;plusn] and minus = [minus1;minus2;..;minusm]

The function first returns the value of the first element of an array of unknown length.
This function is created for use in library models that have an unknown amount of bonds
or signals connected. Try to avoid the use of this function!

Examples

Suppose we have m bonds connected to a submodel, collected in a port p. We could
then use the equation:

y = first(p.e);

During processing, this equation will be rewritten as:

y = p.e1;

Limitations

This function is designed for a special class of models and should be used by
experienced users only! The function is only valid when used in a submodel.

9. Language Reference

22120-sim 5.1 Reference Manual

Source9.4.9

gauss

Syntax

y = gauss(x,s);

Description

Returns gaussian noise with a variance x and seed s. The seed parameter is
optional. When omitted, the default value (0) is used.

Examples

x = 20;
y = gauss(x);
z = gauss(x,450);

Limitations

x and y must be scalars.The seed s must be a number in the region <0,65535>.

impulse

Syntax

y = impulse(x,w);

Description

Returns a pulse signal with start time x, width w and height 1/w:
 time < x: y = 0
time >= x and < x+w: y = 1/w
time >= x+w: y = 0

Note: The integral (i.e the area) of an impulse is always 1. If w is chosen small, the
amplitude of the impulse will be high.

Examples

x = 20, w = 0.01;
y = impulse(x,w);

Limitations

x and w must be scalars, w > 0.

ramp

Syntax

y = ramp(x);

Description

Returns a ramp signal with start time x:

9. Language Reference

22220-sim 5.1 Reference Manual

 time < x: y = 0
time >= x: y is time - x

Examples

x = 20, amplitude = 10;
y = amplitude*ramp(x);

Limitations

x and y must be scalars.

ran

Syntax

y = ran(x,s);

Description

Returns uniformly distributed noise in the interval [-x,x] with seed s. The seed
parameter is optional. When omitted, the default value (0) is used.

Examples

x = 20;
y = ran(x);
z = ran(x,450);

Limitations

x and y must be scalars. The seed s must be a number in the region <0,65000>.

Random Seed

20-sim generates a sequence of random numbers for each simulation differently
depending upon the value of the seed parameter. The random noise function and
gaussian noise function are affected by this. The default value of the seed is 0. The
maximum value is 65535.

default value (0)

When the seed value is 0 (default value), 20-sim generates a new sequence of random
numbers for each simulation and for each new random function. E.g. when two random
functions with default seed value (0) are used in one model, they will generate different
sequences of random numbers during a simulation.

other values (>0)

When the seed value is chosen larger than zero, 20-sim generates the same sequence
of random numbers for each simulation. Moreover 20-sim will generate the same
sequence of random numbers for each random function that uses the same seed
parameter (>0). E.g. when two random functions with seed value 50, are used in one
model, they will generate the same sequence of random numbers during a simulation.

9. Language Reference

22320-sim 5.1 Reference Manual

step

Syntax

y = step(x);

Description

Returns a step signal with start time x:
 time < x: y = 0
time >= x: y = 1

Examples

x = 20, amplitude = 10;
y = amplitude*step(x);

Limitations

x and y must be scalars.

Trigonometric9.4.10

arcsin

Syntax

Y = arcsin(X);

Description

Returns the arcsine of the elements of X.

Examples

b = cos(time);
a = arcsin(b);
X = [0.5*cos(time);0.75*cos(time)];
Y = arcsin(X);

Limitations

Y and X must have the same size. The elements of X must be in the range [-1 ,1].

9. Language Reference

22420-sim 5.1 Reference Manual

arccos

Syntax

Y = arccos(X);

Description

Returns the arccosine of the elements of X.

Examples

b = sin(time);
a = arccos(b);
X = [0.5*sin(time);0.75*sin(time)];
Y = arccos(X);

Limitations

Y and X must have the same size. The elements of X must be in the range [-1 ,1].

9. Language Reference

22520-sim 5.1 Reference Manual

arccosh

Syntax

Y = arccosh(X);

Description

Returns the hyperbolic arccosine of the elements of X.

Examples

y = arccosh(time + 1.0);

Limitations

Y and X must have the same size. The elements of X must be 1 or bigger.

9. Language Reference

22620-sim 5.1 Reference Manual

arcsinh

Syntax

Y = arcsinh(X);

Description

Returns the hyperbolic arcsine of the elements of X.

Examples

a = arcsinh(time);
X = [0.5*cos(time);0.75*cos(time)];
Y = arcsinh(X);

Limitations

Y and X must have the same size.

arctan

Syntax

Y = arctan(X);

Description

Returns the arctangent of the elements of X.

Examples

a = arctan(time);
X = [ramp(1);-0.5*ramp(9)];
Y = arctan(X);

Limitations

Y and X must have the same size.

9. Language Reference

22720-sim 5.1 Reference Manual

arctanh

Syntax

Y = arctanh(X);

Description

Returns the hyperbolic arctangent of the elements of X.

Examples

b = sin(time);
a = arctan(b);
X = [sin(time);-0.5*cos(time)];
Y = arctanh(X);

Limitations

Y and X must have the same size. The elements of X must be in the range [-1 ,1].

9. Language Reference

22820-sim 5.1 Reference Manual

atan2

Syntax

R = atan2(Y,X);

Description

This is the four quadrant arctangent of the elements of Y and X. Unlike arctangent
function, atan2 does distinguish between diametrically opposite directions.

Examples

X, Y arctan(Y/X); atan2(Y, X);

1,1 π/4 π/4

-1,-1 π/4

0,1 - π/2

0,0 - set to 0 instead of

undefined.

y = sin(time);
x = cos(time);
r = atan2(y,x);

X = [ramp(0);ramp(1)];
Y = [1;1];
R = atan2(Y,X);

Limitations

r, x and y must have the same size. It produces results in the range π].
Atan2(0, 0) is defined as 0 instead of undefined.

9. Language Reference

22920-sim 5.1 Reference Manual

cos

Syntax

Y = cos(X);

Description

Returns the cosine of the elements of X.

Examples

b = ramp(2.5);
a = cos(b);
X = [ramp(0);ramp(1)];
Y = cos(X);

Limitations

Y and X must have the same size.

cosh

Syntax

Y = cosh(X);

Description

Returns the hyperbolic cosine of the elements of X.

Examples

b = ramp(2.5);
a = cosh(b);
X = [ramp(0);ramp(1)];
Y = cosh(X);

Limitations

Y and X must have the same size.

9. Language Reference

23020-sim 5.1 Reference Manual

sin

Syntax

Y = sin(X);

Description

Returns the sine of the elements of X.

Examples

b = ramp(2.5);
a = sin(b);
X = [ramp(0);ramp(1)];
Y = sin(X);

Limitations

Y and X must have the same size.

9. Language Reference

23120-sim 5.1 Reference Manual

sinh

Syntax

Y = sinh(X);

Description

Returns the hyperbolic sine of the elements of X.

Examples

b = ramp(2.5);
a = sinh(b);
X = [ramp(0);ramp(1)];
Y = sinh(X);

Limitations

Y and X must have the same size.

9. Language Reference

23220-sim 5.1 Reference Manual

sincos

Syntax

Y = sincos(x);

Description

Returns both the sine and cosine of x.

Example

variables

real Y[1,2];

equations

Y = sincos(time);

Limitations

Y is a vector of 2 and X is a scalar.

9. Language Reference

23320-sim 5.1 Reference Manual

tanh

Syntax

Y = tanh(X);

Description

Returns the hyperbolic tangent of the elements of X.

Examples

b = ramp(2.5);
a = tan(b);
X = [ramp(0);ramp(1)];
Y = tanh(X);

Limitations

Y and X must have the same size.

tan

Syntax

Y = tan(X);

Description

Returns the tangent of the elements of X.

Examples

b = ramp(2.5);
a = tan(b);
X = [ramp(0);ramp(1)];
Y = tan(X);

Limitations

Y and X must have the same size.

9. Language Reference

23420-sim 5.1 Reference Manual

9.5 Operators

Operators9.5.1

In 20-sim you can use the following operators in equations:

Operator Description

* Multiplication

+ Addition

- Subtraction

.* ArrayMultiplication

./ ArrayDivision

.^ ArrayPower

/ Division

div Integer division

mod Modulus operator

^ Power

and Boolean and

or Boolean or

xor Boolean exclusive or

< Less than

<= Less than or equal

<> Not equal

== Equal

>= Larger than or equal

9. Language Reference

23520-sim 5.1 Reference Manual

> Larger than

- Prefix Minus Sign

+ Prefix Plus Sign

not Prefix Boolean Not

| .. | Absolute / Determinant / Norm

(data type) Type casting operator

bitand Bitwise AND

bitor Bitwise OR

bitxor Bitwise XOR

bitcmp Bitwise complement

bitset Bitwise set

bitget Bitwise get

swapbytes Swap bytes

bitclear Bitwise clear

bitinv Bitwise invert

bitshift Bitwise shift (left)

bitshiftright Bitwise shift (right)

Arithmetic9.5.2

Absolute

Absolute / Determinant / Norm (|..|)

Syntax

|A| or ||A||

Description

The upright stroke (|) is not a real operator. Depending on what's between the strokes,
the following functions are applied:

| scalar | -> abs(scalar)
| matrix | -> det(matrix)
| vector | -> abs(vector)
|| matrix || -> norm(matrix)

Multiplication

Syntax

A * B

Description

9. Language Reference

23620-sim 5.1 Reference Manual

A * B multiplies A with B. For nonscalar A and B, the number of columns of A must equal
the number of rows of B. If C = A*B then the elements of C can be calculated out of the
matrix elements of A and B as:

A scalar can be multiplied with a matrix of any size.

Examples

A B A * B

5 3 15

-4.5 5.4 -24.3

2 [1,2;3,4] [2,4;6,8]

[1,-2;-3,4] 4 [4,-8;-12,16]

[1,2,3;4,5,6] [1,2;3,4;5,6] [22,28;49,64]

[1,2;3,4;5,6] [1,2,3;4,5,6] not allowed!

Limitations

For nonscalar A and B, the number of columns of A must equal the number of rows of B.

Addition

Syntax

A + B

Description

A + B adds A and B. A and B must have the same size, unless one is a scalar. A scalar
can be added to a matrix of any size.

Examples

A B A + B

1 3 4

2.1 -3.2 -1.1

[1,2;3,4] [1,1;5,5] [2,3;8,9]

2 [1,2;3,4] [3,4;5,6]

[1,2;3,4] 4 [5,6;7,8]

[1,2;3,4] [5,6;7,8;9,10] not allowed!

Limitations

If A and B are matrices, they must have the same size.

9. Language Reference

23720-sim 5.1 Reference Manual

Subtraction

Syntax

A - B

Description

A - B subtracts B from A. A and B must have the same size, unless one is a scalar. A
scalar can be subtracted from a matrix of any size.

Examples

A B A - B

5 3 2

-4.2 5.5 -9.7

[4, 5; 6, 7] [1, 1; 5, 5] [3, 4; 1, 2]

[4, 5; 6, 7] 4 [0, 1; 2, 3]

4 [4, 5; 6, 7] [0,-1;-2,-3]

Array Multiplication

Syntax

A .* B

Description

A .* B multiplies the elements of A by the elements of B. A.*B is the array or matrix with
elements A(i,j)*B(i.j).

Examples

A B A .* B

[1,-2,-4,2] [1,2,1,4] [1,-4,-4,8]

[2,0;0,2] [1,2;3,4] [2,0,0,8]

[2,0;0,2] 1 not allowed!

Limitations

A and B must have the same size.

9. Language Reference

23820-sim 5.1 Reference Manual

Array Division

Syntax

A ./ B

Description

A ./ B divides the elements of A by the elements of B. A./B is the matrix with elements
A(i,j)/B(i.j).

Examples

A B A ./ B

[1,-2,-4,2] [1,2,1,4] [1,-1,-4,0.5]

[2,0;0,2] [1,2;3,4] [2,0,0,0.5]

[2,0;0,2] 1 not allowed!

Limitations

A and B must have the same size.

Array Power

Syntax

A .^ B
A .^ b

Description

A .^ B raises the elements of A to the power of the elements of B (B is a matrix). A .^ B
is the matrix with elements A(i,j)^B(i,j).
A .^ b raises the elements of A to the power of b (b is a scalar). A.^b is the matrix with
elements A(i,j)^b.

Examples

A B A .^ B

[1,-2,-4,2] [1,2,1,4] [1,4,-4,16]

[2,2;3,2] [1,0;3,4] [2,1;27,16]

A b A .^ b

[1, 2; 3, 4] 2 [1, 4; 9, 16]

[16, 4] 0.5 [4, 2]

Limitations

The A and B matrices must have the same size or b should be a scalar.

9. Language Reference

23920-sim 5.1 Reference Manual

Division

Syntax

A / B

Description

A / B divides A by B. For a nonscalar B, A/B equals A*inverse(B). For a nonscalar A,
each element of A is divided by the scalar B.

Examples

A B A / B

15 3 5

-40.5 5 -8.1

2 [1,2;3,4] [-4,2;3,-1]

[1,-2;-3,4] 4 [0.25,-0.5;0.75,1]

[2,0;0,2] [1,2;3,4] [-4,2,3,-1]

1 0 not allowed!

1 [1,2,3;4,5,6] not allowed!

Limitations

If A and B are matrices, they must have the same size. If B is a matrix and it becomes
singular, simulation is stopped.

Integer Division

Syntax

a div b

Description

a div b divides the scalar a by the scalar b and rounds the output toward zero.

Examples

a b a div b

10 5 2

9.9 5 1

-8 2 -4

-7.9 2 -3

9. Language Reference

24020-sim 5.1 Reference Manual

-7.9 -2 3

Limitations

a and b must be scalars.

Modulus Operator

Syntax

a mod b

Description

a mod b returns the signed remainder after division:
a mod b = a - trunc(a / b) *b

Examples

a b a mod b

10 5 0

9.9 5 4.9

-8 2 0

-7.9 2 -1.9

-7.9 -2 -1.9

Limitations

a and b must be scalars.

Power

Syntax

A ^ b

Description

A ^ b raises A to the power b. For a nonscalar A and integer b, A^b is computed by
repeated multiplication of A. If b is negative A is inverted first. If b is zero, A^b is the
identity matrix. For other values of b, it is rounded to its nearest integer value. Making b
a nonscalar is not allowed.

Examples

A b A ^ b

5 3 125

4 -2.1 0.054409

9. Language Reference

24120-sim 5.1 Reference Manual

5.5 0 1

3 2.1 10.04511

[2, 0; 0, 2] 4 [16, 0; 0, 16]

[1, 2; 3, 4] -2.1 [5.5, -2.5; -3.75, 1.75]

[1, 2; 3, 4] 0 [1, 0; 0, 1]

[1, 2; 3, 4] [1, 2; 3, 4] not allowed!

Limitations

b must be a scalar. b is rounded downward to the nearest integer value.

A should be a scalar value or a square matrix.

Binary9.5.3

bitand

Syntax

y = a bitand b

Description

a bitand b performs a bitwise AND between a and b. Both a and b are treated as 32-bit
(4-byte) integer values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure
below. Similarly, the binary representation of 9 is 1001. The binary value of 30 bitand 9
is equal to 01000, which corresponds with decimal value of 8.

9. Language Reference

24220-sim 5.1 Reference Manual

Limitations

a and b must be integers.

bitclear

Syntax

y= a bitclear b

Description

a bitclear b clears the bth bit of a. Both a and b are treated as 32-bit (4-byte) integer
values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure

below. The operation 30 bitclear 3 clears the 3rd bit of 11110 which gives 11010. This
binary value has a decimal value of 26.

9. Language Reference

24320-sim 5.1 Reference Manual

Limitations

a and b must be integers.

bitcmp

Syntax

y= a bitcmp b

Description

a bitcmp b performs the b bit complement of a. Both a and b are treated as 32-bit (4-
byte) integer values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure
below. The operator 30 bitcmp 9 performs the 9 bit complement of 30. This gives the
binary value 111100001 which corresponds with the decimal value 481.

9. Language Reference

24420-sim 5.1 Reference Manual

Limitations

a and b must be integers.

bitget

Syntax

y= a bitget b

Description

a bitget b gets the bth bit of a. Both a and b are treated as 32-bit (4-byte) integer
values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure

below. The operation 30 bitget 5 gets the 5th bit of 11110 which is 1.

9. Language Reference

24520-sim 5.1 Reference Manual

Limitations

a and b must be integers.

bitinv

Syntax

y= bitinv a

Description

bitinv a inverts all bits of a. a is treated as 32-bit (4-byte) signed integer values, so an
eventual fraction will be ignored.
All one bits are changed to zero and all zero bits are changed to one..

Example

In 20-sim all variables are stored as doubles. This means a decimal value of 30 is 4
bytes as shown in the figure below. Because the binary representation of 30 is equal to
11110, only the last byte is filled with non zero bits. The operation bitinv 30 inverts the
bits of "00000000 00000000 00000000 00011110" (30) to "11111111 11111111
11111111 1110001" which is -31 (as signed integer).

9. Language Reference

24620-sim 5.1 Reference Manual

Limitations

a and b must be integers. B should be in the range: [-31..31]

bitor

Syntax

y= a bitor b

Description

a bitor b performs a bitwise OR between a and b. Both a and b are treated as 32-bit (4-
byte) integer values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure
below. Similarly, the binary representation of 9 is 1001. The binary value of 30 bitor 9 is
equal to 11111, which corresponds with a decimal value of 31.

9. Language Reference

24720-sim 5.1 Reference Manual

Limitations

a and b must be integers.

bitset

Syntax

y = a bitset b

Description

a bitset b sets the bth bit of a. Both a and b are treated as 32-bit (4-byte) integer values,
so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure
below. The operation 30 bitset 1 sets the last bit of 11110 to one which gives 11111. This
binary value corresponds with a decimal value of 31.

9. Language Reference

24820-sim 5.1 Reference Manual

Limitations

a and b must be integers.

bitshift

Syntax

y= a bitshift b

Description

a bitshift b shifts the bits of a with b places. Both a and b are treated as 32-bit (4-byte)
integer values, so an eventual fraction will be ignored.
A positive value of b shifts the bits to the left and a negative value shifts the bits to the
right.

Example

In 20-sim all variables are stored as doubles. This means a decimal value of 30 is 4
bytes as shown in the figure below. Because the binary representation of 30 is equal to
11110, only the last byte is filled with non zero bits. The operation 30 bitshift 1 shifts the
bits of 11110 with one place which gives 111100. This number has a decimal value of
60.

9. Language Reference

24920-sim 5.1 Reference Manual

Limitations

a and b must be integers. B should be in the range: [-31..31]

bitshiftright

Syntax

y= a bitshiftright b

Description

a bitshiftright b shifts the bits of a with b places. Both a and b are treated as 32-bit (4-
byte) integer values, so an eventual fraction will be ignored.
A positive value of b shifts the bits to the right and a negative value shifts the bits to the
left.

Example

In 20-sim all variables are stored as doubles. This means a decimal value of 30 is 4
bytes as shown in the figure below. Because the binary representation of 30 is equal to
11110, only the last byte is filled with non zero bits. The operation 30 bitshiftright 1 shifts
the bits of 11110 with one place which gives 1111. This number has a decimal value of
60.

9. Language Reference

25020-sim 5.1 Reference Manual

Limitations

a and b must be integers. B should be in the range: [-31..31]

bitxor

Syntax

y= a bitxor b

Description

a bitxor b performs a bitwise XOR between a and b. Both a and b are treated as 32-bit
(4-byte) integer values, so an eventual fraction will be ignored.

Example

In 20-sim, all bitwise function arguments are treated as 32-bit integers. Thus the binary
representation of 30 (ignoring leading zeroes) is equal to 11110 as shown in the figure
below. Similarly, the binary representation of 9 is 1001. The binary value of 30 bitxor 9
is equal to 10111, which corresponds with a decimal value of 23.

9. Language Reference

25120-sim 5.1 Reference Manual

Limitations

a and b must be integers.

swapbytes

Syntax

swapbytes a

Description

swapbytes a swaps the bytes of a.

Example

In 20-sim all variables are stored as doubles. This means a decimal value of 30 is 4
bytes as shown in the figure below. Because the binary representation of 30 is equal to
11110, only the last byte is filled with non zero bits. The operation swapbytes 30 swaps
byte D to A, C to B, B to C and A to D (see figure below) which gives a decimal value of
503316480.

9. Language Reference

25220-sim 5.1 Reference Manual

Limitations

a and b must be integers.

Boolean9.5.4

and

Syntax

a and b

Description

a and b performs a logical AND between a and b. If a or b are not a boolean, 0
represents a logical false and any nonzero value represents a logical true. The truth
table for this operator is shown below.

Table

a b a and b

false false false

false true false

true false false

true true true

Limitations

a and b must be scalars.

9. Language Reference

25320-sim 5.1 Reference Manual

or

Syntax

a or b

Description

a or b performs a logical OR between a and b. If a or b are not booleans, 0 represents a
logical false and any nonzero value represents a logical true. The truth table for this
operator is shown below.

Table

a b a or b

false false false

false true true

true false true

true true true

Limitations

a and b must be scalars.

xor

Syntax

a xor b

Description

a xor b performs a logical Exclusive OR between a and b. If a or b are not booleans, 0
represents a logical false and any nonzero value represents a logical true. The truth
table for this operator is shown below.

Table

a b a xor b

false false false

false true true

true false true

true true false

Limitations

a and b must be scalars.

9. Language Reference

25420-sim 5.1 Reference Manual

Comparison9.5.5

Less than

Syntax

a < b

Description

The < operator compares two arguments and yields a boolean. If a is less than b, then a
< b yields true. If a is equal or larger than b, then a < b yields false.

Example

a b a < b

1 2 true

1.01e2 101.0 false

31 1 false

-12 -11 true

Limitations

a and b must be scalars.

Less than or Equal

Syntax

a <= b

Description

The <= operator compares two arguments and yields a boolean. If a is less than or
equal to b, then a <= b yields true. If a is larger than b, then a <= b yields false.

Example

a b a < b

1 2 true

1.01e2 101.0 true

31 1 false

-12 -11 true

Limitations

a and b must be scalars.

9. Language Reference

25520-sim 5.1 Reference Manual

Not Equal

Syntax

a <> b

Description

The <> operator compares two arguments and yields a boolean. If a is equal to b, then
a <> b yields false. If a is not equal to b, then a <> b yields true.

Example

a b a <> b

1 1 false

1.01e2 101.0 false

31 1 true

true false true

Limitations

a and b must be scalars.

Equal

Syntax

a == b

Description

The == operator compares two arguments and yields a boolean. If a is equal to b, then
a==b yields true. If a is not equal to b, then a==b yields false. It is typically used in an
if-statement.

Example

a b a == b

1 1 true

1.01e2 101.0 true

31 1 false

true false false

Note

The normal equal sign (=) should only be used for equations. The equal sign (=) makes
the left side of an equation equal to the right side. This is different to the equal
statement (==) which compares two arguments and yields a boolean.

9. Language Reference

25620-sim 5.1 Reference Manual

Larger Than

Syntax

a > b

Description

The > operator compares two arguments and yields a boolean. If a is less than or equal
to b, then a > b yields false. If a larger than b, then a > b yields false.

Example

a b a > b

1 2 false

1.01e2 101.0 false

31 1 true

-12 -11 false

Limitations

a and b must be scalars.

Larger Than or Equal

Syntax

a >= b

Description

The >= operator compares two arguments and yields a boolean. If a is less than b, then
a > b yields false. If a larger than or equal to b, then a > b yields true.

Example

a b a >= b

1 2 false

1.01e2 101.0 true

31 1 true

-12 -11 false

Limitations

a and b must be scalars.

9. Language Reference

25720-sim 5.1 Reference Manual

Prefix9.5.6

Prefix Plus Sign

Syntax

Y = +A

Description

The plus sign may be used as a prefix for scalars, vectors and matrices.

Examples

A +A

5 5

[4, 5; -6, 7.1] [4, 5; -6, 7.1]

Prefix Minus Sign

Syntax

Y = -B

Description

The minus sign may be used as a prefix for scalars, vectors and matrices.

Examples

A -A

5 -5

[4, 5; -6, 7.1] [-4; -5; 6; -7.1]

Boolean Not

Syntax

y = not a

Description

The boolean prefix not performs an inversion of a.

Table

a not a

9. Language Reference

25820-sim 5.1 Reference Manual

false true

true false

Limitations

a must be a boolean.

9.6 Statements

Statements9.6.1

Statements are important to guide the flow of information in equation models. 20-sim
supports the following statements:

1. For to Do

2. If Then

3. If Then Else

4. If Then Else (expression)

5. Repeat Until

6. Switch Case

7. Stopsimulation

8. Warning

9. While Do

10. toMatlab

11. fromMatlab

12. doMatlab

13. Effortincausality

14. Flowincausality

If Then9.6.2

Syntax

if condition then
equation;
....

end;

Description

The simplest if statement evaluates a condition and performs the specified equation(s) if
the condition is true. If the condition is not true, 20-sim ignores the equation(s).

9. Language Reference

25920-sim 5.1 Reference Manual

Examples

b = false;
y = ramp(1);
u = -ramp(1);
if time > 5 then

y = -ramp(1); // equations to be executed if condition is true,
u = ramp(1); // these are not executed if condition is false

end;
if time == 10 then // note the use of the equal operator ==

b = true; // equations to be executed if condition is true,
end;

Limitations

1. The output of the condition must be a boolean.

Note

1. Take care when using an event functions in if-then-else statements. In if-then-else
statements only the equations of the true parts are evaluated, so event functions
may not always be triggered!

2. There is also an if-then-else statement.

3. Equations within an if statement have to be written in the correct order of execution,
i.e. they are not rewritten into a causal form but executed sequentially.

If Then Else9.6.3

Syntax

if condition then
equation;
...

else
equation;
...

end;

Description

The if-then-else statement evaluates a condition and performs the first set of equation(s)
if the condition is true and the second set of equation(s) if the condition is false. If the
condition is true, 20-sim ignores the second set of equation(s). If the condition is false,
20-sim ignores the first set of equation(s).

Nesting

If-then-else statements may be nested as many times as desired. Do not forget to
included the word "end;" to finish every nested statement!

Examples

y = step(1);

u = -step(1);

if time > 5 then

9. Language Reference

26020-sim 5.1 Reference Manual

y = -ramp(1); // equations to be executed if condition is true,

u = ramp(1); // these are not executed if condition is false

else

y = ramp(1); // equations to be executed if condition is false,

u = -ramp(1); // these are not executed if condition is true

end;

//Nesting

if time < 5 then

a = 1;

b = sin(time*1);

else

if time == 5 then

a = 2;

b = sin(time*2);

else

a = 3

b=sin(time*3);

end;

end;

Limitations

1. The output of the condition must be a boolean.

Note

1. Take care when using an event functions in if-then-else statements. In if-then-else
statements only the equations of the true parts are evaluated, so event functions
may not always be triggered!

2. There is also an if-then-else expression.

3. Equations within an if statement have to be written in the correct order of execution,
i.e. they are not rewritten into a causal form but executed sequentially.

9. Language Reference

26120-sim 5.1 Reference Manual

If Then Elsif9.6.4

Syntax

if condition then
equation;
...

elsif condition then
equation;
...

elsif condition then
equation;
...

else
equation;
...

end;

Description

The if-then-elsif-else statement is a variant of the if-then-else statement. It makes
nested conditions easier to write. It evaluates a condition and performs the first set of
equation(s) if the condition is true, otherwise it evaluates the second condition and
performs the second set of equation(s) if that condition is true and so on. If the first
condition is true, 20-sim ignores the other sets of equation(s). If the first condition is
false, 20-sim ignores the first set of equation(s) and jumps to the second condition etc.

Examples

x = (integer) time;

if x < 4 then

y = 1;

elsif x < 6 then

y = 3;

elsif x < 8 then

y = 5;

else

y = 0;

end;

Limitations

1. The output of the condition must be a boolean.

Note

1. Take care when using an event functions in if-then-else statements. In if-then-else
statements only the equations of the true parts are evaluated, so event functions
may not always be triggered!

2. Equations within an if statement have to be written in the correct order of execution,
i.e. they are not rewritten into a causal form but executed sequentially.

9. Language Reference

26220-sim 5.1 Reference Manual

If Then Else (expression)9.6.5

Syntax

y = if condition then
expression

else
expression

end;

Description

The if-then-else expression evaluates a condition and makes y equal to the first
expression if the condition is true and makes y equal to the second expression if the
condition is true. If the condition is true, 20-sim ignores the second expression. If the
condition is false, 20-sim ignores the first expression. Because the complete construct
forms one expression, only one semicolon is used at the end.

Nesting

If-then-else expression may be nested. Take care that no semicolons are used,
because no matter how large the construct is, it is still one expression!

Examples

y = if time > 5 then

-ramp(1) // statement to be assigned to y if condition

is true,

else

ramp(1) // statement to be assigned to y if condition

is false,

end;

// Nesting:
x = if time < 1 then

1

else

if time < 2 then

2

else

if time == 2 then

1

else

0

end

end

end;

Limitations

1. The output of the condition must be a boolean.

2. If needed, always use the equal operator (==) in the condition.

Note

9. Language Reference

26320-sim 5.1 Reference Manual

1. Take care when using event functions in if-then-else expressions. In if-then-else
expressions only the equations of the true parts are evaluated, so event functions
may not always be triggered!

2. There is also an if-then-else statement.

3. Equations within an if statement have to be written in the correct order of execution,
i.e. they are not rewritten into a causal form but executed sequentially.

For To Do9.6.6

Syntax

for variable = start to stop by step do
equation;
equation;
....

end;

Description

The for statement is designed to execute equation(s) a fixed number of times. It begins
with the keyword for and an expression that specifies the number of times the equations
within the for statement should be executed. The for statement ends with the keyword
end. The default increment in a for statement is one (1), but you can use the keyword
by to adjust the increment.

The equations within the for statement are always executed once. The for statement
stops when the variable has exceeded the stop value.

Examples

variables
real i,y[10];

equations
for i = 1 to 2 do

// executed 2 times: y[1] and y[2]
y[i] = ran (1);

end;
for i = 2 to 4.1 by 2 do

// executed 3 times: y[2], y[4] and y[6]
y[i] = ran (1);

end;

Limitations

1. The start, stop and step values must be scalars. The step value is optional. There
are no limitations to the number of equations that can be used within the for
statement.

2. Equations within an for statement have to be written in the correct order of
execution, i.e. they are not rewritten into a causal form but executed sequentially.

9. Language Reference

26420-sim 5.1 Reference Manual

While Do9.6.7

Syntax

code
while condition do

equation;
equation;
....

end;

Description

The while statement is designed to execute equation(s) repeatedly, as long as the
condition is true. The condition is evaluated before the equations are executed.

It is the user's responsibility to guarantee that the execution of the while statement
finishes by making the condition become false at a certain time.

Example

variables

real i,y[3];

initialequations

y = 0;

code // Use code to ensure sequential execution

i = 1;

while i <= rows(y) do

// executed 3 times for each model calculate:

// y[1] and y[2] and y[3] are filled

y[i] = sin(time) * i;

// i is incremented to guarantee a stop of the loop

i = i + 1;

end;

Limitations

1. The output of the condition must be a boolean. If the boolean does not become
false, the loop never ends! There are no limitations to the number of equations that
can be used within the while statement.

2. Equations within an while statement have to be written in the correct order of
execution, i.e. they are not rewritten into a causal form but executed sequentially.

9. Language Reference

26520-sim 5.1 Reference Manual

Repeat Until9.6.8

Syntax

code
repeat

equation;
equation;
....

until condition;

Description

The repeat statement is designed to execute equation(s) repeatedly, as long as the
condition is true. The condition is evaluated after the equations are executed.

It is the user's responsibility to guarantee that the execution of the repeat statement
finishes by making the condition become false at a certain time.

Examples

variables

real i,z[4];

initialequations

z = 0;

code // Use code to ensure sequential execution

i = 1;

repeat

// executed 4 times:

z[i] = cos(time) * i;

// i is incremented to guarantee a stop of the loop

i = i + 1;

until (i > rows(z));

Limitations

1. The output of the condition must be a boolean. If the boolean does not become
false, the loop never ends! There are no limitations to the number of equations that
can be used within the repeat statement.

2. If needed, always use the equal operator (==) in the condition.

3. Equations within an repeat statement have to be written in the correct order of
execution, i.e. they are not rewritten into a causal form but executed sequentially.

9. Language Reference

26620-sim 5.1 Reference Manual

Switch Case9.6.9

Syntax

switch variable
case variable1 do

equations;
case variable2 do

equations;
default do

equations;
end;

Example

equations

z = 4;

i = floor(time);

switch i

case 1 do

y = 1;

case 2 do

y = 2;

case 3 do

y = 3;

case z do

y = 4;

default do

y = 5;

end;

Description

The switch case statement is designed to execute equation(s) based on the value of a
variable. Only the equations of the valid branch are executed. If non of the branches is
valid, the equations of the default branch are executed.

Limitations

1. The switch variable should not be changed inside one of the branches.

2. Equations within a switch case statement have to be written in the correct order of
execution, i.e. they are not rewritten into a causal form but executed sequentially.
Therefore it is advised only to use this statement in a code section.

Tips

1. Keep the condition variables (variable1, varable2) constant during simulation to
prevent confusion.

2. Make sure that the switch variable has the right value to execute the branch. In the
example, the time variable changes value every time step. The floor function is used
to keep it at a constant value long enough to see the branches in action.

9. Language Reference

26720-sim 5.1 Reference Manual

Stopsimulation9.6.10

Syntax

stopsimulation ('string');

Description

The stopsimulation function stops the simulation as soon as it comes to action. It is
useful when used in combination with an if statement. As soon as the simulation stops,
the log window will appear showing the string that is used in the function.

Normal stop: If the string starts with 'Error', the Simulator will stop and the Editor
will jump to the the model containing the stopsimulation function.
Silent stop: If the string does not start with 'Error' the Simulation will jump to the
finalequations section, execute them and stop the simulation.

Examples

In the example below the Simulator will stop the simulation at time > 6 and show a
message 'time > 6' in the output tab. The finalequations are evaluated and number has
a value of 2:

variables
integer number;

initialequations
number = 1;

equations
if time > 6 then

stopsimulation ('time > 6');
end;

finalequations
number = 2;

In the example below the Simulator will stop the simulation at time > 6 and show a
message 'time > 6' in the output tab. The Editor will jump to this model showing an error
message. The finalequations are not evaluated and number has a value of 1:

variables
integer number;

initialequations
number = 1;

equations
if time > 6 then

stopsimulation ('Error time > 6');
end;

finalequations
number = 2;

9. Language Reference

26820-sim 5.1 Reference Manual

Warning9.6.11

Syntax

warning ('string',boolean);

Description

The warning function displays a message in the the log window. You can choose to
display the string once (boolean = true) or every simulation step (boolean = false). It is
advised to use the warning function in combination with an if-then statement or event-
function.

Examples

warning('this message will be displayed every simulationstep!',false);
if time > 1

warning('this message will be displayed every simulationstep after time >
1!',false);
end;
if x > 100 then

warning('this message will be displayed only once after x > 100',true);
end;
if event(y) then

warning('this message will be displayed when y is exactly 0',false);
end;

toMatlab9.6.12

Syntax

toMatlab(<20-sim variable>)
toMatlab(<20-sim variable>, 'matlab variable name')

Description

The toMatlab statement allows you to pass a variable from 20-sim to Matlab.

The first argument is the name of the 20-sim variable to send to Matlab (source).
This 20-sim variable can be a scalar variable, a vector or a matrix.
The second (optional) argument 'matlab variable name' is the name of the
corresponding matlab variable (destination).

When the 'matlab variable name' argument is omitted, 20-sim will use the full
hierarchical name of the 20-sim variable.
A 20-sim variable named Controller\x becomes in Matlab: Controller_x

The corresponding fromMatlab statement allows you to retrieve a variable from Matlab.

Example

// this example shows how a variable can be transferred to matlab and from matlab
during simulation
variables

real x;
real y;
real vector[2];
real matrix[2,2];

9. Language Reference

26920-sim 5.1 Reference Manual

// at the start of the simulation
initialequations

// create an empty array a
doMatlab ('a = []; ');
// create a variable
doMatlab ('b=0; ');
// create a vector
doMatlab ('vector=[1 2];');
// create a matrix
doMatlab ('matrix=[1 2; 3 4];');

// during simulation
equations

// calculate x
x = sin (time);
// send it to Matlab
toMatlab (x,'x');
// and add it to array a
doMatlab ('a = [a x]; ');
// in Matlab add 2 to x
doMatlab ('b = x + 2;');
// read matlab 'b' into 20-sim variable 'y'
fromMatlab(y, 'b');
// read matlab 'vector' into 20-sim variable 'vector'
fromMatlab(vector, 'vector');
// read matlab 'matrix' into 20-sim variable 'matrix'
fromMatlab(matrix, 'matrix');

// at the end of the simulation
finalequations

// plot the resulting array in Matlab
doMatlab (' plot (a); ');

domatlab9.6.13

Syntax

doMatlab('string')

Description

The doMatlab statement allows you to pass a command line string to Matlab.

Example

// this example shows how a variable can be transferred to matlab and from matlab
during simulation
variables

real x;
real y;
real vector[2];
real matrix[2,2];

// at the start of the simulation
initialequations

9. Language Reference

27020-sim 5.1 Reference Manual

// create an empty array a
doMatlab ('a = []; ');
// create a variable
doMatlab ('b=0; ');
// create a vector
doMatlab ('vector=[1 2];');
// create a matrix
doMatlab ('matrix=[1 2; 3 4];');

// during simulation
equations

// calculate x
x = sin (time);
// send it to Matlab
toMatlab (x,'x');
// and add it to array a
doMatlab ('a = [a x]; ');
// in Matlab add 2 to x
doMatlab ('b = x + 2;');
// read matlab 'b' into 20-sim variable 'y'
fromMatlab(y, 'b');
// read matlab 'vector' into 20-sim variable 'vector'
fromMatlab(vector, 'vector');
// read matlab 'matrix' into 20-sim variable 'matrix'
fromMatlab(matrix, 'matrix');

// at the end of the simulation
finalequations

// plot the resulting array in Matlab
doMatlab (' plot (a); ');

frommatlab9.6.14

Syntax

fromMatlab(<20-sim variable>)
fromMatlab(<20-sim variable>, 'matlab variable name')

Description

The fromMatlab statement allows you to retrieve a variable from Matlab and store it
into a 20-sim variable.
The first argument is the name of the 20-sim variable to use as storage (destination).
This 20-sim variable can be a scalar variable, a vector or a matrix and should match the
size used at the Matlab side.
The second (optional) argument 'matlab variable name' is the name of the Matlab
variable to retrieve (source).

When the 'matlab variable name' argument is omitted, 20-sim will use the full
hierarchical name of the 20-sim variable.
A 20-sim variable named Controller\x requests from Matlab: Controller_x

The corresponding toMatlab statement allows you to pass a variable from 20-sim to
Matlab.

9. Language Reference

27120-sim 5.1 Reference Manual

Example

// this example shows how a variable can be transferred to matlab and from matlab
during simulation
variables

real x;
real y;
real vector[2];
real matrix[2,2];

// at the start of the simulation
initialequations

// create an empty array a
doMatlab ('a = []; ');
// create a variable
doMatlab ('b=0; ');
// create a vector
doMatlab ('vector=[1 2];');
// create a matrix
doMatlab ('matrix=[1 2; 3 4];');

// during simulation
equations

// calculate x
x = sin (time);
// send it to Matlab
toMatlab (x,'x');
// and add it to array a
doMatlab ('a = [a x]; ');
// in Matlab add 2 to x
doMatlab ('b = x + 2;');
// read matlab 'b' into 20-sim variable 'y'
fromMatlab(y, 'b');
// read matlab 'vector' into 20-sim variable 'vector'
fromMatlab(vector, 'vector');
// read matlab 'matrix' into 20-sim variable 'matrix'
fromMatlab(matrix, 'matrix');

// at the end of the simulation
finalequations

// plot the resulting array in Matlab
doMatlab (' plot (a); ');

9. Language Reference

27220-sim 5.1 Reference Manual

Effortincausality9.6.15

Syntax

effortincausality (portname) then
equation;
equation;
...

else
equation;
equation;
...

end;

Description

The effortincausality statement evaluates if a port has causality effort in and performs
the first set of equation(s) if the condition is true and the second set of equation(s) if the
condition is false. If the condition is true, 20-sim ignores the second set of equation(s). If
the condition is false, 20-sim ignores the first set of equation(s).

Depending on the domain you are working in, effort and flow correspond to particular
variables. The table below shows the variables for the domains that are currently
supported in 20-sim.

Domain effort (e) flow (f)

power effort e flow f

mechanical

(translation)

force F [N] velocity v [m/s]

mechanical

(rotation)

torque T [Nm] angular velocity omega [rad/s]

pneumatic pressure p [Pa] volume flow phi [m3/s]

thermal temperature T [K] entropy flow dS [J/Ks]

electric voltage u [V] current i [A]

hydraulic pressure p [Pa] volume flow phi [m3/s]

magnetic current i [A] voltage u [V]

pseudothermal temperature T [K] heat flow dQ [W]

9. Language Reference

27320-sim 5.1 Reference Manual

Examples

effortincausality p then
R = if p.u > 0 then Ron else Roff end; // executed if causality of port p is

effort (u) in
else

R = if p.i > 0 then Ron else Roff end; // executed if causality of port p is flow
(i) in
end;
p.i = p.u/R;

 Note

1. Take care when using event functions in effortincausality statements. In this
statement only the equations of the true parts are evaluated, so event functions
may not always be triggered!

2. There is also a flowincausality statement.

3. Equations within an effortincausality have to be written in the correct order of
execution, i.e. they are not rewritten into a causal form but executed sequentially.

Flowincausality9.6.16

Syntax

flowincausality (portname) then
equation;
equation;
...

else
equation;
equation;
...

end;

Description

The effortincausality statement evaluates if a port has causality flow in and performs the
first set of equation(s) if the condition is true and the second set of equation(s) if the
condition is false. If the condition is true, 20-sim ignores the second set of equation(s). If
the condition is false, 20-sim ignores the first set of equation(s).

Depending on the domain you are working in, effort and flow correspond to particular
variables. The table below shows the variables for the domains that are currently
supported in 20-sim.

Domain effort (e) flow (f)

power effort e flow f

mechanical

(translation)

force F [N] velocity v [m/s]

9. Language Reference

27420-sim 5.1 Reference Manual

mechanical

(rotation)

torque T [Nm] angular velocity omega [rad/s]

pneumatic pressure p [Pa] volume flow phi [m3/s]

thermal temperature T [K] entropy flow dS [J/Ks]

electric voltage u [V] current i [A]

hydraulic pressure p [Pa] volume flow phi [m3/s]

magnetic current i [A] voltage u [V]

pseudothermal temperature T [K] heat flow dQ [W]

Examples

flowincausality p then
R = if p.i > 0 then Ron else Roff end; // executed if causality of port p is flow (i) in
else
R = if p.u > 0 then Ron else Roff end; // executed if causality of port p is effort (u)
in
end;
p.u = p.i*R;

 Note

1. Take care when using event functions in effortincausality statements. In this
statement only the equations of the true parts are evaluated, so event functions
may not always be triggered!

2. There is also an effortincausality statement.

3. Equations within an effortincausality have to be written in the correct order of
execution, i.e. they are not rewritten into a causal form but executed sequentially.

9.7 Matrices and Vectors

Declaration9.7.1

Matrices and column vectors are declared in the constants, parameters and variables
sections of a model. Declaration of matrices and column vectors is equal to the
declaration of scalars, the size however has to be specified explicitly using square
brackets []. For example:

parameters
real A[3,3], B[3,3];
integer C[2,2] = [1,3;5,7];
real K[4] = [1;2;3;4];

variables
real K[4],L[4],D[4,5];
integer M[2,2],N[2,2];

Matrices and Vectors can only be of the datatype real or integer.

9. Language Reference

27520-sim 5.1 Reference Manual

Notation9.7.2

Matrix sizes in 20-sim are always denoted by [n,m] where n is the numbers of rows and
m is the numbers of columns. Elements can separately be denoted with commas (,)
distinguishing between row elements and semicolons (;) distinguishing between rows.

matrix size matrix form 20-sim notation

[4,1] 1

3

5

7

[1;3;5;7]

[1,4] 1 3 5 7 [1,3,5,7]

[2,3] 1 2 3

4 5 6

[1,2,3;4,5,6]

[3,2] 1 2

3 4

5 6

[1,2;3,4;5,6]

Column vectors are matrices with only one column. Consequently the column size may
be omitted in the notation.

column size column form 20-sim notation

[4] 1

3

5

7

[1;3;5;7]

9. Language Reference

27620-sim 5.1 Reference Manual

Use9.7.3

Matrices and Vectors can be used in equations just like scalars. If possible, the element
notation can be left out. If equations get ambiguous, element notation must be
used!

Whole matrix or vector

K = 1; // Make all elements of K equal to 1.
M = C; // Make matrix M equal to matrix C (sizes have to be equal).
N = D*inverse(L); // Make matrix N equal to the matrix product of D

// and the inverse of L (sizes of N, D and L have to be equal).

Matrix and vector elements

N = [sin(time),cos(time);cos(time),-sin(time)]; // Make elements of N equal to
functions.
L[4] = time; // Make element 4 of columned L equal to time.
D[2,5] = A[2,2]*B[1,1]; // Declare one element

Multiple elements (ranges)

To prevent multiple equations for assigning matrix elements, ranges can be assigned
using a colon. E.g. 1:5 means element 1 to 5, 7:8 means element 7 and 8. Backward
counting ranges (like 10:1) are not allowed!

D[2,1:5] = A[1,1:5]; // D[2,1] = A[1,1], ... , D[2,5] = A[1,5]
variables

real v[3],p[6,6];
equations

v = p[4:6,6]; // v[1] = p[4,6], ... , v[3] = p[6,6]

Operators

Some scalar operators can also be used for matrices and vectors. Depending on the
specific operator, the meaning may differ for scalars, vectors and matrices.

Operator Description

* Multiplication

+ Addition

- Subtraction

.* ArrayMultiplication

./ ArrayDivision

.^ ArrayPower

/ Division

^ Power

- Prefix Minus Sign

+ Prefix Plus Sign

| .. | Absolute / Determinant / Norm

9. Language Reference

27720-sim 5.1 Reference Manual

 Functions

A lot of special matrix and vector functions are supported in 20-sim:

Function Description

 Adjoint

 adjoint

 Antisym

 Columns

 Cross

 Determinant

 Diag

 Eye

 Homogeneous

 Inner

 Inverse

 InverseH

 Linsolve

 Max

 Min

 Msum

 Norm

 Norminf

 Rows

 Skew

 Sym

 Tilde

 Trace

 Transpose

9. Language Reference

27820-sim 5.1 Reference Manual

9.8 Advanced Topics

Algebraic Loops9.8.1

An algebraic loop in a model is a loop consisting of elements without "memory like"
functions. To calculate the variables in this loop, the variable values themselves are
needed. Consider the following example of an algebraic loop in an amplifier with
negative feedback:

Standard derivation of a simulation model would yield:

x = K*(u-x)

The variable x depends on its own value and must be solved by iteration. In 20-sim
every simulation algorithm is accompanied by an iteration routine. Fortunately 20-sim is
able to solve many algebraic loops at equation level. For this model this leads to the
analytic solution the system:

x = K*u/(1+K)

Simulating algebraic loops

Although 20-sim contains a sophisticated algorithms to find analytic solutions, the
occurrence of unbreakable loops can not always be prevented. The occurrence of
algebraic loops may lead to an increase of simulation time, or even stop simulation when
iteration fails.

The best solution for these problems is to have a critical look at the model and change
the order of calculations in a model. Possible solutions are:

Algebraic Loops occur when the order of calculations is arbitrary. When an algebraic
loop occurs in an equation model or in a set of equation models, you may change the
order of calculation by rewriting the equations. The calculation order in bond graph
models can be changed by introducing hand-defined causality.

Introduce ‘parasitic’ energy storage elements (e.g. a small mass, a small capacitor
etc.) to break an algebraic loop. These elements introduce however, large poles in
the state equations, which might increase the simulation time considerably.

Delete elements in the algebraic loop which are not relevant for the model’s
simulation output (e.g. small dampers, very stiff springs etc.). Care should however
be taken, since correct deletions are not always possible and require considerable
modeling skill and intuition.

Combine dual elements. Sometimes elements of the same type can be combined by
adding the parameter values (e.g. combining a mass m1 and a mass m2 to a mass
m1 + m2). This will in most cases decrease the amount of algebraic loops.

9. Language Reference

27920-sim 5.1 Reference Manual

Causal Form9.8.2

Equations within 20-sim may be entered in random form. During compilation, 20-sim will
automatically try to rewrite equations into a causal form and set them in a correct order.
I.e. a form where all output variables are written as function of input variables. Consider
for example the following model:

variables
real u,z;

equations
u = sin(time);
u = cos(z);

Here the (input) variable u is given by the equation u = sin(time). Consequently the
(output) variable z should be written as a function of u. This is exactly what 20-sim will
try to do while compiling the model into simulation code. I.e. the function cos will be
inverted and the model will be rewritten to:

variables
real u,z;

equations
u = sin(time);
z = arccos(u);

Some functions cannot be inverted. Consequently not all equations can be rewritten. 20-
sim will report this to the user, during model checking.

Fixed Causality

For some models there is only one causal form. For example a simple iconic diagram
model that describes coulomb friction can be written as:

parameters
real Rc;

equations
p.F = Rc*abs(p.v);

Here p.F denotes the force and p.v denotes the velocity of the powerport p. The equation
cannot be rewritten to a form where p.F is the input. This can be explicitly stated, by
giving the powerport p a fixed causality. During compilation 20-sim will try to keep the
model in this fixed form. If this is not possible an error message will be generated.

Fixed causality has the highest priority for assigning causality. During compilation 20-sim
will first assign all models with a fixed causality, then all models with a preferred
causaility, then all models with a likes causality and then all models with an indifferent
causality.

Preferred Causality

For some models there is a preferred causal form. For example the iconic diagram
model that describes a spring can be written as:

9. Language Reference

28020-sim 5.1 Reference Manual

parameters
real k;

equations
p.F = (1/k)*int(p.v);

Here p.F denotes the force and p.v denotes the velocity of the powerport p. The equation
is written in integral form which is preferred. Consequently the preferred input is the
velocity. Should the force be the input, the equation must be rewritten to a differential
form, which is leads to less efficient simulation. This can be explicitly stated, by giving
the powerport p an preferred causality. During compilation 20-sim will try to keep the
model in this preferred form. If this is not possible the equations will be rewritten to the
less preferred form.

Preferred causality has a lower priority than fixed causality. During compilation 20-sim
will first assign all models with a fixed causality and then all models with a preferred,
likes and indifferent causality.

Likes Causality

For some models there is a causal form which is liked more than the other. For example
the iconic diagram model that describes a parasitic volume can be written as:

effortincausality(p) then
p.phi = 0;

else
volume_ratio = int(p.phi/V);
p.p = B * volume_ratio + p_initial;

end;

Here p.phi denotes the volume flow and p.p denotes the pressure of the powerport p.
The equation is written in integral form which is liked. Consequently the preferred output
is the pressure. Should the pressure be the input, the equation gives a zero flow as
output. During compilation 20-sim will first try to keep all models the liked form. If this is
not possible the equations will be rewritten to the other form.

Likes causality has a lower priority than preferred causality. During compilation 20-sim
will first assign all models with a fixed causality and then all models with a preferred,
likes and indifferent causality.

Indifferent Causality

For some models the causal form is not known beforehand. For example the iconic
diagram model that describes a damper can be written as:

parameters
real d;

equations
p.F = d*p.v;

Here p.F denotes the force and p.v denotes the velocity of the powerport p. There is no
preferred input (force or velocity). This can be explicitly stated, by giving the powerport
p an indifferent causality. During compilation 20-sim will determine whether p.F or p.v is
the input variable and consequently rewrite the equations.

9. Language Reference

28120-sim 5.1 Reference Manual

indifferent causality has a lower priority than likes causality. During compilation 20-sim
will first assign all models with a fixed causality and then all models with a preferred,
likes and indifferent causality.

Setting Causality

For some models, the equations are too complex to analyze causality. To help 20-sim,
using the right causality, you can set causality for every port in the Interface Editor.

Integral Form9.8.3

Consider the following first order linear model:

This model can be described by the dynamic equation:

output = int(input - K*output)

Now look at the following model:

This model can be described by the dynamic equation:

output = (input - ddt(output))/K

Note that we can rewrite this equation as:

ddt(output) = input - K*output

or

output = int(input - K*output)

This is the same equation as the previous model! Apparently, both models are the same!
Both models can therefore be described by the dynamic equations:

ddt(output) = input - K*output
output = int(input - K*output)

9. Language Reference

28220-sim 5.1 Reference Manual

We call the first equation the differential form (no integrals). The second equation is
called the integral form (no derivatives). In 20-sim, models can be entered in integral
form as well as the differential form.

Solving Differential Equations

During compilation, 20-sim will automatically try to rewrite equations into the integral
form, since this leads to more efficient simulation. Sometimes an integral form cannot be
found. Then algorithms will be applied to solve the differential directly. For example an
equation like:

output = ddt(sin(a*time))

will be replaced by the following equation (applying the chain rule and using the known
derivative for the sine function):

output = a*cos(a*time)

Sometimes a differential cannot be solved directly. Then only the Backward-
Differentiation Methods can be used for simulation.

Simulation Code

After compilation simulation code is generated. The equation in integral form:

output = int(input - K*output)

will be written as:

independent state = output
independent rate = input - K*output

and can be handled by all integration methods. The equation in differential form:

ddt(output) = input - K*output

will be written as:

dependent rate = input - K*output
dependent state = output

and can only be handled by the Backward-Differentiation Methods.

Order of Execution9.8.4

Equations within 20-sim may be entered in random form. During compilation, 20-sim will
automatically try to rewrite equations into a correct order of execution. I.e. a form
where all output variables are written as function of input variables and output variables
of previous lines. Consider for example the following equations:

9. Language Reference

28320-sim 5.1 Reference Manual

variables
real u,z;

equations
z = sin(u);
u = cos(time);

Here the (input) variable z is given as a function of u. Consequently u should be
calculated first. This is exactly what 20-sim will try to do while compiling the model into
simulation code. I.e. the equations will be executed as:

u = cos(time);
z = sin(u);

Code Blocks

Equations in a code block are not reordered. A code block is a set of equations inside a
statement. Suppose we have the following equations:

if condition then
code block 1
...
...

else
code block 2
...
...

end;

To prevent incorrect executions of the if-statement, the equations of the code blocks will
not be separated. Inside a code-block, equations can are not rewritten into an new order
of execution. E.g. the following equations:

if time > 10 then
z = sin(u);
a = z^2;
u = cos(time);

end;

Will be not be reordered and therefore not correctly executed! To get correct code,
enter code blocks in a correct order, e.g.:

if time > 10 then
u = cos(time);
z = sin(u);
a = z^2;

end;

Prevent Order Changes

To make all equations a code block you can use the code section. E.g.

9. Language Reference

28420-sim 5.1 Reference Manual

parameters
real y = 8;

variables
real x1, x2, x3;

code
x1 = time;
x2 = sin(time);
x3 = y*x1;

Integration Steps

Some integration algorithms do more calculations before generating the next output
value. These calculations are called minor steps, the output generation is called a major
step. During a minor step, all model equations are executed. In most cases you will not
notice this because only the results of the major step are shown in the simulator. There
are however, exceptions. The next topic will discuss this in more detail.

Show Equations9.8.5

During processing a complete set of equations is generated of each model. To inspect
these equations or copy them for use in other programs, you have to:

1. From the Model menu select the Check Complete Model command.

2. From the Model menu select the Show Equations command.

Now a window is popped up showing all the model equations.

The model equations after compiling.

10. Toolboxes

28520-sim 5.1 Reference Manual

10 Toolboxes

10.1 Toolboxes

20-sim contains a number of Toolboxes. The following toolboxes can be found in the
Editor:

1. Control Toolbox: A set of four tools; Controller Design Editor, MLP Network Editor,
B-Spline Network Editor and the Filter Editor.

2. Mechatronics Toolbox: A set of three tools; Cam Wizard, Motion Profile Wizard,
Servo Motor Editor.

3. 3D Mechanics Toolbox: With the 3D Mechanics Editor you can create 3D dynamic
models of mechanical structures.

4. Frequency Domain Toolbox: This toolbox allows you to look at model properties in
the frequency domain: Model Linearization, Linear System Editor.

5. Scenario Manager: With this tool you can automate tasks like testing models.

The following toolboxes can be found in the Simulator:

6. Time Domain Toolbox: The Time Domain Toolbox helps you to autamatically run
simulations and change parameter values.

7. Frequency Domain Toolbox: This toolbox allows you to look at model properties in
the frequency domain: FFT Analysis, Model Linearization, Dynamic Error Budgetting.

8. Real Time Toolbox: The Real Time toolbox of 20-sim allows you to create C-code
out of any 20-sim model for the use in real-time applications.

9. Animation Toolbox: Toolbox to show simulation results as animations.

Two toolboxes run externally from 20-sim:

10. Scripting Toolbox: 20-sim scripting allows you to run tasks in 20-sim automatically
using scripts running in Python or other scripting tools. With these scripts you can
open models, run simulations, change parameters, store results and much more.

11. 20-sim Unity Toolbox: This toolbox couples 20-sim with the Unity game engine. Unity
allows you to make 3D animations with high quality rendering and display on screen
and VR headsets. The Unity toolbox does not come standard with 20-sim, but has to
be purchased separately.

10. Toolboxes

28620-sim 5.1 Reference Manual

10.2 3D Mechanics Toolbox

Introduction10.2.1

Introduction

With the 3D Mechanics Editor you can create 3D dynamic models of mechanical
structures. The resulting 3D mechanical model can be connected with other 20-sim
components. In the example shown below (Getting Started Manual\3D Mechanics
Toolbox\ScaraRobotSimulation.emx), you see a robot model that has been generated
with the 3D Mechanics Editor. The model has two actuated rotation joints and one
actuated translation joint. The rotation joints are directly coupled to gearboxes. The
translation joint is coupled via a spindle.

In 20-sim you can use plots to show the simulation results and use the 3D Animation
Toolbox to show an animation of the 3D model.

Opening The 3D Mechanics Editor

You can open the 3D Mechanics Editor by:

1.In the 20-sim Editor from the Tools menu select 3D Mechanics Toolbox and 3D
Mechanics Editor.

Now a masked model is inserted in the Editor and the 3D Mechanics Editor will be
opened.

10. Toolboxes

28720-sim 5.1 Reference Manual

If you select a 3D Mechanics model and select Go Down, the 3D Mechanics Editor will be automatically

opened.

The first time you start 20-sim 3D Mechanics Editor the following screen will appear.

The 3D Mechanics Editor

10. Toolboxes

28820-sim 5.1 Reference Manual

Migrating from Older Versions

This topic is only important for users who are migrating from older version of 20-sim and
want to use previously constructed 3D Mechanics models. Since 20-sim 4.1, the 3D
Mechanics Editor operates on masked models. I.e. you can open the 3D Mechanics Editor
by selecting a 3D Mechanics model and clicking the Go Down command. If you import a
20-sim 4.0 model, you will notice that this option does not work. We will explain the
actions you have to perform to do make this trick work on older models.

1. Open the 20-sim model that contains a submodel that was generated by the 3D
Mechanics Editor (make sure you have stored an backup copy).

The star shaped model was created using the 3D Mechanics Editor of 20-sim 4.0.

2. Select the model that was generated by the 3D Mechanics Editor and select Go
Down.

10. Toolboxes

28920-sim 5.1 Reference Manual

The automatically generated equations of a 3D Mechanical Model.

3. At the top of the model enter the following code:
// 20-sim 3D Mechanics Editor
// C:\Program Files\20-sim 5.1\Models\Examples\3D Mechanics\hexapod.3dm

The first line tells 20-sim which editor should be opened. The second line shows the
location of the corresponding 3D Mechanics configuration file. Enter the path and name
of your own file here.

The comment at the top tells 20-sim which editor should be opened and the corresponding configuration

file.

10. Toolboxes

29020-sim 5.1 Reference Manual

The next time you select the model and select Go Down the 3D Mechanics Editor will be
opened with the proper 3D Mechanics model.

Edit Window

In the center of the 3D Mechanics Editor the Edit window is visible. At the start a
reference frame and a base plane is shown. In the Edit window, you can insert
components and assemble you model.

In the Edit Window you can assemble your model.

10. Toolboxes

29120-sim 5.1 Reference Manual

Model Tab

One of the two tabs at the left of the 3D Mechanics Editor is the Model tab. The Model
tab contains a tree of all the components of in your current model. This tree can be used
to select components and edit their properties.

10. Toolboxes

29220-sim 5.1 Reference Manual

Library Tab

One of the two tabs at the left of the 3D Mechanics Editor is the Library tab. The
Library tab contains predefined components, which you can use to construct your model
with. The components in the library tree can be dragged into the Edit window.

Selection Properties

Below the Bodies/Library tabs the properties of the selected component are shown.
When no components are selected the selection properties are empty.

When a component is selected, the edit button will be enabled. You can click the button
to change the component properties.

10. Toolboxes

29320-sim 5.1 Reference Manual

3D Representation

Below the Selection Properties, the 3D representation of the selected component is
shown. When no components, the 3D Representation is empty.

When a component is selected, the edit button will be enabled. You can click the button
to change the 3D Representation of the component.

A component may be composed of several representations. Using the Add

Representation and Delete Representation commands of the Actions menu you can add

more representations or remove representations.

Output

In the Output part of the 3D Mechanics Editor, messages will be shown during analysis of
the model.

10. Toolboxes

29420-sim 5.1 Reference Manual

Edit Modes

At the right of the 3D Mechanics Editor you will find the Edit Mode buttons. You can
select them to enter several edit modes.

Translation Mode In this mode you can translate components.

Connection Mode In this mode you can make connections between
components.

Rotation Mode In this mode you can rotate components.

Camera Mode In this mode you can change the camera position
and orientation. I.e. the way you look at your
model.

Ghost Modes

At the right of the 3D Mechanics Editor you will find the Ghost Mode buttons. You can
use these buttons to make components transparent. This is useful when components are
hidden inside other components.

Ghost Mode for Bodies Make every body transparent.

Ghost Mode for Joints Make every joint transparent.

Ghost Mode for Sensors/
Actuators

Make every sensor/actuator transparent.

View Modes

In the button bar of the 3D Mechanics Editor you will find the View Mode buttons. You
can select them to select different views.

3D View Default view.

X-Y plane View perpendicular to the x-y plane. You can only

move objects along the x-y plane.

X-Z plane View perpendicular to the x-z plane. You can only

move objects along the x-z plane.

Y-Z plane View perpendicular to the y-z plane. You can only

move objects along the y-z plane.

All A combination of the all the views.

10. Toolboxes

29520-sim 5.1 Reference Manual

Model Settings

The model Settings command of the Tools menu will open the Model Settings dialog. In
this dialog you can change some general settings such as the size of the reference
frames or the amount of gravity.

The Model Setting Dialog.

Items

Gravity: You can set the gravitational acceleration to any desired value.

Hard Coded: choose this option if you want to optimize for speed.

As Parameter: Use a gravity parameter, allowing you to change the value before
the start of a simulation run.

As Input Signal: get the gravity value from an input signal, allowing you to change
the value during simulation.

Spring Dampers for Constraint Joints: Choose this option if you want to use spring
dampers for closed kinematic chains. You can override the spring damper values for
individual joints if required.

Rotation Spring: Set the desired stiffness for the rotational spring.

Rotation Damper: Set the desired rotational damping.

Rotation Spring: Set the desired stiffness for the translation spring.

Translation Damper: Set the desired translation damping.

10. Toolboxes

29620-sim 5.1 Reference Manual

Reference Frames: Choose the size and thickness of the reference frames.

Grid: Set the grid.

Angle Representation: 20-sim uses SI-units for the model equations (e.g. radians).
You can choose to show them in non-SI-units like degrees or grads.

Power Port Type: Choose Iconic Diagram power ports or bond Graph power ports.

Constraint Solver: set the accuracy of the constraint solver.

Camera Settings

At the start of a model session, in the Edit window, a default camera is used. You can
change camera settings by clicking Camera Settings from the Tools menu.

In the Camera Settings dialog you can change the range (front and back plane) and
zooming of the camera, use a perspective view or orthographic, select the camera
position and the point to look at.

10. Toolboxes

29720-sim 5.1 Reference Manual

Spring Dampers and Constraints

In the 3D Mechanics Editor you can connect bodies with joints. If no path from any body
through a joint to another body and so on never returns to the starting body, we have
an open chain mechanism. Open chain mechanisms are easy to simulate with al known
integration methods.

Open Chain Mechanism.

If a path from any body through a joint to another body and so on returns to the starting
body we have a closed chain mechanism. Closed chain mechanisms are generally more
difficult to simulate.

Closed Chain Mechanism.

20-sim uses a special feature to simulate closed chain mechanisms. At an arbitrary place
a joint is removed to create an open chain mechanism. Then the open chain is closed
again using a spring damper joint or a constraint joint. You can choose which joint to use
in the Model Settings Dialog.

10. Toolboxes

29820-sim 5.1 Reference Manual

Spring Damper Joint

A spring damper joint is a joint where all rigid connections are replaced by spring
dampers. If weak spring dampers are used a certain amount of (unwanted)
displacement will be possible. By increasing the stiffness and damping, the displacement
can be decreased. You can set the spring stiffness and damping in the Model Settings
Dialog. You can override these spring damper values in the Joint Constraint Settings
Dialog.

Constraint Joint

The constraint joint works exactly like the original joint but uses constraint forces to do
the job. Constraint forces can only be simulated with special integration methods. In 20-
sim the Modified Backward Differentiation Method is able to calculate constraint forces.

The concept of constraint forces is quite easy to understand if we look at the open chain
mechanism below. At the tips of the mechanism a force is applied. If we apply a force
that keeps the tips at the same position at each time step, it will effectively work as a
rotation joint. That is exactly what constraint forces do. At every simulation step, an
iterative procedure is run to find exactly that force that keeps the position offset at zero.

Constraint Force.

This iterative procedure is not standard for most integration methods. In 20-sim only the
Modified Backward Differentiation Method supports it. In the 3D Mechanics Editor you do
not have to worry about closed chain mechanisms. If necessary, standard joints are
replaced automatically by constraint joints. You only have to realize that simulation of a
mechanism with constraint joints in 20-sim should be performed using the Modified
Backward Differentiation Method.

10. Toolboxes

29920-sim 5.1 Reference Manual

Flexibility

Flexibility in a 3D mechanics structure can be modeled using constraint joints. All you
have to do is:

1. Insert a joint into the editor.

2. Click Edit Joint to open the Joint Properties.

3. Click on the More button to show the advanced properties.

4. Select the As Constraint Joint option.

5. Now you will see the Constraint Settings button. Click this button.

The Joint Constraint Settings dialog will open.

4. In this dialog you can Override the General Spring Damper Values,

5. and select the desired stiffness and damping for the joint.

10. Toolboxes

30020-sim 5.1 Reference Manual

If you do not choose Override the General Spring Damper Values, the global settings
for constraint joints are used which can be specified in the Model Settings dialog.
Only the degrees of freedom which are fixed by the joint, can be set by spring damper
values. In the dialog above the spring damper values of an X-rotation joint are shown.
The rotation around the x-axis can not be restricted by a spring damper. If you want
to insert flexibility in all directions and rotations, use a weld joint to override the
general spring damper values.
You can choose the option Generate Global Parameters to make the spring damper
values available as global parameters.

Working Order10.2.2

3D Mechanics Editor

From the Library tab you can drag and drop components to the Edit window. If you put
the editor in translation mode you can select the components and use the mouse to put
them in the correct position.

10. Toolboxes

30120-sim 5.1 Reference Manual

A standard model will at least consist of some bodies and joints. The bodies have to be
connected with the joints to define the degrees of freedom of the model. The connecting
of joints and bodies can be done in the connection mode. By clicking on a body and then
on a joint a connection is defined.

If all connections are defined, you can test the possible motions of your model. Return to
the translation mode and click on a body. You will see arrows that indicate the possible
motion of the connected joint. By dragging the mouse you can make the body move.

10. Toolboxes

30220-sim 5.1 Reference Manual

When the model is ready you can check it. When no errors are found you can update it
to 20-sim.

Generating a 20-sim Model

Checking

When your 3D dynamic model has been created and assembled, you can check for
errors by selecting the Check Model command from the Actions menu. If everything is
OK the Output will show the message "Analysis Completed Successfully".

Generating 20-sim Model

After the model has been checked, you can export it as a 20-sim submodel by selecting
the Generate 20-sim Model command from the Actions menu.

10. Toolboxes

30320-sim 5.1 Reference Manual

20-sim Model

As you may know from the Joint Properties dialog, all joints have an initial value. During
analysis of your model, some joints may have been twisted. You can use the current
(twisted) configuration to generate a 20-sim model for, or reset it to its initial values
first.

Additional Outputs

For advanced users, some additional outputs may be useful. First time users are advised
not to select these outputs.

Output Filename

Use the Browse button to select a folder and a filename for the generated 20-sim model.

20-sim Scenery

In 20-sim you can use the 3D Animation Toolbox to show an animation of the
mechanical structure. You can export the structure to a scenery file, which can be loaded
in the 3D Animation Toolbox.

Don't Generate Joint Representations: Each joint is represented in the 3D Animation
as autonomous component with variables to denote the potion and orientation. For
large models you can save memory space by not exporting the joints.

Submodel Name to be used in 20-sim: The 3D Animation will use 20-sim submodel
names to identify the movements of object. You have to enter the submodel name,
that you will use for the 3D dynamic model in 20-sim.

10. Toolboxes

30420-sim 5.1 Reference Manual

Scenery Filename: Use the Browse button to select a folder and a filename for the
generated scenery file.

Library10.2.3

Library

The Library Tab shows all components that can be used to create your 3D Dynamic
model.

Bodies

Joints

Sensors

Actuators

Bodies

Position

When you drag and drop a body into the Edit window, its position (i.e. the position of its
reference frame) will be defined with respect to the base reference frame. You can
change the position with the mouse pointer. From the View menu click Mode and

Translation or click the button to go to translation mode. If you put the mouse
pointer on top of the body, you can change its position by pressing the left mouse
button. If you pressing the Ctrl-button at the same time, the body will move up and
down.

You can also set the position manually by double clicking the body. This will open the
Body Properties dialog.

10. Toolboxes

30520-sim 5.1 Reference Manual

Using this dialog you can:

change the name of the body

set the inertia parameters

change the position

change the orientation

make it a fixed body

set more options

Fixed Body

The purpose of building a 3D model in most cases is to construct some kind of
mechanism using bodies and joints. The joints make the bodies move in a particular
way, which can be inspected in the 3D Editor. Every body in 3D mechanics editor is
floating by default, unless specifically set to be attached to the fixed world, or connected
to another body by means of a joint. Any body can be set to be a fixed body by
checking the Is Fixed World option in the Body Properties dialog. Changing the
position of a fixed body in a mechanism will change the base position of the mechanism.
Dragging the other bodies will only make the mechanism move, but not change the base
position. If you want to model a floating mechanism (e.g. a satellite in space), all bodies
should remain floating.

Orientation

To set the orientation of a body, the same procedure can be followed as for the position

of a body. If you set the Editor in Rotation mode (), you can change the
orientation of the body with the mouse pointer. You can also use the Body Properties
dialog to set the orientation precisely by clicking the orientation button.

10. Toolboxes

30620-sim 5.1 Reference Manual

The orientation of a body is specified by the orientation of its reference frame. You can
define this orientation using various representations.

Direction Up Vector: Using the Direction Up vector method you have to specify the Y-
axis (Direction) and Z-axis (Up) of the body reference frame.

Bryant angles: Using Bryant angles we start with the initial body reference frame.
First we rotate around the X-axis of the body reference frame, then we rotate around
the Y-axis of the body reference frame en finally around the Z-axis of the body
reference frame. Bryant angles are also known as X-Y-Z relative Euler angles or
Cardan angles.

X-Y-X Euler: Using X-Y-X Euler angles we start with the initial body reference frame.
First we rotate around the X-axis of the body reference frame, then we rotate around
the Y-axis of the body reference frame en finally around the X-axis of the body
reference frame.

Euler Parameters: Using Euler parameters we start with the initial body reference
frame and rotate this frame around a vector K [X,Y,Z] about an angle theta.

Rotation Matrix: Using a 3x3 rotation matrix, you can enter 9 elements that will
transform the initial orientation of the body reference frame to the new orientation.

Inertia Properties

Each body has a mass and rotational inertia. The mass indicates the resistance of the
body to a change in position. Given a fixed force, a body with a large mass will
accelerate more slowly. This property is the same for all directions. Therefore the mass
can be indicated by a single parameter.

The rotational inertia indicates the resistance of a body to a rotation. Given a fixed
torque, a body wit a large rotational inertia will start to rotate more slowly. The
rotational inertia is not the same for all orientations. Generally, for any body three axes
can be identified that indicate a stable rotation. The rotational inertia for these three
principal axes of rotation is sufficient to describe the motion of a body. The connection of
these three principal axes of rotation is generally known as the center of mass.

10. Toolboxes

30720-sim 5.1 Reference Manual

Any body, indifferent of its shape, which has the same mass, the same principal axes of
rotation and the same rotational inertia, will show the same dynamic behavior. That is
why you can change the representation of a body to any size, it will not change its
dynamic properties.

If you open the Body Properties Dialog you can click the Edit button to change the
inertia properties. You can set mass and the rotational inertias for each of the principle
inertia axis. By selecting the option As Global Parameter you can make the inertia
parameters available as global parameters. You can enter the mass and the rotational
inertias as values directly or use an Expression to calculate their values.

10. Toolboxes

30820-sim 5.1 Reference Manual

The center of mass does not necessarily have to coincide with the body reference frame
and the orientation of the principal inertia axes do not have to coincide with the
orientation of the body reference frame.

You can enter the offset position of the center of mass and the orientation of the
principal inertia axes, by clicking the offset button.

More Options

If you click the More button in the Body Properties dialog, options are shown which form
a shortcut for the normal way of building models. They are meant for experienced users.

First a list of connection points are shown and some buttons to edit these points.
Connection points are used to indicate at which point a joint or other element is
connected with the body. Connection Points are explained in more detail in the next
section.

At the bottom two options are shown. If you choose the Generate Power Interaction Port
option, a power port will be added to the body, which allows you to insert forces and
torques onto the body, from other 20-sim submodels.

The Output Absolute H-matrix option, will create an 4x4 output signal that gives the
position and orientation of the body, using an H-matrix. This signal can be connected to
other 20-sim submodels.

Joints

Properties

In order to make two bodies move with respect to each other, we have to connect them
by joints. Joints do not have any mass or rotational inertia. They only constrain the
motion of bodies. The position of a joint is indicated by its reference frame. Because the
joint position and orientation is completely determined by the bodies that are connected,
you do not have to specify any position or orientation parameters. These are
automatically derived when you make connections.

Connections

Making connections is not difficult when you understand how frames work. We will
explain this with a simple example. Suppose we have two bodies and a rotational joint.
The initial positions of the bodies and joints are indicated by their reference frames.

10. Toolboxes

30920-sim 5.1 Reference Manual

Now we have to define for each of the two bodies the offset to the joint. This can be
done using connection points. A connection point is in fact a new frame with an offset
from the body reference frame. As you can see, in the picture below, we have defined
ConnectionPoint1 with an offset of [x = 1, y = 1, z = -1] with respect to the Body1 and
we have defined ConnectionPoint2 with an offset of [x = 1, y = -1, z = -0.3] with respect
to Body2.

Now the bodies and the joint can be assembled by changing the body positions in such a
way that the frames of the connection points coincide with the reference frame of the
joint exactly.

Suppose that Body1 is set as the reference body. Now the whole assembly will be
moved until Body1 has its original position.

10. Toolboxes

31020-sim 5.1 Reference Manual

Creating Connections

In the 3D Mechanics Editor most of the assembly of joints and bodies is automated. You
simply have to make connections between joints and bodies. To make a connection you
have to drag and drop bodies and a joint to the Edit window. Then change to Connection

mode (). First click a body and then the joint it should be connected to.

The Create Connection dialog will pop to ask you for the location of the connection point.
In the connection dialog you can set the offset (both the position as well as rotation)
from the body reference frame to the connection point.

10. Toolboxes

31120-sim 5.1 Reference Manual

The Joint Properties Dialog.

In the dialog you can also change the name of the connection. After the dialog is closed
the body will automatically assemble with the joint. When two bodies are assembled with
a joint, you can view their constrained motions.

Joint Properties

When you want to change the Connection Points after the connection has been made,
you have to double clicking the joint. This will open the Joint Properties Dialog.

You can change the name, position, orientation, and the rotation axis of the connection
points. You can also change the joint type and the initial rotation or translation of the
joint. The initial rotation or translation can also be entered using an expression. If you
lock the joints, it will not move when you want to show the possible motions of the
system.

Advanced Properties

At the bottom of the Joint Properties you can click the More button to see the advanced
properties.

10. Toolboxes

31220-sim 5.1 Reference Manual

The advanced properties of the Joint Properties Dialog.

As Constraint Joint: Calculate the joint using constraints. You can use constraint
joints to introduce flexibility into your 3D structure.

Power Interaction Port: add a power port to the joint to make it an actuated joint.

Output Position: Create an output signal that gives the joint position.

Output Velocity: Create an output signal that gives the joint velocity.

Output Constraint Forces: Create an output signal that gives the forces and torques
that act on the joint.

Constraint Settings

If you click the More button to see the Advanced Joint Properties, you can click the As
Constraint Joint selection box. This box allows you to manually choose to make this joint
a constraint joint. A button will be visible showing the Constraint Settings. if you click this
button a dialog is shown allowing your to override the constraint by a spring damper. In
this way you can set each individual joint by its own spring damper constants.

10. Toolboxes

31320-sim 5.1 Reference Manual

Spring Damper

If you click the More button to see the Advanced Joint Properties, you can click the
Spring Damper button. This will allow you to add damping to a joint or a spring and
define end-stops.

Has Spring: choose this option to define a spring parallel to the joint.

Has Damping: select this option to define the damping (linear with the velocity).

Has Minimum: set an endstop at the minimum joint rotation/extension.

Has Minimum: set an endstop at the maximum joint rotation/extension.

Joint Types

Several types of joints are available in the library:

10. Toolboxes

31420-sim 5.1 Reference Manual

Rotation Joints (Non-Actuated)

 joint description

 XYZ-Rotation Joints which rotate around the principal axes.

 Hinge XYZ-Rotation Same as XYZ-Rotation but with a different

representation.

 Balljoint XYZ-

connection

Balljoints with orientations of the principal axes.

 Rotation Joints (Actuated)

 joint description

 XYZ-Rotation Joints which rotate around the principal axes.

 Hinge XYZ-Rotation Same as XYZ-Rotation but with a different

representation.

Translation Joints (Non-Actuated)

 joint description

 XYZ-Rotation Joints which rotate around the principal axes.

 Hinge XYZ-Rotation Same as XYZ-Rotation but with a different

representation.

 Balljoint XYZ-

connection

Balljoints with orientations of the principal axes.

 Translation Joints (Actuated)

 joint description

 XYZ-Translation Joints which rotate around the principal axes.

 joint description

 XYZ-Translation Joints which rotate around the principal axes.

Other Joints

 joint description

 Weld joint A joint that welds two bodies together.

 Free Moving Joint Opposite of the weld joint. In practice this joint will

only be used to give a body a fixed starting

position with respect to another body.

10. Toolboxes

31520-sim 5.1 Reference Manual

Direction (using order of Connection Points)

If you have a rotation or translation joint, the order in which the bodies were connected
to the joint will determine the direction of positive rotation or translation. You can
reverse this order by swapping the connection points.

Rotation / Translation Axis

If you have a rotation or translation joint, the rotation or translation axis can be
changed.

Sensors

Sensors are components that indicate the position or velocity of bodies as output signals.

Connecting Sensors

Sensors have to be connected with bodies, just like joints.

The position of the sensor is indicated by its connection point. The connection point is
shown automatically when you make a connection between a body and a sensor. First

change to Connection mode (), then click the body and then click the sensor.

10. Toolboxes

31620-sim 5.1 Reference Manual

The Create Connection dialog will pop to ask you for the location of the connection point.
In the connection dialog you can set the offset (both the position as well as rotation)
from the body reference frame to the connection point.

10. Toolboxes

31720-sim 5.1 Reference Manual

Sensor Types

Various sensor types are available in the library.

Position/Orientation

 sensor output signal

 Position-X A signal with the x-position of the body.

 Position-Y A signal with the y-position of the body.

 Position-Z A signal with the z-position of the body.

 Position (3x1) A signal (size 3) with the x-, y- and z-position of

the body.

 H-matrix (4x4) A 4x4 signal with the H-matrix.

 Rotation (3x3) A 3x3 signal with the rotation-matrix.

 Velocity

 sensor output signal

 Velocity-X A signal with the x-velocity of the body.

10. Toolboxes

31820-sim 5.1 Reference Manual

 Velocity-Y A signal with the y-velocity of the body.

 Velocity-Z A signal with the z-velocity of the body.

 Velocity (3x1) A signal (size 3) with the x-, y- and z-velocity of

the body.

 Omega-X A signal with the rotational velocity in x-direction of

the body.

 Omega-Y A signal with the rotational velocity in y-direction of

the body.

 Omega-Z A signal with the rotational velocity in z-direction of

the body.

 Omega (3x1) A signal (size 3) with all three rotational velocities.

Acceleration

 sensor output signal

 Acceleration-X A signal with the x-acceleration of the body.

 Acceleration-Y A signal with the y-acceleration of the body.

 Acceleration-Z A signal with the z-acceleration of the body.

 Acceleration (3x1) A signal (size 3) with the x-, y- and z-acceleration

of the body.

 Rotational

Acceleration-X

A signal with the rotational acceleration in x-

direction of the body.

 Rotational

Acceleration-Y

A signal with the rotational acceleration in y-

direction of the body.

 Rotational

Acceleration-Z

A signal with the rotational acceleration in z-

direction of the body.

 Rotational

Acceleration (3x1)

A signal (size 3) with all three rotational

accelerations.

Jacobian Matrix

This yields the Jacobian Matrix of the connected mass.

Actuators

Actuators are components that impose a force or torque on bodies, where the force or
torque is given by a power port or input signal.

Connecting Sensors

Actuators have to be connected with bodies, just like joints.

10. Toolboxes

31920-sim 5.1 Reference Manual

The position of the sensor is indicated by its connection point. The connection point is
shown automatically when you make a connection between a body and a sensor. First

change to Connection mode (), then click the body and then click the sensor.

The Create Connection dialog will pop to ask you for the location of the connection point.
In the connection dialog you can set the offset (both the position as well as rotation)
from the body reference frame to the connection point.

10. Toolboxes

32020-sim 5.1 Reference Manual

Local or Global Coordinates

For each actuator, you can change its settings, by double clicking it. This will open the
Actuator Properties dialog.

10. Toolboxes

32120-sim 5.1 Reference Manual

Parametric Models10.2.4

Parametric Modeling

What is Parametric Modeling?

In the 3D Mechanics Editor you can enter the mass, inertia and geometry using hard
coded numbers. E.g:

Mass: 8 kg

Now you can run a simulation and see the result. But suppose you are not happy with
the results and want to see the effect of a 6 kg mass? Then you have to return to the 3D
Mechanics Editor, enter the number 6, process the model and run a simulation. This
takes a lot of time. It would be nice if the mass was just a parameter that you change
during simulation. This is called parametric modeling.

Expressions

In the 3D Mechanics Editor can enter the mass as an Expression. E.g:

Mass = Car_weight

where Car_weight is a parameter which you can give a certain value. Now before the
simulation, you can simply change the the value of the parameter Car_weight and
inpsect the results. With expressions, you can do more. E.g.:

Mass = Car_length * Car_length * Car_width * rho_steel / 100

Now we have coupled the mass to a expression which contains other parameters. Now
we can run a simulation and simply change the dimensions of the car and see the
results.

How to Do Parametric Modeling?

Everwhere in the 3D Mechanics Editor, where you have to enter numbers, there is an
option to enter an expression. For example if you want to enter the mass of a body, you
have to open the Inertia Properties. You can enter the mass as a value directly but also
choose to use an Expression to define its value.

10. Toolboxes

32220-sim 5.1 Reference Manual

If you click the Expression button, the Expression Editor opens, allowing you to enter the
expression.

10. Toolboxes

32320-sim 5.1 Reference Manual

Expressions Editor

The Expressions Editor enables you to enter values in the 3D Mechanics Editor which are
calculated from expression rather than a hard value.

Expressions Editor

You can type the expressions in the right upper part of the editor. Expressions are
similar to the left hand side of an equation in the Equations Editor. Check the proper use
of expressions by clicking the Evaluate button. The output or an error message will then
be displayed in the Results section at the right lower part.

You can use parameters in the expressions typing by double-clicking in the parameters
list at the top left of the editor. Click on the + sign to add new parameters. You can
make a parameter global, by selecting the global selection.

Expressions

The standard arithmetic functions and operators can be used in expressions:

10. Toolboxes

32420-sim 5.1 Reference Manual

cos(x)
sin (y)
tan(x)
x*y
y/x
2*pi
x^2
exp(y)
log(x)
sqrt(y)
if ((x > 0.1),1,2)
abs(x)
round(x)

10.3 Animation Toolbox

3D Animation10.3.1

3D Animation Window

The tree at the left of the Simulator, shows the various Windows that are open. If you
put your mouse on top of Window1, click the right mouse button and Add Plot - 3D
Animation. This will add a 3D animation plot.

The 3D Animation window.

Editing

To start editing, put your mouse on top of the 3D Animation plot. From the right
mouse menu choose Plot Properties.

This will open 3D Properties window where you build your animation.

10. Toolboxes

32520-sim 5.1 Reference Manual

Running

You can run an animation by clicking the green run button . You can also select
the Run command from the Replay menu.

At the top right of the window you see the Speed box where you can set
the replay speed. The default speed is to replay an animation at real time but you
can set it to play an animation faster or slower.

If you have multiple camera's in your animation, you can switch camera, by clicking

the camera button .

Ray Trace

Ray Tracing will add shadows and mirror images to a 3D Animation. In the 3D
Properties window, from the File menu, select RayTrace to apply Ray Tracing to the
current window.

Creating Movies

In the 3D Properties window, from the File menu select Create Movie to create
movies from your animation.

Full Screen

Right click your mouse when pointing on a 3D Animation. Select Full Screen to see
the animation in full screen. Click the Escape button to remove the full screen view.

10. Toolboxes

32620-sim 5.1 Reference Manual

3D Properties

The 3D Properties window allows you to define the various objects that should be shown
in a 3D Animation. The 3D Properties window can be opened, by double clicking the
mouse pointer in the Animation window or using the Plot Properties menu.

The 3D Animation Properties window at start-up.

Menu

The menu of the 3D Animation Properties consists of three parts.

The File menu allows you to store and load scenes (parts of the object tree) and
create movies.

The Edit menu allows you to create and edit objects.

The Properties menu allows you to set the General Properties.

Lights, Cameras and Objects

Two lights and five cameras are standard available when you start a new animation. You
can delete or change these lights and cameras or add new additional lights and cameras.
Inserting new objects can be done with the Edit menu by selecting the Insert Object
command.

Object Tree

The left side of the 3D Animation Properties window shows tree-like listing of the objects
that are inserted. All objects are defined with respect to a reference frame. This can be
done hierarchically by inserting new reference frames.

10. Toolboxes

32720-sim 5.1 Reference Manual

The 3D Animation Properties window of the model ScaraRobot.emx.

Object Attributes

On the right side of the 3D Animation Properties window shows the attributes of a
selected object (e.g. position, orientation, scaling etc.). Objects can be selected, by
clicking the mouse pointer on top of the object in the objects tree.

Show Frame

Each object has an object attached reference frame. This frame can be shown by
selecting the object and clicking the Show Frame option. This is useful for manipulating
objects. If you press the Control button while selecting the Show Frame option, all
frames in the current branch are shown. Do the same for the top reference frame to
quickly show or hide all reference frames.

Solo

Click the Solo option, to hide all other objects. This is useful for manipulating a single
object. If you press the Control button while selecting the Solo option, all objects in the
current branch are shown. Do the same for the top reference frame to quickly show or
hide all objects.

Hidden

Click the Hidden option, to hide a single object. This is useful for manipulating a the
other objects. If you press the Control button while selecting the Hidden option, all
objects in the current branch are hidden. Do the same for the top reference frame to
quickly hide or show all objects.

10. Toolboxes

32820-sim 5.1 Reference Manual

Next Camera

Click the Next Camera button to seen the next camera view.

Manipulate

Click the Manipulate button to move an object with use of your mouse.

Selecting Objects

An object can be selected by pointing with the mouse in the object tree.

Select an object in the 3D Animation Properties window.

This selection is also shown in the 3D Animation window as a pink box around the object.

10. Toolboxes

32920-sim 5.1 Reference Manual

Indicating the selected object.

It is also possible to select an object with the mouse by clicking in the 3D Animation
window. The selection will automatically jump to the object in the tree of the 3D
Animation Properties window.

10. Toolboxes

33020-sim 5.1 Reference Manual

Moving Objects

To move an object, you have select it.

Select an object in the 3D Animation Properties window.

Attributes

The right side of the 3D Animation Properties window shows the attributes of a selected
object (e.g. position, orientation, scaling etc.). You can change the position or orientation
to move an object.

Manipulate

You can move an object directly by pushing the Manipulate button.

10. Toolboxes

33120-sim 5.1 Reference Manual

Manipulate an object directly.

A set of locks will be shown below the Manipulate button. You can use them to lock one
or more directions and orientations. After this you must put the 3D Animation window on
front (click on it with the mouse) and select one of the following keys:

 Keys Action

 right arrow move right (positive x-direction)

 left arrow move left (negative x-direction)

 up arrow move up (positive z-direction)

 down arrow move down (negative z-direction)

 Ctrl + up arrow move forward (positive y-direction)

 Ctrl + down arrow move backward (negative y-direction)

 Alt+ right arrow yaw right (positive z-axis rotation)

 Alt+ left arrow yaw left (negative z-axis rotation)

 Alt+ up arrow roll forward (negative x-axis rotation)

 Alt + down arrow roll back (positive x-axis rotation)

 Ctrl+ Alt + right arrow pitch right (positive y-axis rotation)

 Ctrl+ Alt + left arrow pitch left (negative y-axis rotation)

10. Toolboxes

33220-sim 5.1 Reference Manual

 Keys above + Shift Smaller steps (more accurate)

 Ctrl + A Next Camera

Scenes

In the 3D Animation Properties you can load and store scenes. Scenes are simply part of
an object tree or a complete object tree. This option can be used to obtain scenes from

other experiments or to create pre-defined environments.

Save Scene

The Save Scene command of the File menu, allows you to save a scene on file. Only the
selected object and all object below will be saved.

Load Scene

The Load Scene command of the File menu, allows you to open a scene from file and
insert it under the selected object of the object tree.

Movies

With a few mouse clicks you can create movies from an animation. Right click on the 3D
animation window and select Create Movie.

Target List

You can create movies for various purposes:
YouTube: Movies in mpg-format for placement on YouTube.

10. Toolboxes

33320-sim 5.1 Reference Manual

Avi: Movies in avi format for use in movie editing software.

Windows Media Video: Movies for the use in Microsoft programs (e.g. Powerpoint).

Flash: Movies in flv format for the use on Internet sites.

Only Frames: For the use in advanced movie editing programs that can handle
collections of pictures

Profiles

You can create movies with three profiles (low, medium, high). The corresponding sizes

are shown in the table below.

 low medium high

YouTube 640 * 480 - 1280*720

Avi 640 * 480 1024*768 1920*1080

Windows Media Video 640 * 480 1024*768 1920*1080

Flash 640 * 360 1024*576 -

Only Frames 640 * 480 1024*768 1920*1080

Ray tracing will add shadows and mirror images to a 3D Animation. However ray tracing
cost a lot of processing power. If you select the option Ray Tracing, the quality of your

movie will be improved, but the time to create it will increase tremendously.

More

Choose the More button if the standard profiles are not up to your demands. You can set

the size of a movie, the frame rate and speed up or slow down the speed.

Create Movie

Click the Create Movie button to create a movie. The movie will be stored in the output

directory that you have specified using the filename that you have given.

10. Toolboxes

33420-sim 5.1 Reference Manual

General Properties

Using the General Properties command of the 3D Properties window helps you to select

several options.

Background Color: Change the background color to any desired color you like.

Background Image: Use a bitmap image for the background.

Wireframe: You can choose to show the animation as Wireframe.

Fogging: Fog in any desired color can be added to the animation. The fog is minimal
at a start plane and maximal at an end plane. You can set the distance of these
planes.

Render Type: Choose wireframe rendering or full rendering.

Grid: You can choose to show a grid.

Frames: Set the frame scaling and thickness.

General: Show the number of frames per second and maximize the number of
frames per second.

10. Toolboxes

33520-sim 5.1 Reference Manual

Objects

Reference Frames

All objects in a 3D Animation are be defined with respect to the top reference frame.
The top reference frame is the reference frame on top of the objects tree. If you have
multiple objects that move relative to the top reference frame but have a fixed position
and orientation to with respect to each other, it is useful to introduce an additional
reference frame. Define all the objects with fixed position and orientation with respect
to an additional reference frame and give this frame a movement with respect to the top
reference frame.

Relative reference frames.

In the objects tree frame hierarchy is shown by indentation. In the example above,
the Earth Reference Frame describes the earth motion with respect to the Sun Reference
frame. The Moon Reference Frame describes the moon motion with respect to the Earth
Reference Frame.

Each Reference Frame has a specific position, orientation and scaling. The scaling is
defined with respect to the frame one level higher in the hierarchy. In the example
above, the sphere and circle describing the Earth and the Launch Site can directly be
copied to form the Moon and the Lunar Landing Site. Only the scaling of the Moon
Reference Frame has to be set to correct values.

Properties (Specific)

Override Group Color: You can choose to give all objects that are defined in a frame
the same color.

Properties (General)

position

orientation

scaling

duplication

10. Toolboxes

33620-sim 5.1 Reference Manual

Line

Properties (Specific)

You can set the start position and end position of the line, enter the line thickness and
set the number of circle elements.

Properties (General)

color

mesh

texture

material

duplication

10. Toolboxes

33720-sim 5.1 Reference Manual

Cube

Properties (Specific)

You can set the position of the origin and the rib length and choose to show the inside.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

10. Toolboxes

33820-sim 5.1 Reference Manual

Sphere

Properties (Specific)

You can choose to show the inside and outside. The number of segments that are
used to draw the circle is fixed.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

10. Toolboxes

33920-sim 5.1 Reference Manual

Cylinder

Properties (Specific)

You can set the position of the origin, choose to show the inside and outside, set the

number of circle elements. A cylinder can be shown with open or closed sides.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

10. Toolboxes

34020-sim 5.1 Reference Manual

Cone

Properties (Specific)

You can set the number of circle elements and choose to show the cone with an open
or closed side.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

Torus

Properties (Specific)

A Torus has some specific options:

10. Toolboxes

34120-sim 5.1 Reference Manual

The Torus Radius denotes the length from the origin to the center of the tube.

The Tube Radius denotes the tub thickness.

With the Number of Segments you can set the total number of segments for one
revolution.

The Points Per Segment are the number of circle elements for each segment.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

Spiral

Properties (Specific)

The Height is the the length of the spiral.

The Spiral Radius is the length from origin to the center of the tube.

The Tube Radius denotes the tub thickness.

The Number of Turns is the number of revolutions from bottom to top of the spiral.
This may be a non-integer value.

The Number of Segments is the total number of segments from bottom to the top of
the spiral.

The Points Per Segment are the number of circle elements for each segment.

10. Toolboxes

34220-sim 5.1 Reference Manual

You can set the position of the origin.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

3D-files

You can import object from files, using the 3D-files object. As soon as you insert a 3D-
files object, 20-sim will open a file browser. Three formats are supported

STL-files (*.stl): The STL file format or stereolithography format is another widely
accepted interchange format between CAD packages.

DXF-files (*.dxf): This is AutoCAD's drawing interchange format. The DXF file format
was originally designed by AutoDesk® to represent 3D models built with AutoCAD®.
Now they are generally accepted as an interchange format between CAD packages.

Lightwave Object files (*.lwo): LightWave is a software package used for rendering
3D images, both animated and static.

Properties (Specific)

Use the Browse button to load another file.

Set the Override Color check box to give the object any desired color.

You can set the position of the origin.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

10. Toolboxes

34320-sim 5.1 Reference Manual

Square

Properties (Specific)

You can set the position of the origin.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

10. Toolboxes

34420-sim 5.1 Reference Manual

Circle

Properties (Specific)

You can set the number of circle elements.

Properties (General)

position

orientation

scaling

color

mesh

texture

material

duplication

Camera

All objects in a 3D Animation are defined with respect to the Default Lights and Cameras
frame. This frame coincides with the top Reference Frame. When you start up a 3D
animation 5 default cameras are available showing several views of the origin of this
frame.

Two cameras show the Default Lights and Cameras frame from a position of x = 5, y = 5
and z = 10. The cameras are pointed to the center of origin of the frame. The Camera
Looking At Origin will keep looking at the origin, even if its position is changed. The
Perspective Camera will not keep looking at the origin but keep its original orientation
when its position is changed.

10. Toolboxes

34520-sim 5.1 Reference Manual

The Camera Looking At Origin and Perspective Camera.

Three Front cameras are positioned on top of each of the axes of the Default Lights and
Cameras frame. The front cameras do not show perspective. I.e. they can be used for
2D-Animation.

10. Toolboxes

34620-sim 5.1 Reference Manual

Properties (Specific)

Camera Properties

Plane Distance: A camera only shows objects that lie between a front plane
and a back plane. You can set the distance of these planes (seen from the
camera).

Projection: You can show all objects in perspective (objects further away look
smaller) or Orthographic (objects further away are shown equally large). You
can choose to show right hand frames or left-hand frames.

Use the slider bar to set the Zooming.

LookAtProperties

When you enable the Look at Position, the camera will always look at a specific
position, regardless the position of the camera itself

You can make the look at position static or connect it to variables of your
model.

Use the Always Look up Vector to let the camera have a fixed angle of view.

Properties (General)

position

orientation

10. Toolboxes

34720-sim 5.1 Reference Manual

Vector

Properties (Specific)

The Vector object is a combination of a Cylinder object and a Cone object. The length of
the Vector can be constant or determined by the value of the variable, the offset and the
multiplication factor. You can set the vector diameter, the cone diameter and the cone

height and set the number of circle elements. The color of the Cone and the Cylinder

can be specified separately by the two color property pages. The first page is for the
Cylinder and the second page is for the Cone.

Properties (General)

position

orientation

mesh

texture

material

duplication

Ambient Light

An Ambient Light source illuminates everything with a predefined color, regardless of the
orientation, position, and surface characteristics of the objects available. It is
constructed by making a spot light shine everywhere.

10. Toolboxes

34820-sim 5.1 Reference Manual

Spot Light

A Spotlight emits a cone of light of a certain color. The cone starts at a given position
and the direction is given by the orientation. Only objects within the cone are
illuminated.

Color

Ambient color: This is the main color of point light. For a spot light this option is
turned off.

Diffuse color: This is color of point light when it shines on matt surfaces.

Specular color: This is color of point light when it is reflected in shiny surfaces.

Direction

You can select the shape of the light bundle.

Parallel: Select this option to make the light a parallel bundle (e.g. the sun
light). For a spot light this option is turned off.

Spot Exponent [Wide-Narrow]: Select this option to make the light intensity
equal in all directions (Wide) or more intensive in the center beam of the spot
light (Narrow)

Spot Angle [0..90]: Select the angle of the cone from 0 degrees (very thin
bundle) to 90 degrees (light in all directions).

Attenuation

Light attenuation defines how the intensity of the light weakens as it travels away from
the source. The attenuation is computed based on the following formula:

where k0 is the constant attenuation, k1 is the linear attenuation, k2 is the quadratic
attenuation and d is the distance from the light's position to an object.

Directional Light

A Directional Light illuminate all objects with light of equal intensity, as if it were at an
infinite distance from the objects. The directional source is commonly used to simulate
distant light sources, such as the sun. It is constructed by making a spot light shine in
parallel bundles.

Properties

Position

Most objects in a 20-sim Animation can be positioned with respect to the frame one level
up in the object tree. This position can be fixed (using fixed values) or change (using
model variables) during simulation.

10. Toolboxes

34920-sim 5.1 Reference Manual

Orientation

All objects in a 3D Animation have an orientation. This orientation can be made visible
by showing the object attached reference frame. This orientation can be fixed (using
fixed values) or changed (using model variables) during simulation.

The orientation of an object is defined as the transformation of the frame one level up
the object tree {A} to the object attached reference frame {B}. Several methods can be
used in 20-sim to define this transformation.

DirectX

Using the DirectX method you have to specify the Y-axis and Z-axis of the frame {B} in
coordinates of frame {A}.

Bryant angles

Start with the frame {B} coincident with a known frame {A}. First rotate {B} about the
X-axis of {B} by an angle of X (rad), then rotate about the Y-axis of {B} by an angle of
Y (rad) and then rotate {B} about the Z-axis of {B} by an angle of Z (rad). Note:
Bryant angles are also known as X-Y-Z Euler angles or Cardan angles.

X-Y-X-Euler

Start with the frame {B} coincident with a known frame {A}. First rotate {B} about the
X-axis of {B} by an angle of x (rad), then rotate about the Y-axis of {B} by an angle of
y (rad) and then rotate {B} about the X-axis of {B} by an angle of z (rad).

Euler Parameters

Start with a frame {A}. Rotate this frame about a vector K [X,Y,Z]T about an angle theta
to get to the frame {B}.

Scaling

Most objects in a 20-sim Animation can be scaled in size. This scaling can be fixed (using
fixed values) or change (using model variables) during simulation.

Color

Most objects in a 20-sim Animation can be shown with a preset color. The colors can be
user defined or defined with respect to a color map.

User Defined

The additive primary colors are red (R), green (G), and blue (B). By mixing these colors
in different percentages, any other color can be created. When blue and green are
mixed, the resulting color is cyan. When blue and red are mixed, the resulting color is
magenta. If all three primary colors are mixed together, the resulting color is white.

10. Toolboxes

35020-sim 5.1 Reference Manual

The color tab.

Color ranges can be set from 0 to 1 or 0 to 255. Constant values or model variables can
be chosen for each primary color. Use the multiplication and addition terms for scaling
and offset.

Color Map

The color that is chosen is defined by a color map. Color ranges can be set from 0 to 1
or 0 to 255. A constant value or a model variable can be chosen. Use the multiplication
and addition term for scaling and offset.

10. Toolboxes

35120-sim 5.1 Reference Manual

Mesh

The rendering option defined in the General Properties can be overridden for each
object. The options are: WireFrame, Unlit Flat, Flat and Gouraud.

10. Toolboxes

35220-sim 5.1 Reference Manual

Texture

Using the Texture attribute, you can wrap a bitmap file around an object. Using the
browse button, you can easily select the desired bitmap file (bmp, jpg, gif, tif, etc.).
Using the transparency option you can select a color in the bitmap that should be
transparent.

Texture Origin

A texture is defined in generalized coordinates (u,v). The bottom right of the texture has
coordinates (0,0) and the top left (1,1). The offset parameters define how much offset is
used to project the bitmap. This is shown in the figure below. At the left an offset of (0,0)
is shown and at the right an offset (0.2,0.2) is shown.

Depending on the type of texture wrapping (Flat, Cylinder, Sphere or Chrome) the three
wrapping vectors () have a different meaning. This is explained in the next sections. To
facilitate the explanation in the pictures below the origin vector equals (0,0,0), the Y-
vector equals (0,1,0) and the Z-vector equals (0,0,1).

10. Toolboxes

35320-sim 5.1 Reference Manual

Vectors

Using three vectors (Origin, Y-Axis and Z-Axis) and Offset parameters (X, Y) you can
define how the texture should be wrapped around an object. The vectors are defined
with reference to the object attached reference frame. The object attached reference
frame can be made visible by selecting Show Frame. The vectors use generalized
coordinates. I.e. the length, width and height of the object are defined as 1 and the
vectors are scaled accordingly.

Flat

The flat wrap conforms to the faces of an object as if the texture were a piece of rubber
that was stretched over the object. For a flat texture wrap, the effects of the various
vectors are shown in the following illustration.

The Origin vector defines the base from which the texture wrapping is
performed.

The Y-vector equals the v axis of the texture wrap.

The Z-vector is always perpendicular to the texture wrap.

Cylindrical

The cylindrical wrap treats the texture as if it were a piece of paper that is wrapped
around a cylinder so that the left edge is joined to the right edge. The object is then
placed in the middle of the cylinder and the texture is deformed inward onto the surface
of the object. For a cylindrical texture wrap, the effects of the various vectors are shown
in the following illustration.

10. Toolboxes

35420-sim 5.1 Reference Manual

The Origin vector defines the base from which the texture wrapping is performed.

The Y-vector specifies the point on the outside of the cylinder where u equals 0.

The Z-vector specifies the axis of the cylinder.

Spherical

For a spherical wrap, the u-coordinate is derived from the angle that the vector [x y 0]
makes with the x-axis (as in the cylindrical map) and the v-coordinate from the angle
that the vector [x y z] makes with the z-axis. Note that this mapping causes distortion of
the texture at the z-axis.

The Origin vector defines the base from which the texture wrapping is performed.

The Y-vector specifies the point on the outside of the sphere where u equals 0.

The Z-vector specifies the point on the outside of the sphere where v equals 0.

Chrome

A chrome wrap allocates texture coordinates so that the texture appears to be reflected
onto the objects. The chrome wrap takes the reference frame position and uses the
vertex normals in the mesh to calculate reflected vectors. The texture u- and v-
coordinates are then calculated from the intersection of these reflected vectors with an
imaginary sphere that surrounds the mesh. This gives the effect of the mesh reflecting
whatever is wrapped on the sphere.

10. Toolboxes

35520-sim 5.1 Reference Manual

Material

A material defines how a surface reflects light. A material has two components: an
emissive property (background color) and a specular property (reflected light), whose
brightness is determined by a power setting. Using the Material tab you can set these
options.

Closed Shapes

Some objects in a 20-sim Animation can be shown as a closed shape (sides closed) or
open shape (sides open).

Circle Elements

All objects in a 20-sim Animation are build out of a set of planar surface elements.
Curved objects have to be build up out of a lot of surface elements to give the
impression of a smooth surface. For some objects you can set the amount of surface
elements used to create circular surfaces.

Attenuation

The Animation Engine in 20-sim is based on the Microsoft® Direct3D. Direct3D uses the
following formula to normalize the distance from a light source to the object surface into
a value from 0.0 to 1.0, inclusive:

10. Toolboxes

35620-sim 5.1 Reference Manual

In the preceding formula, Dn is the normalized distance, R is the light's range, and D is
the distance, in world space, from the light source to the object surface. A normalized
distance is 1.0 at the light's source, and 0.0 at the light's range.
With the normalized distance in hand, Direct3D then applies the following formula to
calculate light attenuation over distance for point lights and spotlights:

In this attenuation formula, A is the calculated total attenuation and Dn is the normalized
distance from the light source to the object. The constant, linear and quadratic
attenuation factors act as coefficients in the formula. You can produce a wide variety of
attenuation curves by making simple adjustments to them. Most applications will set the
linear attenuation factor to 1.0 and set the remaining factors to 0.0 to produce a light
that steadily falls off over distance. Similarly, you could apply a constant attenuation
factor of 1.0 by itself to make a light that doesn't attenuate (but will still be limited by
range). The following illustration shows the three most common attenuation curves.

10. Toolboxes

35720-sim 5.1 Reference Manual

Duplication

All objects in a 20-sim Animation can be duplicated. This property is useful when drawing
a lot of the same objects.

You can choose several options:

Number of Duplicates: Select the number of duplicates of the object.

Position Offsets: Select the position offset of the first duplicate from the original
object. This offset is repeated for every next duplicate.

Orientation Offset: Select the orientation offset of the first duplicate from the original
object. This offset is repeated for every next duplicate.

Scaling Offset: Select the scaling of the first duplicate compared to the original
object. This scaling is repeated for every next duplicate.

The example below shows a cube that is duplicated according to the specifications given
in the figure above. As shown, the first duplicate is a little larger than the original object.
The second duplicate is a little larger than the first duplicate etc.

10. Toolboxes

35820-sim 5.1 Reference Manual

Graph Animation10.3.2

Graph Animation

To Animate the results of a simulation in the graphical model select the Graph Animation
command from the Tools menu (Simulator). During simulation, the thickness and color
of bonds and signals will correspond with the values they carry.

The color of a bond or signal always corresponds with the sign, red for negative values
and green for positive values. The thickness of signals corresponds with the value. For
signals that is obvious but for bonds or connections carry two variables: effort and flow
(also know as across and through). For bonds and connections you can choose to let the
thickness correspond with the effort, flow or power (effort*flow), depending on the
Animation command that was chosen.

10. Toolboxes

35920-sim 5.1 Reference Manual

You can start Animation in the Simulator:

1. Run a simulation until you are satisfied with the results.

2. From the Tools menu, select Animation Toolbox then Graph Animation.

3. A menu pops up. Choose the options you like and click OK to start Animation.

Graph Animation Menu

Items

Animation Kind: For signals, the thickness always corresponds with their value. For
bonds and connections you can choose. Select here to what the thickness of bonds
and connections should represent: effort, flow or power (effort*flow).

Animation Ranges: The thickness of bonds and signals can vary from 1 to 5 pixels.
Select here the range that should correspond with a thickness of 5 pixels.

10. Toolboxes

36020-sim 5.1 Reference Manual

10.4 Control Toolbox

Controller Design Editor10.4.1

Controller Design Editor

The 20-sim Controller Design Editor allows you to enter or edit linear time-invariant
models of a plant with control loop. The control loop is separated in a compensator,
prefilter and measurement. You can open the Controller Design Editor from the Tools
menu of the 20-sim Editor or by clicking Go Down on a ControlledLinearSystem model
that was inserted in the Editor.

Sub System

You can choose to show a single element in the loop:

Plant (P), Compensator (C), Prefilter (F) or Measurement (M)

10. Toolboxes

36120-sim 5.1 Reference Manual

or view the response of the system:

Response (H), Loop Transfer (L), Sensitivity (S), Compl. Sensitivity (T),
Plant Sensitivity (PS) or Control Sensititvity (CS).

The corresponding transfer function is show in the editor.

Additional Ports

Select one of the radio buttons Input Disturbance, Output Disturbance,
Measurement Dist. or Feedforward. The first three options allow you to use external
disturbance in your model. The last option allows you to use an external feedforward
controller (e.g. a B-Spline network). The selected inputs are shown in the picture.

System Description

Pressing the Edit button will open a dialog for editing the linear system. Each
description (State Space, Transfer Function, Zeros Poles Gain or Eigen Frequency)
has a special dialog and can be used to specify continuous-time and discrete-time
systems.

In the 20-sim Simulator, out of an existing (non-linear) model a symbolic linear-
system can be derived by means of linearization. This means that the relevant model

parameters are preserved in the Linear System and the parameters button can
be used to change parameters.

Import/Export

Pressing the s<->z button will transform a continuous-time linear system
into a discrete-time linear system and back.

Pressing the Filter button opens the Filter Editor, where a filter can be designed. This
filter can then be combined with the current linear system or replace the current
linear system. If the linear system is a discrete-time system, the designed analog
filter is automatically transferred into its digital equivalent.

Pressing the From Matlab button and the To Matlab button allows
for an instant exchange of the linear system with the Matlab workspace. Information
is transferred numerically (no parameter relations are preserved)

The button is only active when a Linear System has been imported through
linearization. Clicking the button will import parameters from the simulation.

The button is only active when a Linear System has been imported through
linearization. Clicking the button will export the current parameters to the simulation.

Plots

You can inspect the time- and frequency responses of the selected transfer function
using:

Step Response

Bode Plot

Nyquist Plot

Nichols Chart

Poles and Zeros (including root locus)

10. Toolboxes

36220-sim 5.1 Reference Manual

Output

Clicking the 20-sim button will export the linear system as a new 20-sim submodel.

Clicking the Matlab button will export the 20-sim Linear System to a Matlab m-file. If
the Linear System is symbolic, all parameter relations are preserved.

State Space Models

State space models use linear differential equations (continuous) or difference equations
(discrete) to describe system dynamics. They are of the form:

(continuous) (discrete)

with for example:

where x is the state vector and u and y are the input and output vectors. These models
may arise from the equation of physics, from state space identification or as the result of
linearization.

10. Toolboxes

36320-sim 5.1 Reference Manual

You can enter state space models by selecting the State Space button and clicking the
Edit button.

This opens an editor in which you can enter the A, B, C and D matrices. Depending on
the selection of the Discrete Linear System check box (and Sample Time) the system is
a continuous-time or discrete-time system. You can enter the matrix elements in the
white space areas. Separate column elements with Spaces or Commas. Enter new rows
by clicking the Enter key (new line) or using a semicolon. Brackets (e.g. [...]) may be
used to denote the a matrix or vector.

The A-matrix, shown in the figure above can for example be entered as:

0 1
-0.5 -1

or

0,1;-0.5,-1

or

[0,1;
-0.5,-1]

Output Delay

To inspect the effects of time delay in your model, you can add output delay. The result
will be visible in the various plots that you can show of a linear system. The unit of the
output delay is seconds.

Discrete Sample Time

If you want to transfer a linear system from continuous time to discrete time directly
(i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value.
You can also transfer back directly by deselecting Discrete Sample time.

Commands

Help: Open the help file.

Apply: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero).

OK: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero) and close the editor.

Cancel: Do not apply any changes to the system and close the editor.

10. Toolboxes

36420-sim 5.1 Reference Manual

Transfer Functions

A continuous time or discrete time SISO transfer function:

(continuous) (discrete)

is characterized by its numerator n and denominator d, both polynomials of the variable
s or z.

You can enter transfer functions by selecting the Transfer Function button and clicking
the Edit button.

10. Toolboxes

36520-sim 5.1 Reference Manual

This opens an editor in which you can enter the coefficients of the numerator and
denominator polynomials. You can enter the elements in the white space areas.
Separate the elements with Spaces. Polynomials should be entered in descending
powers of s or z. The Steady State Gain, Root Locus Gain and System Gain are
parameters, that are automatically derived from the transfer function.

In the editor shown above the transfer function

was given. You can enter the coefficients as:

1

and

1 0.5 1

or

0.1,0.1

and

1,1,0.5

Output Delay

To inspect the effects of time delay in your model, you can add output delay. The result
will be visible in the various plots that you can show of a linear system. The unit of the
output delay is seconds.

Discrete Sample Time

If you want to transfer a linear system from continuous time to discrete time directly
(i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value.
You can also transfer back directly by deselecting Discrete Sample time.

10. Toolboxes

36620-sim 5.1 Reference Manual

Commands

Help: Open the help file.

Apply: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero).

OK: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero) and close the editor.

Cancel: Do not apply any changes to the system and close the editor.

Zeros and Poles

A continuous-time SISO transfer function can described by the transfer function:

This transfer function can be rewritten in pole zero notation with

where pi .. p1 are the poles and zi .. z1 are the zeros and KRL is the Root Locus Gain of

the system. The same can be done for a discrete-time SISO transfer function.

10. Toolboxes

36720-sim 5.1 Reference Manual

You can enter zeros and poles by selecting the Zeros & Poles button and clicking the Edit

button.

10. Toolboxes

36820-sim 5.1 Reference Manual

This opens an editor in which you can enter the real and imaginary parts of the zeros
and poles as well as the Root Locus Gain. If preferred, you can also enter the System
Gain. Note that zeros and poles always have conjugate when the imaginary part is non-
zero. I.e. when you enter a pole with imaginary part 0.5 an extra pole is added with
imaginary part -0.5.

Output Delay

To inspect the effects of time delay in your model, you can add output delay. The result
will be visible in the various plots that you can show of a linear system. The unit of the
output delay is seconds.

Discrete Sample Time

If you want to transfer a linear system from continuous time to discrete time directly
(i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value.
You can also transfer back directly by deselecting Discrete Sample time.

Commands

Add/Delete: Add or delete selected poles or zeros.

Help: Open the help file.

Apply: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero).

OK: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero) and close the editor.

Cancel: Do not apply any changes to the system and close the editor.

10. Toolboxes

36920-sim 5.1 Reference Manual

Eigen Frequencies

The Eigen Frequencies view is closely related to the pole zero notation and bode plot. It
shows the resonance frequencies and anti-resonance frequencies that result from the
given poles and zeros as well as some characteristic parameters from the bode plot.

You can enter transfer functions by selecting the Eigen Freqs. button and clicking the Edit
button.

10. Toolboxes

37020-sim 5.1 Reference Manual

Step Response

The Step Response command calculates the systems response y on a unit step input:

u = 0 (time < 0)
u = 1 (time >= 0)

20-sim automatically generates an appropriate range for the time response, based on
the system dynamics. With the Plot Properties command (right mouse menu), you can
change this horizon and recalculate the step response (click the Step command again).

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the general plot properties for the step response and specify the
curve properties.

Numerical Values: Inspect numerical values.

Step Characteristics: Display rise time, overshoot, settling time and the steady state
value of the step response.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

10. Toolboxes

37120-sim 5.1 Reference Manual

Bode Plots

Bode Plots show the amplitude and phase of a linear system as function of the
frequency. Bode plots can be shown for every 20-sim model through Linearization.
During Linearization you are asked to enter the input variable and output variable for
which linearization should be performed. After that the linear system is calculated and
shown in the Linear System Editor. From the Linear System Editor you can generate a
bode plot. These actions can also be predefined using the Frequency Response
command of the Properties menu.

20-sim automatically generates a range of logarithmically displayed frequencies, based
on the system dynamics. With the Plot Properties command (right mouse menu),
you can change this horizon and recalculate the bode response (click the Bode command
again).

The magnitude part of the plot can be displayed in dB or in absolute values. The phase
part can be displayed in radians or degrees. The frequency can be displayed in radians
per second or in Hz.

Plot Options

Using the toolbar or the right mouse menu, you can use various options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Magnitude (dB): Display magnitude in decibels

Magnitude (-): Display magnitude in absolute values.

Phase (rad): Display phase in radians.

Phase (deg): Display phase in degrees.

Frequency (rad/sec): Display frequency in radians per second.

Frequency (Hz): Display frequency in Hz.

10. Toolboxes

37220-sim 5.1 Reference Manual

Phase/Gain Margins: Display the gain and phase margins.

Modulus Margin: Display the Modulus Margin.

Unwrap Phase: Display the phase plot as a continuous plot by selecting this option or
as a folded plot between -180 and 180 deg. by deselecting this option.

Peak Response: Display the peak response.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

Pole Zero Diagram

The Pole Zero command plot the poles and zeros of a system and computes the root
locus plot.

20-sim automatically generates a range of real and imaginary parts, based on the
system dynamics. With the Plot Properties command (right mouse menu), you can
change this horizon and recalculate the pole zero diagram (click the Pole Zero
command again).

Root Locus

You can show the rootlocus plot by selecting Root Locus from the right mouse menu.
Inspect the root locus gain by selecting Numerical Values from the right mouse menu.

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Root Locus: Show or hide the root locus plot.

Copy to Clipboard: Copy the plot to the windows clipboard.

10. Toolboxes

37320-sim 5.1 Reference Manual

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

Nichols Chart

The Nichols command computes the Nichols chart of a system.

20-sim automatically generates a range of logarithmically displayed frequencies, based
on the system dynamics. With the Plot Properties command (right mouse menu), you
can change this horizon and recalculate the Nichols chart (click the Nichols command
again). The magnitude part of the plot can be displayed in decibels (dB) or in absolute
values. The phase part can be displayed in radians or degrees.

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Magnitude (dB): Display magnitude in decibels

Magnitude (-): Display magnitude in absolute values.

Phase (rad): Display phase in radians.

Phase (deg): Display phase in degrees.

Frequency (rad/sec): Display frequency in radians per second.

Frequency (Hz): Display frequency in Hz.

Phase/Gain Margins: Display the gain and phase margins.

Modulus Margin: Display the Modulus Margin.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

10. Toolboxes

37420-sim 5.1 Reference Manual

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

Nyquist Diagram

The Nyquist command computes the Nyquist plot of a system.

20-sim automatically generates a range of real and imaginary parts, based on the
system dynamics. With the Plot Properties command (right mouse menu), you can
change this horizon and recalculate the Nyquist diagram (click the Nyquist command
again).

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Phase/Gain Margins: Display the gain and phase margins.

Modulus Margin: Display the Modulus Margin.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

10. Toolboxes

37520-sim 5.1 Reference Manual

MLP Network Editor10.4.2

Neural Networks

Human brains consist of billions of neurons that continually process information. Each
neuron is like a tiny computer of limited capability that processes input information from
other neurons into output information to other neurons. Connected together, these
neurons form the most intelligent system known.

For some years now, researchers have been developing models that mimic the activity
of neurons to produce a form of artificial intelligence. These "Neural Networks" are
formed from tens or hundreds of simulated neurons connected together in much the
same way as the brain's neurons. Just like the neurons of the brain, artificial neurons
can change their response to a given set of inputs, or "learn".

In the past many learning algorithms have been developed, mostly with limited success.
The introduction of the backpropagation paradigm, however, appeared a turning point. It
is an extremely effective learning tool that can be applied to a wide variety of problems.

The backpropagation paradigm require supervised training. This means neural networks
must be trained by repeatedly presenting examples to the network. Each example
includes both inputs (information you would use to make a decision) and desired outputs
(the resulting decision, prediction, or response). Based on a calculation on the inputs,
the desired outputs and the networks own response to the inputs, the backpropagation
paradigms tries to adapt the response of each neuron to achieve an improved neural
network behavior. This trial-and-error process continues until the network reaches a
specified level of accuracy.

Once a network is trained and tested it's neurons can be "frozen". This means the
neurons ability to learn" or adapt is stopped. The network can then be used to perform
the task it was trained for.

BackPropagation Networks

In backpropagation type neural networks, the neurons or "nodes" are grouped in layers.
We can distinct three groups of layers in a backpropagation type neural network: one
input layer, one or more hidden layers and one output layer. The nodes between two
adjacent layers are interconnected. Fully connected networks occur when each node of a
layer is connected with each node of the adjacent layer.

10. Toolboxes

37620-sim 5.1 Reference Manual

As the figure shows, information (i.e. input signals) enters the network through the input
layer. The sole purpose of the input layer is to distribute the information to the hidden
layers. The nodes of the hidden layers do the actual processing. The processed
information is captured by the nodes of the output layer, and transported as output
signals to the world outside.

y= f (w1*i1 + w2*i2 + w3*i3 + ... + wn*in)

The nodes of the hidden layers process information by applying factors (weights) to each
input. This is shown in the figure above. The sum of the weighted input information (S) is
applied to an output function. The result is distributed to the nodes of the next layer.

When the network is in being trained, the weights of each node are adapted according to
the backproagation paradigm. When the network is in operation, the weights are
constant.

Depending on the kind neural network, various topologies can be discerned. The 20-sim
Neural Network Editor supports two well-known networks:

1. Adaptive B-spline networks

2. Multi-layer Perceptron networks

10. Toolboxes

37720-sim 5.1 Reference Manual

Introduction to MLP Networks

The basic element of the Multi Layer Perceptron (MLP) neural network, is the artificial
neuron. An artificial neuron, is a unit that performs a simple mathematical operation on
its inputs. In the figure below, the neuron is graphically presented.

The input, x, of the neuron consists of the variables x1 ... xn and a bias term, known as
the momentum constant, which is equal to 1. Each of the input values is multiplied by
a weight, wi , after which the results are added. On the result, a simple mathematical
function, f (x), is performed. This function is also known as the activation function.
The calculations the neuron performs are thus given by:

y = f (w0 + x1*w1 + ... + xn*wn)

Numerous choices for the functions exist. Frequently used implementations are the
Sigmoid functions:

f(u) = 1 / (1 + e-u)

f (u) = c1 * tanh (c2 * u)

10. Toolboxes

37820-sim 5.1 Reference Manual

(in the picture c1 = c2 = 1)

MLP Network

An MLP network, as any type of back-propagation network can consist of many neurons,
which are ordered in layers. The neurons in the hidden layers do the actual processing,
while the neurons in the input and output layer merely distribute and collect the signals.
Although many hidden layers can be used, it has been shown that an MLP with one
hidden layer can approximate any continuous function. Therefore in 20-sim, the MLP
networks only have one hidden layer.

Training the MLP network

The MLP network is trained by adapting the weights. During training the network output
is compared with a desired output. The error between these two signals is used to adapt
the weights. This rate of adaptation is controlled by the learning rate. A high learning
rate will make the network adapt its weights quickly, but will make it potentially
unstable. Setting the learning rate to zero, will make the network keep its weights
constant.

10. Toolboxes

37920-sim 5.1 Reference Manual

How to use the MLP Editor

The MLP Editor can be used to define a 20-sim Multi Layer Perceptron (MLP) network.
The editor is opened when you try to edit this submodel (using the Go Down command).

General Settings

Network Name: this is the local name of the submodel representing the MLP network
(this option is not yet supported).

Number Hidden Neurons: The MLP network specified by this editor has one layer of
hidden neurons. You can specify here the number of neurons that should be used.

Learning Rate: Specify the learning rate that should be used during training. If you
do not want the network to learn, enter a zero value here.

Initial Weights Fill Scale: To start proper learning of the network, all initial weights will
be given a random value (unequal to zero!) between -scale and +scale. You can
enter the scale factor here.

Activation Function Type: Select one of the following activation functions

Unipolar Sigmoid: act = 1/(1 + exp(-v))

Bipolar Sigmoid: act = const2*tanh(const1*v)

Bipolar Sigmoid Activation Function Scale: If a Bipolar Sigmoid was chosen as the
activation function, you can enter here the values of const1 and const2.

Momentum Constant: Select the momentum constant here.

Load Weights at Start of Simulation: Select this option, if you want to use predefined
weights stored on file (saved in a previous run). Before each simulation run, you will
be asked to enter the filename of this weights file.

Save Weights at Start of Simulation: Select this option, if you want to store the
weights on file. After each simulation run, you will be asked to enter the filename of
this weights file.

Network is Discrete: Select this option if the B-spline network is connected with
discrete-time models. Deselect this option if the network is connected with continuous
models.

10. Toolboxes

38020-sim 5.1 Reference Manual

Inputs

Add Input: Add a new input to the network. You will we prompted to give a specific
input name. This name will be shown in the Inputs list.

Delete Input: Delete the input selected in the Inputs list.

Outputs

Add Output: Add a new output to the network. You will we prompted to give a specific
output name. This name will be shown in the Outputs list.

Delete Output: Delete the output selected in the Outputs list.

B-Spline Network Editor10.4.3

Neural Networks

Human brains consist of billions of neurons that continually process information. Each
neuron is like a tiny computer of limited capability that processes input information from
other neurons into output information to other neurons. Connected together, these
neurons form the most intelligent system known.

For some years now, researchers have been developing models that mimic the activity
of neurons to produce a form of artificial intelligence. These "Neural Networks" are
formed from tens or hundreds of simulated neurons connected together in much the
same way as the brain's neurons. Just like the neurons of the brain, artificial neurons
can change their response to a given set of inputs, or "learn".

In the past many learning algorithms have been developed, mostly with limited success.
The introduction of the backpropagation paradigm, however, appeared a turning point. It
is an extremely effective learning tool that can be applied to a wide variety of problems.

The backpropagation paradigm require supervised training. This means neural networks
must be trained by repeatedly presenting examples to the network. Each example
includes both inputs (information you would use to make a decision) and desired outputs
(the resulting decision, prediction, or response). Based on a calculation on the inputs,
the desired outputs and the networks own response to the inputs, the backpropagation
paradigms tries to adapt the response of each neuron to achieve an improved neural
network behavior. This trial-and-error process continues until the network reaches a
specified level of accuracy.

Once a network is trained and tested it's neurons can be "frozen". This means the
neurons ability to learn" or adapt is stopped. The network can then be used to perform
the task it was trained for.

Introduction to B-Spline Networks

One-dimensional B-spline network

An adaptive B-spline network can be used to relate k inputs and a single output y on a
restricted domain of the input space. The following network shows a realization with one
input:

10. Toolboxes

38120-sim 5.1 Reference Manual

The network is shown with two hidden layers. Some authors prefer to show a B-spline
network with only one hidden layer. For a proper understanding of multi-dimensional B-
spline networks we prefer to show the network with two hidden layers.

The first hidden layer distributes the inputs over several nodes. In the figure above input
1 is distributed over n nodes. Each node of this layer has only one input. To this input a
"basis function" F is applied. As basis functions, B-splines are used of any desired order.
An N-th order B-spline function consists of pieces of (N-1)th order polynomials, such that
the resulting function is (N-1) times differentiable. The figure below shows examples of
B-spline functions of different order. A spline function differs from zero on a finite
interval.

The second hidden layer also consists of n nodes. Each node of this layer has only one
input. To this input a function G is applied which is merely a multiplication by a weight:

G = w * i
The output node sums the results of all second hidden layer nodes. When the spline
functions of the various nodes are properly spaced, every one dimensional function can
be approximated. This is shown in the figure below where the various splines (F1 to Fn)
combined with the various weights (w1 to wn), together form an output function.

10. Toolboxes

38220-sim 5.1 Reference Manual

Two-dimensional B-spline network

Two-dimensional B-spline networks have two input nodes. The first hidden layer, as with
the one-dimensional network, consists of nodes, to which a basis function F is applied.
This is shown in the figure below. To the first input a group of n nodes are applied, and
to the second input a group of m nodes are applied.

The second hidden layer now consists of nodes which each have two inputs. For every
combination of a node from one group and and a node from the second group, a node
exists. To each node of the second hidden layer, a function G is applied which is merely
a multiplication of the two inputs multiplied by a weight:

G = w * i1 * i2

Again the output node sums the results of all second hidden layer nodes. When the
spline functions of the various nodes are properly spaced, every two dimensional
function can be approximated. The figure below shows the spacing of various spline
functions of the two inputs and one output of a node of the second hidden layer.

10. Toolboxes

38320-sim 5.1 Reference Manual

The output node sums the results of all second hidden layer nodes. When the spline

functions of the various nodes are properly spaced, every two dimensional function can

be approximated. This is shown in the figure below.

More-dimensional B-spline networks

In a same way more dimensional B-spline networks can be created, using more inputs.
The 20-sim B-spline Editor supports networks with up to 256 inputs and one output.

Training the B-spline network

The B-spline network is trained by adapting the weights. During training the network
output is compared with a desired output. The error between these two signals is used to
adapt the weights. This rate of adaptation is controlled by the learning rate. A high
learning rate will make the network adapt its weights quickly, but will make it potentially
unstable. Setting the learning rate to zero, will make the network keep its weights
constant. Learning of B-spline networks can either be done after each sample (learn at
each sample), or after series of samples (learn after leaving spline).

10. Toolboxes

38420-sim 5.1 Reference Manual

Learn at each Sample

When learning at each sample, after every sample the weights are adapted according
to:

Given a certain input (x), only a limited number of splines Fi (x) are nonzero. Therefore
only a few weights are adapted each sample.

Learn after Leaving Spline

When learning after leaving a spline, the network will keep track of the input (x) and the
corresponding nonzero splines Fi (x). For each nonzero spline, a sample will be stored
consisting of the input (x), the output (y) and desired output (yd). Only after the input
has left the region where a spline is nonzero, its weight is updated according to:

Here n is the number of samples that have been taken.

10. Toolboxes

38520-sim 5.1 Reference Manual

How to use the BSpline Editor

The B-Spline Editor can be used to define a 20-sim B-Spline network. The editor is
opened when you try to edit this submodel (using the Go Down command).

General Settings

Network Name: this is the local name of the submodel representing the B-Spline
network (this option is not yet supported).

Order: Enter the order of the B-Splines that must be used.

Learn at Each Sample: Select this option if you want the network to adapt the
weights after every simulation step

Learn after leaving Spline: Select this option if you want the network to adapt the
weights only leaving the spline region.

Learning Rate: Specify the learning rate that should be used during training. If you
do not want the network to learn, enter a zero value here.

Apply Regularization: This option is not yet supported.

Load Weights at Start of Simulation: Select this option, if you want to use predefined
weights stored on file (saved in a previous run). Before each simulation run, you will
be asked to enter the filename of this weights file.

Save Weights at End of Simulation: Select this option, if you want to store the weights
on file. After each simulation run, you will be asked to enter the filename of this
weights file.

10. Toolboxes

38620-sim 5.1 Reference Manual

Network is Discrete: Select this option if the B-spline network is connected with
discrete-time models. Deselect this option if the network is connected with continuous
models.

Input Settings

The tabs shown in the editor is used to specify the inputs of the network. Each tab shows
the specific settings of that input.

Add Input: Add a new input to the network. A new tab will be added with default
settings.

Delete Input: Delete the input defined in the selected tab (the tab that is in front).

Each input is associated with a certain number of splines. To give the user more
flexibility, each input can be divided in certain regions that each have their own density
of splines.

Add: Add a new region of splines.

Delete: Delete the selected region of splines.

Split: Split the selected region into two regions.

Each region can be edited. Just select it from the Regions list and use the following
options:

Upper / Lower: The upper and lower bound of a region.

Number of Splines: The number of splines. The more splines you choose, the more
accurate will the network output be, for this region of inputs.

Running a 1-D B-Spline Network

Now we have trained the B-spline network and saved the weights. We can run the
network with every desired input. We only have to keep in mind that the network was
defined for input signals between 0 and 10.

1. In the Editor from the File menu select Open.

2. In the model library choose Examples\Control\Neural Networks

3. Select the model 1DBSplineNetwork-Run.emx. Now the predefined model will be
opened.

10. Toolboxes

38720-sim 5.1 Reference Manual

As you can see, this is exactly the same model as used for training, but now a ramp
input is used.

4. From the menu select Model and Start Simulator. Now a Simulator will be opened
with the predefined experiment loaded.

5. From Simulator menu click Simulation and Run. Do not save the weights file at
the end of the run! The results will look like:

10. Toolboxes

38820-sim 5.1 Reference Manual

As you can see, the B-Spline Network still has its training settings and still prompts for a
weight file at the end of the simulation. Now we are going to change the settings of the
B-Spline Network.

6. Open the B-Spline Editor (select the model, Go Down). To create a normal run with
the network, we have to set the learning rate to zero, and load the weights file
before simulation. Change the settings of the network, until it looks like:

10. Toolboxes

38920-sim 5.1 Reference Manual

7. Click OK to close the B-Spline Editor. From the Editor menu click Model and Check
Complete Model. This will implement the changed settings.

8. Return to the Simulator and click Simulation and Run. Before the run, an Open
dialog will asking you to enter the name of the Weights File. This is a file that
contains all the weights of the trained B-Spline network. Use the file that you saved
during training, or the predefined weights file 1DBSplineNetwork.wgt. The simulation
results will look like:

As you can see the function is approximated by the B-Spline network by 10 first order
splines.

10. Toolboxes

39020-sim 5.1 Reference Manual

Training a 1-D B-Spline Network

Non Linear Function

In this lesson we will use a B-spline network with one input to approximate the simple
non-linear function:

F = input2

The input, x , of this function ranges from 0 to 10. It will be approximated by a B-Spline
network with one input. As is shown in the figure below (left), 10 first order B-splines are
used. The tenth B-spline is indicate with fat lines. The output of the B-spline network is a
combination of all ten B-Splines. In other words, the non-linear function will be
approximated by 10 intervals of constant value.

10. Toolboxes

39120-sim 5.1 Reference Manual

At the start the B-spline has undefined weights. They can either be chosen at random
values or all set to zero. A normal session should therefore start with training the
network to adjust the weights to give a best approximation of the non-linear function.
With these weights we can run the network with any desired input signal.

Defining the B-Spline Network

We will use the model below to train the B-spline network. It has already been prepared
for you.

10. Toolboxes

39220-sim 5.1 Reference Manual

1. In the Editor from the File menu select Open.

2. In the model library choose Examples\Control\Neural Networks

3. Select the model 1DBSplineNetwork-Train.emx. Now the predefined model will be
opened.

4. From the menu select Model and Start Simulator. Now a Simulator will be opened
with the predefined experiment loaded.

5. From Simulator menu click Simulation and Run. The results will look like:

As you can see, the B-Spline output is zero and there is no learning. Now we are going
to change the settings of the B-Spline Network.

Training the Network

6. Return to the Editor. Select the BSplineNetwork model and click GoDown from the
Model menu. Now the B-Spline Editor will pop-up. Change the settings (Network
Order, Learning Rate, Input Upper Limit, Save Weights) until it looks like:

10. Toolboxes

39320-sim 5.1 Reference Manual

7. Click OK to close the B-Spline Editor. Not that the icon of the BSplineNetwork model
has changed to correspond with the first order splines that are used. From the Editor
menu click Model and Check Complete Model. This will implement the changes in
settings.

8. Return to the Simulator and click Simulation and Run. The results will look like:

As you can see the error rapidly descent, due to the network learning. After the
Simulation Run, Save dialog opens, asking you to enter a name for the Weights File. This
is a file that contains all the weights of the trained B-Spline network. We can use these
weights for normal runs with the network.

10. Toolboxes

39420-sim 5.1 Reference Manual

9. Enter file name (do not use the predefined weights file!), e.g. test.wgt and click
Save.

10. Close the Simulator.

Now all is prepared to perform a normal run with the Network.

Filter Editor10.4.4

Filter Editor

The Filter Editor of 20-sim allows you to create continuous-time filters and controllers.
The result is a linear system presented in the Linear System Editor of 20-sim. The filter
can also be applied to an existing linear system.

You can open the Controller Design Editor from the Tools menu of the 20-sim Editor or
by clicking Go Down on a Filter model.

Procedure

1. Select a filter or controller of your choice from the list of available filters and
controllers.

Filters

Generic Filter

Lead Filter

Lag Filter

Low Pass First Order Filter

Low Pass Second Order Filter

10. Toolboxes

39520-sim 5.1 Reference Manual

High Pass First Order Filter

High Pass Second Order Filter

Notch Filter

Universal Notch Filter

Controllers

P Controller

I Controller

D Controller

PI Controller

PD Controller

PID Controller

PID-1 Controller

PID-2 Controller

PID Compensator

A short description of the selected filter will be given in the description field. Depending
on the filter that was chosen three or more parameters will be shown.

2. The second step is to fill in the desired parameters.

3. Choose the desired output:

4. Select the Linear System Editor button to export the filter to the Linear System
Editor.

5. Select the OK button to store the filter model on file or update the filter model in the
Editor.

Controllers

P-Controller

The P Controller can be used to create an additional gain for a linear system.

Gain Kp:The controller gain Kp determines the amount of gain the controller adds for
each frequency.

Transfer function of the controller:

10. Toolboxes

39620-sim 5.1 Reference Manual

I-Controller

The I Controller can be used to create an almost ideal integrator (when the frequency
goes to zero).

Gain Ki: The filter gain Ki determines the frequency gain of the controller at
frequency w = 1 [rad/s].

Frequency fi: The integration behavior of the controller stops at frequency fi in Hz. A
decrease of this frequency corresponds to a more pure integration behavior.

Transfer function of the controller

D-Controller

The D Controller can be used to create an almost ideal derivative (when the frequency
goes to infinity).

Gain Kd: The controller gain Kd determines the frequency gain of the controller at
frequency w = 1 [rad/s].

Frequency fd: The differentiation behavior of the controller stops at frequency fd in
Hz. An increase of this frequency corresponds to a more pure differentiation
behavior, reducing the tameness of the controller.

Transfer function of the controller

PD-Controller

The PD Controller consists of a differentiator with proportional gain.

Gain Kp: The controller gain Kp determines the low frequency gain of the controller.

Gain Kd: The controller gain Kd determines the gain of the controller at frequency w
= 1 [rad/s].

Frequency fd: The differentiation behavior of the controller stops at frequency fd in
Hz. An increase of this frequency corresponds to a more pure differentiation
behavior, reducing the tameness of the controller.

Transfer function of the controller:

 that equals

10. Toolboxes

39720-sim 5.1 Reference Manual

PI-Controller

The PI Controller consists of an integrator with a proportional gain.

Gain Kp: The controller gain Kp determines the high frequency gain of the controller.

Gain Ki: The controller gain Ki determines the frequency gain of the controller at
frequency w = 1 [rad/s].

Frequency fi: The integration behavior of the controller stops after frequency fi in Hz.
A decrease of this frequency corresponds to a more pure integration behavior.

Transfer function of the controller:

 that equals

PID1-Controller

The PID-1 Controller consists of an integrator and differentiator with proportional gain. It
resembles a PID Controller, but has different input parameters.

Gain Kp: The controller gain Kp determines the frequency gain of the controller in the
pass band (where integration and differentiation are of no interest).

Length Li: The length Li determines the frequency at which integration starts, that is fi
/ Li in Hz. A decrease of this frequency corresponds to a more pure integration
behavior.

Length Ld: The length Ld determines the frequency at which differentiation stops, that
is fd * Ld in Hz. An increase of this frequency corresponds to a more pure
differentiation behavior, reducing the tameness of the controller.

Frequency fi: The integration behavior of the controller stops at frequency fi in Hz.

Frequency fd: The differentiation behavior of the controller starts at frequency fd in
Hz.

10. Toolboxes

39820-sim 5.1 Reference Manual

Transfer function of the controller:

 that equals

PID2-Controller

The PID-2 Controller consists of an integrator and differentiator with proportional gain. It
resembles a serial PID Controller, but has different input parameters.

Gain Kp: The controller gain Kp determines the frequency gain of the controller in the
pass band (where integration and differentiation are of no interest).

Length Li: The length Li determines the frequency at which integration starts, that is fi
/ Li in Hz. A decrease of this frequency corresponds to a more pure integration
behavior.

Length Ld: The length Ld determines the frequency at which differentiation stops, that
is fd * Ld in Hz. An increase of this frequency corresponds to a more pure
differentiation behavior, reducing the tameness of the controller.

Frequency fi: The integration behavior of the controller stops at frequency fi in Hz.

Frequency fd: The differentiation behavior of the controller starts at frequency fd in
Hz.

Transfer function of the controller:

that equals

10. Toolboxes

39920-sim 5.1 Reference Manual

PID-Compensator

The PID Compensator consists of an integrator and differentiator with proportional gain
(PID Controller) together with a high-frequency roll-off filter.

Gain K: The controller gain K determines the frequency gain of the controller in the
pass band (where integration and differentiation are of no interest).

Integration tau_i: The integration time constant tau i determines the frequency fi =
1 / tau_i [rad/s] after which the integrating behavior stops.

Differentiation tau_d: The differentiation time constant tau d determines the
frequency fd = 1 / tau_d [rad/s] after which the differentiation behavior starts.

HF roll-off tau_h: The filter time constant tau h determines the frequency fh = 1 /
tau_h [rad/s] of the high-frequency roll-off filter. Frequencies higher than fh are
filtered out.

Tameness beta: The tameness factor beta influences the differentiating behavior.
After frequency fdb = fd / beta the differentiation behavior stops. Decreasing beta
increases this frequency fdb, resulting in a more pure differentiating behavior and
therefore in a reduce of differentiation tameness.

Transfer function of the controller:

that equals

PID-Controller

The PID Controller consists of an integrator and differentiator with proportional gain.

Gain Kp: The controller gain Kp determines the frequency gain of the controller in the
pass band (where integration and differentiation are of no interest).

Gain Ki: The controller gain Ki determines the shape of the frequency response at
low frequencies.

Gain Kd: The controller gain Kp determines the shape of the frequency response at
high frequencies.

Frequency fi: The integration behavior of the controller starts at frequency fi in Hz. A
decrease of this frequency corresponds to a more pure integration behavior.

Frequency fd: The differentiation behavior of the controller stops at frequency fd in
Hz. An increase of this frequency corresponds to a more pure differentiation
behavior, reducing the tameness of the controller.

Transfer function of the controller:

that equals

10. Toolboxes

40020-sim 5.1 Reference Manual

Filters

Generic Filter

The Generic Filter can be used to design a filter of a specific order, type and
characteristic shape.

Filter Characteristics

The filter can have a Bessel, Butterworth or Chebychev characteristic shape. Each
characteristic has its own advantages and disadvantages; it depends on the purpose of
the filter what to choose here:

A Bessel filter is maximal flat in both the pass band and the stop band. It is used when
the phase response should be nearly linear throughout the pass band, i.e. the group
delay is almost constant throughout the pass band. This preserves the wave shape of
filtered signals in the pass band. A disadvantage is the low roll-off steepness. Often a
high filter order is required to obtain the desired roll-off.

A Butterworth filter is maximally flat in the pass band and monotonic overall. As a
consequence of this smoothness, the roll-off steepness is rather low. As with Bessel
filters, a rather high filter order is required to obtain the desired roll-off.

A Chebychev 1 filter has a ripple in the pass band and is monotonic in the stop band.
This filter rolls off faster than Bessel, Butterworth and Chebychev 2 filters at the same
filter order. A disadvantage is the greater deviation and discontinuous phase response in
the pass band.

A Chebychev 2 filter is monotonic in the pass band and has a ripple in the stop band.
This filter rolls off faster than Bessel and Butterworth filters at the same filter order. Not
as fast as a Chebychev 1 filter, but it is free of a pass band ripple. A disadvantage is the
ripple and discontinuous phase response in the stop band.

Filter Type

A low pass filter will filter out high frequencies and let low frequencies pass the filter.

A high pass filter does the opposite; it will filter out low frequencies and let high
frequencies pass the filter.

A band pass filter will filter out low and high frequencies and let middle frequencies
pass the filter.

A band stop filter does the opposite; it will filter out the middle frequencies and let
low and high frequencies pass the filter.

Filter Order

The filter order specifies how steep the filter will roll off at a specified filter frequency.
The higher the order, the steeper the roll off will be. Note that the filter order also has a
large influence on the phase response of the filter.

10. Toolboxes

40120-sim 5.1 Reference Manual

Frequency f1

For a low pass filter f1 is the frequency in Hz where the roll off starts. For a high pass
filter it is the frequency where the roll off ends. For a band pass or band stop filter f1 is
the start frequency of the band.

Frequency f2

For a band pass or band stop filter f2 is the stop frequency in Hz of the band. It is
disabled for low pass and high pass filters.

Max. Ripple R

Only available when a Chebychev 1 filter is selected. R specifies the maximum allowed
ripple in dB for the filter in the pass band.

Stop Band R

Only available when a Chebychev 2 filter is selected. R specifies the distance of the stop
band to the unity gain axis in dB. This is the amount of attenuation in dB of the filter in
the stop band (the absolute value is used).

High-Pass First Order Filter

The high pass filter can be used to filter out undesired low frequencies.

Gain K: The filter gain K determines the high frequency gain of the filter.

Frequency f: The filter roll off stops at frequency f in Hz. Higher frequencies will pass
the filter, lower frequencies will be filtered out.

Transfer function of the filter:

High-Pass Second Order Filter

The high pass filter can be used to filter out undesired low frequencies.

Gain K: The filter gain K determines the high frequency gain of the filter.

Frequency f: The filter roll off stops at frequency f in Hz. Higher frequencies will pass
the filter, lower frequencies will be filtered out.

Quality Q: The filter quality indicates how steep the phase response will increase up
to the frequency f. A quality Q > 0.707 results in a peak in the magnitude response
at frequency f.

Transfer function of the filter:

10. Toolboxes

40220-sim 5.1 Reference Manual

Lag Filter

The Lag Filter can be used to add a lag in the phase response of a system.

Gain K: The filter gain K determines the low frequency gain of the filter.

Frequency f1: The lag in the phase response of the filter starts at frequency f1 in Hz.
This corresponds to an integrating behavior in the magnitude response from
frequency f1.

Frequency f2: The lag in the phase response of the filter stops at frequency f2 in Hz.
This corresponds to a constant attenuation in the magnitude response of the filter
after frequency f2.

Transfer function of the filter

Lead Filter

The Lead Filter can be used to add a lead in the phase response of a linear system.

Gain K: The filter gain K determines the low frequency gain of the filter.

Frequency f1: The lead in the phase response of the filter starts at frequency f1 in
Hz. This corresponds to a differentiating behavior in the magnitude response from
frequency f1.

Frequency f2: The lead in the phase response of the filter stops at frequency f2 in Hz.
This corresponds to a constant gain in the magnitude response of the filter after
frequency f2.

Transfer function of the controller

10. Toolboxes

40320-sim 5.1 Reference Manual

Low-Pass First Order Filter

The low pass filter can be used to filter out undesired high frequencies.

Gain K: The filter gain K determines the low frequency gain of the filter.

Frequency f: The filter roll off starts at frequency f in Hz. Lower frequencies will pass
the filter, higher frequencies will be filtered out.

Transfer function of the filter

Low-Pass Second Order Filter

The low pass filter can be used to filter out undesired high frequencies.

Gain K: The filter gain K determines the low frequency gain of the filter.

Frequency f: The filter roll off starts at frequency f in Hz. Lower frequencies will pass
the filter, higher frequencies will be filtered out.

Quality Q: The filter quality indicates how steep the phase response will decrease at
the frequency f. A quality Q > 0.707 results in a peak in the magnitude response at
frequency f.

Transfer function of the filter

Notch Filter

The notch filter can be used to filter out an undesired frequency.

Gain K: The filter gain K determines the frequency gain of the filter.

Frequency f: The filter attenuates at frequency f in Hz. Lower and higher frequencies
will pass the filter.

Quality Q: The filter quality indicates how steep the magnitude response will be at the
frequency f.

Transfer function of the filter:

10. Toolboxes

40420-sim 5.1 Reference Manual

Universal Notch Filter

The universal notch filter can be used to filter out an undesired frequencies.

Gain K: The filter gain K determines the low frequency gain of the filter.

Frequency fz: The filter attenuates at the zero frequency fz in Hz. Lower and higher
frequencies will pass the filter. A lead in the phase response will start at this zero
frequency fz.

Frequency fp: The filter amplifies at the pole frequency fp in Hz. The phase lead will
stop at this pole frequency fp.

Damping dz: The filter damping of the zero dz indicates how steep the magnitude
response will be at the frequency fz. More damping will result in a less steep
behavior.

Damping dp: The filter damping of the pole dp indicates how steep the magnitude
response will be at the frequency fp. Again, more damping will result in a less steep
behavior.

Transfer function of the filter:

10.5 Frequency Domain Toolbox

FFT Analysis10.5.1

FFT Analysis

Using FFT-Analysis, the Fast Fourier Transform is used to calculate the frequency
contents of simulation signal. Three representations are supported:

Amplitude and Phase: This representation shows the amplitude and phase of the
signal as function of the frequency, similar to a bode plot. If you want show the
transfer function of a system, you have to choose the option Pair-wise transfer
function, which is explained below in the FFT Settings.

Frequency Plot: This representation shows the frequency contents of the signal.
Summation of the peak values yields the average power of the original time signal.

Power Spectral Density: This representation shows the frequency contents of the
signal. Integration over the frequency range yields the average power of the original
time signal.

10. Toolboxes

40520-sim 5.1 Reference Manual

FFT plot showing the power spectral density.

FFT analysis can be performed in the Simulator by choosing the FFT Analysis
command from the Tools menu. You can also choose to add an FFT plot in the
Simulator tree. In both cases a new FFT plot is shown.

Plot Properties

You can define the FFT plot by opening the plot properties (from the menu choose
Properties - Plot). Four tabs are shown: Plot Properties, X-Axis, Y-Axis and FFT
Settings.

The Plot Properties tab shows the general settings of the plot, similar to every
standard plot.

The X-axis tab shows the X-Axis variable of the FFT input. The default value is time
and should not be changed.

The Y-axis tab shows the variables that are selected to be shown as FFT curves,
similar to every standard plot.

The FFT-Settings tab shows the options that you can choose for the FFT plot.

10. Toolboxes

40620-sim 5.1 Reference Manual

FFT Settings

Items

Plot Properties

Pair-wise transfer function: Shows an FFT with the frequency contents of the first
plot variable subtracted from the second plot variable. Select this option if you
want to show the FFT of a transfer function. The first plot variable is the input of
the transfer function and the second plot variable is the output of the transfer
function.

Show Peaks: Choose this option to show the peak values in the FFT plot.

Filter

Subtract DC-component: If your signal contains a DC-component, the resulting
Spectral Density plot will show a high peak at 0 Hz, which may obscure all other
frequencies. Choose Subtract DC-component, to remove this peak from the
Spectral Density plot.

Integrate Data: You can integrate the FFT data to inspect the energy contents of
each frequency. This option is useful for analyzing resonance frequencies.
Integrated FFT-data will usually show a sudden increase exactly at these
frequencies.

Anti-Leakage Window: You can choose a Hamming, Hann or Quadratic window to
prevent leakage caused by windowing.

Frequency: Show the results in Herz or radians per second.

10. Toolboxes

40720-sim 5.1 Reference Manual

Output: select the desired representation of the frequency data:

Amplitude and Phase

Frequency Spectrum

Power Spectral Density

Status Window: The bottom part of the window shows the number of simulation points
and the chosen frequency range.

Quality

The quality of an FFT plot depends on the contents of the time domain simulation:

The number of simulation points per second, determine the frequency range of the
FFT. If you want to increase the frequency range to higher frequencies, choose a
smaller step size or a smaller maximum step size of the integration method.

The quality of the FFT depends on the total time of the simulation. Increase the finish
time of the simulation to get a better FFT plot.

Make sure that you system is excited properly. If you give an input signal that does
not contain higher frequencies, the FFT plot will not show them.

FFT Window

The Fast Fourier Transform is an approximation of the standard Fourier Transform, using
a time limited set of data. The begin and end parts of this limited data set may lead to
spectral leakage effects (i.e. yielding not existing frequency peaks). Especially when
using small data sets leakage may lead to unwanted results.

To reduce spectral leakage, the data set can be preprocessed using special windowing
functions. These windowing functions reduce the values at the begin and end of the data
set and thus reduce the leakage effects. Given an input array A[i] and an output array
B[i], with = 1,2,...,N.

20-sim supports the following windows:

None: no preprocessing; B == A

Hamming Window: B(i) = (0.54 + 0.46*cos(pi*(i-1)/(N-1)))*A(i), i = 1,2,...,N.

Hann Window: B(i) = 0.5*(1 + cos(pi*(i-1)/(N-1)))*A(i), i = 1,2,...,N.

Quadratic Window: B(i) = (1 - 2*((i-1)/(N-1))**2)*(1 - (i-1)/(N-1))*A(i), i = 1,2,...,
(N-1)/2+1; B(i) = 2*(1 - ((i-1)/(N-1))**3)*A(i), i = (N-1)/2+2,...,N.

10. Toolboxes

40820-sim 5.1 Reference Manual

Model Linearization10.5.2

Linearize

In the Simulator, select the Tools menu and then click the Linearize Model to start
linearization. Linearization will generate a linear, state-space description (linear system)
out of any 20-sim model:

dx/dt = Ax + Bu
y = Cx + Du
x(0)

Where:

x = state vector
x(0) = state vector initial value
dx/dt = state vector derivative
y = output
u = input

And:

A = system matrix
B = input gain matrix
C = output gain matrix
D = direct link gain matrix

This linear system shows an input-output behavior that is closely related to the input-
output behavior of the original model.

The result is shown in the Linear System Editor. In the Linear System Editor you can
choose out of several plot options to show the response of the linear system, such as
step responses and Bode plots.

Working Point

Non-linear models can show variable behaviour. Think for example of an arm. When you
stretch it and push against a wall, it is very stiff. When your arm is bent and you push it
against a wall, it will be more compliant. Depending on which state it is in, linearization
of a non-linear system will therefore result in different linear systems.

To get the correct linear system, we have to bring the non-linear system into the correct
state. This can be done by giving it the proper inputs and simulate the system for a while
until the desired state is reached. This is called the working point. When the working
point is reached, the simulation must be stopped to perform linearization.

When linearization is performed without simulation, the working point is the initial state
of the non-linear system.

Symbolic and Numeric

In the 20-sim Simulator, out of an existing (non-linear) model, a symbolic linear-system
can be derived. This means that states, rates and matrix elements are related to the
parameters of the original model:

10. Toolboxes

40920-sim 5.1 Reference Manual

As a result you will get a linear system with the original model parameters that can be
changed at will, without having to linearize again.

Symbolic linearization is not possible if the original model contains functions that cannot
be differentiated. For such models linearization has to be performed numerically. The
resulting linear system has to be recalculated through linearization for different model
parameters.

Procedure

1. Run a simulation until the working point is reached.

2. Stop the simulation at operating point an select the Linearize command from the
Tools menu.

3. Enter your options in the Linearization Dialog.

The Linearization Toolbox.

Items

Input: Use the button to select the input (u).

Output: Use the button to select the output (y).

Linearization Kind: Choose between open loop and closed loop linearization.

Linearize Type: Choose between Symbolic and Numeric linearization.

Additional Settings: When you are performing numeric linearization, select At current
time when you want to linearize at the operating point where the simulation was
stopped. Select At start of simulation when you want to linearize at the start of the
simulation.

10. Toolboxes

41020-sim 5.1 Reference Manual

Tolerances: 20-sim calculates a numerical linear state space model by small
deviations of the complete model from the chosen setpoint. The deviations are based
on the given absolute and relative tolerances. For most models the default values are
sufficient. For stiff models you can change these values by hand.

OK: click the OK button to start Linearization.

Linearization Explained

During linearization you are asked to enter an input signal and an output signal of your
(non-linear) model. During linearization, 20-sim will derive a corresponding linear
system. It is important to understand that 20-sim will cut the model at the input. This
will be explained with the example model below. It shows a linear system with feedback.

Closed Loop

Suppose we would choose the following settings:

input u: WaveGenerator\output
output y: Monitor\input
kind: Closed Loop

This means that 20-sim will add an input u and linearize the model between this
variable and the variable Monitor\output (equal to y in the figure below). 20-sim will

thus linearize the system between u and y and (in this example) yield the closed loop
system.

Open Loop

Suppose we would choose the following settings:

input u: PlusMinus\output
output y: Monitor\input
kind: Open Loop

This means that 20-sim will cut the model at the variable PlusMinus\output (equal to u in
the figure below) and linearize the model between this variable and the variable Monitor
\input (equal to y in the figure below). 20-sim will thus linearize the system between u
and y and (in this example) yield the open loop system.

10. Toolboxes

41120-sim 5.1 Reference Manual

Frequency Response

Next to time domain analysis through the standard time domain plots, 20-sim can also
show results in the frequency domain through FFT analysis and Bode Plots. The picture
below shows the various actions and resulting plots.

Bode plots originate from linear systems theory. A bode plot shows the amplitude and
phase response (as a function of the frequency) of a linear system. In 20-sim linear
systems can be derived in the Simulator out of any linear or non-linear model (model
linearization). The resulting linear system is shown in the Linear System Editor. In this
editor you can generate Bode plots. The generation of Bode plots can be automated in
the Frequency Response dialog. In this dialog you can define the linearization settings
and desired linearization output (Linear System Editor or Bode plot).
Procedure

1. Select the Frequency Response from the command from the Properties menu.

2. Enter your options in the Frequency Response Dialog.

10. Toolboxes

41220-sim 5.1 Reference Manual

The Frequency Response dialog.

Items

Input Probes: Enter possible input signals for linearization here.

Output Probes: Enter possible output signals for linearization here.

Frequency Response: With the Add Frequency Response you can add new input/
output pairs. For every input/output pair linearization will be performed with a
corresponding linear system as result.

Symbolic/Numeric: Select the desired linearization method.

Closed Loop: By default all linearization is open loop. Select the Closed Loop option
to preform closed loop linearization.

At start of simulation/At current time: Select the time of the linearization.

Tolerances: For numeric linearization you can enter the absolute and relative
tolerances.

Output: Select the desired output of the linearization.

Frequency Range: Select the desired frequency range.

OK: click the OK button to close the dialog.

10. Toolboxes

41320-sim 5.1 Reference Manual

Linearization Tolerances

When using numerical linearization, absolute and relative tolerances can be set. In this
section is explained how 20-sim uses these tolerances to derive a linear system for the
model equations.

Algorithm

Suppose you have chosen the following tolerance values.

alpha = absolute tolerance (e.g. 1e-6)
beta = relative tolerance (e.g. 1e-3)

Suppose we have the following model:

ddt (x) = 4 * x + 2 * u; // with u = 1
y = 1 * x + 3 * u; // with x = 2

During the linearization procedure (suppose linearization from u to y) 20-sim will vary
the input variable and state variables. First we will show the variation for the input u:

u' = (1 + beta)*u + alpha
u'' = (1 - beta)*u - alpha
delta_u = beta*u + alpha

this will yield

x_dot' = 10.002002 and y' = 5.003003
x_dot'' = 9.997998 en y'' = 4.996997

Out of this 20-sim will calculate the B and D vectors of the state-space ABCD
representation:

10. Toolboxes

41420-sim 5.1 Reference Manual

B = (x_dot' - x_dot'') / (2 * delta_u) = 2
D = (y' - y'') / (2 * delta) = 3

The variation of state variables is done accordingly:

x' = (1 + beta)*x + alpha
x'' = (1 - beta)*x - alpha
delta_x = beta*x + alpha

this will yield

x_dot' = 10.008004 en y' = 5.002001
x_dot'' = 9.991996 en y'' = 4.997999

Out of this 20-sim will calculate the A matrix and C vector of the state-space ABCD
representation:

A = (x_dot' - x_dot'') / 2*delta_x = 4
C = (y' - y'') / 2*delta_x = 1

The example system is linear, so the corresponding ABCD representation will give an
equal system. The shown algorithm works equivalent for non-linear models. Suppose we
have the following non-linear model:

ddt (x) = 4 * sin(x) + 2 * u; // with u = 1
y = 1 * x + 3 * u; // with x = 2

This will yield:

B = 2, D = 3, A = -1.668445, C = 1;

Tolerance Values

The absolute tolerance is necessary only if the input or state is zero. In that case the
contribution of the relative tolerance is zero an will not give a contribution to the
algorithm. There is however a problem with the absolute tolerance. Suppose the input =
1e-12 and the state = 1e+6 (ill-scaled model). For the input an absolute tolerance of 1e-
6 will yield a far too large deviation, while the same absolute tolerance is negligible
compared to the state. Only if both the state and input are nonzero the absolute
tolerance can be made non-zero to yield good results.

10. Toolboxes

41520-sim 5.1 Reference Manual

Linear System Editor10.5.3

Linear System Editor

The Linear System Editor of 20-sim allows you to enter or edit linear time- invariant
models. It supports continuous and discrete-time single input / single output (SISO)
systems with and without time delay. You can open the Linear System Editor from the
Tools menu of the 20-sim Editor or by clicking Go Down on the Linear System model. A
linear system can also be the result of a linearization operation in the 20-sim Simulator.

Menu

Some menu items are of particular importance.

File: You can use the file menu to open, import and export linear systems.

Edit - Tolerance: You can specify the tolerance for transforming between state-space
and transfer functions.

Edit - Reduce System: You can reduce the system order by pole-zero cancelation.
The distance between poles and zeros to match for cancelation is given by the
Reduction Tolerance.

View: the view menu can be used for holding, clearing and refreshing plots.

10. Toolboxes

41620-sim 5.1 Reference Manual

System Description

Pressing the Edit button will open a dialog for editing the linear system. Each
description (State Space, Transfer Function, Zeros Poles Gain or Eigen Frequency)
has a special dialog and can be used to specify continuous-time and discrete-time
systems.

In the 20-sim Simulator, out of an existing (non-linear) model a symbolic linear-
system can be derived by means of linearization. This means that the relevant model

parameters are preserved in the Linear System and the parameters button can
be used to change parameters.

Import/Export

Pressing the s<->z button will transform a continuous-time linear system
into a discrete-time linear system and back.

Pressing the Filter button opens the Filter Editor, where a filter can be designed. This
filter can then be combined with the current linear system or replace the current
linear system. If the linear system is a discrete-time system, the designed analog
filter is automatically transferred into its digital equivalent.

Pressing the From Matlab button and the To Matlab button allows
for an instant exchange of the linear system with the Matlab workspace. Information
is transferred numerically (no parameter relations are preserved)

The button is only active when a Linear System has been imported through
linearization. Clicking the button will import parameters from the simulation.

The button is only active when a Linear System has been imported through
linearization. Clicking the button will export the current parameters to the simulation.

Plots

You can inspect the time- and frequency responses of the linear system using:

Step Response

Bode Plot

Nyquist Plot

Nichols Chart

Poles and Zeros (including root locus)

Output

Clicking the 20-sim button will export the linear system as a new 20-sim submodel.

Clicking the Matlab button will export the 20-sim Linear System to a Matlab m-file. If
the Linear System is symbolic, all parameter relations are preserved.

10. Toolboxes

41720-sim 5.1 Reference Manual

Symbolic Linear Systems

In the 20-sim Simulator, out of an existing (non-linear) model a symbolic linear-system
can be derived by means of linearization. This means that the relevant model
parameters are preserved in the Linear System.

The relation between the original model parameters and the linear system elements is
always shown in the white square of Linear System editor, just below the system
description. An example is shown in the first figure below:

As you can see, the some elements of the A, B, C and D matrix are related to the spring
constant and masses of the original model.

Editing

A symbolic linear system can be edited by changing the original model parameters. Click

the Edit Parameters button and a Parameters Editor pops-up. Change the desired
parameters, close the Parameters Editor and the linear system will updated.

10. Toolboxes

41820-sim 5.1 Reference Manual

Updating Parameters

When the parameters have been changed in the Linear System Editor you can update

the parameters in the Simulator by clicking the Update to Simulator button .

Click the Update from Simulator button to do it the other way.

Exporting

You can export a symbolic Linear System to Matlab, with preservation of the parameter
relations, by clicking the Matlab button or selecting Export to Matlab command from the
File menu. This will generate an m-file that you can use in Matlab.

Continuous and Discrete Linear Systems

The Linear System Editor works on continuous time as well as discrete time system.

Pressing the s<->z button will transform a continuous-time linear system into a
discrete-time linear system and back. You can choose between a Bilinear transformation
(Tustin), a Forward Euler transformation and a Backward Difference transformation.
When a continuous-time system is transferred, the user is asked to specify the sample
time of the discrete-time system.

If you want to transfer a linear system directly (i.e. replace the z by and s or vice
versa), click the Edit button and select or deselect the Discrete Sample time.

Output Delay

In the Linear System Editor you can add an output delay. Open the editor and click the
Edit button to edit the system. Now a editor will open where you can set the output
delay. The effects of this output delay is shown in the various plots that you can show of
a linear system. The unit of the output delay is seconds.

The output delay is shown as an exponential added to the transfer function.

Editor

State Space Models

State space models use linear differential equations (continuous) or difference equations
(discrete) to describe system dynamics. They are of the form:

10. Toolboxes

41920-sim 5.1 Reference Manual

(continuous) (discrete)

with for example:

where x is the state vector and u and y are the input and output vectors. These models
may arise from the equation of physics, from state space identification or as the result of
linearization.

You can enter state space models by selecting the State Space button and clicking the
Edit button.

This opens an editor in which you can enter the A, B, C and D matrices. Depending on
the selection of the Discrete Linear System check box (and Sample Time) the system is
a continuous-time or discrete-time system. You can enter the matrix elements in the
white space areas. Separate column elements with Spaces or Commas. Enter new rows
by clicking the Enter key (new line) or using a semicolon. Brackets (e.g. [...]) may be
used to denote the a matrix or vector.

10. Toolboxes

42020-sim 5.1 Reference Manual

The A-matrix, shown in the figure above can for example be entered as:

0 1
-0.5 -1

or

0,1;-0.5,-1

or

[0,1;
-0.5,-1]

Output Delay

To inspect the effects of time delay in your model, you can add output delay. The result
will be visible in the various plots that you can show of a linear system. The unit of the
output delay is seconds.

Discrete Sample Time

If you want to transfer a linear system from continuous time to discrete time directly
(i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value.
You can also transfer back directly by deselecting Discrete Sample time.

Commands

Help: Open the help file.

Apply: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero).

OK: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero) and close the editor.

Cancel: Do not apply any changes to the system and close the editor.

Transfer Functions

A continuous time or discrete time SISO transfer function:

(continuous) (discrete)

is characterized by its numerator n and denominator d, both polynomials of the variable
s or z.

10. Toolboxes

42120-sim 5.1 Reference Manual

You can enter transfer functions by selecting the Transfer Function button and clicking
the Edit button.

This opens an editor in which you can enter the coefficients of the numerator and
denominator polynomials. You can enter the elements in the white space areas.
Separate the elements with Spaces. Polynomials should be entered in descending
powers of s or z. The Steady State Gain, Root Locus Gain and System Gain are
parameters, that are automatically derived from the transfer function.

In the editor shown above the transfer function

10. Toolboxes

42220-sim 5.1 Reference Manual

was given. You can enter the coefficients as:

1

and

1 0.5 1

or

0.1,0.1

and

1,1,0.5

Output Delay

To inspect the effects of time delay in your model, you can add output delay. The result
will be visible in the various plots that you can show of a linear system. The unit of the
output delay is seconds.

Discrete Sample Time

If you want to transfer a linear system from continuous time to discrete time directly
(i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value.
You can also transfer back directly by deselecting Discrete Sample time.

Commands

Help: Open the help file.

Apply: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero).

OK: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero) and close the editor.

Cancel: Do not apply any changes to the system and close the editor.

Gains

Steady State Gain

Given the transfer function:

the Steady State Gain is defined as:

10. Toolboxes

42320-sim 5.1 Reference Manual

Note that the steady state gain can be zero or infinite depending on the element values
of the numerator and denominator!

Root Locus Gain

Given an system described by the transfer function:

This transfer function can be rewritten in pole zero notation with

where pi .. p1 are the poles and zi .. z1 are the zeros of the system. The gain KRL is
known as the Root Locus Gain. Note that it can easily be derived from the transfer
function as:

System Gain

Given the transfer function:

If n0 and d0 are unequal to zero, this transfer function can be rewritten in pole zero
notation with:

The gain KS is known as the System Gain. If n0 is zero and n1 is nonzero an equivalent
notation can be found with an extra s multiplied:

If more numerator element are zero, extra multiplications with s are added. The same
goes for denominator elements equal to zero. In general the System Gain can be
derived from the transfer function as:

10. Toolboxes

42420-sim 5.1 Reference Manual

Relating the Gains

The elements of the System Gain are related to the poles and zeros of the Root Locus
Gain as:

If z0 and p0 are unequal to zero, the following equation holds:

The Root Locus Gain and the Steady State Gain are related as:

Zeros and Poles

A continuous-time SISO transfer function can described by the transfer function:

This transfer function can be rewritten in pole zero notation with

where pi .. p1 are the poles and zi .. z1 are the zeros and KRL is the Root Locus Gain of

the system. The same can be done for a discrete-time SISO transfer function.

10. Toolboxes

42520-sim 5.1 Reference Manual

You can enter zeros and poles by selecting the Zeros & Poles button and clicking the Edit

button.

10. Toolboxes

42620-sim 5.1 Reference Manual

This opens an editor in which you can enter the real and imaginary parts of the zeros
and poles as well as the Root Locus Gain. If preferred, you can also enter the System
Gain. Note that zeros and poles always have conjugate when the imaginary part is non-
zero. I.e. when you enter a pole with imaginary part 0.5 an extra pole is added with
imaginary part -0.5.

Output Delay

To inspect the effects of time delay in your model, you can add output delay. The result
will be visible in the various plots that you can show of a linear system. The unit of the
output delay is seconds.

Discrete Sample Time

If you want to transfer a linear system from continuous time to discrete time directly
(i.e. replace the s by a z), select Discrete Sample time and fill in the sample time value.
You can also transfer back directly by deselecting Discrete Sample time.

Commands

Add/Delete: Add or delete selected poles or zeros.

Help: Open the help file.

Apply: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero).

OK: Apply the current changes of the system, recalculate each plot that is active
(step, Bode, Nyquist, Nichols, pole zero) and close the editor.

Cancel: Do not apply any changes to the system and close the editor.

10. Toolboxes

42720-sim 5.1 Reference Manual

Eigen Frequencies

The Eigen Frequencies view is closely related to the pole zero notation and bode plot. It
shows the resonance frequencies and anti-resonance frequencies that result from the
given poles and zeros as well as some characteristic parameters from the bode plot.

You can enter transfer functions by selecting the Eigen Freqs. button and clicking the Edit
button.

10. Toolboxes

42820-sim 5.1 Reference Manual

Step Response

The Step Response command calculates the systems response y on a unit step input:

u = 0 (time < 0)
u = 1 (time >= 0)

20-sim automatically generates an appropriate range for the time response, based on
the system dynamics. With the Plot Properties command (right mouse menu), you can
change this horizon and recalculate the step response (click the Step command again).

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the general plot properties for the step response and specify the
curve properties.

Numerical Values: Inspect numerical values.

Step Characteristics: Display rise time, overshoot, settling time and the steady state
value of the step response.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

10. Toolboxes

42920-sim 5.1 Reference Manual

Bode Plots

Bode Plots show the amplitude and phase of a linear system as function of the
frequency. Bode plots can be shown for every 20-sim model through Linearization.
During Linearization you are asked to enter the input variable and output variable for
which linearization should be performed. After that the linear system is calculated and
shown in the Linear System Editor. From the Linear System Editor you can generate a
bode plot. These actions can also be predefined using the Frequency Response
command of the Properties menu.

20-sim automatically generates a range of logarithmically displayed frequencies, based
on the system dynamics. With the Plot Properties command (right mouse menu),
you can change this horizon and recalculate the bode response (click the Bode command
again).

The magnitude part of the plot can be displayed in dB or in absolute values. The phase
part can be displayed in radians or degrees. The frequency can be displayed in radians
per second or in Hz.

Plot Options

Using the toolbar or the right mouse menu, you can use various options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Magnitude (dB): Display magnitude in decibels

Magnitude (-): Display magnitude in absolute values.

Phase (rad): Display phase in radians.

Phase (deg): Display phase in degrees.

Frequency (rad/sec): Display frequency in radians per second.

Frequency (Hz): Display frequency in Hz.

10. Toolboxes

43020-sim 5.1 Reference Manual

Phase/Gain Margins: Display the gain and phase margins.

Modulus Margin: Display the Modulus Margin.

Unwrap Phase: Display the phase plot as a continuous plot by selecting this option or
as a folded plot between -180 and 180 deg. by deselecting this option.

Peak Response: Display the peak response.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

Nyquist Diagram

The Nyquist command computes the Nyquist plot of a system.

20-sim automatically generates a range of real and imaginary parts, based on the
system dynamics. With the Plot Properties command (right mouse menu), you can
change this horizon and recalculate the Nyquist diagram (click the Nyquist command
again).

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Phase/Gain Margins: Display the gain and phase margins.

Modulus Margin: Display the Modulus Margin.

Copy to Clipboard: Copy the plot to the windows clipboard.

10. Toolboxes

43120-sim 5.1 Reference Manual

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

Nichols Chart

The Nichols command computes the Nichols chart of a system.

20-sim automatically generates a range of logarithmically displayed frequencies, based
on the system dynamics. With the Plot Properties command (right mouse menu), you
can change this horizon and recalculate the Nichols chart (click the Nichols command
again). The magnitude part of the plot can be displayed in decibels (dB) or in absolute
values. The phase part can be displayed in radians or degrees.

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Magnitude (dB): Display magnitude in decibels

Magnitude (-): Display magnitude in absolute values.

Phase (rad): Display phase in radians.

Phase (deg): Display phase in degrees.

Frequency (rad/sec): Display frequency in radians per second.

Frequency (Hz): Display frequency in Hz.

Phase/Gain Margins: Display the gain and phase margins.

Modulus Margin: Display the Modulus Margin.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

10. Toolboxes

43220-sim 5.1 Reference Manual

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

Pole Zero Diagram

The Pole Zero command plot the poles and zeros of a system and computes the root
locus plot.

20-sim automatically generates a range of real and imaginary parts, based on the
system dynamics. With the Plot Properties command (right mouse menu), you can
change this horizon and recalculate the pole zero diagram (click the Pole Zero
command again).

Root Locus

You can show the rootlocus plot by selecting Root Locus from the right mouse menu.
Inspect the root locus gain by selecting Numerical Values from the right mouse menu.

Plot Options

Using the right mouse menu, you can use several options:

Plot Properties: Set the plot properties.

Numerical Values: Inspect numerical values.

Root Locus: Show or hide the root locus plot.

Copy to Clipboard: Copy the plot to the windows clipboard.

Print: Print the plot.

Zoom in: Show a detail of the plot.

Zoom out: Show a larger portion of the plot.

Zoom Normal: Show the complete plot.

10. Toolboxes

43320-sim 5.1 Reference Manual

Import Data

You can import data from measurements or other software tools to compare it with the
response of your model. 20-sim accepts data in two formats:

Gain-Phase: The data should be stored in a text-file with three columns. The first
column should contain the frequency and the second and third column, the
corresponding gain and phase data.

Real-Imag: The data should be stored in a text-file with three columns. The first
column should contain the frequency and the second and third column, the
corresponding real and imaginary data.

Import Data

1. Open the Linear System Editor with your linear system.

2. Open the plot (e.g. Bode, Nyquist) in which you want to show the data.

3. Set the Magnitude (- or dB), Phase (rad or deg) and Frequency (rad/s or Hz)
according to the data you want to import.

4. In the Linear System Editor from the File menu select Import.

5. Select Import Gain-Phase or Import Real-Imag.

Now a file dialog opens helping you to select the file to import. When you have selected
a file and closed the dialog, the data should be visible in your plot. An example is shown
in the figure above.

10. Toolboxes

43420-sim 5.1 Reference Manual

Dynamic Error Budgeting10.5.4

Dynamic Error Budgeting

The performance of precision machines is mostly limited by the disturbances that are
injected in these machines. These disturbances are often stochastic in nature. Dynamic
Error Budgeting is a method whereby the effect of these disturbances on the final
performance can be calculated. The advantage of this method is that it enables the
designer to enter the contributions of the individual disturbances and view and optimize
the overall machine performance.

The Dynamic Error Budgeting toolbox shows the total error as a result of injected disturbances.

Running the Toolbox

1. Open the example model Dynamic Error Budgetting from the Getting Started/
Frequency Domain Toolbox.

You can open the Dynamic Error Budgeting tool in the Simulator:

2. From the Tools menu select Frequency Domain Toolbox and Dynamic Error
Budgeting.

10. Toolboxes

43520-sim 5.1 Reference Manual

The Dynamic Error Budgeting tool.

The tool allows you to enter disturbances (as power spectral density) in the Input Noises
section.

3. For each disturbance you have to select a corresponding variable by clicking the
Add input noise button.

Each disturbance is effectively a summation to the chosen variable, just like closed loop
linearization. You can inspect each disturbance in the graph on the top right.

Next you have to select an output variable, where the result of the disturbances is
calculated.

4. Select the output by clicking the Add Output button.

In the graph on the bottom right you can see the resulting error at the selected output
as a result of the disturbances. The error is given in the form of a power spectral density
(PSD) and cumulative power spectral density (CPS). The square root of the final value of
the CPS is equal to the standard deviation of the output error. The standard deviations
are shown in the Output Sigma tab.

10. Toolboxes

43620-sim 5.1 Reference Manual

10.6 Scenario Manager

Introduction10.6.1

Introduction

Scripting is very useful to run tasks automatically but they are not very user friendly and
intuitive for users with little knowledge of scripting languages. The Scenario Manager fills
this gap. You can use it to add actions (basic scripting functions) into a scenario (a set of
actions) and run that automatically, without any knowledge of scripting languages.

The Scenario Manager can be used to run all kinds of tasks automatically:

Change all kinds of model settings and run simulations (experiments)

Check simulation outputs against pre-defined results (test automation)

Run simulations and store the results on file (data storage)

Generate C-code of submodels (code generation)

How does the Scenario Manager Work?

When you have a model ready for testing, you can open the Scenario Manager.

1. From the Tools menu select Scenario Manager.

2. Click on Scenario1.
Now you will see an empty Scenario Manager with Scenario1 selected:

10. Toolboxes

43720-sim 5.1 Reference Manual

The Pre-simulation bar, Simulation bar and Post-simulation bar allow you to add Actions.
Actions in the Pre-Simulation bar will be carried out before the model is simulated.
Actions in the Simulation bar will be carried out during a simulation. Actions in the Post-
Simulation bar will be carried out after the model is simulated.

3. Click on the Pre-simulation bar, the Simulation bar or the Post-simulation
bar to add Actions.

10. Toolboxes

43820-sim 5.1 Reference Manual

Under the bar a list of Actions is presented. If you click on an Action, it will be added to
the bar.

4. Click on the Action to see its Properties at the right

10. Toolboxes

43920-sim 5.1 Reference Manual

You can set the Properties for the selected Action at the left. If you click on the Recycle
Bin button at the top left, the Action will be removed from the bar.

Scenario

A set of Actions is called a Scenario. You may change the name of the Scenario in the
tree at the left. If you select a Scenario in the tree, you can run it by clicking the Play
button (white circle with black triangle) at the top middle.

10. Toolboxes

44020-sim 5.1 Reference Manual

Category

A Category may contain a set of Scenarios. You may change the name of the Category
in the tree at the left. If you select a Category in the tree, and click the Play button
(white circle with black triangle) at the top middle, all Scenarios in the Category will be
run.

10. Toolboxes

44120-sim 5.1 Reference Manual

As you can see, the Pre-simulation bar, Simulation bar and Post-simulation bar have
different color when a Category is selected. If you add an Action, this action will be
present for all Scenarios under the Category. This is very useful if you have Actions that
have to repeat for every Scenario.

Learn More

To learn more about the Scenario Manager:

1. Run the example model to see how it all works.

2. See which Actions can be used.

3. Inspect the results of an Action, using the logs.

4. Reset the changes made during a Scenario.

5. See where the Scenarios are stored on file.

Tips

You can use the Scenario Manager for a number of tasks. Here are some examples:

1. Run a simulation a number of seconds: You can run a simulation for a certain time
by executing the Modules: Start Simulation - Wait for seconds - Stop
Simulation.

2. Compare a simulation output with a previously recorded output: You can log a
variable during a simulation with the module Log Variables, store it in a .csv-file
with the Module Generate CSV and then use the Module Compare CSV to compare
this value with a previously recorded value.

10. Toolboxes

44220-sim 5.1 Reference Manual

3. Unit Testing: Insert a model from a library with the Update Submodel Module and
then run a test.

4. Parameter Sweep: Set a parameter value and compare the simulation output with a
previous run.

5. Test Automation: Defined the desired output of a simulation run and compare this
with the real simulation output using an Assert model.

6. Change all kinds of model settings and run simulations (experiments)

7. Check simulation outputs against pre-defined results (test automation)

8. Run simulations and store the results on file (data storage)

9. Generate C-code of submodels (code generation)

Example10.6.2

Introduction

You can see the toolbox in action with the example model Lifting System - Test
Automation. We will run this model tow show you how the Scenario Manager can be
used.

Editor

1. In the 20-sim Editor go to the Library tab

2. In the Library tab select Examples - Signal Processing - Lifting System - Test
Automation.

3. Drag and drop the model to the right to open the model.

Now the Editor will look like:

10. Toolboxes

44320-sim 5.1 Reference Manual

As you can see, in the model two AssertSignal blocks have been added.

AssertSignal1 (Continuous): compares the actual position with the set-point position.
If both deviate more that 5 cm, the output testResult goes from true to false.

AssertSignal2 (Boolean): The minimum value of the pressures in both chambers is
compared with a constant signal of 5 bar. If any one of the pressures is lower, the
output of the AssertSignal2 block testResult goes from true to false.

We will use the two AssertSignal blocks to verify the outcomes of several Scenarios in
the Scenario Manager.

Scenario Manager

Now we will open the Scenario Manager and run some scenarios:

1. From the Tools menu select Scenario Manager.

2. Select Proportional Gains.

The Scenario Manager will look like:

10. Toolboxes

44420-sim 5.1 Reference Manual

Category

At the left in the Scenario Manager you will see a tree with Categories and Scenarios.
Categories are listed directly under Home. In the picture above you see the category
Proportional Gains, the Category Valve Settings and the Category Failing Tests. Under
the Categories, the Scenarios are listed (kp = 4 etc, kp = 5, kp = 6, Gleak = 1e-14
etc.).

In the middle of the Scenario Manager, you can see the various Actions that have been
selected. Each Action will perform a certain task. Actions are carried out sequentially,
from the left to the right, and from the top to the bottom. In the picture above, the
category Proportional Gains is selected. The Actions that apply for this Category are
indicated in purple:

Pre-simulation: The Actions that are shown here, are carried out before the
simulation. In the picture above no Actions have been selected.

Simulation: The Actions that are shown here, are carried out during the simulation. In
the picture above the Actions Run Simulation and OK to Continue are shown.

Post-simulation: The Actions that are shown here, are carried after a simulation. In
the picture above the two Actions AssertTest are shown.

Scenario

3. Select kp = 4.

Now the Scenario Manager will look like:

10. Toolboxes

44520-sim 5.1 Reference Manual

As you can see, the Pre-simulation bar shows one Action extra, Set Parameter. The color
of the Actions is blue.

Actions from a Category are shown in purple.

Actions from a Scenario are shown in blue.

When running a scenario, all Actions will be executed.

In the Scenario of the picture above a parameter value will be set, the a simulation will
be run followed by asking the user to press OK and then check the output of the
AssertSignal modules.

Running a Category

4. Open the 20-sim Simulator: In the 20-sim Editor click Model - Start Simulator.

5. Move the Simulator window on aside from the Scenario Manager window, so you
can see both.

6. In the Scenario Manager choose the Category Proportional Gains

7. Click on the Play button .

Now the first scenario of this Category will be run. In the Simulator window you can see
the simulation run:

10. Toolboxes

44620-sim 5.1 Reference Manual

8. Press OK after each run.

After the three runs have been performed, the Scenario Manager will look like:

Left of the Scenarios, you will see V-signs indicating that the Scenarios were run
successfully: the AssertSignal blocks have given a true output at the end of each run.

9. In the Scenario Manager choose the Category Valve Settings.

10. Toolboxes

44720-sim 5.1 Reference Manual

10. Click on the Run category button.

Now three Scenarios will be run without asking you to click OK. Left of the Scenarios,
you will see V-signs indicating that the tests were successful.

11. In the Scenario Manager choose the Category Failing Tests

12. Click on the Run category button.

Left of the Scenarios, you will see red crosses, indicating that the tests were not
successful: the AssertSignal blocks have given a false output at the end of each run.

Running a Scenario

You can also run a Scenario individually.

13. In the Scenario Manager choose the Scenario Amax = 1e-8

14. Click on the Play button.

Now the Scenario will run. After the Scenario has been run, one of the Actions has a red
edge. If you click on the Action, you will see the corresponding log. It will show that a
time = 0.16 s the simulation output was deviating too much from the desired value.

Inspecting a Module

You can inspect a module by clicking on it.

15. In the Scenario Manager click on the Module Set Parameter.

10. Toolboxes

44820-sim 5.1 Reference Manual

Now the Scenario Manager will look like:

At the right of the Scenario manager, you can see the settings of this Action. It will set
the parameter of the 20-sim model to a certain value. By clicking on the pencil buttons,
you can change the settings.

10. Toolboxes

44920-sim 5.1 Reference Manual

Actions10.6.3

The following Actions are available in the Scenario Manager.

Pre-simulation

Add Plot Window: Create a new plot in 20-sim and show variables.

Generate Code: Create C-code from a 20-sim model.

Implementation: Change the implementation of a submodel.

Log Variables: Log a variable in memory during a simulation run.

OK to Continue: Ask the user to click OK to continue.

Set Parameter: Change the value of a parameter.

Simulator Setting: Change the settings of the Simulator: Fast mode, Endless mode,
Start time, Finish Time, Event Delta, Output after each, Integration method.

Update Submodel: Exchange a submodel in your model with a submodel from file.

Simulation

Generate Code: Create C-code from a 20-sim model.

Generate CSV: Store the variables that have been logged on a .csv-file.

Log Variables: Log a variable in memory during a simulation run.

OK to Continue: Ask the user to click OK to continue.

Run Simulation: Run a simulation from start time to finish time. If the finish time is
passed, the simulation will stop, even if endless simulation has been chosen. After
passing the finish time the next Module will be executed.

Set Parameter: Change the value of a parameter.

Simulator Setting: Change the settings of the Simulator: Fast mode, Endless mode,
Start time, Finish Time, Event Delta, Output after each, Integration method.

Start Simulation: Start a simulation run and execute the next module. The
simulation will stop when all Modules have been executed or the Stop Simulation
Module is executed.

Stop Simulation: Stop a running Simulation.

Update Submodel: Exchange a submodel in your model with a submodel from file.

Wait for Seconds: Wait a number of second before executing the next Module.

Post-simulation

Assert Test: This Module will ask you to select a submodel. It will look inside this
submodel for a boolean output signal testResult. If this signal is true at the end of the
simulation run, the test was successful and a V-sign is placed next to the scenario,
otherwise a red cross will be placed.

Compare CSV: Compare the values in two .csv-files.

Generate Code: Create C-code from a 20-sim model.

Generate CSV: Store the variables that have been logged on a .csv-file.

Implementation: Change the implementation of a submodel.

OK to Continue: Ask the user to click OK to continue.

Set Parameter: Change the value of a parameter.

10. Toolboxes

45020-sim 5.1 Reference Manual

Action Logs10.6.4

With the Logging Active button displayed:

logging will be active during the running of the Scenario. After a run is complete, you
can inspect the log, by clicking on an Action. Now the log of that Action will be displayed
below the Action.

Inspecting the log is useful to see if an action was carried out properly. If an Action fails
(e.g. file cannot be found, no writing permission,..), the cause will be displayed in the
log.

Reset Model10.6.5

With the Reset Model button displayed:

10. Toolboxes

45120-sim 5.1 Reference Manual

all changes made to a model, during a scenario, will be reset after the scenario has been
run. This very useful if you do not want to mess up you model, but sometimes
unwanted. Uncheck this button, if you want to keep the changes made to the model.

File Storage10.6.6

File Locations

All settings for the Scenario Manager are stored in a folder named Scenario Manager
with the same folder as the 20-sim model. Suppose you have stored a 20-sim model as:

C:\temp\models\my 20sim model.emx

Then the Scenario Manager files are stored in the folder:

C:\temp\models\ScenarioManager\my20simmodel\

Inside this folder you will find a log file

C:\temp\models\ScenarioManager\my20simmodel\build_server_log.txt

Inside the log file you can see the outcomes of the Scenarios that have been run.

Copies

If you want to copy the Scenario Manager with a 20-sim model, make sure that you
copy the folder

ScenarioManager\my20simmodel\

with the 20-sim model.

10. Toolboxes

45220-sim 5.1 Reference Manual

10.7 Mechatronics Toolbox

Cam Wizard10.7.1

How to use the Cam Wizard

Introduction

Cams and mechanisms are all based on the same principle. The motion of an input axis
is transformed to an output axis or translation. The transformation is a function of the
input angle. This function is called the cam motion profile.

The 20-sim cam wizard helps you to generate cam and mechanism models. You can use
various types of motion profiles which are continuous in velocity, acceleration or even in
jerk! An example of a mechanism that can be generated by the Cam wizard is the
crank-rod mechanism, where a rotary input motion is transformed to a translating output
motion.

The models that are generated by the 20-sim Cam wizard are fully dynamic! This
means:

The models describe the output velocity as function of the input velocity but also the
input torque as function of the output load.

The speed of the input axis does not have to be constant nor does the output load.

No inertia, stiffness or other dynamic behavior is included, but this can be easily
incorporated by coupling elements from the 20-sim library (inertias, springs etc.) to
the input or output of the model.

Example

To generate a cam or mechanism model in 20-sim, follow the next steps.

10. Toolboxes

45320-sim 5.1 Reference Manual

1. Open the 20-sim model library an go to the section Iconic Diagram\Mechanical
\Rotation\Gears and drag the model Cam-Wizard.emx to the editor. You can also
select in the Editor: Tools - Mechatronics Toolbox - Cam Wizard.

2. Select the Cam-Wizard model and click Go Down. Now the wizard will be opened.

3. Choose the desired motion profile, the profile parameters and type of output
(translation/rotation):

5. Select the type of cam motion profile:

10. Toolboxes

45420-sim 5.1 Reference Manual

6. Enter the parameters values (Stroke, Start Angle Stop Angle). If you have chosen a
continuous pulse as output, you must also enter the values for the Return Angle and
End Angle:

7. In the last page, the resulting values are shown:

10. Toolboxes

45520-sim 5.1 Reference Manual

8. Click Finish and the cam model will be defined. All you have to do is to connect the
input axis (p_in, rotation) and the output axis (p_out, rotation or translation) of the
cam model.

Note

1. If you have changed the settings of this wizard, you have to process the model first
(from the Model menu, choose Check Complete Model) before the changes become
effective.

2. You can change parameter values during simulation (from the Properties menu
select Parameters).

3. This is a masked model that uses the dll-file MotionProfile.dll to open the wizard.
This dll-function must be stored in the bin directory of 20-sim. To see the SIDOPS
code of a masked model press the shift-key, while clicking the Go Down command.

10. Toolboxes

45620-sim 5.1 Reference Manual

Cam Motion Profiles

Motion Types

Two types of motion profiles can be generated by the Cam wizard: intermittent steps
and continuous pulses. The intermittent step motion does not return to its starting
position, but gradually moves further away . It is characterized by the parameters
stroke, start_angle and stop_angle.

The continuous pulse motion output returns at the end of each cycle returns to the
starting position. It is characterized by the parameters stroke, start_angle, stop_angle,
return_angle and end_angle.

Motion Profiles

In mechanical engineering an important part of design is the reduction of vibrations.
Every time a construction is in motion, vibrations are induced. When cams or
mechanisms are used, the amount of vibrations, depend on the kind of motion that is
induced. E.g. a sudden step change will induce violent vibrations in comparison with with
a fluent motion. An important parameter to characterize motions, is the order:

1. Zero Order: Motions that are discontinuous in the position (e.g. a step).

2. First Order: Motions that are continuous in the position but discontinuous in the
velocity (e.g. a ramp).

3. Second Order: Motions that are continuous in the position and velocity but
discontinuous in the acceleration.

4. Third Order: Motions that are continuous in the position, velocity and acceleration.

10. Toolboxes

45720-sim 5.1 Reference Manual

5. Fourth Order: Motions that are continuous in the position, velocity, acceleration and
jerk.

The specific shape of a motion profile can have a significant influence on the dynamic
behavior. Some profiles minimize the maximum velocity, some profile minimize
acceleration, while other profiles tend to make a tradeoff between the maximum velocity
and acceleration. If we take a standard motion with stroke 1 and motion time 1 sec., the
following table can be generated:

profile order vmax amax y(0) y(1/2)

Ramp 1 1 infinite infinite 0

Crank-Rod2 2 > 1.57 > 4.93 infinite < -15.5

Trapezoidal 2 2 4 infinite -infinite

Partial Trapezoidal1 2 1.67 4.17 infinite 0

Geneva Mechanism 2 2.41 8.49 infinite -118.5

Sine 2 1.57 4.93 infinite -15.5

Cubic 3 2 4 32 -32

Partial Cubic3 3 1.67 5.55 55.6 0

Cycloidal 3 2 6.28 39.5 -39.5

Modified Sine 3 1.76 5.53 69.4 -23.2

Modified Trapezoidal 3 2 4.88 61.4 -61.4

MSC50 3 1.26 9.20 173.6 0

MSC%4 3 1.37 7.20 113.1 0

3-4-5 Polynomial 3 1.88 5.77 60 -30

1-3-5-7-9

Polynomial5

3/4 2.05 10.25 BB BM

1: Parameter CV = 20%

2: For lw >> lc the Crank Rod profile equals the sine profile, for lw > lc performance
deteriorates.

3: Parameter CV = 20%, CA = 20%

4: Parameter n = 30%, alpha = 10%

5: Parameter BB = 30%, BM = 10%

10. Toolboxes

45820-sim 5.1 Reference Manual

Here y(0) is the initial jerk (derivative of acceleration) and y(1/2) the crossover
(halftime) jerk.

Ramp

The ramp profile is a first order profile. It has a constant velocity and acceleration peaks
at the start and end of the motion.

Crank Rod Mechanism

A Crank Rod mechanism converts a rotary motion into a repeating translation and

If the rod is much longer than the crank, the resulting motion profile will approach the
sine profile. Below the motion profile is shown for half a rotation of the crank (angle
from 0 to 180 degrees in 1 sec.).

10. Toolboxes

45920-sim 5.1 Reference Manual

If the rod gets smaller, the maximum velocity and acceleration increase.

Note: A real crank-rod mechanism will not suddenly stop at half a rotation and therefore
not show a discontinuous acceleration.

Trapezoidal

The trapezoidal profile is a second order profile. It has a constant acceleration at the
start of the motion and a constant deceleration at the end of the motion.

10. Toolboxes

46020-sim 5.1 Reference Manual

This profile is most widely used in early servo systems. Because of the discontinuity in
the acceleration this motion profile can still induce a lot of vibrations. Therefore in
modern servo systems third order profiles are preferred.

Partial Trapezoidal

The partial trapezoidal profile is a second order profile. It has is equal to the trapezoidal
motion, but has a constant velocity part, during a fraction CV (%) of the motion.

Geneva Mechanism

A Geneva mechanism is an old motion profile generation mechanism. A continuously
rotating crankshaft (a) generates an intermittent motion of a second shaft (b). The result
is a second order profile.

The motion profile generator yields the motion of the second shaft (b). It is shown
below:

10. Toolboxes

46120-sim 5.1 Reference Manual

Sine

The sine profile is a second order profile of which the displacement can be described as:

x = 0.5 - cos (p * t) / 2.

Cubic

The cubic profile is a third order profile of which the acceleration is constantly increasing
and decreasing.

Partial Cubic

The partial cubic profile (3rd order) is a modified cubic profile with a constant velocity
during a fraction CV (%) of the motion and a constant acceleration during a fraction CA
(%) of the motion.

10. Toolboxes

46220-sim 5.1 Reference Manual

Cycloidal

The cycloidal profile is a third order profile, of which the velocity can be described as:

v = stroke*(1-cos(t*a))

Modified Sine

The modified sine profile is also a third order profile. It is a modification of the cycloidal
profile to get a lower maximum velocity and a lower maximum acceleration.

Modified Trapezoidal

The modified trapezoidal profile is a modification of the trapezoidal profile (to make it a
third order profile). This profile yields a very low maximum acceleration.

10. Toolboxes

46320-sim 5.1 Reference Manual

Modified Sine with Constant Velocity (MSC50)

The modified sine with constant velocity profile (3rd order) is a modification of the
modified sine profile. It has a constant velocity during 50% of the motion.

General Modified Sine with Constant Velocity (MSC%)

The modified sine with constant velocity profile (3rd order) is a modification of the
modified sine profile. It has a constant velocity during a user definable part of the of the
motion. The non-zero acceleration part is defined by two parameters which are both
defined as a fraction of the motion. The first parameters alpha (%) defines the start of
the acceleration and the second parameters n (%) defines the end of the acceleration.

3-4-5 Polynomial

The is a third profile described by a 5th order polynomial.

10. Toolboxes

46420-sim 5.1 Reference Manual

1-3-5-7-9 Polynomial

The is a third/fourth order profile described by a 9th order polynomial. The profile is
characterized by two parameters that denote the initial jerk, BB, and the crossover
jerk, BM. If BB is chosen zero, this a a fourth order profile. If BB is chosen non-zero,
this is a third order profile.

Motion Profile Wizard10.7.2

Motion Profile Wizard

The 20-sim Motion Profile Wizard helps you to define motion profiles. To generate such a
profile, follow the next steps.

1. Open the 20-sim model library an go to the section Signal\Sources and drag and
drop the model MotionProfileWizard.emx to the editor. You can also select in the
Editor: Tools - Mechatronics Toolbox - Motion Profile Wizard.

2. Select the model and click Go Down.

This is a masked model. Clicking Go Down will open the Motion Profile Wizard.

4. Select the inputs and outputs:

10. Toolboxes

46520-sim 5.1 Reference Manual

A number of inputs and outputs are available:

External Input: Normally the time will be used for the x-axis of the profile. You can
however use an external input as x-axis variable.

On/Off: Use this input signal to start (onoff = TRUE) and stop (onoff = FALSE) the
profile.

Reset: When the reset signal gets high (reset = TRUE) the profile will be started.

Reference: The motion profile reference signal, e.g. position.

First Derivative: The first derivative of the motion profile reference signal, e.g.
velocity.

Second Derivative: The second derivative of the motion profile reference signal, e.g.
velocity.

Profile Counter: Gives the number of profiles that have been generated.

Ready Signal: Gets high (ready = TRUE) when the profile is completely generated.

5. Click Next to enter the desired profile.

6. You can enter as many profiles as needed to design the complete motion. You can
choose out of a number of predefined profiles.

10. Toolboxes

46620-sim 5.1 Reference Manual

7. Choose the number of times the motion should be repeated.

8. Click Next to go to the last page.

In the last page, you can choose to generate Time Events and what to show the next
time (the wizard or the generated code). Use the default settings if you are not sure
what to use.

10. Toolboxes

46720-sim 5.1 Reference Manual

9. Click Next to go to close the Wizard.

10. In the Editor from the Model menu Check Complete Model to make the changes
effective.

Motion Profile Wizard (Old Style)

If you select the model MotionProfile.emx and click Go Down, the old style Motion
Profile Wizard will open. This wizard is kept in 20-sim to allow you to run old models. The
wizard has been replaced by a new wizard which is far more powerful.

Description

The 20-sim Motion Profile Wizard helps you to define motion profiles. To generate such a
profile, follow the next steps.

1. Open the 20-sim model library an go to the section Signal\Sources.

2. Drag and drop the model MotionProfile.emx to the editor.

3. Select the model and click Go Down. Now the wizard will be opened.

4. Select the type of motion.

5. Choose the desired profile and output signals.

6. Enter the profile parameters.

10. Toolboxes

46820-sim 5.1 Reference Manual

7. Close the wizard.

During simulation the parameter values are used that you have selected in the wizard.
These parameters are available in the Parameters Editor where you can change them as
you would do with any other model. If you have changed the settings of this wizard, you
have to process the model first (from the Model menu, choose Check Complete Model)
before the changes become effective.

Motion Profiles

You can choose out of a number of predefined motion profiles in the Motion Profile
Wizard.

Flat

Ramp

Trapezoidal

Partial Trapezoidal

Geneva Mechanism

Sine

Cubic

Partial Cubic

Cycloidal

Standard Modified Sine

Modified Trapezoidal

Modified Sine with Constant Velocity (MSC50)

General Modified Sine with Constant Velocity (MSC%)

3-4-5 Polynomial

1-3-5-7-9 Polynomial

Flat

The flat profile is a zero order profile. It has a constant position, zero velocity and
acceleration.

Ramp

The ramp profile is a first order profile. It has a constant velocity and acceleration peaks
at the start and end of the motion.

10. Toolboxes

46920-sim 5.1 Reference Manual

The ramp profile.

Trapezoidal

The trapezoidal profile is a second order profile. It has a constant acceleration at the
start of the motion and a constant deceleration at the end of the motion.

The trapezoidal profile.

This profile is most widely used in early servo systems. Because of the discontinuity in
the acceleration this motion profile can still induce a lot of vibrations. Therefore in
modern servo systems third order profiles are preferred.

Partial Trapezoidal

The partial trapezoidal profile is a second order profile. It has is equal to the trapezoidal
motion, but has a constant velocity part, during a fraction CV (%) of the motion.

10. Toolboxes

47020-sim 5.1 Reference Manual

The partial trapezoidal profile.

Geneva Mechanism

A Geneva mechanism is an old motion profile generation mechanism. A continuously
rotating crankshaft (a) generates an intermittent motion of a second shaft (b). The result
is a second order profile.

A Geneva mechanism.

The motion profile generator yields the motion of the second shaft (b). It is shown
below:

The Geneva mechanism profile.

Sine

The sine profile is a second order profile of which the displacement can be described as:

10. Toolboxes

47120-sim 5.1 Reference Manual

x = 0.5 - cos (p * t) / 2.

The sine profile.

Cubic

The cubic profile is a third order profile of which the acceleration is constantly increasing
and decreasing.

The cubic profile.

Partial Cubic

The partial cubic profile (3rd order) is a modified cubic profile with a constant velocity
during a fraction CV (%) of the motion and a constant acceleration during a fraction CA
(%) of the motion.

10. Toolboxes

47220-sim 5.1 Reference Manual

The partial cubic profile.

Cycloidal

The cycloidal profile is a third order profile, of which the velocity can be described as:

v = stroke*(1-cos(t*a))

The cycloidal profile.

Modified Sine

The modified sine profile is also a third order profile. It is a modification of the cycloidal
profile to get a lower maximum velocity and a lower maximum acceleration.

10. Toolboxes

47320-sim 5.1 Reference Manual

The modified sine profile.

Modified Trapezoidal

The modified trapezoidal profile is a modification of the trapezoidal profile (to make it a
third order profile). This profile yields a very low maximum acceleration.

The modified trapezoidal profile.

Modified Sine with Constant Velocity (MSC50)

The modified sine with constant velocity profile (3rd order) is a modification of the
modified sine profile. It has a constant velocity during 50% of the motion.

The modified sine with constant velocity profile.

10. Toolboxes

47420-sim 5.1 Reference Manual

General Modified Sine with Constant Velocity (MSC%)
The modified sine with constant velocity profile (3rd order) is a modification of the
modified sine profile. It has a constant velocity during a user definable part of the of the
motion. The non-zero acceleration part is defined by two parameters which are both
defined as a fraction of the motion. The first parameters alpha (%) defines the start of
the acceleration and the second parameters n (%) defines the end of the acceleration.

The general modified sine with constant velocity profile.

3-4-5 Polynomial

The is a third profile described by a 5th order polynomial.

The 1-3-5 polynomial profile.

1-3-5-7-9 Polynomial

The is a third/fourth order profile described by a 9th order polynomial. The profile is
characterized by two parameters that denote the initial jerk, BB, and the crossover
jerk, BM. If BB is chosen zero, this a a fourth order profile. If BB is chosen non-zero,
this is a third order profile.

10. Toolboxes

47520-sim 5.1 Reference Manual

The 1-3-5-7-9 polynomial profile.

To keep the polynomial consistent, i.e. the polynomial does not change when the
amplitude is changed, the initial jerk (BB) and the crossover jerk (BM) are defined for a
standard motion with:

stroke = 1

start_time = 0

stop_time = 1

Comparison of Profiles

The specific shape of a motion profile can have a significant influence on the dynamic
behavior. Some profiles minimize the maximum velocity, some profile minimize
acceleration, while other profiles tend to make a tradeoff between the maximum velocity
and acceleration. If we take a standard motion with stroke 1 and motion time 1 sec., the
following table can be generated:

profile order vmax amax j(0) j(1/2)

Flat 0 0 0 0 0

Ramp 1 1 infinite infinite 0

Trapezoidal 2 2 4 infinite -infinite

Partial Trapezoidal1 2 1.67 4.17 infinite 0

Geneva Mechanism 2 2.41 8.49 infinite -118.5

Sine 2 1.57 4.93 infinite -15.5

Cubic 3 2 4 32 -32

Partial Cubic3 3 1.67 5.55 55.6 0

Cycloidal 3 2 6.28 39.5 -39.5

Modified Sine 3 1.76 5.53 69.4 -23.2

Modified Trapezoidal 3 2 4.88 61.4 -61.4

MSC50 3 1.26 9.20 173.6 0

MSC%4 3 1.37 7.20 113.1 0

3-4-5 Polynomial 3 1.88 5.77 60 -30

10. Toolboxes

47620-sim 5.1 Reference Manual

1-3-5-7-9

Polynomial5

3/4 2.05 10.25 BB BM

1: Parameter CV = 20%

2: For lw >> lc the Crank Rod profile equals the sine profile, for lw > lc performance
deteriorates.

3: Parameter CV = 20%, CA = 20%

4: Parameter n = 30%, alpha = 10%

5: Parameter BB = 30%, BM = 10%

Here j(0) is the initial jerk yerk (derivative of acceleration) and j(1/2) the crossover
(halftime) jerk.

Servo Motor Editor10.7.3

Servo Motor Editor

Introduction

The 20-sim Servo Motor Editor is a tool to generate dynamic models of servo motors for
the use in 20-sim. These models describe the complete dynamic behaviour of servo
motors, including the electrical, mechanical and thermal behaviour. The following classes
of motors are supported in the editor:

1. Brush DC

2. Brushless DC (trapezoidal EMC and square wave currents)

3. AC synchronous (sinusoidal EMC and sinusoidal currents)

4. AC synchronous linear (sinusoidal EMC and sinusoidal currents)

The dynamic models are generated automatically from data files containing
commercially available motors, but you can also enter your own motor parameters. The
following motors are available on data files:

1. The complete Maxon 2005 / 2006 program.

2. The complete Tecnotion 2006 program.

3. The Faulhaber 2006 program.

In the first part of these help files, the use of the 20-sim Servo Motor Editor is explained.
The Editor uses a data table with motor parameters of commercial servo motors. You
can select any motor from the table, inspect the corresponding torque speed curve and
let the Servo Motor Editor generate a 20-sim dynamic model from the parameters.

10. Toolboxes

47720-sim 5.1 Reference Manual

The second part of these help files, explains the operating principles of the motors. A
good indication of the performance of permanent magnet motors can be given by the
torque speed plot. Various curves of the torque speed plot and how this can be used to
choose the proper motor for a given task. An important part of the torque speed plot is
the maximum continuous torque. It is the maximum torque that a motor can deliver
without overheating. This curve is based on a thermal model of the motor, which is also
explained.

How to use the Servo Motor Editor

The 20-sim Servo Motor Editor is part of the Mechatronics Toolbox of 20-sim. You can
open the editor by selecting the Servo Motor Editor command (Tools - Mechatronics
Toolbox). If you have a valid license, a servo motor model will be inserted:

Normally the editor will be opened automatically. If this does not happen, force the
editor to open by clicking the Go Down button. This Editor looks like:

10. Toolboxes

47820-sim 5.1 Reference Manual

The top of the editor shows a list of motors. You can select one of the motors from the
list by selecting it with your mouse pointer. The selected motor is shown with the blue
line. The parameters of the selected motor are shown below the list.

To see the torque speed plot of the selected motor, click the Plot tab at the bottom of the
editor. To find a motor based on specific searching conditions, click the Search tab. By
clicking the OK button, a dynamic model will be created automatically, based on the
selected motor in the list.

Using the Edit menu, new motors can be added to the list or deleted. By double clicking
the mouse pointer on a parameter value, it can be changed.

Data Files

If you open the Servo motor Editor, default data from file ServoMotor.csv is shown. You
can open other data files by using the file menu.

Currently the following data files are available:

1. ServoMotor.csv: A selection of various motors to show the capabilities of the Servo
Motor Editor.

2. Maxon 2006.cse: The complete list of Maxon motors, program 2005 / 2006.

3. Tecnotion 2006.cse: The complete list of Tecnotion motors, program 2006.

4. Faulhaber 2006.cse.: Most of the Faulhaber motors, program 2006.

10. Toolboxes

47920-sim 5.1 Reference Manual

Parameters

Unfortunately not all motor suppliers use the same parameters in the data sheets.
Therefore the Servo Motor Editor uses the most common parameters as described in this
section. All parameters are defined using a motor temperature and ambient temperature
of 25° C.

General Data

This general section contains the unique identifier of the motor (Keyname) and some
additional data, which can be filled in freely.

 Name The name of the motor

 Info Additional Info

 Keyname A unique name (no duplicates allowed in the motor list)

to identify the motor.

 Type The motor type:

1. AC Synchronous

2. Brush DC Iron

3. Brush DC moving coil

4. Brush DC Disc Rotor

5. AC Synchronous Linear

6. Brushless DC

In the Editor, you can select from a drop down list. In

the data file (see next section, the corresponding

numbers are used).

 Date Date at which the motor info was entered

 Price The price of the motor

 Delivery Time Delivery Time

 Library The name of the data file that is used

Nominal Data

Many data sheets describe the nominal operating point of a motor. The nominal
operation point is characterized by a fixed current that is supplied to a motor with an
initial temperature of 25º C that will result in a heating up of the coils to the exactly the
maximum temperature. Because a current alone is not enough to describe the state of a
motor, the operating point is always given at a certain speed. Although the other
parameters (torque and power) can be derived from the current and speed they are
usually printed in most data sheets.

 Torque [N.m]or Force[N] Torque or force at nominal operation.

 Current [A] or [Arms] Current at nominal operation.

 Speed [rpm]or [m/s] Speed at nominal operation.

 Voltage [V] or [Vrms] Voltage at nominal operation.

10. Toolboxes

48020-sim 5.1 Reference Manual

 Power [W] The output power at nominal operation.

 Life [hour] Expected Lifetime of the motor under normal operation.

As described, the definition of current and voltage depends on the selected motor:

 motor current voltage

 1. AC Synchronous rms phase current (A) rms phase to phase voltage

(V)

 2. Brush DC Iron current (A) voltage (V)

 3. Brush DC moving coil current (A) voltage (V)

 4. Brush DC Disc Rotor current (A) voltage (V)

 5. AC Synchronous

Linear

rms phase current (A) rms phase to phase voltage

(V)

 6. Brushless DC peak current (A) peak phase to phase voltage

(V)

Max/Peak Values

The maximum parameters indicate the maximum performance of the motor and are
used to show the limits in the torque speed plot as explained in chapter 3. The
parameters do not indicate an operating point on the torque speed curve. The maximum
parameters are preferably measured at a temperature of 25º C.

 Torque [N.m]or Force[N] The maximum short-time or torque or force (also known

as stall torque).

 Current [A] or [Arms] The maximum short-time current.

 Speed [rpm]or [m/s] The maximum speed.

 Voltage [V] or [Vrms] Maximum short-time voltage.

 Power [W] The maximum short time power.

The currents and voltages are defined the same as for the nominal parameters.

Electrical Data

 R [ohm] The resistance at 25° C.

 L [H] The terminal inductance.

 alpha_c [1/degC] The temperature dependency of the coil resistance.

 ktc [1/degC] The temperature dependency of the magnets.

 poles [-] or pitch[m] The number of poles (always an even number) or pole

pitch (distance N-N poles).

As described, the definition of resistance and inductance depends on the selected motor:

10. Toolboxes

48120-sim 5.1 Reference Manual

 motor resistance inductance

 1. AC Synchronous phase to phase

resistance (ohm)

phase to phase inductance (H)

 2. Brush DC Iron resistance (ohm) inductance (H)

 3. Brush DC moving coil resistance (ohm) inductance (H)

 4. Brush DC Disc Rotor resistance (ohm) inductance (H)

 5. AC Synchronous

Linear

phase to phase

resistance (ohm)

phase to phase inductance (H)

 6. Brushless DC phase to phase

resistance (ohm)

phase to phase inductance (H)

Mechanical Data

The mechanical data describes the motor inertia and losses.

 J_rotor [kg.m2] or m_motor [kg] The rotor inertia or the the moving mass of

the motor.

 d [N.m.s/rad]or [N.s/m] Mechanical damping and eddy current

losses.

 T_fric [N.m] or [N] Mechanical friction and hysteresis losses.

 T_cog [N.m] or [N] The amplitude of the cogging torque.

Thermal Data

The thermal data is used for the thermal model as explained in chapter 4. Zero values
for the thermal resistances are replace by a small value (1e-2) to prevent division by
zero.

 Temp_amb [degC] The ambient temperature.

 Temp_initial [degC] The initial temperature of the coils and

housing.

 Temp_max [degC] The maximum coil temperature.

 RT1 [degC/W] The thermal resistance between rotor and

stator.

 RT2 [degC/W] The thermal resistance between stator and

environment.

 CT1 [J/degC] Thermal capacity of the rotor.

 CT2 [J/degC] Thermal capacity of the stator.

Physical Data

This section describes the motor dimensions and maximal load.

10. Toolboxes

48220-sim 5.1 Reference Manual

 F_axial [N] The maximum axial force applied to the

motor shaft.

 F_radial [N] The maximum radial force applied to the

motor shaft.

 m [kg] The motor weight.

 D_motor [m] The motor diameter.

 L_motor [m] The motor length.

 D_shaft [m] The shaft diameter.

 L_shaft [m] The shaft length.

Derived Data

These are values that can be found in many data sheets. They are useful for selection
criteria when searching for motors.

 K_nom [N.m/A], [N.m/Arms] or [N/

Arms]

The torque constant or force constant at

25° C and nominal currents.

 K_max [N.m/A], [N.m/Arms] or [N/

Arms]

The torque constant or force constant at

25° C and at peak currents.

 S [N.m.s/rad] or [N.s/m] The steepness.

 tau_m [s] The mechanical time constant (J_rotor/S or

m_motor/S).

 P_dis [W] The maximal continuous dissipation.

 tau_T1 [s] The thermal time constant of the rotor

(RT1* CT1).

 tau_T2 [s] The thermal time constant of the stator

(RT2* CT2).

Additional Data

 20-sim model [] Not implemented yet.

How to use the Parameters

When you enter a new motor, not all parameters have to be filled in. In this section the
critical and non critical parameters are listed.

Critical

Only a few parameters are critical. I.e. they are necessary to generate a 20-sim
dynamic model.

 Keyname A unique name to identify the motor.

 Type The motor type.

10. Toolboxes

48320-sim 5.1 Reference Manual

 Maximum Torque or Force The maximum short-time or torque or

force.

 Maximum Current The maximum short-time current.

 R The resistance at 25° C.

 L The terminal inductance.

 J_rotor or m_motor The rotor inertia or the the moving mass of

the motor.

Desired

Some parameters are desired. I.e. they add more detail to the model:

 Nominal Torque or Force Torque or force at nominal operation.

 Nominal Current Current at nominal operation.

 Nominal Speed Speed at nominal operation.

 alpha_c The temperature dependency of the coil

resistance.

 ktc The temperature dependency of the

magnets.

 poles or pitch The number of poles (always an even

number) or pole pitch (distance N-N poles).

 d Mechanical damping and eddy current

losses.

 T_fric Mechanical friction and hysteresis losses.

 T_cog The amplitude of the cogging torque.

 Temp_amb The ambient temperature.

 Temp_initial The initial temperature of the coils and

housing.

 Temp_max The maximum coil temperature.

 RT1 The thermal resistance between rotor and

stator.

 RT2 The thermal resistance between stator and

environment.

 CT1 Thermal capacity of the rotor.

10. Toolboxes

48420-sim 5.1 Reference Manual

 CT2 Thermal capacity of the stator.

If you do not know the values of these parameters, fill in zero. 20-sim will automatically
change some into small numbers to prevent division by zero. Because the nominal
torque and current are used to derive the torque constant at nominal operation, they will
be replaced by the maximum current and torque if you fill in a zero value.

Torque Speed Plot

Some parameters will add more detail to the torque speed plot:

 Speed The maximum speed.

 Voltage Maximum short-time voltage.

 Power The maximum short time power.

Additional

The remaining parameters are not used in the torque speed plot or the 20-sim model.
They are useful for selection criteria when searching motors. If you do not know the
values of these parameters, fill in zero.

Dynamic Model

If you have selected a motor, clicking the OK button will close the editor and generate a
dynamic model. The model will be filled with the parameters from the selected motor
and is ready for the use in a simulation. The model contains a number of variables that
may be useful to show in a simulation plot.

General Part

 R resistance at simulated (fluctuating)

temperature

 K torque constant at simulated (fluctuating)

temperature

 u_rms_ff effective terminal (phase-phase) voltage

 u_tt_ff maximum terminal (phase-phase)

 i_tt maximum phase current

 phi shaft angle

Thermal part

 Temp_coil coil temperature

 Temp_housing housing temperature

10. Toolboxes

48520-sim 5.1 Reference Manual

Torque speed plot

 omega_range speed ranging from zero to over 5% of

maximum speed

 T_range torque ranging from zero to over 5% of

maximum torque

 Torquemax maximum torque

 Speedmax maximum speed

 T_max_power torque at maximum power

 T_max_current torque at maximum current

 T_max_outputpower line of maximum output torque

 T_max_voltage torque at maximum voltage

 T_max_efficiency line of torque at maximum efficiency

 T_100 maximum allowable continuous torque, (i.e.

a 100% duty cycle)

 T_50 maximum allowable torque for a 50% duty

cycle

 T_25 maximum allowable torque for a 25% duty

cycle

 T_10 maximum allowable torque for a 10% duty

cycle

 T_abs absolute output (load) torque

 omega_abs absolute velocity

Creating your own data files

The motor parameters are visible in the Grid tab. These parameters are stored in a
coma separated data file (extension .csv) or in an encrypted coma separated data file
(extension .cse).

By default, the file ServoMotor.csv is shown. Using the File menu you can store and

open csv files. The csv files can be edited with the Servo Motor Editor or an external
spreadsheet program like OpenOffice. In OpenOffice Calc the file looks like:

10. Toolboxes

48620-sim 5.1 Reference Manual

The top 5 rows contain the description of the motor parameters and the corresponding
units. The first and second row are used for rotation motors and the third and fourth row
are used for linear (translation) motors. The fifth row contains the parameter names.

The other rows contain the motor parameters. The meaning of these parameters is
described in the previous sections. Please use the following guidelines when editing data
files:

1. Never change the first five lines

2. Do no use duplicate names in the first column (keyname)

3. Do use commas

4. Do no use strange formatting (in Excel use the General format)

5. Do no enter extra columns

6. Do net enter other information in additional rows or columns. The Servo Motor Editor
will try to read all cells and halt if the content is not according the specifications.

7. Do no add comment.

8. The last column entry (20-sim) should contain one white space character.

9. Store as comma separated file.

Data Files

Maxon 2005 / 2006

File

20-sim 3.6\Tools\Servo Motor Dynamics\Maxon 2006.cse

Date

November 2005

10. Toolboxes

48720-sim 5.1 Reference Manual

More information

www.maxonmotors.com

Description

The data file Maxon 2006.cse contains the complete set of Maxon motors, program
2005 / 2006. Most of the data has been extracted from the Maxon data sheets. The
tables below shows the 20-sim names and the corresponding data sheet names. Some
parameters were not available in the data sheets and have been given by the Maxon
motor company. These parameters are indicated as Given by Maxon. Some parameters
were calculated. These are indicated as Calculated.

DC motors

 Servo Motor Editor Maxon Data Sheets

 General Data

 Name
Keyname
Info
Type
Date
Price
Delivery Time
Library

Motor Series
Maxon Order Number
Additional Information
DC
21 October 2005
-
stock / standard / special
Maxon 2006.cse

 Nominal Data

 Torque
Current
Speed
Voltage
Power

Max. continuous torque
Max. continuous current
No load speed divided by 2
Calculated
Calculated

 Max/Peak Data

 Torque
Current
Power
Voltage
Speed

Stall torque
Starting current
Assigned Power Rating
Calculated*
Max. permissible speed

 Thermal Data

 Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

Set to 25
Set to 25
Maximum rotor temperature
Thermal resistance rotor-housing
Thermal resistance housing-ambient
Calculated
Given by Maxon

 Physical Data

 F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

Maximum Axial load
Maximum radial load
Weight of motor
Diameter of motor
Length of motor
Diameter shaft
Length Shaft

10. Toolboxes

48820-sim 5.1 Reference Manual

 Electrical Data

 R
L
alpha_c
Ktc
Poles

Terminal resistance
Terminal inductance
Given by Maxon
Given by Maxon
Number of poles

 Mechanical Data

 J_rotor
d
T_fric
T_cog

Rotor inertia
Given by Maxon
Given by Maxon
0

 Derived Data

 K_nom
K_max
S_nom
P_dis

Calculated
Calculated
Calculated
Calculated

* In the data sheets Maxon only gives a nominal voltage. According to Maxon higher

operating voltages are permissible provided that other limits are not exceeded.

Therefore the maximum voltage is chosen equal to the voltage that is needed to run a

motor with zero load at maximum speed.

EC motors with block commutation

Maxon EC motors can be driven by block commutation and sine commutation. The
Maxon data sheets give the parameters for block commutation. To distinguish between
block commutation and sine commutation the character b or s is added to the keyname.

 Servo Motor Editor Maxon Data Sheets

 General Data

 Name
Keyname
Info
Type
Date
Price
Delivery Time
Library

Motor Series
Maxon Order Number + b
Additional Information
Brushless DC
21 October 2005
-
stock / standard / special
Maxon 2006.csv

 Nominal Data

 Torque
Current
Speed
Voltage
Power

Calculated
Max. continuous current
Nominal speed
Calculated
Calculated

 Max/Peak Data

 Torque
Current
Power
Voltage
Speed

Stall torque
Calculated
Assigned Power Rating
Calculated*
Max. permissible speed

10. Toolboxes

48920-sim 5.1 Reference Manual

 Thermal Data

 Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

Set to 25
Set to 25
Maximum rotor temperature
Thermal resistance rotor-housing
Thermal resistance housing-ambient
Calculated
Calculated

 Physical Data

 F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

Maximum Axial load
Maximum radial load
Weight of motor
Diameter of motor
Length of motor
Diameter shaft
Length Shaft

 Electrical Data

 R
L
alpha_c
Ktc
Poles

Terminal resistance phase to phase
Terminal inductance phase to phase
Given by Maxon
Given by Maxon
Number of poles

 Mechanical Data

 J_rotor
d
T_fric
T_cog

Rotor inertia
Given by Maxon
Given by Maxon
0

 Derived Data

 K_nom
K_max
S_nom
P_dis

Calculated
Calculated
Calculated
Calculated

* In the data sheets Maxon only gives a nominal voltage. According to Maxon higher
operating voltages are permissible provided that other limits are not exceeded.
Therefore the maximum voltage is chosen equal to the voltage that is needed to run a
motor with zero load at maximum speed.

EC motors with sine commutation

Maxon EC motors can be driven by block commutation and sine commutation. The
Maxon data sheets give the parameters for block commutation. The parameters for sine
commutation can be calculated from the block commutation parameters. To distinguish
between block commutation and sine commutation the character b or s is added to the
keyname.

 Servo Motor Editor Maxon Data Sheets

 General Data

 Name
Keyname
Info
Type

Motor Series
Maxon Order Number + s
Additional Information
AC Synchronous

10. Toolboxes

49020-sim 5.1 Reference Manual

Date
Price
Delivery Time
Library

21 October 2005
-
stock / standard / special
Maxon 2006.csv

 Nominal Data

 Torque
Current
Speed
Voltage
Power

Calculated
Calculated
Nominal speed
Calculated
Calculated

 Max/Peak Data

 Torque
Current
Power
Voltage
Speed

Calculated
Calculated
Assigned Power Rating
Calculated*
Calculated

 Thermal Data

 Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

Set to 25
Set to 25
Maximum rotor temperature
Thermal resistance rotor-housing
Thermal resistance housing-ambient
Calculated
Calculated

 Physical Data

 F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

Maximum Axial load
Maximum radial load
Weight of motor
Diameter of motor
Length of motor
Diameter shaft
Length Shaft

 Electrical Data

 R
L
alpha_c
Ktc
Poles

Terminal resistance phase to phase
Terminal inductance phase to phase
Given by Maxon
Given by Maxon
Number of poles

 Mechanical Data

 J_rotor
d
T_fric
T_cog

Rotor inertia
Given by Maxon
Given by Maxon
0

 Derived Data

 K_nom
K_max
S_nom
P_dis

Calculated
Calculated
Calculated
Calculated

10. Toolboxes

49120-sim 5.1 Reference Manual

* In the data sheets Maxon only gives a nominal voltage. According to Maxon higher
operating voltages are permissible provided that other limits are not exceeded.
Therefore the maximum voltage is chosen equal to the voltage that is needed to run a
motor with zero load at maximum speed.

Tecnotion 2006

File

20-sim 3.6\Tools\Servo Motor Dynamics\Tecnotion 2006.cse

Date

November 2006

More information

www.tecnotion.com

Description

The data file Tecnotion 2006.cse contains the complete set of Tecnotion motors, program
2006. Most of the data has been extracted from the Tecnotion data sheets. The tables
below shows the 20-sim names and the corresponding data sheet names. Some
parameters were not available in the data sheets and have been given by the Tecnotion
motor company. These parameters are indicated as Given by Tecnotion. Some
parameters were calculated. These are indicated as Calculated.

Important: The nominal data and the default value of the thermal resistance RT2 are
calculated for air cooling. The value for RT2 can be changed using a slider. If water
cooling is used, change the value of RT2 to its minimum value.

 Servo Motor Editor Tecnotion Data Sheets

 General Data

 Name
Keyname
Info
Type
Date
Price
Delivery Time
Library

Motor Series
Order Number
Additional Information
AC Synchronous Linear
21 October 2005
-
-
Tecnotion 2006.cse

 Nominal Data

 Force
Current
Speed
Voltage
Power

Continuous Force (air cooled*)
Continuous Current (air cooled*)
0 m/s
Calculated
-

 Max/Peak Data

 Force
Current
Power
Voltage
Speed

Ultimate Force / Peak Force
Ultimate Current / Peak Current
Calculated
Max. voltage ph-ph
Maximum speed

 Thermal Data

10. Toolboxes

49220-sim 5.1 Reference Manual

 Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

Set to 25
Set to 25
Maximum Temperature
Thermal Resistance coil - housing
Calculated*
Given by Tecnotion
Given by Tecnotion

 Physical Data

 F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

-

-

-

-

-

-

-

 Electrical Data

 R
L
alpha_c
Ktc
Pitch

2 * Resistance per phase
2 * Induction per phase
0.004
0
Magnet Pitch NN

 Mechanical Data

 m_motor
d
F_fric
F_cog

Weight of Coilunit
Given by Tecnotion
-
0

 Derived Data

 K_nom
K_max
S_nom
P_dis

Calculated
Calculated
Calculated
Calculated

 * Note: The nominal data and the default value of the thermal resistance RT2 are
calculated for air cooling. The value for RT2 can be changed using a slider. If water
cooling is used, change the value of RT2 to its minimum value.

Faulhaber 2006

File

20-sim 3.6\Tools\Servo Motor Dynamics\Faulhaber 2006.cse

Date

February 2006

More information

www.faulhaber-group.com or www.minimotor.ch

10. Toolboxes

49320-sim 5.1 Reference Manual

Description

The data file Faulhaber 2006.cse contains the most of the Faulhaber servo motors,
program 2006. Most of the data has been extracted from the Faulhaber data sheets. The
tables below shows the 20-sim names and the corresponding data sheet names. Some
parameters were not available in the data sheets and have been given by Faulhaber.
These parameters are indicated as Given by Faulhaber. Some parameters were
calculated. These are indicated as Calculated.

DC motors

 Servo Motor Editor Faulhaber Data Sheets

 General Data

 Name
Keyname
Info
Type
Date
Price
Delivery Time
Library

Motor Name
Faulhaber Order Number
Additional Information
DC
23 February 2006
-
-
Faulhaber 2006.cse

 Nominal Data

 Torque
Current
Speed
Voltage
Power

Calculated
Current up to
No load speed divided by 2
Calculated
Calculated

 Max/Peak Data

 Torque
Current
Power
Voltage
Speed

Stall torque
Calculated
Output Power
Nominal Voltage
No-load speed

 Thermal Data

 Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

Set to 25
Set to 25
Maximum coil temperature
Thermal resistance rotor – housing Rth1
Thermal resistance housing-ambient Rth1
Calculated
Calculated

 Physical Data

 F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

Maximum Axial load
Maximum radial load
Weight of motor
Diameter of motor
Length of motor
Diameter shaft
Length Shaft

 Electrical Data

10. Toolboxes

49420-sim 5.1 Reference Manual

 R
L
alpha_c
Ktc
Poles

Terminal resistance
Rotor Inductance
Temperature coefficient of resistance of copper
Given by Faulhaber
Given by Faulhaber

 Mechanical Data

 J_rotor
d
T_fric
T_cog

Rotor inertia
Friction torque, dynamic
Friction torque, static
0

 Derived Data

 K_nom
K_max
S_nom
P_dis

Calculated
Calculated
Calculated
Calculated

DC Brushless motors with block commutation

 Servo Motor Editor Faulhaber Data Sheets

 General Data

 Name
Keyname
Info
Type
Date
Price
Delivery Time
Library

Motor Name
Faulhaber Order Number
Additional Information
DC Brushless
23 February 2006
-
-
Faulhaber 2006.cse

 Nominal Data

 Torque
Current
Speed
Voltage
Power

Torque up to
Current up to
At speed
Calculated
Calculated

 Max/Peak Data

 Torque
Current
Power
Voltage
Speed

Stall torque
Calculated
Output Power
Nominal Voltage
No-load speed

 Thermal Data

 Temp_amb
Temp_initial
Temp_max
RT1
RT2
CT1
CT2

Set to 25
Set to 25
Maximum coil temperature
Thermal resistance rotor – housing Rth1
Thermal resistance housing-ambient Rth1
Calculated
Calculated

10. Toolboxes

49520-sim 5.1 Reference Manual

 Physical Data

 F_axial
F_Radial
m
D_motor
L_motor
D_shaft
L_shaft

Maximum Axial load
Maximum radial load
Weight of motor
Diameter of motor
Length of motor
Diameter shaft
Length Shaft

 Electrical Data

 R
L
alpha_c
Ktc
Poles

Terminal resistance
Rotor Inductance
Temperature coefficient of resistance of copper
Given by Faulhaber
Given by Faulhaber

 Mechanical Data

 J_rotor
d
T_fric
T_cog

Rotor inertia
Friction torque, dynamic
Friction torque, static
0

 Derived Data

 K_nom
K_max
S_nom
P_dis

Calculated
Calculated
Calculated
Calculated

10. Toolboxes

49620-sim 5.1 Reference Manual

Theory

Basic Principles

Permanent Magnet Motors

When permanent magnets are used in a motor, a magnetic field will be present with a
magnetic flux density B. Suppose an electric coil is placed in this magnetic field. When
an electric current i is forced to flow through this coil, a force acting on the coil will
occur.

The resulting torque can be found as:

where Ktc(q) denotes the transfer of current to torque. It is a function of the angle,
shape of the coil, magnetic field density, current distribution etc. When the current is
kept equal to zero and we start to rotate the coil, a voltage will be induced. This voltage
is called the electromotive force (EMF) and can be found as:

where Kec(q) denotes the transfer of speed to voltage. It is also function of the angle,
shape of the coil, magnetic field density, current distribution etc. For an ideal coil the
input power should be equal to the output power

and thus

10. Toolboxes

49720-sim 5.1 Reference Manual

In most literature the Kc(q) is calculated out of the magnetic field and coil distribution.
Here it is simply assumed to be given and is called the torque function.

In normal operation a coil will have a resistance and inductance. A basic coil model is
thus equal to:

By a proper design of the motor, i.e. geometry of the coil windings, magnets etc., the
torque function Kc(q) can be given a particular shape. Then by proper manipulation of
the current a positive torque can be created during the whole rotation of the coil. All
permanent magnet motors are based on this principle.

Brush DC Motors

In DC motors, the torque function Kc(q) is sinusoidal:

In DC motors a constant current is supplied. Through a process called commutation, the
coil is connected the other way around (i.e the current changes sign) when the coil
function crosses zero. The resulting torque will then always be positive but will vary
between zero and maximum:

By combining coils, the resulting torque variation or ripple will decrease. The graph
below shows the resulting torque when three coils are used.

10. Toolboxes

49820-sim 5.1 Reference Manual

The more coils are used the more the torque ripple decreases.

number of coils torque ripple (top-top)

3

5

7

9

11

14%

5%

2.5%

1.5%

1%

If we neglect the torque ripple, we get the common DC motor equations:

Commutation

In practical motors, the rotor is equipped with a commutator. A commutator consists of
insulated collector bars that are connected with the coils. Each coil is connected with one
end to a collector and the next end to the neighboring collector. A pair of brushes is used
to connect an outside current source to the collectors.

10. Toolboxes

49920-sim 5.1 Reference Manual

Every rotation the current changes sign twice, resulting in a continuous positive torque
addition of every coil.

Limits

Commutation is the largest limiting factor in DC motor performance. Sparks between the
brushes and the collectors are the main causes for brush wear. There are several
causes for sparking, which limit the maximum speed, current, voltage and power of a
brush DC motor.

When the brush leaves a collector, the current has to be reversed. The time that is
needed to reverse the current depends directly on the current amplitude and thus on the
generated torque. Because the time that is available depends on the motor speed, the
result is a limit on the power that can be generated.

Another limitation of the motor speed is due to imperfect dimensions of the collectors.
Differences in height of a few microns may cause the brushes to jump at high speeds.

Just a small part of the contact area of a brush and collector is actually used for the
current transfer. As a result highly localized, short time "hot spots" develop. When the
currents get greater than permitted, local temperatures occur that lead to material
evaporation.

Above a voltage of 15 to 18V experience shows that the air will experience ionization
phenomena, which leads to arcing. This arc extends from one collector bar to another.
When enough voltage is applied, the arc will extend several collector bars and reach the
other brush, leading to serious damage. The maximum motor voltage is therefore the
result of multiplying the number of collector bars between the brushes and the maximum
collector bar voltage.

Permanent magnets can lose their strength when operating above temperatures of 60
ºC and suppressed by a high external magnetic field. Such a field can occur when large
current changes occur. Therefore the maximum current of a motor should be limited.

10. Toolboxes

50020-sim 5.1 Reference Manual

Brushless DC Motors

Given motor with three coils, where the coils are mounted in the stator with a spatial
displacement of 120°. The coils are connected in a star-formation as shown in the figure
below.

In Brushless DC motors, the coils and magnets are designed so that a trapezoidal torque
function Kc(q) is found as shown below:

To get a constant torque each coil current is a block wave as shown in the figure below.
Although the current is thus alternating, the term DC is used to distinguish this type of
motor from motors that used a sinusoidal current. The block wave current is provided
through "electronic commutation". The current is generated by a three phase amplifier
that gets the exact switching points from a motor controller.

10. Toolboxes

50120-sim 5.1 Reference Manual

As can easily be seen from the graphs, the resulting torque is constant and twice the
current times the amplitude of the coil function:

To get an equivalent of the coil model we can write this equation as:

We have to realize that here i is not a constant current anymore but the maximum coil
current! Because the coil current is the current of one of the three phases, in literature i
is mostly written as the maximum phase current. It is the maximum current that can
be measured at each of the three terminals of the motor.

In a derivation that goes beyond the scope of this introduction (see Compter, 2004), it
can be shown that the electromotive force can be found as:

Here the electromotive force is defined as the maximum induced voltage between two
phases. The resulting motor model is shown below:

10. Toolboxes

50220-sim 5.1 Reference Manual

The voltage of the motor model is commonly known as the maximum phase to phase
voltage. It is the maximum voltage that can be measured between any pair of two
terminals. The phase to phase resistance and phase to phase inductance are
defined equivalent as the resistance and inductance that can be measured between any
pair of two terminals.

Limits

Brushless DC motors have no mechanical commutation, and therefore do not suffer
from the limits caused by mechanical commutation. Consequently Brushless DC motors
can run at much higher speeds and are not limited by a maximum voltage. The speed of
Brushless DC motors is only limited by the bearings.

Just like brush DC motors the magnets impose an upper limit for the current and torque
in a Brushless DC motor.

AC synchronous motor

AC synchronous motors use the same principle as Brushless DC-motors. The coils are
also mounted in the stator with a spatial displacement of 120°.

The coils and magnets are designed so that a sinusoidal torque function Kc(q) is found
as shown below:

10. Toolboxes

50320-sim 5.1 Reference Manual

To get a constant torque each coil current is a sinusoidal wave as shown in the figure
below.

As can be seen from the graph, the resulting torque is constant and one and a half times
the current times the amplitude of the coil function:

To get an equivalent of the coil model we can write this equation as:

 We have to realize that here i is not a constant current anymore but the root mean
square coil current! Because the coil current is the current of one phase in literature i is
mostly denoted as the rms phase current. It is the rms current that can be measured
at each of the three terminals of the motor.

10. Toolboxes

50420-sim 5.1 Reference Manual

In a derivation that goes beyond the scope of this introduction (see Compter, 2004), it
can be shown that the electromotive force can be found as:

Here the electromotive force is defined as the induced rms voltage between two phases.
The resulting motor model is shown below:

The voltage of the motor model is mostly denoted as the rms phase to phase
voltage. It is the rms voltage that can be measured between any pair of two terminals.
The phase to phase resistance and phase to phase inductance are defined
equivalent as the resistance and inductance that could be measured between any pair of
two terminals.

Limits

AC synchronous motors have no mechanical commutation, and therefore do not suffer
from the limits caused by mechanical commutation. Consequently AC synchronous
motors can run at much higher speeds and are not limited by a maximum voltage. The
speed of AC synchronous motors is only limited by the bearings.

Just like brush DC motors the magnets impose an upper limit for the current and torque
in a AC synchronous motor.

Linear Motors

The working principle of linear motors is exactly the same as for rotary motors. Magnets
are place on a flat surface, as shown in the figure below. A carriage holding the coils can
run over the magnets.

When the carriage runs over the magnets an electromotive voltage will be induced:

10. Toolboxes

50520-sim 5.1 Reference Manual

with Kc(x) the force function of the coil. It is a function of the carriage position, shape
of the coil, magnetic field density, current distribution etc. The force function in a linear
motor is equivalent to the torque function of a rotary motor. When a current runs
through the coil a force results:

The principle for linear motor is the same as the principle of rotary motors. By a proper
design of the motor, i.e. geometry of the coil windings, magnets etc., the force function
Kc(x) can be given a particular shape. By proper manipulation of the current a positive
force can be created during the movement of the carriage. Because mechanical
commutation is not very useful for linear movements, linear motors use electronic
commutation. Like their rotary counterparts, linear motors can be driven by block shape
currents (Brushless DC Linear) and sinusoidal currents (AC Synchronous Linear).

Limits

The limits for linear motors are equal to the Brushless DC and AC synchronous motors
when torque is replaced by force and angular speed by linear speed.

Star and Delta Networks

Brushless DC motors and AC synchronous motors use three phase currents to connect
to three groups of coils. The connection can be made use a star network or a delta
network. Compared to star networks, in a delta network less voltage and more current
is needed to produce the same amount of torque. For amplifiers the maximum current is
directly related to the costs. That is why delta networks are only used in special cases
where higher speeds than normal are required.

In 20-sim the electrical resistance and inductance are measured between the terminals
(e.g. between 1 and 2 or 2 and 3 or 3 an 1). This is known as the terminal resistance
and inductance or as the phase to phase resistance and inductance. There are
two reasons for using terminal values. Most motor suppliers give the terminal values in
their data sheet and by using terminal values the same dynamic model can be used for
star networks and delta networks.

10. Toolboxes

50620-sim 5.1 Reference Manual

If the motor supplier gives coil values instead of terminal values, you have to calculate
them by hand. The relation between the terminal values and the coil values is:

Torque Speed Plot

General Model

The DC motor model can serve as a prototype model for all permanent magnet motors.

Although the models for DC Brushless and AC synchronous motors are slightly different,
the DC motor model is still very useful to explain their operation. In this chapter the DC
motor model will be used to derive the torque speed plot of a motor and show the use of
the torque speed plot for motor selection.

The working principle for all permanent magnet motors is the same: get a constant
torque by manipulation of the coil function and the current. The relation between the
torque and current is:

The constant KT is generally known as the torque constant. The relation between the
induced current and the rotational speed is:

The constant Ke is generally known as the voltage constant. For DC motors the torque
constant and voltage constant have the same value. Therefore the subscripts T and e
are usually omitted. The total voltage can be described as:

If we assume the current is changing only very slowly, the current derivative can be
neglected:

10. Toolboxes

50720-sim 5.1 Reference Manual

With the torque equation:

this leads to

The torque at zero speed (stall torque) is found as

which enables us to write the torque as:

where S is commonly know as the steepness. The steepness has many definitions:

The speed where the current is zero (no load speed) is equal to

The relation between stall torque and no load speed is obvious:

which leads to the general torque equation:

This equation can be displayed graphically and is commonly known as the torque speed
plot. The graph shows the generated torque as a function of the speed. For constant
voltages a straight line from the stall torque to the no load speed is found. The slope of
the line is equal to the steepness S.

10. Toolboxes

50820-sim 5.1 Reference Manual

The torque speed plot is a useful representation of a motor because we can draw the
desired load torque in this plot and to see if the motor is able to produce this torque. In
the figure below the load curve is shown in red. It is a constant torque applied to a load,
which makes it accelerate until a certain velocity is reached and the torque gets zero.

The red dot indicates the point of maximum load power. This point is important because
it indicates the maximum power that the motor has to deliver.

Limits

To find out if a motor is sufficient, we have to plot the motor limits in the torque speed
plot. In the previous chapter we have described the following limits:

Limit Brush DC Brushless DC AC Synchronous

torque / current V V V

speed V V V

power V X X

10. Toolboxes

50920-sim 5.1 Reference Manual

voltage V X X

Maximum Voltage

For higher voltages, a higher stall torque and no load speed is found but the steepness
does not change.

Maximum Torque / Maximum Current

In many data sheets a maximum torque is given. This is directly connected with a
maximum current limit through the equation:

So both the maximum current and the maximum torque appear as horizontal lines in the
torque speed plot.

Maximum Velocity

The maximum velocity can be directly indicated in the torque speed plot as a vertical
line.

10. Toolboxes

51020-sim 5.1 Reference Manual

Maximum Power

The line of maximum power can be indicated as a parabola in the torque speed plot.

10. Toolboxes

51120-sim 5.1 Reference Manual

Safe Operating Area

If the limits are plotted in the torque speed plot, an Area of Safe Operation is found. For
a proper motor, the torque speed curve of the load should be inside the Safe
Operating Area (SOA). The figures below show the safe operating areas for the
various motor types. Brush DC-motors (left figure) have a safe operating area that is
more limited than Brushless DC motors and AC synchronous motor (right figure).

In practice motor suppliers of Brushless DC motors and AC synchronous motors may
impose limits on the maximum voltage and power. This is mostly done to prevent
heating up the motor too quickly during continuous operation, or material limits. This
makes the Safe Operating Area of these motors look like that of a DC motor. Compared
to DC motors, Brushless DC motors and AC synchronous motors will always allow higher
torques and speeds because of the absence of mechanical commutation.

Losses

Every motor will experience losses, which results in a temperature rise. The maximum
allowed temperature is limited by the magnets, the oil in the bearings and the
mechanical behaviour of the brushes. Analysis of the cause of losses is therefore
important for the correct choice of a motor.

Electric Dissipation

All motor coils have resistance and will therefore generate heat. The heat flow generated
is equal to:

which can also be written as:

with irms the root mean square current:

10. Toolboxes

51220-sim 5.1 Reference Manual

For constant DC currents the root mean square value is equal to the current itself. For
sinusoidal currents, the root mean square value is equal to the amplitude of the current
times the square root of 2.

Hysteresis losses

In all motors except from hollow rotor motors, the magnets move with respect to the
iron core of the motor. This results in a reversing magnetic field in the iron which leads
to hysteresis.

Each rotation produces an energy loss proportional to the area of the hysteresis curve
(B/H). The power loss due to hysteresis is proportional to the motor speed and can
therefore be represented as a friction torque. Due to this friction torque the motor can
produce less output torque. This friction torque can therefore be represented in the
torque speed plot as a drop down of all curves.

Eddy Current losses

A reversing magnetic field in iron also leads to an induce voltage. The resistance of the
iron determines the resulting currents in the iron. These currents are named eddy
currents.

10. Toolboxes

51320-sim 5.1 Reference Manual

Eddy currents heat up the iron because of its resistance. If a massive iron return is used
large eddy currents will be induced with high power losses. Therefore in most motors
laminated is applied, which reduce eddy currents by decreasing the path length and thus
lead to smaller small power losses. The power loss due to eddy currents is proportional
to the square of the motor speed and can therefore be modeled as mechanical damping.
Damping will decrease the performance of the motor. It can be represented in the
torque speed plot as a falling down of curves that increases with the speed.

Cogging

In a permanent magnet motors cogging torque manifests itself by the tendency of the
rotor to align in a number of stable positions when unexcited. The cogging torque can be
described as:

where q is the motor angle and p the number of poles. Although cogging does not
consume power and is not visible in the torque speed plot, under dynamic conditions it
may cause undesirable speed pulsation and also may induce vibrations and acoustic
noise.

Mechanical Losses

Mechanical losses in motors are caused by bearings, brushes and air friction. Only when
an air fan is mounted air friction becomes significant. The effects of brushes and
bearings can be represented by coulomb friction and damping.

10. Toolboxes

51420-sim 5.1 Reference Manual

Temperature

As a result of the heat flow, the motor will warm up leading to two major effects. First of
all the coil resistance will increase. Because all coils are made of copper, the
temperature dependency of the coil resistance can be written as:

where R25 is the coil resistance at room temperature (25 degrees centigrade) and Tcoil
the actual coil temperature in degrees centigrade. As a result of the increase of motor
temperature, the performance of the magnets will decrease. The result is a decrease of
the torque constant :

where K25 is the torque constant at room temperature (25 degrees centigrade),
Tmagnet the actual magnet temperature in degrees centigrade and ktc the temperature
dependency of the used magnet.

Magnets ktc

Ferrites -0.002

Nd2Fe14B -0.0013

SmCo -0.0005

AlNiCo -0.0002

Because the steepness is directly dependent of the torque constant and motor resistance

an increase of temperature will lead to a decrease of the steepness. The results of a
temperature increase can therefore be shown in the torque speed plot indirectly through
the decrease of the maximum torque and steepness.

10. Toolboxes

51520-sim 5.1 Reference Manual

Thermal Duty Cycle

Motor losses result in an increase of the temperature. During short term operation the
temperature increase will be limited. During long-term operation, the generated heat
and the amount of heat that can be removed via the air and motor mounting determine
the temperature increase.

In most motors, the largest portion of the generated heat is cause by electric dissipation.
The generated heat is therefore directly proportional to the current and thus the torque.
Imagine a motor in long-term operation generating a constant torque. A small torque will
lead to only a moderate increase of the motor temperature, but there will be a certain
torque where the generated heat leads to an increase of the maximum motor
temperature. This is called the maximum continuous torque or the 100% Thermal
Duty Cycle (TDC). The line of the maximum continuous torque can be shown in the
torque speed plot and is often denoted as T100. For lower speeds the T100 curve will be
straight because the heat generation mainly depends on depends on electric dissipation.
For higher speeds the T100 curve will decrease because eddy current losses start to
become significant.

If the motor is in continuous operation, but a constant torque is just delivered 50% of
the time, a higher torque is permissible. This torque is denoted as T50 and sometimes
called the 50% thermal duty cycle. In a similar way T25 and T10 are defined.

10. Toolboxes

51620-sim 5.1 Reference Manual

Nominal Operating Point

Many motor manufacturers give in their data sheets a nominal or continuous current at a
certain speed. This indicates an operating point on the T100 curve. The nominal or
continuous current is the current that continuously be continuously be supplied to the
motor at the given speed, which will result in a heating up of the coils to the maximum
temperature.

The nominal operating point is always based on a certain ambient temperature. In the
20-sim Servo Motor Editor an ambient temperature of 25 ºC is used.

The choice of the speed for the nominal operation point is arbitrary. Some motor
suppliers use the speed that results in a maximum power output at the motor shaft.
Some motor suppliers use a speed that is half of the maximum allowed speed.

Maximum Power and Maximum Efficiency

The purpose of a motor is to deliver power to a load. Given a certain voltage u, the
delivered power is equal to the torque times the speed:

The maximum delivered power Pout,max for a given voltage can be found by
differentiating this function and setting it to zero. The result will be a specific torque and
speed. If this process is repeated for other voltages, a line of points where maximum
power is delivered will result.

The efficiency h of a motor is defined as the net output power divided by the input
power. For a given voltage, the maximum efficiency can be found just like the maximum
power and will lead to a certain torque and speed. By repeating this procedure for other
voltages, a line of points where maximum efficiency is obtained will result.

10. Toolboxes

51720-sim 5.1 Reference Manual

The resulting lines of maximum power and maximum efficiency can be shown in the
torque speed plot. Choosing a good motor is always a compromise between efficiency
and output power. A good choice is to choose a motor that has the major part of the
load curve inside the lines of maximum power and maximum efficiency. This area is
called the Desired Operating Area.

Choosing a Motor

If we combine the results of the previous sections, a torque speed plot results as shown
below. The arrows indicate the load curve with the circle as point of maximum load
power. The Safe Operating Area shows the limits of operation due to motor specific
parameters such as the maximum torque and speed.

The lines of maximum output power and maximum efficiency are the edges of the
Desired Operating Area.The procedure for choosing a proper motor is:

1.Determine the load curve and the point of maximum load power.

2.Determine the duty cycle d (the percentage of the time that torque is required) and
estimate the corresponding Td line with help of the shown T100, T50 , T25 and T10
lines.

3.Select a motor such that the following demands are satisfied:

10. Toolboxes

51820-sim 5.1 Reference Manual

The load curve is completely beneath the Td line (no overheating).

The complete load curve is in the Save Operating Area.

The point of maximum load power is in the Desired Operating Area.

The point of maximum load power is as close to maximum voltage line as possible
(we want to choose the smallest motor that can do the job).

The load curve is as much in the Desired Operating Area as possible.

Thermal Behaviour

DC Motors

Every motor generates heat, even when at zero speed, and this will lead to an increase
of the motor temperature. Especially when running in continuous operation, there is a
good change that a motor, which is perfectly capable of generating the needed output
power, will heat up beyond its thermal limit and break down.

As explained in the previous section the thermal limit is indicated in the torque speed
curve by the maximum continuous torque line. To generate such a line, a thermal model
is used. This thermal model is also part of the dynamic model that is used in 20-sim.
This section describes the thermal model of permanent magnets motors.

In standard brush DC motors the coils are part of the rotor. To create a thermal model,
various components will be identified first.

Heat Generation

Heat is generated in the motor at every place where energy is lost: coils, bearings, iron
etc. Because the main source of energy loss is in the coils due to the coil resistance, we
start at the coils. The coils act as a heat source and generate a heat flow equal to:

Thermal Capacity

The rotor package, consisting of the coils and possibly iron and other material, will heat
up due to the generated heat. The temperature increase depends on the generated heat
dQ, the heat capacity of the rotor Ccoil and the transfer of heat to the stationary housing
of the motor dQcoil-housing:

Thermal Resistance

The heat flow from the coils to the housing dQcoil-housing depends on the temperature
difference between the rotor and the housing and the thermal resistance Rcoil-housing :

10. Toolboxes

51920-sim 5.1 Reference Manual

Thermal Capacity

Like the rotor, the housing will also heat up. The temperature increase depends on the
heat coming from the rotor dQrotor-stator, the heat capacity of the housing Chousing
and the transfer of heat to the environment dQhousing-amb:

Thermal Resistance

The heat flow from the stator to the environment stator dQhousing-amb depends on the
temperature difference between the housing and the environment and the thermal
resistance Rhousing-amb:

The thermal resistance Rhousing-amb depends on the motor mounting and external
cooling. In most data sheets, a value for the thermal resistance can be found based on
standard motor mounting.

Environment

The environment is supposed to have a fixed temperature Tamb.

Other Motors

The same components as found for the DC brush motor can be found for other motor
types. We only have to realize that for Brushless DC motors and AC Synchronous
motors the coils are mounted on the housing. This means the thermal resistance Rcoil-
housing is relatively small and excess heat can be transferred relatively easy. Therefore
these motors are very robust for overheating.

In AC synchronous linear motors, the coils are mounted are part of a platform, on which
the load can be attached. To get the same thermal model we consider the platform to be
the housing. Depending on the type of motor the housing can have a medium thermal
capacity (iron core motors) or a very small thermal capacity (ironless motors). Because
the all excess heat has to be removed through the air, linear motors will heat up easily.
That is why sometimes forced cooling (water) is applied.

10. Toolboxes

52020-sim 5.1 Reference Manual

Thermal Model

If we combine all components we get the complete thermal model. It can be represented
as shown in the figure below.

The values for thermal capacities and resistances can be found in most data sheets.
These values are, however based on general conditions. The value of the thermal
resistance Rhousing-amb can vary considerably, based on the specific mounting of the
motor and use of passive or active cooling. Most motor suppliers will indicate the how
the thermal parameters were derived and how the motor should be mounted to meet the
general conditions.

10.8 Real-Time Toolbox

Introduction10.8.1

Real Time Toolbox

The Real Time toolbox of 20-sim allows you to create C-code out of any 20-sim model
for the use in real-time applications:

1. Create ANSI-C code for use in a real-time environment.

2. Create Matlab / Simulink S-functions for the use in the Matlab Real-Time Workshop.

The generation of Matlab / Simulink code is can be performed using the Export
command of the Editor File menu. You can also use the C-code generation command of
the Simulator Tools menu.

The generation of C-code can be done with the C-code generation command of the
Simulator Tools menu.

10. Toolboxes

52120-sim 5.1 Reference Manual

C-Code Generation10.8.2

C-Code Generation

20-sim has a C-Code Generator which automatically converts a complete 20-sim model
or submodel into C-Code. The application can be used to generate Matlab™/Simulink™
S-Functions, to generate Stand-Alone executables or to generate input/output functions
for use in other C and C++ programs. The ANSI C-Code Generator can be opened from
the Simulator (Tools menu, C-Code Generation command).

Depending on the target selected, 20-sim will generate specific C-code.

You can add more targets by adding paths in the General Properties.

By default, the following targets are supported:

1. 20-sim Dynamic DLL: Generate C-code of a 20-sim submodel and compile the
code into a DLL-call for use inside 20-sim.

2. 20-sim submodel for Arduino/AVR: Generate C-code for the use on a Arduino/
AVR. Note: not all functions (e.g. matrix) are supported!

3. C-Code for 20-sim submodel: Generate C-code of a 20-sim submodel.

4. C++ class for 20-sim submodel: Generate object oriented C-code of a 20-sim
submodel.

5. Simulink S-function: Generate C-code of a 20-sim submodel in the Simulink
format and compile it into an S-function. Note: this option requires the Matlab mex-
compiler.

6. Stand-alone C-code: Generate C-code of a 20-sim main model including
integration method.

10. Toolboxes

52220-sim 5.1 Reference Manual

7. FMU 1.0 export for 20-sim submodel: Export a 20-sim submodel using the FMI
1.0 standard.

8. FMU 2.0 export for 20-sim submodel: Export a 20-sim submodel using the FMI
2.0 standard.

Generating ANSI C-Code

Overview

The modeling and simulation package 20-sim is capable of generating ANSI C-Code for
several targets. Possible targets are Stand-Alone C, a C-Function, or a Simulink S-
Function. Since 20-sim generates well-documented ANSI C-Code, it is easy for a user to
make modifications or extensions to the generated code by hand. However it is also
possible to fully define your own code target using C-Code templates, and to make
modifications in these templates, so the resulting source code is tailor made for your
application.

General Structure

The code generation process of 20-sim typically has the following structure:

Step 1

1. The process starts with a model and simulation in 20-sim.

2. In the 20-sim Simulator, the user selects the C-Code Generation command from
the Tools menu.

3. 20-sim collects information about the current model.

4. A target configuration file is read that specifies the different code generation targets
that exist.

5. The C-code generation dialog is opened, allowing the user to specify the target
to use.

Step 2

1. The selected target refers to specific template files (source files) in a target specific
subdirectory.

2. 20-sim adapts these template files with the model information and generated code
for the model.

10. Toolboxes

52320-sim 5.1 Reference Manual

Step 3

1. The resulting files are placed in a destination directory.

2. These files are now specific for the target and the model.

3. If desired, 20-sim can call additional commands for further processing (f.i. make,
run etc).

Code Generation Dialog

After 20-sim reads the target configuration file, the code generation dialog is shown with
the information of this file:

The target list shows the names of the available targets. When a selection is made, the
description of the selected target is given at the right. A submodel can be selected when
the target requires this. The output directory can be overruled.

Targets

The user can create own targets. All targets are defined in the target definition file
Targets.ini. This file has a typical INI-file structure and starts with a section that

simply enumerates which targets exist. Each target then has its own section that holds
the remaining information, like a short description of the target, the name of the
template directory, the names of the template source files, additional commands to
perform, etc. The following keywords may appear in a target section:

10. Toolboxes

52420-sim 5.1 Reference Manual

Templates

Each target can point to a set of template files that are used to create C-Code with. Own
template files can be created by the user, with the help of the most powerful feature of
20-sim C-Code generation: the use of tokens! A token is a placeholder for model-
dependent information. For instance in the C-Code Generation Dialog, the target
destination directory contains the name of the selected submodel (e.g. c:\ temp\%
SUBMODEL_NAME%) by default. Since this information is not yet known when the
targets.ini file is created, a specific token that refers to this name is used instead. A
complete description of predefined tokens is described in the section about Available 20-
sim Tokens.

Generation Result

After the tokens in the target template files are replaced, the resulting target and model
specific files will be placed in the destination directory. If commands are specified in the
Targets.ini file, these commands are performed. This allows the user to call scripts

automatically. E.g. for automatic compilation, linking and running of the code in a certain
target environment.

Target.Ini File

The user can create own targets. All targets are defined in the target definition file
Targets.ini. This file has a typical INI-file structure and starts with a section that

simply enumerates which targets exist. Each target then has its own section that holds
the remaining information, like a short description of the target, the name of the
template directory, the names of the template source files, additional commands to
perform, etc. The following keywords may appear in a target section:

targetName

="string"
The name that will appear in the 20-sim C-Code Generation Dialog.

iconFile

="string"
The name of an icon file (.ico) that contains an icon to appear in the 20-sim C-Code
Generation Dialog.

description

="string"
The string that will appear in the description field in the 20-sim C-Code Generation
Dialog.

templateDirectory

="string"
Here the path name where the template files for the c-code can be found can be
specified. The default name is the target name in the CCode directory of 20-sim. If no
full path is specified, the Ccode directory in 20-sim is taken as a starting point.

10. Toolboxes

52520-sim 5.1 Reference Manual

templateFiles

=filename1; filename2; filename3...

A list of files, semicolon-separated, that specify the files that are generated in the
targetDirectory.

targetDirectory

="string"
This holds the default target directory where the files will be generated. This directory
name will appear in the 20-sim dialog box when C-Code is generated and can be
overruled by the user.

submodelSelection

=TRUE (default)
=FALSE
Determines whether C-Code is generated for the complete 20-sim model, or that a
submodel selection is required.

preCommand

="string"
A command which will be executed in the target directory before that the C-Code will be
generated.

postCommand

="string"
A command which will be executed in the target directory after that the C-Code has
been generated. For example a "make" command can be given to automatically compile
the generated code for the specific target.

newLineCharacter

 =0

=1

=2

CRLF (0x0d0a = DOS Standard)

CR (0x0d = Macintosh Standard)

LF (0x0a = Unix Standard)

Enter a number for the kind of newline character that should be used.

%KEYWORD%

=value
This (re)defines the keyword "KEYWORD" and gives it the contents "value". Own
keywords can be defined in this manner as well.
example:
 %XX_TIME%=someTime

 will redefine the time variable with the value "someTime"

10. Toolboxes

52620-sim 5.1 Reference Manual

Example

A valid Targets.ini file (defining three targets) may look like below. The file may also
contain specific 20-sim tokens (%MODEL_NAME%) that are described later on.

; Possible targets for 20-sim C-Code Generation
;
[targets]
StandAloneC
CFunction
20simDLL
Simulink

; Generate Stand-Alone C-Code for the complete 20-sim model
;
[StandAloneC]
targetName="Stand-Alone C-Code"
iconFile="20sim.ico"
description="Use this target when testing the complete 20-sim model as a single
process."
SubmodelSelection=FALSE
templateDirectory="StandAloneC"
templateFiles=xxfuncs.c;xxfuncs.h;xxinteg.c;xxinteg.h;xxinverse.c
templateFiles=xxmain.c;xxmatrix.c;xxmatrix.h;xxmodel.c;xxmodel.h
templateFiles=xxtypes.h;%MODEL_NAME%.dsp;%MODEL_NAME%.dsw
targetDirectory="c:\temp\%MODEL_NAME%"

; Generate C-Code for a selected Submodel
;
[CFunction]
targetName="C-Code for 20-sim submodel"
iconFile="20sim.ico"
description="This is the C-Code as it was generated for a submodel in 20-sim version
3.1"
templateDirectory="CFunction"
templateFiles=xxfuncs.c;xxfuncs.h;xxinteg.c;xxinteg.h;xxinverse.c
templateFiles=xxmain.c;xxmatrix.c;xxmatrix.h;xxmodel.c;xxmodel.h
templateFiles=xxsubmod.c;xxsubmod.h;xxtypes.h;%SUBMODEL_NAME%.dsp;%
SUBMODEL_NAM
E%.dsw
targetDirectory="c:\temp\%SUBMODEL_NAME%"

; Generate C-Code for a dynamic DLL-call to be used in 20-sim
;
[20simDLL]
targetName="20sim Dynamic Dll"
iconFile="20sim.ico"
description="Generate C-Code for a dynamic DLL-call to be used in 20-sim"
templateDirectory="20simDLL"
templateFiles=xxfuncs.c;xxfuncs.h;xxinverse.c
templateFiles=xxmatrix.c;xxmatrix.h;xxmodel.c;xxmodel.h
templateFiles=xxtypes.h;%SUBMODEL_NAME%.c

10. Toolboxes

52720-sim 5.1 Reference Manual

templateFiles=%SUBMODEL_NAME%.dsw;%SUBMODEL_NAME%.dsp;%
SUBMODEL_NAME%.emx
targetDirectory="c:\temp\%SUBMODEL_NAME%"

; Generate C-Code for a Simulatink S-Function
;
[Simulink]
targetName="Simulink S-Function"
iconFile="mdl.ico"
description="This generates C-Code for a submodel to be used in Matlab/Simulink"
templateDirectory="Simulink"
templateFiles=%SUBMODEL_NAME%.c;xxinverse.c;xxmatrix.c;xxmatrix.h
templateFiles=xxmexfcs.c;xxmextps.h;xxtypes.h;%SUBMODEL_NAME%_.mdl
targetDirectory=c:\temp\%SUBMODEL_NAME%
postCommand=mex %SUBMODEL_NAME%.c

Available 20-sim Tokens

Both the target configuration file and the code generation dialog revealed the most
important part of the 20-sim code generation process, the use of tokens!

A token is a placeholder for model-dependent information. For instance in the code
generation dialog, the target destination directory contains the name of the selected
submodel by default. Since this information is not yet known when the targets.ini file

is created, a specific token that refers to this name is used instead.

The idea is to create targets from template source files that contain tokens instead of
actual model-dependent information (like equations, names, parameters, inputs etc).
The files that are specified in a target section will be scanned for these tokens and
tokens will be replaced by the corresponding model-dependent information.

Predefined variable names

The following variables should be declared in the C-Code template, because 20-sim uses
these names in the generation of the equations:

c: constant array
P: parameters array
V: variables array
s: states array
R: rates array
M: matrix array
U: unnamed variables array
F: favorite variables array
f: favorite parameters array

Note that these parameters are case-sensitive!

Model Data

The following tokens will be replaced by numbers indicating the number of model
parameters etc., typically used in memory allocation parts and loops.

10. Toolboxes

52820-sim 5.1 Reference Manual

%

NUMBER_CONSTANTS

%

%

NUMBER_PARAMETERS

%

%NUMBER_VARIABLES

%

%NUMBER_STATES%

%NUMBER_INPUTS%

%NUMBER_OUTPUTS%

%NUMBER_MATRICES

%

%NUMBER_UNNAMED

%

%

NUMBER_FAVORITE_PA

RAMETERS%

%

NUMBER_FAVORITE_VA

RIABLES%

%WORK_ARRAY_SIZE

%

The number of constants in the model

The number of parameters in the model

The number of variables in the model

The number of states in the model

The number of inputs of the model

The number of outputs of the model

The number of matrices used in the model

The number of unnamed variables in the model

The number of favorite parameters in the model

The number of favorite variables in the model

The size of the largest workarray necessary in calculating

some matrix functions

The following tokens are already reserved for future use:

%NUMBER_DEPSTATES

%

%NUMBER_ALGLOOPS

%

%

NUMBER_CONSTRAINT

S%

%NUMBER_IMPORTS%

%NUMBER_EXPORTS%

The number of dependent states in the model

The number of algebraic loop variables pairs in the model

The number of constraint variable pairs in the model

The number of import variables in the model

The number of export variables in the model

Example

Variable name arrays

If you want to use parameters etc. that are specific to a model you can use arrays of
names using the following tokens:

10. Toolboxes

52920-sim 5.1 Reference Manual

%CONSTANT_NAMES%

%PARAMETER_NAMES

%

%VARIABLE_NAMES%

%STATE_NAMES%

%RATE_NAMES%

%DEPSTATE_NAMES%

%DEPRATE_NAMES%

%ALGLOOP_NAMES%

%CONSTRAINT_NAMES

%

%INPUT_NAMES%

%OUTPUT_NAMES%

%MATRIX_NAMES%

%

FAVORITE_PARAMETER

_NAMES%

%

FAVORITE_VARIABLE_

NAMES%

All the constants used in the model.

All the parameters used in the model.

All the variables used in the model.

All the states used in the model.

All the rates used in the model.

All the dependent states used in the model.

All the dependent rates used in the model.

All the algebraic loop variables used in the model.

All the constraint variables used in the model.

All the inputs used in the model.

All the outputs used in the model.

All the matrices used in the model.

All the favorite parameters used in the model.

All the favorite variables used in the model.

Example

Initialization code

An important part of a model are the parameters, initial values states etc. To match
these with the generated model code and use the correct values the following tokens can
be used:

%INITIALIZE_CONSTANTS%
%INITIALIZE_PARAMETERS%
%INITIALIZE_MATRICES%
%INITIALIZE_STATES%
%INITIALIZE_DEPSTATES%
%INITIALIZE_ALGLOOPS%
%INITIALIZE_CONSTRAINTS%
%INITIALIZE_INPUTS%
%INITIALIZE_OUTPUTS%
%INITIALIZE_FAVORITE_PARS%
%INITIALIZE_FAVORITE_VARS%

Example

Equations

The following tokens can be used to place 20-sim simulation model equations into the C-
Code:

10. Toolboxes

53020-sim 5.1 Reference Manual

%INITIAL_EQUATIONS

%

Equations that should be calculated once for initialization of

the model

%STATIC_EQUATIONS

%

Equations that should be calculated once

%INPUT_EQUATIONS

%

Equations that should be calculated once at the beginning of

every simulation step

%

DYNAMIC_EQUATIONS

%

Equations that calculates the dynamic part of the model,

calculates the rates

%OUTPUT_EQUATIONS

%

Equations that should be calculated once at the end of every

simulation step

%

OUTPUT2_EQUATIONS

%

Reduced set of equations that should be calculated at the end

of every simulation step

%FINAL_EQUATIONS

%

Equations that should be calculated once for termination of the

model

Inputs/Outputs

To match model inputs and model outputs to for example sensor signals and actuator
signals you can use:

%INPUT_TO_VARIABLE_EQUATIONS%
%VARIABLE_TO_OUTPUT_EQUATIONS%
%ALIAS_EQUATIONS%
%FAVORITE_PARS_EQUATIONS%
%FAVORITE_VARS_EQUATIONS%

Example

Additional tokens

%

INTEGRATION_METHO

D_NAME%

A string representing the name of the selected integration

method, for now only Euler, RungeKutta4 and Discrete are

available.

%XX_TIME%

%XX_INITIALIZE%

The name of the simulation time variable (combined with %

VARPREFIX%)

The name of the variable that indicates the initialization

phase(combined with %VARPREFIX%).

%START_TIME%

%FINISH_TIME%

%TIME_STEP_SIZE%

Start time of the simulation (floating point notation).

Finish time of the simulation (floating point notation).

Step size of the simulation (floating point notation).

Either TRUE or FALSE, depending if the model is discrete in

time or continuous in time.

10. Toolboxes

53120-sim 5.1 Reference Manual

%

MODEL_IS_DISCRETE

%

Experiment Tokens

Tokens which hold information about the model, experiment, user and system:

%FILE_NAME%

%MODEL_FILE%

%MODEL_NAME%

%SUBMODEL_NAME%

%EXPERIMENT_NAME

%

%GENERATION_TIME

%

%GENERATION_DATE

%

%GENERATION_BUILD

%

%GENERATION_DIR%

%USER_NAME%

%COMPANY_NAME%

%20SIM_DIR%

The file name of the generated C-Code.

The complete path and file name of the original 20-sim model.

The name of the 20-sim model out of which C-Code was

generated.

The name of the 20-sim submodel out of which C-Code was

generated.

The experiment name accompanying the 20-sim (sub)model.

The time of C-Code generation.

The date of C-Code generation.

The 20-sim version and build number.

The directory where the generated C-Code files are stored.

The user name given in the 20-sim license.

The company name given in the 20-sim license.

The directory where 20-sim is installed.

10.9 Time Domain Toolbox

Time Domain Toolbox10.9.1

The Time Domain Toolbox contains powerful tools to inspect the behaviour of your
model using time domain simulation.

Parameter sweep: Perform a number of simulation runs, while changing model
parameters.

Optimization: Optimize a given result by changing parameters.

Curve Fitting: Fit your model to a given result by changing parameters.

Tolerance Analysis

Sensitivity: Change parameters by a given percentage and monitor results.

Monte Carlo: Change parameters statistically and monitor results.

10. Toolboxes

53220-sim 5.1 Reference Manual

Variation Analysis: Find the statistical range of parameters to yield a given result.

External DLL: Let the multiple run be controlled by a user-defined function in a DLL.

Procedure

1. From the Toolbox menu select the Time Domain Toolbox and then the tool that
you want to use.

2. This will open the Multiple Run Wizard. Follow the instructions and after all settings
have been entered, close the wizard.

3. Select the Multiple Run command from the Simulation menu to perform the
specified analysis.

4. After simulation is completed a special window will open to showing the results. If it
is not available, you can always open this window, by selecting the Multiple Run
Results command of the View Menu.

Multiple Run Wizard

All tools of the Time Domain Toolbox are started use the Multiple Run Wizard. You can
open this Wizard directly by selecting the Multiple Run command from the Properties
menu.

Parameter Sweep10.9.2

Introduction

Using the Parameter Sweep option of the Time Domain Toolbox, you can perform a
predefined number of simulation runs with variation of parameters / initial values.

Example

1. From the Getting Started Manual\Time Domain Toolbox library open the model
ParameterSweep.

2. Open the Simulator.

3. In the Simulator, from the Tools menu select the Time Domain Toolbox and
then Parameter Sweep.

A window will open, asking you which parameters values should be changed during the
multiple simulations. Here the parameters Lever\L\r and Bellows\K\k are already
entered.

10. Toolboxes

53320-sim 5.1 Reference Manual

4. Click the Next button.

Result

A window opens asking you which result (optional) should be shown after the
simulations:

10. Toolboxes

53420-sim 5.1 Reference Manual

Here the integral of the pipe air flow (e.g. the total air volume) is chosen. For a
parameter sweep, you do not have to fill in a value, but it is nice to see which set of
parameters will give a maximum air flow.

5. Click the Next button.

Run options

A window will open, asking some simulation run options:

10. Toolboxes

53520-sim 5.1 Reference Manual

You can select the following items:

Steps: Number of simulations runs.

Copy from States: Use the result of the previous simulation runs as the starting value

numerical output of the parameter sweep.

Join Parameter Variation: Change all parameters simultaneously.

Clear After Every Run: C lear the simulation plot when a new simulation run starts.

Redraw After Every Run: Update the scaling after every run.

Here the two parameters will be varied 5 times independently, requiring 25 simulation
runs.

6. Click the Next button.

A window will open with a summary of the chosen options. If your are not satisfied you
can use the Back button to go to a previous window and change settings.

7. Click the Finish button to close the Multiple Run Wizard.

8. From the Simulation menu click the Multiple Run command to perform the
Parameter Sweep.

Now the Simulator will perform the 25 runs and show the results in the plots. If you click
View - Numerical values, you can inspect the runs and see that run number 10 will give
the largest air flow.

10. Toolboxes

53620-sim 5.1 Reference Manual

Parameter Sweep Results

After simulation has been done, a Multiple Run Results window will open, showing the
minimum and maximum value of the result and chosen parameters.

Here the maximum and minimum air flow volume is shown. You can select the following
items:

10. Toolboxes

53720-sim 5.1 Reference Manual

Values: Choose this button to open the list that shows the numerical output of the
parameter sweep.

Matlab: Export the results to Matlab.

OK: C lose the Multiple Run Results Window.

You can always re-open the Multiple Run Results window, by selecting the Multiple Run
Results command of the View Menu.

9. By choosing the Values button, a new window is opened, showing the numerical
results of the parameter sweep.

In the Results list of this window the subsequent runs are shown and (if available) the
value of the chosen result:

Here the 25 runs are shown with the parameter values and resulting air flow volume. As
you can see, run number 10 gives the maximum air flow. You can select the following
items:

Step: Click on Step or the other column headers to sort the runs.

Set Values: Choose the values of the selected run, as new parameter values of your
model.

10. Toolboxes

53820-sim 5.1 Reference Manual

Create Datafile: Use this button to store the values of the selected variables on file.
Use the control-key and shift-key to make multiple selections.

Optimization10.9.3

Using the Optimization option of the Time Domain Toolbox, you can optimize a given
result using variation of parameters / initial values.

Optimization Method

1. From the Getting Started Manual\Time Domain Toolbox library open the model
Optimization.

2. Open the Simulator.

3. In the Simulator, from the Tools menu select the Time Domain Toolbox and
then Optimization.

A window opens asking you which optimization method should used:

Here the optimization method is already chosen.

4. Click the Next button.

Parameters / Initial Values

A window will open, asking you which parameters values should be use for the
optimization. Here the parameters Lever\L\r and Bellows\K\k are already entered.

10. Toolboxes

53920-sim 5.1 Reference Manual

5. Click the Next button.

Result

A window opens asking you which result should optimized:

10. Toolboxes

54020-sim 5.1 Reference Manual

Here the integral of the pipe air flow (e.g. the total air volume) is chosen.

6. Click the Next button.

Run options

A window opens asking some simulation run options:

10. Toolboxes

54120-sim 5.1 Reference Manual

7. Click the Next button.

A window opens with a summary of the chosen options. If your are not satisfied you can
use the Back button to go to a previous window and change settings.

9. Click the Finish button to close the Multiple Run Wizard.

10. From the Simulation menu click the Multiple Run command to perform the
Optimization.

You will see the Simulator perform many simulation runs. After a maximum has been
found on the starting run and the runs with the maximum air flow is shown.

10. Toolboxes

54220-sim 5.1 Reference Manual

Optimization Results

After simulation has been done, an Optimization Results window will open, showing the
optimum value of the result and corresponding parameters:

Here the maximum air flow volume is shown. You can select the following items:

Values: Choose this button to open the list that shows the numerical output of the
optimization runs.

Matlab: Export the results to Matlab.

OK: C lose the Optimization Results Window.

10. Toolboxes

54320-sim 5.1 Reference Manual

You can always re-open the Multiple Run Results window, by selecting the Multiple Run
Results command of the View Menu.

11. By choosing the Values button, a new window is opened, showing the numerical
results of the parameter sweep.

In the Results list of this window the subsequent runs are shown and (if available) the
value of the chosen result:

As you can see Here the 81 runs are performed and shown with the parameter values
and resulting air flow volume. As you can see, run number 81 gives the maximum air
flow. You can select the following items:

Set Values: Choose the values of the selected run, as new parameter values of your
model.

Create Datafile: Use this button to store the values of the selected variables on file.
Use the control-key and shift-key to make multiple selections.

10. Toolboxes

54420-sim 5.1 Reference Manual

Optimization Methods10.9.4

In the Multiple Run Wizard you have to specify a result which will be optimized. The
result is a function of model variables and the simulation run:

result = f(i,v1,v2,...)

with i the number of the simulation run. You also have to specify the parameters that
should be varied to find the optimum result. We can group these parameters in a
parameter vector:

parameter vector = p(i)

with again i the number of the simulation run. All methods in 20-sim for finding an
optimum of the result use the same iterative process:

1. The initial parameter vector is determined, e.g. p(1) and the corresponding function
value f(1).

2. A search direction r(1) and a stepsize s(1) are determined.

3. Perform a new simulation run to find the parameter vector p(2) = p(1) + s(1)*r(1).

4. Calculate f(2).

5. When the f(2) is smaller than f(1) and the difference between the two is smaller than
a given tolerance, stop the process. The optimum has been found.

6. When the f(2) is smaller than f(1) and the difference between the two is larger than
a given tolerance, proceed the process at step 2

7. Otherwise a new stepsize and/or a new search direction are determined and the
process is proceeded at step 3.

The choice of the stepsize is of importance for the speed an accuracy of the search
process. A small stepsize will make the optimization process last very long. A large
stepsize will make it less accurate. Most methods will therefore use a variable stepsize.

Of equal importance is the proper choice of the search direction. Methods for finding the
search direction, can be divided in two groups: direct search methods and gradient
search methods. The gradient of a function, is its slope at a certain point. Gradient
search methods use this slope to find the optimal direction of search.

Methods

The optimization methods that are supported in 20-sim will now be explained. The
pictures at the right visualize the methods with two varying parameters x (horizontal)
and y (horizontal) and the corresponding result (vertical).

10. Toolboxes

54520-sim 5.1 Reference Manual

1. Perpendicular Search
(direct search)

The perpendicular search method
uses a search direction that is
always perpendicular to the
parameter axis. This means that
only one parameter at a time is
varied. All other parameters keep
the same value. After one step, a
next parameter is taken and the
process continues.

2. Line Climber (direct search)

The line climber method uses a
search direction that is always
perpendicular to the parameter
axis. This means that only one
parameter at a time is varied. All
other parameters keep the same
value. After a minimum has been
found the next parameter is varied
and the process continues.

10. Toolboxes

54620-sim 5.1 Reference Manual

3. Steepest Descent (gradient
search)

The steepest descent method starts
its search in the direction of the
steepest slope. This direction is
kept for each new step until a
minimum has been found. Then a
new search direction is determined
and the process continues.

4. Continuous Descent
(gradient search)

The continuous descent method
starts its search in the direction of
the steepest slope. After each new
step a new search direction is
determined and the process
continues.

10. Toolboxes

54720-sim 5.1 Reference Manual

5. Newton Raphson
(gradient search)

The Newton Raphson method
not only uses the gradient of a
function, but also the second
order gradient to determine the
search direction. This direction
is kept for each new step until a
minimum has been found. Then
a new search direction is
determined and the process
continues. Note: The method
only converges for a positive
second order gradient, i.e. near
the minimum. This is shown in
the figure to the right. For x = -
0.7 and y = -0.9 the method
does not converge. For x = -0.5
and y = -0.3 the method does
converge.

6. Polack Ribiere (gradient
search)

The Polack Ribiere method not only
uses the gradient of a function, but
also the second order gradient to
determine the search direction.
The second order gradient is
estimated based on previous
search directions. The search
direction is kept for each new step
until a minimum has been found.
Then a new search direction is
determined and the process
continues.

10. Toolboxes

54820-sim 5.1 Reference Manual

7. Davidson Fletcher Powel
(gradient search)

The Davidson Fletcher Powel
method not only uses the gradient
of a function, but also the second
order gradient to determine the
search direction. The second order
gradient is estimated based on
previous search directions. The
search direction is kept for each
new step until a minimum has been
found. Then a new search direction
is determined and the process
continues

8. Broydon Fletcher Goldfarb
Shanno (gradient search)

The Broydon Fletcher Goldfarb
Shanno method not only uses the
gradient of a function, but also the
second order gradient to determine
the search direction. The second
order gradient is estimated based
on previous search directions. The
search direction is kept for each
new step until a minimum has been
found. Then a new search direction
is determined and the process
continues.

What method should be used?

There is no general answer to this question. Some remarks can however be made:

1. Gradient search methods (3 to 8), need more steps (note that each step means a
simulation run) to determine the gradient. The Newton Raphson methods needs the
most steps, because this method also needs additional steps for the determination of
the second order gradient.

10. Toolboxes

54920-sim 5.1 Reference Manual

2. When the direction of the slope is not exactly the same as the search direction,
direct search methods (1 and 2) may start to bounce, i.e. continuously change
direction while making little progress. this is shown in the figure below:

Users are therefore advised to use methods 1 and 2 only for optimizations with one
parameter, and use the methods 7 and 8 for optimizations with more parameters. Use
the other methods for checking the results or educational purposes.

More information on these methods can be found in:

Bazaraa, M.S., Sherali, H.D., Shetty C.M. (1990), Nonlinear Programming, Theory and
Algorithms, John Wiley & Sons Inc. New York, ISBN 0-471-59973-5.

Curve Fitting10.9.5

Using the Parameter Sweep option of the Time Domain Toolbox, you can fit your model
to a given result using variation of parameters / initial values.

Optimization Method

1. From the Getting Started Manual\Time Domain Toolbox library open the model
CurveFitting.

2. Open the Simulator.

3. From the Tools menu select the Time Domain Toolbox and then Curve Fittting.

A window opens asking you which optimization method should used for curve fitting:

10. Toolboxes

55020-sim 5.1 Reference Manual

Here the optimization method is already chosen.

4. Click the Next button.

Parameters / Initial Values

A window will open, asking you which parameters values should be use for the curve
fitting. Here the parameters Model\omega and Model\zeta are already entered.

10. Toolboxes

55120-sim 5.1 Reference Manual

5. Click the Next button.

Result

A window opens asking you which result should minimized to fit your model (variable 1)
to a given result (variable 2):

10. Toolboxes

55220-sim 5.1 Reference Manual

6. Click the Next button.

Run options

A window opens asking some simulation run options:

10. Toolboxes

55320-sim 5.1 Reference Manual

7. Select the desired run options and click the Next button.

A window opens with a summary of the chosen options. If your are not satisfied you can
use the Back button to go to a previous window and change settings.

8. Click the Finish button to close the Multiple Run Wizard.

9. From the Simulation menu click the Multiple Run command to perform the Curve
Fitting.

You will see the Simulator perform many simulation runs. After a good fit has been
found on the starting run and the runs with the best fit is shown.

10. Toolboxes

55420-sim 5.1 Reference Manual

Optimization Results

After the curve fit has been done, the Optimization Results window will open, showing
the minimum value of the result and corresponding parameters:

You can select the following items:

Values: Choose this button to open the list that shows the numerical output of the
curve fitting runs.

Matlab: Export the results to Matlab.

OK: Close the Optimization Results Window.

10. Toolboxes

55520-sim 5.1 Reference Manual

You can always re-open the Multiple Run Results window, by selecting the Multiple
Run Results command of the View Menu.

11. By choosing the Values button, a new window is opened, showing the numerical
results of the parameter sweep.

In the Results list of this window the subsequent runs are shown and the value of the
chosen result:

You can select the following items:

Set Values: Choose the values of the selected run, as new parameter values of your
model.

Create Datafile: Use this button to store the values of the selected variables on file.
Use the control-key and shift-key to make multiple selections.

10. Toolboxes

55620-sim 5.1 Reference Manual

Sensitivity Analysis10.9.6

Using the Sensitivity Analysis option of the Time Domain Toolbox, you can detect which
variations in parameter values will give the largest deviation of a given metric. If, for
example, the metric is the accuracy of a machine, with sensitivity analysis you can
detect how sensitive the machine is for parameter changes, with respect to that
accuracy.

Sensitivity analysis starts with a simulation run with nominal parameter values. After the
run a given result is monitored (r). Then, one by one, each parameter (pi) is changed
with a given percentage (to pi + dpi) and a simulation run is performed. After the
simulation run the changed result is monitored (r + dri). After all the runs, the results
are displayed as sensitivities, where sensitivity is defined as the change in result divided
by the change in parameter:

Si = dri / dpi

A large sensitivity means that the result is highly dependent of the parameter value. This
can be used for optimization (change the parameter value) or design (change the design
to make it less dependant of the parameter).

Parameters / Initial Values

1. From the Getting Started Manual\Time Domain Toolbox library open the model
SensitivityAnalysis.

2. Open the Simulator.

3. From the Tools menu select the Time Domain Toolbox and then Sensitivity
Analysis.

A window opens asking you which parameters / initial values should be changed for the
sensitivity analysis:

10. Toolboxes

55720-sim 5.1 Reference Manual

As you can see the parameters have already been entered.

4. Click the Next button.

Result

A window opens asking you which result should be monitored for the sensitivity:

10. Toolboxes

55820-sim 5.1 Reference Manual

The integral absolute value of the position error is chosen here.

5. Click the Next button.

Run options

A window opens asking some simulation run options:

10. Toolboxes

55920-sim 5.1 Reference Manual

6. Click the Next button.

A window opens with a summary of the chosen options. If your are not satisfied you can
use the Back button to go to a previous window and change settings.

7. Click the Finish button to close the Multiple Run Wizard.

8. From the Simulation menu click the Multiple Run command to perform the
Sensitivity Analysis.

Now the Simulator will perform a number of simulation runs and show the results.

Sensitivity Analysis Results

After simulation has been done, a Sensitivity Analysis Results window will open, showing
the sensitivities:

10. Toolboxes

56020-sim 5.1 Reference Manual

As you can see, a change in pulley2 radius will by far give the largest change in error.
I.e. the system is very sensitive to changes in the pulley2 radius. You can select the
following items:

Multiple Run Values: Choose this button to open the list that shows the output of the
various runs performed during the sensitivity analysis.

Close: Close the Sensitivity Analysis Results Window.

You can always re-open the Multiple Run Results window, by selecting the Multiple Run
Results command of the View Menu.

Monte Carlo Analysis10.9.7

Using the Monte Carlo analysis option of the Time Domain Toolbox, you can perform a
predefined number of simulation runs with variation of parameter values according to a
predefined distribution function.

Parameters / Initial Values

1. From the Getting Started Manual\Time Domain Toolbox library open the model
ParameterSweep.

2. Open the Simulator.

3. From the Tools menu select the Time Domain Toolbox and then Monte Carlo
Analysis.

A window opens asking you which parameters / initial values should be varied for the
Monte Carlo analysis:

10. Toolboxes

56120-sim 5.1 Reference Manual

Two parameters have already been entered.

4. Click the Next button.

Result

A window opens asking you which result should be monitored during the Monte Carlo
Analysis:

10. Toolboxes

56220-sim 5.1 Reference Manual

Here the integrated absolute error of the machine is chosen.

5. Click the Next button.

Run options

A window opens asking some simulation run options:

10. Toolboxes

56320-sim 5.1 Reference Manual

Because this is a statistical method, we have to do many simulations runs. We therefore
choose not to display the results in a plot to speed up simulation and prevent using too
much computer memory.

6. Click the Next button.

A window opens with a summary of the chosen options. If your are not satisfied you can
use the Back button to go to a previous window and change settings.

7. Click the Finish button to close the Multiple Run Wizard.

8. From the Simulation menu click the Multiple Run command to perform the Monte
Carlo Analysis.

Monte Carlo Analysis Results

After the simulations have been done, a Monte Carlo Analysis Results window will open,
showing the results:

10. Toolboxes

56420-sim 5.1 Reference Manual

You can select the following items:

Values: Choose this button to open the list that shows the output of the various runs
performed during the Monte Carlo analysis.

Histogram: Choose this button to open a histogram of the selected item.

Matlab: Export the results to Matlab.

OK: C lose the Multiple Run Results Window.

You can always re-open the Multiple Run Results window, by selecting the Multiple
Run Results command of the View Menu.

9. By choosing the Values button, a new window is opened, showing output of the
various runs performed during the Monte Carlo analysis.

10. Toolboxes

56520-sim 5.1 Reference Manual

You can select the following items:

Set Values: Choose the values of the selected run, as new parameter values of your
model.

Create Datafile: Use this button to store the values of the selected variables on file.
Use the control-key and shift-key to make multiple selections.

By choosing the Histogram button, a new window is opened, showing distribution of the
integrated absolute error:

10. Toolboxes

56620-sim 5.1 Reference Manual

Variation Analysis10.9.8

Using the Monte Carlo analysis option of the Time Domain Toolbox, you can perform a
predefined number of simulation runs with variation of parameter values according to a
predefined distribution function. We will then
restrict the parameter variation until the error is within certain bounds. This is called
Variation analysis.

Parameters / Initial Values

1. From the Getting Started Manual\Time Domain Toolbox library open the model
ParameterSweep.

2. Open the Simulator.

3. From the Tools menu select the Time Domain Toolbox and then Variation
Analysis.

A window opens asking you which parameters / initial values should be varied for the
Variation analysis:

10. Toolboxes

56720-sim 5.1 Reference Manual

Here the integrated absolute error of the machine is chosen.

5. Click the Next button.

Result

A window opens asking you which result should be monitored during the Variation
Analysis:

10. Toolboxes

56820-sim 5.1 Reference Manual

Two parameters have already been entered.

6. Click the Next button.

Run options

A window opens asking some simulation run options:

10. Toolboxes

56920-sim 5.1 Reference Manual

Because this is a statistical method, we have to do many simulations runs. We therefore
choose not to display the results in a plot to speed up simulation and prevent using too
much computer memory.

6. click the Next button.

A window opens with a summary of the chosen options. If your are not satisfied you can
use the Back button to go to a previous window and change settings.

7. Click the Finish button to close the Multiple Run Wizard.

8. From the Simulation menu click the Multiple Run command to perform the

Variation Analysis.

Variation Analysis Results

After simulation has been done, a Variation Analysis Results window will open, showing
the results. A histogram shows the distribution of the result. Using the slider bar you can
see how restraining the distribution of the parameters effects the distribution of the
result.

10. Toolboxes

57020-sim 5.1 Reference Manual

The histogram shows the value of the integrated absolute error on the x-axis and the
number of runs on the y-axis.

You can select the following items:

Slider Bar: Select a parameter and restrict its distribution with the slider bar. You will
see the results distribution change.

Multiple Run Values: Choose this button to open the list that shows the output of the
various runs performed during the Variation Analysis.

OK: C lose the Multiple Run Results Window.

You can always re-open the Multiple Run Results window, by selecting the Multiple Run
Results command of the View Menu.

9. Change the slider bar for the two parameters and inspect the results.

You can see the following:

An increase of the end effector mass will not reduce the maximum error.

A decrease of the stiffness will not reduce the maximum error.

We can slide the maximum mass to the middle and minimum stiffness to the middle to
decrease the error:

10. Toolboxes

57120-sim 5.1 Reference Manual

Multiple Run Wizard - External DLL10.9.9

You can analyze the effects of variation of parameters / initial values using your own
method with the use of an external DLL-function.
Ask Controllab Products for details.

Deprecation warning

20-sim provides a Scripting toolbox since 20-sim 4.4 that allows you to write your own
automation scripts around a 20-sim model.
It is strongly advised to implement new customized multiple run experiments is by
means of a script in either Octave/Matlab or Python.
The multiple run external DLL feature will be removed in a future version of 20-sim.

10. Toolboxes

57220-sim 5.1 Reference Manual

Cost Function10.9.10

In the Multiple Run Wizard, the Result window allows you to define a result (the Cost
Function) that will be used during simulations (Optimization, Curve Fitting) and displayed
after the simulations runs (Parameter sweep, Optimization, Curve Fitting, Sensitivity,
Monte Carlo, Variation Analysis, External DLL).

The result can be a function of one or two variables. Instead of the second variable an
(offset) value can be entered.

Items

Choose Variable: Select this button to select a model variable

Clear: Use this button the remove a chosen model variable.

Function:

End value: The value at the end of the simulation run.

Sum Absolute Value: The sum of all absolute values during a simulation run.

Sum Square Value: The sum of all values squared during a simulation run.

Integral Absolute Value: The integral of all absolute values during a simulation run
(uses Euler integration).

Integral Square Value: The integral of all values squared during a simulation run
(uses Euler integration).

User Defined Cost Function

You can easily use your own Cost Function for the result variable:

1. Create your own cost function in the model.

2. Use the Choose button to select as var1 the output of your function.

10. Toolboxes

57320-sim 5.1 Reference Manual

3. Set var2 to a zero value.

4. Choose End Value to prevent further operations on your function.

10.10 Scripting Toolbox

Introduction10.10.1

20-sim scripting allows you to run tasks in 20-sim automatically using scripts running in
Python or other scripting tools. With these scripts you can open models, run simulations,
change parameters, store results and much more.

20-sim session automated by a script in Octave, Matlab or Python.

20-sim provides a set of script functions for numerical computation environments like
Octave and Matlab and for the Python programming language. The 20-sim scripting
functions are based on XML-RPC calls, so any other programming language with support
for XML-RPC can be used to automate various 20-sim steps. In this chapter you will
learn how to run basic scripts and make scripts on your own.

The next sections explain:

Installation for scripting:

o 20-sim: enabling the XML-RPC scripting interface in 20-sim

o Octave: installing Octave as scripting environment

o Matlab: installing Matlab as scripting environment

o Python: installing Python as scripting environment

Prepare Scripting Folder: extract the 20-sim scripting functions and
documentation to your work directory.

Basic Script: run your first script and see how a basic script is made in Octave/
Matlab or Python.

Advanced Scripts: see how you can expand the basic script to perform more
advanced tasks in Octave/Matlab.

Writing your own Scripts: How to write your own scripts in Octave/Matlab or
Python.

Note: Scripting is not supported in the 20-sim Viewer/Demonstration Version. If you
would like to try the scripting functionality, you will need licensed 20-sim version or a
trial license.

https://www.python.org/

10. Toolboxes

57420-sim 5.1 Reference Manual

Scripting API10.10.2

All scripting functions can be found in the scripting API. In the 20-sim Editor click:

1.Help - Python Scripting API

2.Editor - Octave Scripting API

Installation for Scripting: 20-sim10.10.3

20-sim uses XML-RPC as a protocol to communicate scripting functions with external
packages. By default the XML-RPC interface is turned on only for your local computer.

To enable/disable and configure the 20-sim scripting support:

1. Open 20-sim.

2. Go to Tools/Options and select the Scripting Interface tab.

Scripting Interface settings tab.

3. To enable the 20-sim scripting support, make sure that the HTTP and TCP
checkboxes under XMLRPC Interface are enabled.

By default, 20-sim will only accept scripting connections from your local computer
(Localhost only option is enabled).

Your firewall may generate a warning message and ask you to allow network
communication for 20-sim.

10. Toolboxes

57520-sim 5.1 Reference Manual

4. Set the firewall to allow communication.

Scripting Menu10.10.4

If you store the scripts in a folder "Scripting" next to your 20-sim model, a Scripting
menu will appear in the 20-sim Editor.

The Examples\Scripting folder contains models with scripting. If you open one of these
models, the Scripting menu will be visible showing several scripts. You can run these
scripts directly from the menu.

Scripting in Octave/Matlab10.10.5

Installation for Scripting: Octave

What is Octave?

GNU Octave is a high-level language, primarily intended for numerical computations. The
package is open source and can be freely distributed. GNU Octave offers functionality
similar to Matlab users. If you have experience with Matlab, using Octave will be
familiar. Users with no experience with Octave nor Matlab are advised to read a proper
introduction to GNU Octave first. You will find lot of pages and videos on the Internet.

Installation

The Windows versions of Octave 8.2.0, 8.1.0, 7.x, 6.x, 5.x, 4.x, 3.8.x, 3.6.x have been
tested with 20-sim scripting at the time of this release.
Note that for older versions of Octave only the 32-bit Octave is supported. 64-bit
versions of Octave are supported since Octave 4.2.1.

First choose the Octave version you wish to install and go to the corresponding section
below:

Octave 8.x / 7.x / 6.x / 5.x / 4.x

1. Go to: https://www.gnu.org/software/octave/

2. Go to the download page and download the Windows installer (direct link: https://
ftp.gnu.org/gnu/octave/windows/octave-8.2.0-w64-installer.exe)

3. Run the installer and follow the wizard. The steps below assume default installation
settings.

4. Octave 4.0.x only: Unfortunately Octave 4.0.x has a Windows specific bug in its
internal run() function. This bug is resolved in Octave 4.2 and above.
For Octave 4.0.x you will need to manually replace the default run() implementation
with a corrected version. Copy the file:

https://www.gnu.org/software/octave/
https://ftp.gnu.org/gnu/octave/windows/octave-8.2.0-w64-installer.exe
https://ftp.gnu.org/gnu/octave/windows/octave-8.2.0-w64-installer.exe

10. Toolboxes

57620-sim 5.1 Reference Manual

C:\Program Files (x86)\20-sim 5.1\Scripting\Octave-patch\4.0.0

\run.m

or on 32-bit versions of Windows:

C:\Program Files\20-sim 5.1\Scripting\Octave-patch\4.0.0\run.m

to:

C:\Octave\Octave-4.0.0\share\octave\4.0.0\m\miscellaneous\run.m

5. Launch Octave from the Start menu or using the script: C:\Octave\Octave-x.y.z

\octave.bat

6. Execute the following commands to make sure that the io, control and signal are
installed.
pkg install -forge io

pkg install -forge control

pkg install -forge signal

The Octave GUI.

Your Octave installation is now ready to use.

Octave 3.8.x

1. Go to: http://www.20sim.com/downloads/files/ThirdParty/octave-3.8.2-2-
installer.exe

http://www.20sim.com/downloads/files/ThirdParty/octave-3.8.2-2-installer.exe
http://www.20sim.com/downloads/files/ThirdParty/octave-3.8.2-2-installer.exe

10. Toolboxes

57720-sim 5.1 Reference Manual

2. Run the installer and follow the wizard.

3. Launch Octave using the script: C:\Octave\Octave-3.8.2\octave.bat

4. Execute the following commands to install packages io, control and signal:
pkg install -forge io

pkg install -forge control

pkg install -forge signal

Your Octave installation is now ready to use.

Octave 3.6.x

1. Go to the Octave download site (http://sourceforge.net/projects/octave/.).

2. Click on the Files tab and click on Octave Windows Binaries.

3. Select the Octave 3.6.4 for Windows MinGW installer.

4. Now you can download the files Octave3.6.4_gcc4.6.2_yyyyxxxx.7z

(Octave Installation) and Octave3.6.4_gcc4.6.2_pkgs_yyyyxxxx.7z
(Octaveforge Packages).

5. Create an installation directory which doesn't have space chars (i.e. C:\Octave).

6. Unzip the file Octave3.6.4_gcc4.6.2_yyyyxxxx.7z and copy it to the

installation directory.

7. Copy the shortcut link C:\Octave\Octave3.6.4_gcc4.6.2.lnk to your desktop.

This is a shortcut to start Octave.exe.

Note: Unzipping can be done with programs like 7-zip (http://www.7-zip.org/)
Note: There is a bug with Windows 8 and running Octave. In order to use Octave start
Octave with octave.exe -i --line-editing. See the Octave wiki webpage for more

information.

8. Unzip the file Octave3.6.4_gcc4.6.2_pkgs_yyyyxxxx.7z and copy it to the

installation directory.

9. Launch Octave (e.g. the link to Octave.exe).

10. Execute the following five rebuild commands from the Octave console (e.g. re-type
every line followed by ENTER):

pkg rebuild -auto

pkg rebuild -noauto ad

pkg rebuild -noauto nan % shadows many statistics functions

pkg rebuild -noauto gsl % shadows some core functions

pkg rebuild -auto java

http://sourceforge.net/projects/octave/
http://www.7-zip.org/
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs

10. Toolboxes

57820-sim 5.1 Reference Manual

The Octave command window.

11. Close and restart Octave.

Setting the Octave Location

1.In the 20-sim Editor choose Tools - Options - Scripting Client - Octave Folder to enter
the location where Octave is installed on your computer.

Installation for Scripting: Matlab

What is Matlab?

Matlab is a high-level language, primarily intended for numerical computations. The
package is commercially distributed by the Mathworks. If you don't have the resources
to purchase Matlab, you can run use Octave, which offers similar functionality.

Versions

Matlab R2011, R2012, R2013, R2014, R2015, R2016 and R2017 have been tested with
20-sim scripting but older and newer versions may also work fine.

Installation

See the Matlab documentation from the Mathworks for information on installing Matlab.
No special (additional) installation is needed to use 20-sim scripting from Matlab.

Note: Scripting in Matlab is similar to Octave. You can type exactly the same commands
as given for Octave in the next sections.

Prepare Scripting Folder

20-sim comes with a Scripting Folder that contains documentation of all scripting
functions, the function library and example scripts. You have to install this folder to use
scripting.

http://www.mathworks.nl/
http://www.mathworks.nl/
http://www.mathworks.nl/
http://www.mathworks.nl/

10. Toolboxes

57920-sim 5.1 Reference Manual

Installation

1. Open the Install Scripting program from the Windows Start menu (located under
20-sim 5.1)
- or -
Go to the folder where 20-sim is installed (e.g. C:\Program Files\20-sim 5.1
\Scripting or C:\Program Files (x86)\20-sim 5.1\Scripting) and open
20simScripting.exe

2. This will open a dialog where you can choose where to extract the 20-sim scripting
files. Change the path to a local working folder of your choice (for example: C:
\Users\yourusername\Documents\20simscripting)

20-sim Scripts extraction

Note: To write/modify scripts, the scripting folder should be accessible and writable by
the user. Do not install the scripting folder on C:\Program Files (x86) or C:\Program
Files.

For the remainder of this chapter, we use the name scripting working folder when we
refer to the folder where you just extracted the 20-sim scripting files.

Contents

Your newly created scripting working folder contains a number of subfolders:

1. Models: This folder contains the 20-sim models and data files that are used for the
example and tutorial scripts .

2. Octave: This folder contains all Octave/Matlab scripting functionality and
documentation

a. documentation: This folder contains the scripting API documentation: a list of
supported functions and their syntax. It is a copy of the help file that you can
open in the 20-sim Editor by selecting Help - Octave Scripting API.

Note: the API documentation is also accessible from the Windows Start menu
under 20-sim 5.1\Scripting API documentation

b. library: This folder contains the core scripting functions.

c. tutorials: This folder contains basis scripts with a step by step explanation. You
can use these scripts as a base for your own scripts.

d. examples: This folder contains some more advanced scripts.

3. Octave-patch: This folder contains modified Octave scripts for certain Octave
versions to fix bugs in the core Octave scripts that are not yet fixed in the latest
release (currently 4.0.3)

10. Toolboxes

58020-sim 5.1 Reference Manual

4. Python: This folder contains all Python scripting functionality and documentation
(see the Scripting in Python section for more information).

Basic Script

When the scripting files are properly installed in your scripting working folder, we can
run some tutorial scripts. Tutorial scripts are a step by step demonstrations of usage of
the scripting functionality in 20-sim. These scripts are found in the tutorials subfolder of
the scripting working folder. We will start with a basic script that opens and runs a 20-
sim model.

1. Open 20-sim.

2. Open Octave (or Matlab).

3. In Octave/Matlab, change the local working directory to the tutorial folder inside
your scripting working folder . E.g . type:

cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'

Note: 20-sim should be open before running the script!

4. In Octave/Matlab, execute the following command (e.g. type the following case
sensitive command followed by ENTER):

runSimulation

Note: Octave may give a cryptic "undefined near line x column 1" message, if you type
the command as runsimulation instead of runSimulation!

5. Now Octave / Matlab will give a message and ask you to press ENTER to continue.

The model ControlledSystem.emx is loaded into 20-sim and simulated.

6. Again Octave/Matlab will give a message and ask you to press ENTER to continue.

Now the simulation and model will be unloaded.

10. Toolboxes

58120-sim 5.1 Reference Manual

Inspecting the script

To see how the script is made, you can inspect it with a text editor.

1. Open a file browser and go to the tutorials folder (e.g. C:\Users\yourusername
\Documents\20simscripting\Octave\tutorials)

2. Open the file runSimulation.m with a text editor like Notepad.

Core Functions

The core functions of the runSimulation script are:

addpath: The script starts with the command addpath('../library/xxsim'); This will
enable Octave / Matlab to use the 20-sim scripting functions that are stored in the
library subfolder of your scripting working folder.

xxsimConnect: This command opens a connection to 20-sim.

xxSimOpenModel: This command opens a model in 20-sim by giving the filename
including the full path.

xxsimProcessModel: This command will process the model.

xxsimRun: This command will run a simulation.

xxsimCloseModel: This command will remove the simulation model from 20-sim.

These functions are the basis of scripting in 20-sim and will be present in this order in
most scripts. Therefore you can use the script runSimulation.m as a template for any
new script that you create.

Advanced Scripts

Now that we have seen the core functions of a script we will run and check some more
advanced scripts.

1. Open 20-sim.

2. Open Octave (or Matlab).

3. In Octave/Matlab, change the local working directory to the tutorial folder inside
your scripting working folder. E.g . type:

cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'

Set Parameter Values

4. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

SetParameterAndRun

This script will open the model ControlledSystem.emx and run a simulation. Then a
model parameter is changed and a second simulation run is performed. As explained in
the previous topic, you can inspect the script in a text editor.

10. Toolboxes

58220-sim 5.1 Reference Manual

Compared to the basic script you will find a new function:

xxsimSetParameters: This function is used to set the parameter in the model with
the new value.

Multiple Runs

5. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

multipleRun

This script will open the model ControlledSystem.emx and run a simulation multiple
times while changing a parameter. Then a model parameter is changed and a second
simulation run is performed.

Read Parameter Values

6. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

readAndSetParameters

This script will open the model ControlledSystem.emx and run a simulation. Then a
model parameter is read from file and changed accordingly in the model, followed by a
second simulation run.

You will find these new functions:

addpath: An additional path is given (../library/xxlib) to allow addtional (user
defined) functions.

xxlibReadCsv: This function is used to read a parameter name and value from a
spreadsheet file.

Store Simulation Results

7. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

modelVerification

This script will open the model ControlledSystem.emx and run a simulation. After the run
the simulation results are stored and plotted in Octave/Matlab. You will find these new
functions:

xxsimSetLogVariables: Define which variables are going to be logged during the
simulation run.

xxsimGetLogVariables: Export the logged variables after the simulation run to
Octave/Matlab.

Examples

8. In Octave/Matlab, change the local working directory to the tutorial folder. E.g. type:

cd 'C:\Users\yourusername\Documents\20simscripting\examples'

10. Toolboxes

58320-sim 5.1 Reference Manual

here you can find more example scripts.

Writing your own Scripts

Example

We will show you how to write your own scripts using a simple example. We assume that
you have installed a scripting folder and its location is:

'C:\Users\yourusername\Documents\20simscripting'

of course you can use own location. We will copy a 20-sim model to the scripting folder
and write a script that will open this model in 20-sim and run a simulation.

1. Copy the example model FastManipulator.emx tot the Octave\tutorials folder. E.g
copy:

'C:\Program Files (x86)\20-sim 5.1\Models\Examples\Drivetrains

\FastManipulator.emx'

to

'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials

\FastManipulator.emx'

2. Open a text editor (e.g. notepad) and enter the following lines:

run('../library/xxsim/xxsimAddToPath.m');

xxsimConnect();

xxsimOpenModel('FastManipulator.emx');

xxsimProcessModel();

xxsimRun();

xxsimDisconnect();

3. Save the text file as:

'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials

\MyScript.m'

4. Open 20-sim.

5. Open Octave (or Matlab).

6. In Octave/Matlab, change the local working directory. Type in the command line:

cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'

10. Toolboxes

58420-sim 5.1 Reference Manual

7. In Octave/Matlab, run your own script. Type in the command line:

MyScript

Now you will see the model being loaded in 20-sim and a simulation being run.

Writing your own scripts

In the tutorial folder there are more scripts. Use these as a template for writing you own
scripts and follow the guidelines below:

Location

Create your own subfolder inside your scripting working folder. This allows you to
update the 20-sim scripting files when new versions of 20-sim are released.

Functions

You can find help on scripting functions in the 20-sim Editor by selecting Help - Octave
Scripting API.

Scripting in Python10.10.6

Installation for Scripting: Python

What is Python

Python is a general-purpose high-level programming language with an emphasis on code
readability and writing algorithms in fewer lines of code than other programming
languages. Python is open-source and managed by the Python Software Foundation. It
has an extensive standard library and can be extended with many external libraries
including a rapidly growing set of scientific and mathematical libraries such as SciPy,
NumPy and Sympy and an extensive plotting library Matplotlib. 20-sim scripting has
been tested with the following versions of Python: Python 2.7.x, Python 3.4.x-3.7.x (32-
bit and 64-bit).

Installation

During installation of 20-sim, you are asked to install the (optional) Python 3.7
package. We advise to keep the default setting (Yes) which will install the Python 3.7
installation that includes 20-sim scripting support and the following packages: NumPy,
Matplotlib, Sympy, Pandas and IPython. This installation provides just enough support to
get started with 20-sim scripting. However, it does not provide a development IDE or an
extensive set of scientific and mathematical libraries.

https://www.python.org/
http://www.scipy.org/
http://www.numpy.org/
http://www.sympy.org
http://matplotlib.org/
http://www.numpy.org/
https://matplotlib.org/
https://www.sympy.org
https://pandas.pydata.org/
http://ipython.org/

10. Toolboxes

58520-sim 5.1 Reference Manual

Prepare Scripting Folder

20-sim comes with a Scripting Folder that contains documentation of all scripting
functions, the function library and example scripts. You have to install this folder to use
scripting.

Installation

1. Open the Install Scripting program from the Windows Start menu (located under
20-sim 5.1)
- or -
Go to the folder where 20-sim is installed (e.g. C:\Program Files (x86)\20-sim
5.1\Scripting or C:\Program Files (x86)\20-sim 5.1\Scripting) and open
20simScripting.exe

2. This will open a dialog where you can choose where to extract the 20-sim scripting
files. Change the path to a local working folder of your choice (for example: C:
\Users\yourusername\Documents\20simscripting)

20-sim Scripts extraction

Note: To write/modify scripts, the scripting folder should be accessible and writable by
the user. Do not install the scripting folder on C:\Program Files (x86) or C:\Program
Files.

For the remainder of this chapter, we use the name scripting working folder when we
refer to the folder where you just extracted the 20-sim scripting files.

Contents

Your newly created scripting working folder contains a number of subfolders:

1. Models: This folder contains the 20-sim models and data files that are used for the
example and tutorial scripts .

2. Octave and Octave-patch: These folders contain Octave/Matlab scripting
functionality and documentation (see the Scripting in Octave/Matlab section for more
information)

3. Python: This folder contains all Python scripting functionality and documentation:

a. controllab: Folder containing the Python classes that allow communication with
20-sim.

b. documentation: This folder contains the scripting API documentation: a list of
supported functions and their syntax. It is a copy of the help file that you can
open in the 20-sim Editor by selecting Help - Python Scripting API.

c. examples: This folder contains some more advanced scripts.

10. Toolboxes

58620-sim 5.1 Reference Manual

d. tutorials: This folder contains basis scripts with a step by step explanation. You
can use these scripts as a base for your own scripts.

Basic Script

When the scripting files are properly installed in your scripting working folder, we can
run some tutorial scripts. Tutorial scripts are step by step demonstrations of usage of the
scripting functionality in 20-sim. These scripts can be found in the tutorials subfolder of
the scripting working folder. We will start with a basic script that opens and runs a 20-
sim model.

1. Open 20-sim.

2. Open IPython (Interactive Python shell) from the Start menu (under 20-sim 5.1).

3. In IPython, change the local working directory to the tutorial folder inside your
scripting working folder . E.g . type:

cd 'C:\Users\yourusername\Documents\20simscripting\Python'

4. In IPython, execute the following command (e.g. type the following case
sensitive command followed by ENTER):

run main_menu

Note that the run command is specific for IPython. For a standard Python session, you

can start this script on the command line using: python.exe menu.py. This command

will show a menu with several options including T for Tutorials.

IPython session for the tutorials

10. Toolboxes

58720-sim 5.1 Reference Manual

5. Select option T - Tutorials (press t, ENTER) to show the tutorial menu:

 - Tutorial menu -

Select a tutorial:

1 - Run a simulation.

2 - Set a parameter in 20-sim, then run a simulation.

3 - Execute multiple runs with a changing parameter.

4 - Basic simulation result analysis.

5 - Read a parameter from a CSV file and set it in 20-sim.

6 - Retrieve 20-sim model variables and their properties.

Or choose a menu option:

 Q - Quit

 I - Show the introduction text again.

Your choice > 1

6. Press ENTER again to show the available tutorials and choose option 1 Run a
simulation followed by ENTER.

In this tutorial the scripting interface will:

 - Open a 20-sim model (starting 20-sim if necessary)

 - Process and run the model

 - Close the 20-sim model

7. Press ENTER

The Python scripting interface will now connect to 20-sim.

If 20-sim is not running it will be started automatically.

8. Press ENTER

Connecting, please wait...

The scripting interface has successfully connected to 20-sim.

The tutorial model will be opened.

If you still have an open model. SAVE YOUR MODEL, unsaved changes

will be overwritten.

9. Press ENTER

The model ControlledSystem.emx has been opened in 20-sim.

The model will be processed and simulated.

The 20-sim plot window will open.

10. Press ENTER to load the model ControlledSystem.emx in 20-sim and to simulate it.

The tutorial will now close the 20-sim model and exit.

11. Press ENTER to close the simulation and this 20-sim model

10. Toolboxes

58820-sim 5.1 Reference Manual

Inspecting the script

Tutorial completed!

Do you want to see the source code? [y/N]

To see how the script is made, you can inspect it by choosing y. This will print the
relevant script lines on the Python console. You can also open the real script in a text
editor like Notepad by opening the file: C:\Users\yourusername\Documents

\20simscripting\Python\tutorials\run_simulation.py.

Important Functions

The important functions / lines of the runSimulation script are:

import controllab: Tell Python to load the Controllab package with the 20-sim
scripting functions in the XXSim() class.

my20sim = controllab.XXSim(): create a 20-sim scripting object

my20sim.connect(): This command opens a connection to 20-sim.

my20sim.set_scriptmode(): Tell 20-sim that we are in scripting mode (does not
show confirmation dialogs)

my20sim.open_model(): This command opens a model in 20-sim by giving the file
name including the full path.

my20sim.process_model(): This command will process the model.

my20sim.run(): This command will run a simulation.

my20sim.close_model(): This command will remove the simulation model from
20-sim.

These functions are the basis of scripting in 20-sim and will be present in this order in
most scripts.

Python Scrypting Help

When you need help on Python Scrypting for 20-sim:

1. In the Editor from the Help menu select Python Scripting Api.

This will open a Webhelp with documentation on Python Scripting and all functions that
are supported.

10. Toolboxes

58920-sim 5.1 Reference Manual

Writing your own Scripts

Example

We will show you how to write your own scripts using a simple example. We assume that
you have installed a scripting folder and its location is:

'C:\Users\yourusername\Documents\20simscripting'

Of course you can use own location. We will copy a 20-sim model to the scripting folder
and write a script that will open this model in 20-sim and run a simulation.

1. Copy the example model FastManipulator.emx to the Octave\tutorials folder. E.g
copy:

'C:\Program Files (x86)\20-sim 5.1\Models\Examples\Drivetrains

\FastManipulator.emx'

to

'C:\Users\yourusername\Documents\20simscripting\Python\tutorials

\FastManipulator.emx'

2. Open a text editor (e.g. notepad) and enter the following lines:

import controllab

xxsim = controllab.XXSim()

xxsim.connect()

xxsim.open_model('FastManipulator.emx')

xxsim.process_model()

xxsim.run()

xxsim.disconnect()

3. Save the text file as:

'C:\Users\yourusername\Documents\20simscripting\Python\tutorials

\myscript.py'

4. Open 20-sim.

5. Open IPython.

10. Toolboxes

59020-sim 5.1 Reference Manual

6. In IPython, change the local working directory. Type in the command line:

cd 'C:\Users\yourusername\Documents\20simscripting\Python\tutorials'

7. In IPython, run your own script. Type in the command line:

run myscript

Now you will see the model being loaded in 20-sim and a simulation being run.

Writing your own scripts

In the tutorial folder there are more scripts. Use these as a template for writing your
own scripts and follow the guidelines below:

Location

Create your own subfolder inside your scripting working folder. This allows you to
update the 20-sim scripting files when new versions of 20-sim are released.

Functions

You can find help on scripting functions in the 20-sim Editor by selecting Help - Python
Scripting API.

Advanced Functionality

Python Distributions

When you need more functionality or prefer to use an IDE with syntax highlighting and
debugging support, it is strongly advised to install one of the following external Python
distributions or IDEs:

Anaconda: The World's Most Popular Python/R Data Science Platform.

Spyder: the Scientific PYthon Development EnviRonment with a powerful IDE for the
Python language with advanced editing, interactive testing, debugging and
introspection features and a a numerical computing environment based on SciPy,
NumPy, Matplotlib and IPython.

Python, extended with the Visual Studio IDE and Python Tools for Visual Studio.

Running 20-sim scripts in Python distributions

To add the 20-sim scripting support to your Python distribution, you can use the Python
pip command (installed by default since Python 2.7.10 and 3.4.x) to install the Controllab
package.

1. Open a Windows command prompt (cmd.exe) and type:

cd YOUR_PYTHON_INSTALLATION_DIR\

python -m pip install --no-cache-dir --upgrade "C:\Program Files (x86)

\20-sim 5.1\Scripting\Python\whl\controllab-1.3.3-py2.py3-none-any.whl"

Note: use C:\Program Files\20-sim 5.1\ on 32-bit Windows systems.

https://www.anaconda.com
http://pythonhosted.org/spyder/
http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/
http://ipython.org/
https://www.python.org/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/

10. Toolboxes

59120-sim 5.1 Reference Manual

Manual installation of the Controllab package in Python

10.11 Unity Toolbox

Unity Toolbox10.11.1

Unity is a game engine developed by Unity Technologies that allows you to create high
visual fidelity, 3D real-time interactive user experiences. The Unity Toolbox allows you
to couple animations created in Unity with a 20-sim simulation model. When you run the
20-sim simulation, the Unity application is shown and moves/changes with the
simulation.

Features

The Unity Toolbox will allow you to couple variables from a 20-sim model to objects in
Unity. You can for example couple the position of an object with the simulated position.
Every time you start a 20-sim simulation, a Unity window will be shown and changes/
moves while the 20-sim simulation advances.

The Unity Toolbox does exactly the same as the 20-sim 3D Animation, but is far more
advanced. In Unity far more objects are available, the quality of rendering (shadow,
light , etc.) is far better and there are more display options (single screen, multiple
screen, VR/AR headsets etc.).

License

The Unity Toolbox does not come standard with 20-sim. It has to be purchased
separately. If you have purchased the Unity Toolbox you will receive a license key that
will enable the toolbox in 20-sim.

Supported Unity Versions

The Unity Toolbox is verified to work with Unity 2018.4, 2019.2, 2020.3.x (LTS),
2021.2.9f1. It is possible that it will work in intermediate or newer versions of Unity.

Example

To see a Unity Animation in action (if you have a valid license) open the example model
Examples\2D Mechanics\ScaraRobot_UnityAnimation.emx.

Getting Started

To get started and learn to work with the Unity Toolbox, follow these steps:

1. Install the Unity Toolbox

2. Read the next sections of this help file.

https://unity.com

10. Toolboxes

59220-sim 5.1 Reference Manual

License Required

The Unity Toolbox is not part of the set of standard toolboxes of 20-sim. It has to be
purchased separately. When you have purchased the Unity Toolbox, you will receive a
license code for 20-sim that will enable the plug-in to establish a run-time
communication between 20-sim and Unity.

License10.11.2

Purchase

The Unity Toolbox does not come standard with 20-sim. It has to be purchased
separately. If you have purchased the Unity Toolbox you will receive a license key that
will enable the toolbox in 20-sim.

No License

Without a valid license, the Unity Toolbox plug-in will stop the simulation and present an
error message in the 20-sim Editor:

Message: Could not find Unity toolbox license.

Error Message when you do not have a license for the Unity Toolbox.

10. Toolboxes

59320-sim 5.1 Reference Manual

How does the Unity Toolbox work?10.11.3

Plug-in

The Unity Toolbox comes with a plug-in that has to be installed in Unity. The plug-in
connects objects created in Unity with variables from a 20-sim model:

1. You can connect objects manually with 20-sim variables.

2. You can import a 20-sim 3D Scenery into Unity.

Coupling with 20-sim

When the Unity 3D Animation is completed and all objects have been connected with the
proper variables from the 20-sim model, you can generate an .fmu (Functional Mockup
Interface) file. You can drag and drop the .fmu file into the 20-sim model.

Simulation

The .fmu file will connect the 20-sim variables with the Unity application. When you start
the simulation, the Unity application will start up. The Unity application will show moves/
changes during simulation. Set the 20-sim simulation to run in real-time to show the
Unity application at the right speed.

Export

If you want to use the model with Unity Application on another location, make sure that
you copy both the 20-sim model (.emx file) and the Unity application (.fmu file).

Installing10.11.4

To get the Unity Toolbox running, you need a working version of Unity and install a plug-
in for the Unity project that you are working on.

Unity

Unity is a commercial package by Unity Technologies. You can purchase the commercial
Pro version or the free Personal version. There are various videos available on Youtube
that show you how to install Unity. Note that the Unity Toolbox has been verified to work
with Unity 2018.4, 2019.2 and 2020.3.x (LTS). It is possible that it will work in newer
versions of Unity.

Plug-In

The Unity Toolbox comes with a plug-in that has to be installed in Unity. The plug-in is
located in the 20-sim installation folder, usually at:

C:\Program Files (x86)\20-sim 5.1\addons\unity\20-sim-unity-toolbox-

x.y.z.unitypackage

Here x,y,z are the version number of the plug-in. For every new project in Unity, you
have to install the plug-in in your version of Unity:

10. Toolboxes

59420-sim 5.1 Reference Manual

1. Open Unity and open/start a new (3D) project

2. From the Assets menu select Import Package and Custom Package.

The 20-sim Unity Toolbox ready for use.

3. Select the plug-in that is located in the 20-sim installaton folder:
 C:\Program Files (x86)\20-sim 5.1\addons\unity\20-sim-unity-toolbox-

x.y.z.unitypackage.

4. Click Import.

5. From the GameObject menu select 20-sim and 20-sim Unity Toolbox.

Now the plug-in is installed and ready for use.

10. Toolboxes

59520-sim 5.1 Reference Manual

The 20-sim Unity Toolbox ready for use.

In the Hierarchy you will see the 20-sim Unity Toolbox listed. You can start to build your
Unity application now.

Example: Cube10.11.5

GameObjects

When you have installed the 20-sim Unity Toolbox correctly, it should be visible in Unity
in the Hierarchy at the left. You can insert all kinds of Game Objects and connect them
with variables coming from the 20-sim model. Let's start with a Cube.

1. From the GameObject menu select 3D Object - Cube.

Now Cube object is visibe in the Hierachy.

10. Toolboxes

59620-sim 5.1 Reference Manual

Creating a Cube.

2. In the Hierachy select the Cube object.

3. In the Inspector at the bottom right click Add Component - 20-sim Unity
Toolbox - 20-sim coordinates.

Now you will see a 20-sim Variable component in the Inspector. Here you can connect
the properties of the Cube with variables in your 20-sim model. If our 20-sim model
contains a Submodel named Cube with three variables x, y and z, we can connect these
with the position of the cube.

4. In the 20-sim Variable component keep the Input/Output button on Input.

5. Add the variable names to the x-, y- and z-axis as shown in the next figure.

10. Toolboxes

59720-sim 5.1 Reference Manual

Connecting the position of the Cube with 20-sim variables.

In a similar manner you can create many more Game Objects and connect them with
20-sim variables.

Building a Unity Animation

When all objects have been defined we can generate a Unity Animation. Unity
Animations are stored in an .fmu file.

6. In the Hierarchy at the left select 20-sim Unity Toolbox.

7. In the Inspector at the right go to 20-sim Unity Toolbox and Build Unity
Animation.

8. Enter the Export Location (a folder where you have read and write access) and
Animation Name (e.g. Cube) and click Build Unity Animation.

10. Toolboxes

59820-sim 5.1 Reference Manual

Building a Unity Animation.

Now the file Cube.fmu will be created in the export location that you have chosen.

Importing the Unity Animation in 20-sim

We will drag and drop the Cube.fmu file into 20-sim and connect the x,y and z input with
signal generators.

9. Open 20-sim

10. From the export location, drag and drop the file Cube.fmu to the Editor.

11. From the Signal/Sources library drag and drop the following submodels in the
Editor:

WaveGenerator-Sine

WaveGenerator-Cosine

WaveGenerator-Saw

12. Connect the sine model with the Cube model (x), the cosine model with Cube (y)
and the saw model with Cube (z).

10. Toolboxes

59920-sim 5.1 Reference Manual

Connecting the FMU.

Running the Unity Animation

When you simulate the 20-sim model, a Unity Animation will pop up and run with the
simulation. Generally the simulation will be much too fast to follow. Therefore we must
force the simulation to run in real-time.

13. In the Editor, from the Model menu select Start Simulator.

14. In the Simulator from the Properties Menu select Run.

Forcing a real-time simulation.

15. In the Run Properties dialog click the More button and select Attempting Realtime
Simulation On.

10. Toolboxes

60020-sim 5.1 Reference Manual

16. Click Ok to close the Run Properties dialog.

17. From the Simulation menu select Run.

Now you will see a Unity Animation window appear showing the cube moving.

The unity Animation with the cube.

18. In case Unity Animation Window is displayed in windowed mode, Click Alt-Enter to
change the full screen mode.

Example: Scara Robot10.11.6

Scenery

The easiest way to start building a Unity Animation is by importing a 3D Animation from
20-sim. First you build the 3D Animation in 20-sim with simple objects and make sure it
is running correctly. Then you import the 3D Animation to Unity and use the power of
Unity to create the Animation. Here we will show how this is done with the Scara Robot
example model.

1. Open 20-sim.

2. From the Examples\2D Mechanics library drag and drop the ScaraRobot model.

3. Open the Simulator and run a simulation.

4. Put you mouse pointer on top of the 3D Animation and from the right mouse menu
select Plot Properties.

10. Toolboxes

60120-sim 5.1 Reference Manual

Opening the 3D Properties.

5. In the 3D Properties from the File menu select Save Scene.

6. Click Yes to save the whole scenery.

7. Save the scenery in a location where you have read and write access using the
name ScaraRobot.scn.

Now the 3D Animation is stored in a scenery file.

Opening the 3D Properties.

10. Toolboxes

60220-sim 5.1 Reference Manual

Import in Unity

The next job is to import the scenery file into Unity and create a Unity Animation.

8. Open Unity.

9. From the GameObject menu select 20-sim and 20-sim Unity Toolbox.

10. In the Hierarchy at the left select 20-sim Unity Toolbox.

11. In the Inspector at the right go to 20-sim Unity Toolbox and Import 20-sim
Scenery File.

12. Click the Browse button to find the scenery file ScaraRobot.scn.

13. Click the Import 20-sim Scenery button to import the scenery file.

The Scara Robot should now be visible in the scene at the center.

Importing a scenery file in Unity.

Building the Unity Animation

Now we could work on the scene and enrich it by adding all kind of GameObjects. We
will leave this up to your own imagination. The final part of the job is to create a Unity
Animation, generate an .fmu file and import this into 20-sim.

14. In the Hierarchy at the left select 20-sim Unity Toolbox.

15. In the Inspector at the right go to 20-sim Unity Toolbox and Build Unity
Animation.

10. Toolboxes

60320-sim 5.1 Reference Manual

16. Enter the Export Location (a folder where you have read and write access) and
Animation Name (e.g. ScaraRobot) and click Build Unity Animation.

Importing the Unity Animation into 20-sim

17. Open 20-sim with the Scara Robot model.

18. Drag and drop the file ScaraRbot.fmu to the Editor.

Connecting the FMU.

The Unity Animation does not have any inputs. It uses global variables to connect the
simulation to the animation. Therefore we do not have to make connections.

Running the Unity Animation

When you simulate the 20-sim model, a Unity Animation will pop up and run with the
simulation. Generally the simulation will be much too fast to follow. Therefore we must
force the simulation to run in real-time.

19. In the Editor, from the Model menu select Start Simulator.

20. In the Simulator from the Properties Menu select Run.

21. In the Run Properties dialog click the More button and select Attempting Realtime
Simulation On.

22. Click Ok to close the Run Properties dialog.

23. From the Simulation menu select Run.

Now you will see a Unity Animation window appear showing the Scara Robot moving.

10. Toolboxes

60420-sim 5.1 Reference Manual

24. Click Alt-Enter to change the Unity Animation from full screen to a window.

20-sim Inspector Properties10.11.7

If the 20-sim Unity Toolbox is installed, any GameObject can be connected to the
variables coming from a 20-sim simulation. The following object properties can specified.

Input / Output

In most cases the variables that are calculated in 20-sim and epxorted to Unity. You
can keep the Input/Output button to its default setting: Input.

In some cases, however, a variable coming from Unity and exported to 20-sim. Then
you have to set the Input/Output button to Output.

20-sim Coordinates / Unity Coordinates

When you add the 20-sim Toolbox to a GameObject, you can use 20-sim coordinates or
Unity Coordinates:

20-sim uses a right-handed coordinate system for the position and rotation of
objects.

Unity uses a left-handed coordinate system frame.

Position / Rotation / Scale

You can couple 20-sim variables with the position, orientation and scale of objects, which
works just like the position, orientation and scale of a 20-sim 3D Animation.

Scripting

In Unity you can create script in C# to tailor make GameObjects. If you choose the
Scripting option in the 20-sim Variable section, you can connect 20-sim variables with
the public member variables of your C# script.

Importing 3D Scenery10.11.8

3D animations created in 20-sim can be exported to Unity. You first have to create a 20-
sim model, simulate it and create a 3D Animation. From the 3D Animation, you can
create a scenery file that can be imported in Unity:

1. In 20-sim go to the Simulator and put you mouse pointer on top of the 3D
animation.

2. From the right mouse menu, select Plot Properties.

3. In the Plot Properties window, select File - Save Scene.

Now you can open a Unity 3D project and install the 20-sim Unity Toolbox plug-in. When
this is done properly, the Inspector at the left will show a 20-sim Unity Toolbox.

10. Toolboxes

60520-sim 5.1 Reference Manual

You can now import the 20-sim 3D animation into your Unity project:

4. In the Inspector at the right go to the 20-sim Unity Toolbox and Import 20-sim
Scenery File.

8. Click the Browse button to find the scenery file ScaraRobot.scn.

9. Click the Import 20-sim Scenery button to import the scenery file.

10. Toolboxes

60620-sim 5.1 Reference Manual

Generating the Unity Animation10.11.9

In Unity when you select the 20-sim Unity Toolbox from the Hierachy at the left, a menu
named 20sim unity Toolbox (scripting) is visible in the Inspector at the right. You can
use this menu to create a Unity Animation.

The 20-sim Unity Toolbox can create a standalone Unity application.

1. In the Export Location, choose the folder where you want to store the .fmu file with
the Unity application.

2. In the Animation Name section enter the file name for the .fmu file.

3. Click on the Build Unity Animation button.

Now an .fmu file will be generated. You can drag and drop this file into your 20-sim
model to run the animation.

10. Toolboxes

60720-sim 5.1 Reference Manual

Drag and Drop to 20-sim10.11.1
0

Once you have created the .fmu file with the Unity application, you can drag and drop it
to your 20-sim model.

1. Open your 20-sim model.

2. Drag and drop the .fmu file from a File Explorer into the 20-sim Editor.

Scenery File

If the .fmu file was generated from an 20-sim 3D Animation using a scenery file, it will
only run properly when dropped into the original 20-sim model.

Inputs

If the .fmu was created from scratch assigning variables to GameObjects, these
variables will be inputs in the .fmu in 20-sim. You have to connect these inputs with the
proper generators to get the animation working.

10. Toolboxes

60820-sim 5.1 Reference Manual

Running the Unity Animation10.11.1
1

When you have inserted the .fmu file with the Unity application into 20-sim, you can start
a simulation and the Unity Animation will appear. Generally the simulation will be much
to fast. You have to force the simulation to run in real-time, to see a good result.

1. In the 20-sim Editor, from the Model menu select Start Simulator.

2. In the 20-sim Simulator, from the Properties menu select Run.

3. In the Run Properties window click the More button.

4. Set the Attempting Realtime Simulation button to On and click OK.

Make sure the simulation is set to realtime.

5. In the 20-sim Simulator, from the Simulation menu select Run.

Now Unity application will open and the simulation will start.

10. Toolboxes

60920-sim 5.1 Reference Manual

6. Click Alt-Enter to change the Unity Animation from full screen to a window.

11. Library

61020-sim 5.1 Reference Manual

11 Library

11.1 Bond Graph

Bond Graph Models11.1.1

Bond graphs are a network-like description of physical systems in terms of ideal physical
processes. With the bond graph method we split up the system characteristics into an
(imaginary) set of separate elements. Each element describes an idealized physical
process. To facilitate drawing of bond graphs, the common elements are denoted by
special symbols. This library contains all kind of bond graph elements. If you want to
know more about modeling with bond graphs, please have a look at the modeling
tutorial.

The standard library contains single dimensional bond graph elements. The 2d Library
contains elements with multi-bonds of size 2 and the 3d library contains elements with
multi-bonds of size 3.

C11.1.2

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams, Bond Graphs.

Description

This model represents a power continuous storage element. The element has a
preferred effort out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred flow out causality. The
constitutive equations then contain a derivation.

effort out causality (preferred):

state = int(p.f) + state(0);
p.e = state/c;
output = state;

flow out causality:

state = c*p.e;
p.f = d state / dt;
output = state;

Interface

Ports Description

p Input port of the storage element.

11. Library

61120-sim 5.1 Reference Manual

Causality

preferred effort out A flow out causality results in a derivative

constitutive equation.

Outputs

output The output signal is equal to the state.

Parameters

c The storage element constant.

Initial Values

state(0) The initial value of the storage element.

CC11.1.3

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams, Bond Graphs.

Description

This model represents a two port C-element. Normally the equation of a two port C-
element is written in vector notation as:

p.e = (1/C) * int(p.f)

When the C matrix is singular simulation will not be possible. Therefore the element is
described in a safer notation as:

p.e = A * int(p.f) , with A = (1/C);

Both ports have a preferred effort out causality:

state1 = int (p1.f);
state2 = int (p2.f);
p1.e = a11*state1 + a12*state2;
p2.e = a21*state1 + a22*state2;

Interface

Ports Description

p1,p2 Input ports of the storage element.

Causality

11. Library

61220-sim 5.1 Reference Manual

preferred effort out p1

preferred effort out p2

A flow out causality results in a derivative

constitutive equation.

Outputs

state1

state2

Parameters

a11, a12, a21, a22 The storage element constants.

Initial Values

state1_initial

state2_initial

The initial values of the storage element.

De11.1.4

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal effort detector. The flow is always 0.

effort = p.e;
p.f = 0;

Ports Description

p Input port of the effort source.

Causality

fixed flow out

Outputs

effort The detected effort

11. Library

61320-sim 5.1 Reference Manual

Df11.1.5

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal flow detector. The effort is always 0.

p.e = 0;
flow = p.f;

Ports Description

p Input port of the flow source.

Causality

fixed effort out

Outputs

flow The detected flow

EffortSensor11.1.6

Library

System , Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This model can be inserted in any bond to yield the effort of that bond as an output
signal.

 To ensure success, use drag and drop to place the sensor exactly on top in the middle
of the bond. As a result the model will be automatically connected.

Interface

Ports

p1, p2 Input and output port of the effort sensor.

11. Library

61420-sim 5.1 Reference Manual

Outputs

effort Effort of the bond.

EnergySensor11.1.7

Library

System , Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This model can be inserted in any bond to yield the energy that is carried through that
bond as an output signal.

 To ensure success, use drag and drop to place the sensor exactly on top in the middle

of the bond. As a result the model will be automatically connected.

Interface

Ports

p1, p2 Input and output port of the energy sensor.

Outputs

E Energy carried through the bond.

FlowSensor11.1.8

Library

System , Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This model can be inserted in any bond to yield the flow of that bond as an output signal.

11. Library

61520-sim 5.1 Reference Manual

To ensure success, use drag and drop to place the sensor exactly on top in the middle of

the bond. As a result the model will be automatically connected.

Interface

Ports

p1, p2 Input and output port of the flow sensor.

Outputs

flow Flow of the bond.

GY11.1.9

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal gyrator, a power continuous relation between the effort
of one port and the flow of the other port and vice-versa. The model can have both ports
with an effort out causality or both ports with a flow out causality:

effort out causality:

p1.e = r * p2.f;
p2.e = r * p1.f;

flow out causality:

p1.f = 1/r * p2.e;
p2.f = 1/r * p1.e;

Interface

Ports Description

p1, p2 Input and output port of the gyrator.

Causality

p1 equal p2 The causality of both ports must be equal.

Parameters

11. Library

61620-sim 5.1 Reference Manual

r Gyration ratio.

I11.1.10

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams, Bond Graphs.

Description

This model represents a power continuous storage element. The element has a
preferred flow out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred effort out causality. The
constitutive equations then contain a derivation.

flow out causality (preferred):

state = int(p.e) + state(0);
p.f = state/i;
output = state;

effort out causality:

state = i*p.f;
p.e = d state / dt;
output = state;

Interface

Ports Description

p Input port of the storage element.

Causality

preferred flow out An effort out causality results in a derivative

constitutive equation.

Outputs

output The output signal is equal to the state.

Parameters

i The storage element constant.

Initial Values

state(0) The initial value of the storage element.

11. Library

61720-sim 5.1 Reference Manual

II11.1.11

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams, Bond Graphs.

Description

This model represents a two port I-element. Normally the equation of a two port I-
element is written in vector notation as:

p.f = (1/I) * int(p.e)

When the I matrix is singular simulation will not be possible. Therefore the element is
described in a safer notation as:

p.f = A * int(p.e) , with A = (1/I);

Both ports have a preferred effort out causality:

state1 = int (p1.e);
state2 = int (p2.e);
p1.f = a11*state1 + a12*state2;
p2.f = a21*state1 + a22*state2;

Interface

Ports Description

p1,p2 Input ports of the storage element.

Causality

preferred effort out p1

preferred effort out p2

A flow out causality results in a derivative

constitutive equation.

Outputs

state1

state2

Parameters

a11, a12, a21, a22 The storage element constants.

Initial Values

state1_initial

state2_initial

The initial values of the storage element.

11. Library

61820-sim 5.1 Reference Manual

IC11.1.12

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is a combination of an I storage element and a C storage element.
Consequently the constitutive equation must be written as a matrix-vector multiplication.
The constitutive equation of this element is given below:

 state1 = int(p1.f);
 state2 = int(p2.e);
 p1.e = state1*a11 + state2*a21;
 p2.f = state1*a21 + state2*a22;
 output2 = state1;
 output2 = state2;

The Maxwell reciprocity demands a12 = a21. Therefore only 3 matrix parameters are
necessary.

Interface

Ports Description

p1,p2 Input ports of the storage element.

Causality

fixed effort out p1

fixed flow out p2

Outputs

output1, output2 The output signals are equal to the states.

Parameters

a11,a21,a22 The storage element constants.

Initial Values

state1(0), state2(0) The initial values of the storage element.

11. Library

61920-sim 5.1 Reference Manual

MGY11.1.13

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal modulated gyrator, a power continuous relation between
the effort of one port and the flow of the other port and vice-versa. The gyration ratio
can be set to a certain (fluctuating) value, given by an input signal. The model can have
both ports with an effort causality or both ports with a flow causality:

effort out causality:

p1.e = input * p2.f;
p2.e = input * p1.f;

flow out causality:

p1.f = 1/input * p2.e;
p2.f = 1/input * p1.e;

Interface

Ports Description

p1, p2 Input and output port of gyrator.

Causality

p1 equal p2 The causality of both ports must be equal.

Inputs

input Modulated gyration ratio.

MR11.1.14

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents a linear friction/resistor equation. It can have an effort as well as
a flow causality. In that case the constitutive equation, as shown below, is simply
inverted. The friction/resistor parameter can be set to a (fluctuating) value, given by an
input signal.

effort out causality:

11. Library

62020-sim 5.1 Reference Manual

p.e = input*p.f

flow out causality:

p.f = p.e/input

Interface

Ports Description

p Input port of the R-element.

Causality

indifferent

Inputs

input The (modulated) friction/resistor parameter.

MSe11.1.15

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal modulated effort source. The effort can be set to a
(fluctuating) value given by an input signal. The flow is indifferent.

p.e = input;

Interface

Ports Description

p Output port of the effort source.

Causality

fixed effort out

Inputs

input Modulation signal.

11. Library

62120-sim 5.1 Reference Manual

MSf11.1.16

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal modulated flow source. The flow can be set to a
(fluctuating) value given by an input signal. The effort is indifferent.

p.f = input;

Interface

Ports Description

p Output port of the flow source.

Causality

fixed flow out

Inputs

input Modulation signal.

MTF11.1.17

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal modulated transformer. The model represents a power
continuous relation between the efforts and flows of both its ports. The transform ratio
can be set to a certain (fluctuating) value, given by an input signal. The causality is
always mixed: one port has an effort out causality while the other has a

flow out causality:

p1.e = input * p2.e;
p2.f = input * p1.f;

or:

11. Library

62220-sim 5.1 Reference Manual

p2.e = 1/input * p1.e;
p1.f = 1/input * p2.f;

Interface

Ports Description

p1, p2 Input and output port of the transformer.

Causality

p1 notequal p2

Inputs

input Modulated transform ratio.

OneJunction11.1.18

Library

Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This junction represents a power continuous (no energy storage, dissipation or
generation) connection of elements. The sum of the efforts on all ports is zero and the
flows on all ports are equal. The constitutive equations are for example:

p1.e + p2.e - p3.e - p4.e = 0;

p1.f = p2.f = p3.f = p4.f;

flow = p4.f;

A one junction has only one initial port p defined. Because any number of bonds may be
connected, successive connected bonds are named p1, p2, p3 etc.

The plus or minus signs of the effort equation depend on the direction of the bonds. A
bond pointing towards the one junction results in a plus sign and vice-versa. Only one
port of a one junction may determine the flow. In the example port p4 determines the
flow.

Multi Bonds

Bonds with a size larger than one (multi bonds) can also be connected to a one junction.
Al connected bonds, however, must have the same size.

11. Library

62320-sim 5.1 Reference Manual

p1.e + p2.e - p3.e + p4.e = 0;

p1.f = p2.f = p3.f = p4.f;

flow = p4.f;

Naming conventions are equal to those of the single bond (size 1) junctions. Successive
connected bonds are named p1, p2, p3 etc. To denote single elements of a multibond,
matrix notation is used. E.g. the effort of bond number 3 of a multibond p2 can be
denoted as p2.e[3] (columnvector notation) or p2.e[3,1] (matrix notation).

Interface

Ports Description

p[any] Any number of ports may be connected.

Causality

1_effort p Only one port may have an effort out causality (as

seen from the element).

Outputs

flow The output signal is equal to the flow of the ports.

Limitations

All connected bonds must have the same size.

OneJunction-Activity11.1.19

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This junction is equal to a normal one junction but monitors the powerflows through the
connected bonds. If you use this junction and connect some bonds, it could look like the
figure below. The bond numbers are important for identification. You can see them by
clicking Port Names from the View menu.

11. Library

62420-sim 5.1 Reference Manual

 The constitutive equations for this example are:

p1.e - p2.e - p3.e - p4.e = 0;
p1.f = p2.f = p3.f = p4.f;
flow = p4.f;

The powerflows through the junction are monitored:

power = p.e .* p.f;

Note that power is a vector with a size equal to the number of bonds that are attached to
the junction. The first element of the vector is the power of the first bond (p1 in the
example figure), the second element is the power of the second bond (p2 in the example
figure) and so on. To see which bonds are active and which bonds are not, the activity is
calculated:

activity = int (abs (power));

To get an easy comparison, the relative activity is calculated:

maximum_activity = max (activity);
relative_activity = activity ./ maximum_activity

Interface

Ports Description

p[any] Any number of ports may be connected.

Causality

1_effort p Only one port may have a effort out causality (as

seen from the element).

Outputs

flow The output signal is equal to the effort of the ports.

Variables

power Vector of which the elements are the powers of the

connected bonds.

11. Library

62520-sim 5.1 Reference Manual

activity Vector of which the elements are the integrated

absolute powers of the connected bonds.

relative_activity Vector of which the elements are the relative

activities of the connected bonds.

Limitations

All connected bonds must have size 1.

PowerSensor11.1.20

Library

System , Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This model can be inserted in any bond to yield the power that is carried through that
bond as an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of
the bond. As a result the model will be automatically connected.

Interface

Ports

p1, p2 Input and output port of the power sensor.

Outputs

E Power carried through the bond.

11. Library

62620-sim 5.1 Reference Manual

Power Splitter11.1.21

Library

System , Bond Graph

Use

Domains: Continuous. Size: n-D. Kind: Bond Graphs.

Description

This model can be used to split a multi-bond into single bonds or vice versa. Default 2

bonds can be connected. Use the right mouse menu and choose Edit Implementation to

change the number of bonds.

Interface

Inputs/Outputs

P(any)

p

Multi-bond (dimension [n,m]).

single bonds (a total of n*m)

Note

The multi-bond and corresponding single bonds must have opposite orientations. I.e.
when the multi-bond is pointing towards the the power-splitter, all single bonds must
point from the power splitter and when the multi-bond is pointing from the the power-
splitter, all single bonds must point towards the signal splitter.

PSensor11.1.22

Library

System , Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This model can be inserted in any bond to yield the integral of the effort of that bond as
an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of
the bond. As a result the model will be automatically connected.

Interface

Ports

p1, p2 Input and output port of the flow sensor.

11. Library

62720-sim 5.1 Reference Manual

Outputs

p Integral of the effort of the bond.

Qsensor11.1.23

Library

System , Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This model can be inserted in any bond to yield the integral of the flow of that bond as
an output signal.

To ensure success, use drag and drop to place the sensor exactly on top in the middle of
the bond. As a result the model will be automatically connected.

Interface

Ports

p1, p2 Input and output port of the flow sensor.

Outputs

q Integral of the flow of the bond.

R11.1.24

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

11. Library

62820-sim 5.1 Reference Manual

Description

This model represents a linear friction/resistor equation. It can have an effort out as well
as a flow out causality. In the last case the constitutive equation, as shown below, is
simply inverted.

effort out causality:

p.e = r*p.f;

flow out causality:

p.f = p.e/r;

Interface

Ports Description

p Input port of the R-element.

Causality

indifferent

Parameters

r The friction/resistor parameter.

Se11.1.25

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal effort source. The effort can be set to a certain constant
value, the flow is indifferent.

p.e = s;

Ports Description

p Output port of the effort source.

Causality

fixed effort out

Parameters

s The constant value of the generated effort

11. Library

62920-sim 5.1 Reference Manual

Sf11.1.26

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal flow source. The flow can be set to a certain constant
value, the effort is indifferent.

p.f = s;

Interface

Ports Description

p Output port of the flow source.

Causality

fixed flow out

Parameters

s The constant value of the generated flow.

SGY11.1.27

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal gyrator with gyration ratio 1. The model represents a one
to one power continuous relation between the effort of one port and the flow of the other
port and vice-versa. The model can be used to transform a C element into a I element
etc. The model can have both ports with an effort causality or both ports with a flow
causality:

effort out causality:

p1.e = p2.f;
p2.e = p1.f;

flow out causality:

11. Library

63020-sim 5.1 Reference Manual

p1.f = p2.e;
p2.f = p1.e;

Interface

Ports Description

p1, p2 Input and output port of the gyrator.

Causality

p1 equal p2

STF11.1.28

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal transformer with transform ratio 1. The model has no
real effect but allows for domain changes (one port having another domain as the
other). The model represents a power continuous relation between the efforts and flows
of both its ports. The causality is always mixed: one port has an effort causality while
the other has a flow causality:

p1.e = p2.e
p2.f = p1.f

or:

p2.e = p1.e
p1.f = p2.f

Interface

Ports Description

p1, p2 Input and output port of the simple transformer.

Causality

p1 notequal p2 The causality of both ports must be different.

11. Library

63120-sim 5.1 Reference Manual

SwitchingOneJunction11.1.29

Library

Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This junction represents a switching 1 junction. Depending on the condition value it can
connect / disconnect additional elements to / from the bond graph.

The p12 junction port is connected when condition <> 0. The sum of the efforts on all
three ports is zero and the flows on all ports are equal.
When disconnected (condition == 0), the effort and flow of port p12 are both zero. Ports
p1 and p2 are still connected (flow = zero, efforts are equal).

Interface

Ports

p1, p2 Input and output port of the 1 junction.

p12 Conditional port (only connected when condition evaluates

to a non-zero value)

Inputs

condition Switching condition (non-zero value = connected)

Limitations

All connected bonds must have the same size.

SwitchingZeroJunction11.1.30

Library

Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This junction represents a switching 0 junction. Depending on the condition value it can
connect / disconnect additional elements to / from the bond graph.

The p12 junction port is connected when condition <> 0. The sum of the flows on all
three ports is zero and the efforts on all ports are equal.
When disconnected (condition == 0), the effort and flow of port p12 are both zero. Ports
p1 and p2 are still connected (effort = zero, flows are equal).

11. Library

63220-sim 5.1 Reference Manual

Interface

Ports

p1, p2 Input and output port of the 1 junction.

p12 Conditional port (only connected when condition evaluates

to a non-zero value)

Inputs

condition Switching condition (non-zero value = connected)

Limitations

All connected bonds must have the same size.

TF11.1.31

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This model represents an ideal transformer. The model represents a power continuous
relation between the efforts and flows of both its ports. The causality is always mixed:
one port has an effort causality while the other has a flow causality:

p1.e = r * p2.e
p2.f = r * p1.f

or:

p2.e = 1/r * p1.e
p1.f = 1/r * p2.f

Interface

Ports Description

p1, p2 Input and output port of the transformer.

Causality

p1 notequal p2 The causality of both ports must be different.

Parameters

r Transform ratio

11. Library

63320-sim 5.1 Reference Manual

ZeroJunction11.1.32

Library

Bond Graph

Use

Domains: Continuous. Size: [n,m]. Kind: Bond Graphs.

Description

This junction represents a power continuous (no energy storage, dissipation or
generation) connection of elements. The sum of the flows on all ports is zero and the
efforts on all ports are equal. The constitutive equations are for example:

p1.f + p2.f - p3.f - p4.f = 0;

p1.e = p2.e = p3.e = p4.e;

effort = p1.e;

A zero junction has only one initial port p defined. Because any number of bonds may be
connected, successive connected bonds are named p1, p2, p3 etc.
The plus or minus signs of the flow equation depend on the direction of the bonds. A
bond pointing towards the zero junction results in a plus sign and vice-versa. Only one
port of a zero junction may determine the effort. In the example port p1 determines the
effort.

Multi Bonds

Bonds with a size larger than one (multi bonds) can also be connected to a zero junction.
Al connected bonds, however, must have the same size.

11. Library

63420-sim 5.1 Reference Manual

p1.f + p2.f - p3.f + p4.f = 0;

p1.e = p2.e = p3.e = p4.e;

effort = p1.e;

Naming conventions are equal to those of the single bond (size 1) junctions. Successive
connected bonds are named p1, p2, p3 etc. To denote single elements of a multibond,
matrix notation is used. E.g the effort of bond number 3 of a multibond p2 can be
denoted as p2.e[3] (columnvector notation) or p2.e[3,1] (matrix notation).

Interface

Ports Description

p[any] Any number of ports may be connected.

Causality

1_flow p Only one port may have a flow out causality (as

seen from the element).

Outputs

effort The output signal is equal to the effort of the ports.

Limitations

All connected bonds must have the same size.

ZeroJunction-Activity11.1.33

Library

Bond Graph

Use

Domains: Continuous. Size: 1-D. Kind: Bond Graphs.

Description

This junction is equal to a normal zero junction but monitors the powerflows through the
connected bonds. If you use this junction and connect some bonds, it could look like the
figure below. The bond numbers are important for identification. You can see them by
clicking Port Names from the View menu.

11. Library

63520-sim 5.1 Reference Manual

The constitutive equations for this example are:

p1.f - p2.f - p3.f - p4.f = 0;
p1.e = p2.e = p3.e = p4.e;
output = p2.e;

The powerflows through the junction are monitored:

power = p.e .* p.f;

Note that power is a vector with a size equal to the number of bonds that are attached to
the junction. The first element of the vector is the power of the first bond (p1 in the
example figure), the second element is the power of the second bond (p2 in the example
figure) and so on. To see which bonds are active and which bonds are not, the activity is
calculated:

activity = int (abs (power));

To get an easy comparison, the relative activity is calculated:

maximum_activity = max (activity);
relative_activity = activity ./ maximum_activity

Interface

Ports Description

p[any] Any number of ports may be connected.

Causality

1_flow p Only one port may have a flow out causality (as

seen from the element).

Outputs

effort The output signal is equal to the effort of the ports.

Variables

power Vector of which the elements are the powers of the

connected bonds.

11. Library

63620-sim 5.1 Reference Manual

activity Vector of which the elements are the integrated

absolute powers of the connected bonds.

relative_activity Vector of which the elements are the relative

activities of the connected bonds.

Limitations

All connected bonds must have size 1.

3d11.1.34

C-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single C storage element. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The element has
a preferred effort out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred flow out causality. The
constitutive equations then contain a derivation, which can only be simulated when the
Backward Differentiation Formula integration algorithm is available:

effort out causality (preferred):

state = int(p.f) + state(0);

p.e = inverse(C)*state;

outp = state;

flow out causality:

state = C*p.e;

p.f = d state / dt;

output = state;

Interface

Ports Description

p[3] Input port of the storage element

(columnvector with size 3).

11. Library

63720-sim 5.1 Reference Manual

Causality

preferred effort out A flow out causality results in a derivative

constitutive equation.

Outputs

output[3] The output signal is equal to the state

(columnvector with size 3).

Parameters

C[3,3] The storage element constants (matrix of

size [3,3]).

Initial Values

state(0)[3] The initial values of the storage element

(columnvector with size 3).

Limitations

The preferred equation contains an inverted C matrix. The elements of this matrix
should be chosen with care to prevent this matrix from becoming singular.

GY-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single gyrator. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The model can
have both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

p1.e = transpose(R) * p2.f;

p2.e = R * p1.f;

flow out causality:

p1.f = inverse(transpose(R)) * p2.e;

p2.f = inverse(R) * p1.e;

11. Library

63820-sim 5.1 Reference Manual

Interface

Ports Description

p1[3], p2[3] Input and output port of the gyrator

(columnvectors with size 3).

Causality

p1 equal p2 The causality of both ports must be equal.

Parameters

R[3] Gyration ratio (matrix of size [3,3]).

Limitations

The flow out equations contain an inverted R matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

I-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single I storage element. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The element has
a preferred flow out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred effort out causality. The
constitutive equations then contain a derivation, which can only be simulated when the
Backward Differentiation Formula integration algorithm is available:

flow out causality (preferred):

state = int(p.e) + state(0);

p.f = inverse(I)*state;

output = state;

11. Library

63920-sim 5.1 Reference Manual

effort out causality:

state = I*p.f;

p.e = d state / dt;

output = state;

Interface

Ports Description

p[3] Input port of the storage element

(columnvector with size 3).

Causality

preferred effort out A flow out causality results in a derivative

constitutive equation.

Outputs

output[3] The output signal is equal to the state

(columnvector with size 3).

Parameters

I[3,3] The storage element constants (matrix of

size [3,3]).

Initial Values

state(0)[3] The initial values of the storage element

(columnvector with size 3).

Limitations

The preferred equation contains an inverted I matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

MGY-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

11. Library

64020-sim 5.1 Reference Manual

Description

This model is the multiport equivalent of the single modulated gyrator. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The gyration ratio
can be set to a certain (fluctuating) value, given by an input signal. The model can have
both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

p1.e = transpose(r) * p2.f;

p2.e = r * p2.f;

flow out causality:

p1.f = inverse(transpose(r)) * p2.e;

p2.f = inverse(r) * p1.e;

Interface

Ports Description

p1[3], p2[3] Input and output port of the gyrator

(columnvectors with size 3).

Causality

p1 equal p2 The causality of both ports must be equal.

Inputs

r[3,3] Modulated gyration ratio (size [3,3]).

Limitations

The flow out equations contain a matrix inversion of the modulation signal. The elements
of this input signal should always have non-singular values.

11. Library

64120-sim 5.1 Reference Manual

MR-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single dissipative element. Consequently
the constitutive equation must be written as a matrix-vector multiplication. This model
can have an effort out as well as a flow out causality. In the last case the constitutive
equation, as shown below, is simply inverted. The friction/resistor parameter can be set
to a (fluctuating) value, given by an input signal.

effort out causality:

p.e = r*p.f;

flow out causality:

p.f = inverse(r)*p.e;

Interface

Ports Description

p[3] Input port of the R-element (columnvector

with size 3).

Causality

indifferent

Input

r[3,3] The (modulated) friction/resistor

parameter (size [3,3]).

Parameters

R The friction parameters (matrix of size

[3,3]).

Limitations

The flow out equation contains an inverted R matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

11. Library

64220-sim 5.1 Reference Manual

MSe-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated effort source. The effort
can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

p.e = input;

Ports Description

p[3] Output port of the effort source

(columnvector with size 3).

Causality

fixed effort out

Inputs

input[3] Modulation signal (columnvector with size

3).

MSf-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated flow source. The flow can
be set to a (fluctuating) value given by an input signal. The flow is indifferent.

p.f = input;

Ports Description

p[3] Output port of the flow source

(columnvector with size 3).

Causality

fixed flow out

11. Library

64320-sim 5.1 Reference Manual

Inputs

input[3] Modulation signal (columnvector with size

3).

MTF-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated transformer.
Consequently the constitutive equation must be written as a matrix-vector multiplication.
The transform ratio can be set to a certain (fluctuating) value, given by an input signal.
The causality is always mixed: one port has an effort out causality while the other has a
flow out causality:

p1.e = transpose(r) * p2.e;

p2.f = r * p1.f;

or:

p2.e = inverse(transpose(r)) * p1.e;

p1.f = inverse(r) * p2.f;

Interface

Ports Description

p1[3], p2[3] Input and output port of the gyrator

(columnvectors with size 3).

Causality

p1 notequal p2

Inputs

r[3,3] Modulated transform ratio (size [3,3]).

Limitations

The second set of equations contain a matrix inversion of the modulation signal. The
elements of this input signal should always have non-singular values.

11. Library

64420-sim 5.1 Reference Manual

R-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single dissipative element. Consequently
the constitutive equation must be written as a matrix-vector multiplication. This model
can have an effort out as well as a flow out causality. In the last case the constitutive
equation, as shown below, is simply inverted.

effort out causality:

p.e = R*p.f;

flow out causality:

p.f = inverse(R)*p.e;

Interface

Ports Description

p[3] Input port of the R-element (columnvector

with size 3).

Causality

indifferent

Parameters

R The friction parameters (matrix of size

[3,3]).

Limitations

The flow out equation contains an inverted R matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

11. Library

64520-sim 5.1 Reference Manual

Se-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single effort source. The effort can be set to
a certain constant value, the flow is indifferent.

p.e = S;

Ports Description

p[3] Output port of the effort source

(columnvector with size 3).

Causality

fixed effort out

Parameters

S[3] The constant value of the generated effort

(columnvector with size 3).

Sf-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single flow source. The effort can be set to
a certain constant value, the flow is indifferent.

p.f = S;

Ports Description

p[3] Output port of the flow source

(columnvector with size 3).

Causality

fixed flow out

11. Library

64620-sim 5.1 Reference Manual

Parameters

s[3] The constant value of the generated flow

(columnvector with size 3).

SGY-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single symplectic gyrator. Consequently the
constitutive equation must be written as a matrix-vector multiplication. This model
represents an ideal gyrator with gyration ratio equal to the identity matrix. The model
represents a one to one power continuous relation between the effort of one port and
the flow of the other port and vice-versa. The model can be used to transform a C-3
element into a I-3 element etc. The model can have both ports with an effort causality or
both ports with a flow causality:

effort out causality:

p1.e = p2.f;

p2.e = p1.f;

flow out causality:

p1.f = p2.e;

p2.f = p1.e;

Interface

Ports Description

p1[3], p2[3] Input and output port of the gyrator

(columnvectors with size 3).

Causality

p1 equal p2 The causality of both ports must be equal.

11. Library

64720-sim 5.1 Reference Manual

STF-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single symplectic transformer. This model
represents an ideal transformer with a transform ratio equal to the identity matrix. The
model represents a one to one power continuous relation between the effort of one port
and the flow of the other port and vice-versa. The causality is always mixed: one port
has an effort causality while the other has a flow causality:

p1.e = p2.e;

p2.f = p1.f;

or:

p2.e = p1.e

p1.f = p2.f

Interface

Ports Description

p1[3], p2[3] Input and output port of the transformer

(columnvectors with size 3).

Causality

p1 notequal p2 The causality of both ports must be

different.

TF-3

Library

Bond Graph

Use

Domains: Continuous. Size: 3-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single transformer. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The causality is
always mixed: one port has an effort causality while the other has a flow causality:

11. Library

64820-sim 5.1 Reference Manual

p1.e = transpose(R) * p2.e;

p2.f = R * p1.f;

or:

p2.e = inverse(transpose(R)) * p1.e

p1.f = inverse(R) * p2.f

Interface

Ports Description

p1[3], p2[3] Input and output port of the transformer

(columnvectors with size 3).

Causality

p1 notequal p2 The causality of both ports must be

different.

Parameters

R[3,3] Transform ratio (matrix of size [3,3]).

Limitations

The lower set of equations contain an inverted R matrix. The elements of this matrix
should be chosen with care to prevent this matrix from becoming singular.

2d11.1.35

C-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single C storage element. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The element has
a preferred effort out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred flow out causality. The
constitutive equations then contain a derivation, which can only be simulated when the
Backward Differentiation Formula integration algorithm is available:

effort out causality (preferred):

11. Library

64920-sim 5.1 Reference Manual

state = int(p.f) + state(0);

p.e = inverse(C)*state;

outp = state;

flow out causality:

state = C*p.e;

p.f = d state / dt;

output = state;

Interface

Ports Description

p[2] Input port of the storage element (columnvector

with size 2).

Causality

preferred effort out A flow out causality results in a derivative

constitutive equation.

Outputs

output[2] The output signal is equal to the state

(columnvector with size 2).

Parameters

C[2,2] The storage element constants (matrix of size

[2,2]).

Initial Values

state(0)[2] The initial values of the storage element

(columnvector with size 2).

Limitations

The preferred equation contains an inverted C matrix. The elements of this matrix
should be chosen with care to prevent this matrix from becoming singular.

11. Library

65020-sim 5.1 Reference Manual

GY-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single gyrator. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The model can
have both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

p1.e = transpose(R) * p2.f;

p2.e = R * p1.f;

flow out causality:

p1.f = inverse(transpose(R)) * p2.e;

p2.f = inverse(R) * p1.e;

Interface

Ports Description

p1[2], p2[2] Input and output port of the gyrator (columnvectors

with size 2).

Causality

p1 equal p2 The causality of both ports must be equal.

Parameters

R[2] Gyration ratio (matrix of size [2,2]).

Limitations

The flow out equations contain an inverted R matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

11. Library

65120-sim 5.1 Reference Manual

I-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single I storage element. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The element has
a preferred flow out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred effort out causality. The
constitutive equations then contain a derivation, which can only be simulated when the
Backward Differentiation Formula integration algorithm is available:

flow out causality (preferred):

state = int(p.e) + state(0);

p.f = inverse(I)*state;

output = state;

effort out causality:

state = I*p.f;

p.e = d state / dt;

output = state;

Interface

Ports Description

p[2] Input port of the storage element (columnvector

with size 2).

Causality

preferred effort out A flow out causality results in a derivative

constitutive equation.

Outputs

output[2] The output signal is equal to the state

(columnvector with size 2).

Parameters

I[2,2] The storage element constants (matrix of size

[2,2]).

Initial Values

11. Library

65220-sim 5.1 Reference Manual

state(0)[2] The initial values of the storage element

(columnvector with size 2).

Limitations

The preferred equation contains an inverted I matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

MGY-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated gyrator. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The gyration ratio
can be set to a certain (fluctuating) value, given by an input signal. The model can have
both ports with an effort out causality or both ports with a flow out causality:

effort out causality:

p1.e = transpose(r) * p2.f;

p2.e = r * p2.f;

flow out causality:

p1.f = inverse(transpose(r)) * p2.e;

p2.f = inverse(r) * p1.e;

Interface

Ports Description

p1[2], p2[2] Input and output port of the gyrator (columnvectors

with size 2).

Causality

p1 equal p2 The causality of both ports must be equal.

Inputs

r[2,2] Modulated gyration ratio (size [2,2]).

11. Library

65320-sim 5.1 Reference Manual

Limitations

The flow out equations contain a matrix inversion of the modulation signal. The elements
of this input signal should always have non-singular values.

MR-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single dissipative element. Consequently
the constitutive equation must be written as a matrix-vector multiplication. This model
can have an effort out as well as a flow out causality. In the last case the constitutive
equation, as shown below, is simply inverted. The friction/resistor parameter can be set
to a (fluctuating) value, given by an input signal.

effort out causality:

p.e = r*p.f;

flow out causality:

p.f = inverse(r)*p.e;

Interface

Ports Description

p[2] Input port of the R-element (columnvector with size

2).

Causality

indifferent

Input

11. Library

65420-sim 5.1 Reference Manual

r[2,2] The (modulated) friction/resistor parameter (size

[2,2]).

Parameters

R The friction parameters (matrix of size [2,2]).

Limitations

The flow out equation contains an inverted R matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

MSe-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated effort source. The effort
can be set to a (fluctuating) value given by an input signal. The flow is indifferent.

p.e = input;

Ports Description

p[2] Output port of the effort source (columnvector with

size 2).

Causality

fixed effort out

Inputs

input[2] Modulation signal (columnvector with size 2).

11. Library

65520-sim 5.1 Reference Manual

MSf-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated flow source. The flow can
be set to a (fluctuating) value given by an input signal. The flow is indifferent.

p.f = input;

Ports Description

p[2] Output port of the flow source (columnvector with

size 2).

Causality

fixed flow out

Inputs

input[2] Modulation signal (columnvector with size 2).

MTF-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single modulated transformer.
Consequently the constitutive equation must be written as a matrix-vector multiplication.
The transform ratio can be set to a certain (fluctuating) value, given by an input signal.
The causality is always mixed: one port has an effort out causality while the other has a
flow out causality:

p1.e = transpose(r) * p2.e;

p2.f = r * p1.f;

or:

p2.e = inverse(transpose(r)) * p1.e;

11. Library

65620-sim 5.1 Reference Manual

p1.f = inverse(r) * p2.f;

Interface

Ports Description

p1[2], p2[2] Input and output port of the gyrator (columnvectors

with size 2).

Causality

p1 notequal p2

Inputs

r[2,2] Modulated transform ratio (size [2,2]).

Limitations

The second set of equations contain a matrix inversion of the modulation signal. The
elements of this input signal should always have non-singular values.

R-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single dissipative element. Consequently
the constitutive equation must be written as a matrix-vector multiplication. This model
can have an effort out as well as a flow out causality. In the last case the constitutive
equation, as shown below, is simply inverted.

effort out causality:

p.e = R*p.f;

flow out causality:

p.f = inverse(R)*p.e;

11. Library

65720-sim 5.1 Reference Manual

Interface

Ports Description

p[2] Input port of the R-element (columnvector with size

2).

Causality

indifferent

Parameters

R The friction parameters (matrix of size [2,2]).

Limitations

The flow out equation contains an inverted R matrix. The elements of this matrix should
be chosen with care to prevent this matrix from becoming singular.

Se-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single effort source. The effort can be set to
a certain constant value, the flow is indifferent.

p.e = S;

Ports Description

p[2] Output port of the effort source (columnvector with

size 2).

Causality

fixed effort out

Parameters

S[2] The constant value of the generated effort

(columnvector with size 2).

11. Library

65820-sim 5.1 Reference Manual

Sf-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Block Diagrams, Bond Graphs.

Description

This model is the multiport equivalent of the single flow source. The effort can be set to
a certain constant value, the flow is indifferent.

p.f = S;

Ports Description

p[2] Output port of the flow source (columnvector with

size 2).

Causality

fixed flow out

Parameters

s[2] The constant value of the generated flow

(columnvector with size 2).

SGY-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single symplectic gyrator. Consequently the
constitutive equation must be written as a matrix-vector multiplication. This model
represents an ideal gyrator with gyration ratio equal to the identity matrix. The model
represents a one to one power continuous relation between the effort of one port and
the flow of the other port and vice-versa. The model can be used to transform a C-2
element into a I-2 element etc. The model can have both ports with an effort causality or
both ports with a flow causality:

effort out causality:

p1.e = p2.f;

p2.e = p1.f;

11. Library

65920-sim 5.1 Reference Manual

flow out causality:

p1.f = p2.e;

p2.f = p1.e;

Interface

Ports Description

p1[2], p2[2] Input and output port of the gyrator (columnvectors

with size 2).

Causality

p1 equal p2 The causality of both ports must be equal.

STF-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single simple transformer. This model
represents an ideal transformer with a transform ratio equal to the identity matrix. The
model has no real effect but allows for domain changes (one port having another domain
as the other). The model represents a power continuous relation between the efforts and
flows of both its ports. The causality is always mixed: one port has an effort causality
while the other has a flow causality:

p1.e = p2.e;

p2.f = p1.f;

or:

p2.e = p1.e

p1.f = p2.f

Interface

Ports Description

11. Library

66020-sim 5.1 Reference Manual

p1[2], p2[2] Input and output port of the transformer

(columnvectors with size 2).

Causality

p1 notequal p2 The causality of both ports must be different.

TF-2

Library

Bond Graph

Use

Domains: Continuous. Size: 2-D. Kind: Bond Graphs.

Description

This model is the multiport equivalent of the single transformer. Consequently the
constitutive equation must be written as a matrix-vector multiplication. The causality is
always mixed: one port has an effort causality while the other has a flow causality:

p1.e = transpose(R) * p2.e;

p2.f = R * p1.f;

or:

p2.e = inverse(transpose(R)) * p1.e

p1.f = inverse(R) * p2.f

Interface

Ports Description

p1[2], p2[2] Input and output port of the transformer

(columnvectors with size 2).

Causality

p1 notequal p2 The causality of both ports must be different.

Parameters

R[2,2] Transform ratio (matrix of size [2,2]).

Limitations

The lower set of equations contain an inverted R matrix. The elements of this matrix
should be chosen with care to prevent this matrix from becoming singular.

11. Library

66120-sim 5.1 Reference Manual

11.2 Iconic Diagrams

Iconic Diagrams11.2.1

The Iconic Diagram library contains components which are very useful for modeling
physical systems. The following libraries are available.

Electric

Hydraulics

Mechanical

Thermal

Electric11.2.2

Electric

The Electric library contains components which are very useful for modeling electrical
systems. The library contains the following sections:

Actuators

Components

Sources

Actuators

CMABender

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents a piezo actuator. The actuator translates a voltage difference at
port p1 to a mechanical position difference between the base at port p2 and the end
effector at port p3.

Although the underlying equations of this model are equal to the equations of the
CMAStrecher.emx model, the default parameter values are typical for bending.

Interface

Ports Description

p Translation port.

Causality

11. Library

66220-sim 5.1 Reference Manual

fixed force out

Input

C

KF

m

k

B

KB

Capacitance [F]

Voltage to force conversion factor [N/V]

Equivalent mass [kg]

Stiffness [N/m]

Relative damping ratio []

Force to voltage conversion factor [V/N]

CMAStretcher

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents a piezo actuator. The actuator translates a voltage difference at
port p1 to a mechanical position difference between the base at port p2 and the end
effector at port p3.

Although the underlying equations of this model are equal to the equations of the
CMABender.emx model, the default parameter values are typical for stretching.

Interface

Ports Description

p Translation port.

Causality

fixed force out

Input

C

KF

m

k

B

KB

Capacitance [F]

Voltage to force conversion factor [N/V]

Equivalent mass [kg]

Stiffness [N/m]

Relative damping ratio []

Force to voltage conversion factor [V/N]

11. Library

66320-sim 5.1 Reference Manual

DCMotor

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Electric

Implementations

Default
IR

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric, Electric).

Description - Default

This models represents an ideal DC-motor with no energy loss. The electric port has
separate high and low terminals. The equations are

p1.i = p1_high.i = p1_low.i;
p1.u = p1_high.u - p1_low.u;

The model can have mixed forms of causality

p1.u = k * p2.omega;
p2.T = k * p1.i;

or:

p2.omega = p1.u / k;
p1.i = p2.T / k;

Interface - Default

Ports Description

p1_high, p1_low

p2

Both terminals of the Electric port p1.

Rotation port.

Causality

mixed See equations above.

Parameters

k motor constant [Nm/A]

Description - IR

This models represents an ideal DC-motor with inductance and resistance.

11. Library

66420-sim 5.1 Reference Manual

The electric port has separate high and low terminals. The equations are

p1.i = p1_high.i = p1_low.i;
p1.u = p1_high.u - p1_low.u;

Interface - IR

Ports Description

p1_high, p1_low

p2

Both terminals of the Electric port p1.

Rotation port.

Causality

mixed See equations above.

Parameters

k

L

R

motor constant [Nm/A]

motor inductance [H]

motor resistance [Ohm]

Components

Capacitor

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents an ideal capacitor. The element has a preferred voltage out
causality. The corresponding constitutive equations then contain an integration. The
element can also have the non-preferred current out causality. The constitutive
equations then contain a derivation. The port p of the inductor model has separate high
and low terminals. The equations are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

11. Library

66520-sim 5.1 Reference Manual

voltage out causality (preferred):

p.u = (1/C)*int(p.i);

current out causality:

p.i = C * ddt(p.u);

Interface

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

preferred voltage out A current out causality results in a derivative

constitutive equation.

Parameters

C capacitance [F]

Initial Values

p.u_initial The initial charge of the capacitor [V].

CurrentSensor

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric), Block Diagrams.

Description

This model translates a current to an output signal. It has a voltage out causality. The
port p of the model has separate high and low terminals. The equations are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;
p.u = 0;
i = p.i;

Interface

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

fixed voltage out

11. Library

66620-sim 5.1 Reference Manual

Output

i Current [A].

Diode

Library

Iconic Diagrams\Electric\Components

Implementations

Default
Exponential

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Default

This is an ideal electrical diode. The model is a switch which is open when the voltage
drop v < 0 and closed when the voltage drop v > 0. The heart of the model consist of a
resistance that is changed by the input voltage from almost zero (on) to a very large
value (off). By proper selection of the on and off resistances, they can be effectively
zero and infinity in comparison to other circuit elements. The port p of the diode model
has separate high and low terminals. The equations are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

voltage out causality:

R = if p.i > 0 then Ron else Roff end;
p.u = R * p.i;

current out causality:

R = if p.u > 0 then Ron else Roff end;
p.i = p.u / R;

Interface - Default

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

indifferent p

Parameters

Ron

Roff

Resistance when diode is turned on [Ohm]

Resistance when diode is turned off [Ohm]

11. Library

66720-sim 5.1 Reference Manual

Description - Exponential

This is an electrical diode described by an exponential expression. The port p of the
diode model has separate high and low terminals. The equations are:

p.i = p_high.i = p_low.i
p.u = p_high.u - p_low.u

uT = (k * T) / e;
p.i = Is * (exp (p.u / uT) - 1);

with k the Boltzmann constant (k = 1.380658e-23 {J/K}

Interface - Exponential

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

indifferent p

Parameters

T

Is

operating temperature [K]

reverse saturation current [A]

DoubleSwitch

Library

Iconic Diagrams\Electric\Components

Implementations

Level
Amplitude

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Level

This model represents an almost ideal switch. The switch connects port p1 with p2 when
the input signal is larger than the threshold value vt and connects port p1 with p3 when
the input signal is smaller or equal to the threshold value vt.

The heart of the model consist of two resistances that can be changed by an input signal
from almost zero (on) to a very large value (off). By proper selection of the on and off
resistances, they can be effectively zero and infinity in comparison to other circuit
elements.

11. Library

66820-sim 5.1 Reference Manual

Layout of the switch model.

The equations of the resistances are:

R = if input > vt then Ron else Roff end;
p.u = R * p.i;

Interface - Level

Ports Description

p1, p2, p3

input

The electric ports (Electric).

The switching signal.

Causality

indifferent p1, p2,

p3

Parameters

R1\R

R2\R

R3\R

Ground resistance at port 1 [Ohm]

Ground resistance at port 2 [Ohm]

Ground resistance at port 3 [Ohm]

Resistance12\Ron

Resistance12\Roff

Resistance12\vt

Resistance between p1 and p2 when switch is turned on [Ohm]

Resistance between p1 and p2 when switch is turned off [Ohm]

Threshold value between p1 and p2, switch is turned on when input >

Resistance12\vt

Resistance13\Ron

Resistance13\Roff

Resistance13\vt

Resistance between p1 and p3 when switch is turned on [Ohm]

Resistance between p1 and p3 when switch is turned off [Ohm]

Threshold value between p1 and p3, switch is turned on when input >

Resistance13\vt

11. Library

66920-sim 5.1 Reference Manual

Description - Amplitude

This model represents an almost ideal switch. The switch connects port p1 with p2 when
the absolute value of the input signal is larger than the threshold value Resistance12
\vt and connects port p1 with p3 when the absolute value of the input signal is smaller
or equal to the threshold value Resistance13\vt.

The heart of the model consist of two resistances that can be changed by an input signal
from almost zero (on) to a very large value (off). By proper selection of the on and off
resistances, they can be effectively zero and infinity in comparison to other circuit
elements.

Layout of the switch model.

The equations of the resistances are:

R = if abs(input) > vt then Ron else Roff end;
p.u = R * p.i;

Interface - Amplitude

Ports Description

p1, p2, p3

input

The electric ports (Electric).

The switching signal.

Causality

indifferent p1, p2,

p3

Parameters

R1\R

R2\R

R3\R

Ground resistance at port 1 [Ohm]

Ground resistance at port 2 [Ohm]

Ground resistance at port 3 [Ohm]

Resistance12\Ron

Resistance12\Roff

Resistance12\vt

Resistance between p1 and p2 when switch is turned on [Ohm]

Resistance between p1 and p2 when switch is turned off [Ohm]

11. Library

67020-sim 5.1 Reference Manual

Threshold value between p1 and p2, switch is turned on when

abs(input) > Resistance12\vt

Resistance13\Ron

Resistance13\Roff

Resistance13\vt

Resistance between p1 and p3 when switch is turned on [Ohm]

Resistance between p1 and p3 when switch is turned off [Ohm]

Threshold value between p1 and p3, switch is turned on when

abs(input) > Resistance13\vt

Note

To get a simple switching behavior, pay attention to chose the parameters Resistance12
\vt and Resistance13\vt equal. When these parameters are not chosen equal a more
complex switching behavior can be obtained.

Ground

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents the ground (voltage = 0). The model has only one initial port p
defined. Because any number of connections can be made, successive ports are named
p1, p2, p3 etc. which gives the constitutive equations:

p1.u = p2.u = .. = pn.u = 0;
p1.i = free; p2.i = free; ..; pn.i = free;

Interface

Ports Description

p [any] Any number of connections can be made (Electric).

Causality

Fixed voltage out All ports have a fixed voltage out causality.

11. Library

67120-sim 5.1 Reference Manual

Inductor

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents an ideal electrical inductance. The element has a preferred
current out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred voltage out causality. The
constitutive equations then contain a derivation. The port p of the inductor model has
separate high and low terminals. The equations are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

current out causality (preferred):

p.i = (1/L)int(p.u);

voltage out causality:

p.u = L * ddt(p.i);

Interface

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

preferred current out An voltage out causality results in a derivative

constitutive equation.

Parameters

L Inductance [H]

Initial Values

p.i_initial The initial flux in the inductor.

11. Library

67220-sim 5.1 Reference Manual

Node

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This node model represents a structural connection between two or more branches of an
electrical circuit. The model has only one initial port p defined. Because any number of
connections can be made, successive ports are named p1, p2, p3 etc.

Interface

Ports Description

p [any] Any number of connections can be made.

OpAmp

Library

Iconic Diagrams\Electric\Components

Implementations

Default
Universal

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Default

This model represents an ideal operational amplifier. The input resistance is infinite and
the output resistance is zero. The port p_in of the OpAmp model has separate high and
low terminals:

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i = 0;
p_out.u = A*p_in.u;

Interface - Default

Ports Description

p_in_high,

P_in_low

p_out

Both terminals of the input port p_in (Electric).

Output port (Electric).

Causality

11. Library

67320-sim 5.1 Reference Manual

fixed current out

p_in

fixed voltage out

p_out

Parameters

A Amplification []

Description - Universal

This model represents an operational amplifier with a first order decreasing voltage
amplification.

The amplification is parameterized by a DC-gain (A) and a cut-off frequency (f). This
yields a unity gain frequency of:

unity gain frequency = A*f;

The gain is limited to yield an output that is between the positive (VDD) and negative
(VEE) supply voltage.

11. Library

67420-sim 5.1 Reference Manual

 The input resistance is infinite and the output resistance is equal to the parameter R.
The port p_in of the OpAmp model has separate high and low terminals:

p_in.u = p_in_high.u - p_in_low.u
p_in_high.i = p_in_low.i = p_in.i = 0;
p_out.u = Adiff*p_in.u - R*p_out.u;

where Adiff is a dynamic gain according to the bode and gain plot.

Interface - Universal

Ports Description

p_in_high,

P_in_low

p_out

Both terminals of the input port p_in (Electric).

Output port (Electric).

Causality

fixed current out

p_in

preferred voltage

out p_out

Parameters

A

f

VDD

VEE

R

DC gain or DC Amplification

Cut-off frequency [Hz]

Positive supply voltage [V], choose VDD > VEE!

Negative supply voltage [V], choose VDD > VEE!

Output impedance [Ohm]

11. Library

67520-sim 5.1 Reference Manual

Potentiometer

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents an ideal potentiometer.

 It can have various forms of causality. The equations are:

R1 = (1 - alpha) * R;
R2 = alpha * R;
p_high.u - p_var.u = p_high.i * R1;
p_var.u - p_low.u = p_low.i * R2;
p_high.i + p_var.i = p_low.i;

where alpha denotes the position of the indicator and can vary from zero to one.

Interface

Ports Description

p_high, p_low

p_var

Both terminals of the resistor.

Indicator terminal.

Causality

indifferent

Parameters

R

alpha

Resistance [Ohm].

Indicator position (0 <= alpha <= 1).

11. Library

67620-sim 5.1 Reference Manual

Rectifier

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents an diode bridge rectifier consisting of a set four diodes. Given an
alternating input current, the bridge produces an output current which is always
positively oriented and has the same amplitude as the input current. The bridge behavior
is ideal. No diode characteristics are implemented and no power is dissipated.

A circuit with a diode bridge rectifier.

Interface

Ports Description

p1_high, p1_low

p2_high, p2_low

Both terminals of the Electric input port p1.

Both terminals of the Electric output port p2.

Causality

p1 not equal p2

Resistor

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents an ideal electrical resistor. It can have an voltage out as well as a
current out causality. In the last case the constitutive equation, as shown below, is
simply inverted. The port p of the damper model has separate high and low terminals.
The equations are:

11. Library

67720-sim 5.1 Reference Manual

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

Voltage out causality:

p.u = R * p.i;

Current out causality:

p.i = p.u / R;

Interface

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

indifferent

Parameters

R Resistance [Ohm].

Switch

Library

Iconic Diagrams\Electric\Components

Implementations

Level
Amplitude

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Level

This model represents an almost ideal switch. The switch is turned on when the input
signal is larger than the threshold value vt and it is turned off when the input signal is
smaller or equal to the threshold value vt.

The heart of the model consist of a resistance that can be changed by an input signal
from almost zero (on) to a very large value (off). By proper selection of the on and off
resistances, they can be effectively zero and infinity in comparison to other circuit
elements.

11. Library

67820-sim 5.1 Reference Manual

Layout of the switch model.

The equations of the resistance are:

R = if input > vt then Ron else Roff end;
p.u = R * p.i;

Interface - Level

Ports Description

p1, p2

input

Both electric ports (Electric).

The switching signal.

Causality

indifferent p1, p2

Parameters

R1\R

R2\R

Resistance12\Ron

Resistance12\Roff

Resistance12\vt

Ground resistance at port 1 [Ohm]

Ground resistance at port 2 [Ohm]

Resistance when switch is turned on [Ohm]

Resistance when switch is turned off [Ohm]

Threshold value, switch is turned on when input > vt

Description - Amplitude

This model represents an almost ideal switch. The switch is turned on when the
amplitude of the input signal is larger than the threshold value vt and it is turned off
when the amplitude of the input signal is smaller or equal to the threshold value vt.

The heart of the model consist of a resistance that can be changed by an input signal
from almost zero (on) to a very large value (off). By proper selection of the on and off
resistances, they can be effectively zero and infinity in comparison to other circuit
elements.

11. Library

67920-sim 5.1 Reference Manual

Layout of the switch model.

The equations of the resistance are:

R = if abs(input) > vt then Ron else Roff end;
p.u = R * p.i;

Interface - Amplitude

Ports Description

p1, p2

input

Both electric ports (Electric).

The switching signal.

Causality

indifferent p1,p2

Parameters

R1\R

R2\R

Resistance12\Ron

Resistance12\Roff

Resistance12\vt

Ground resistance at port 1 [Ohm]

Ground resistance at port 2 [Ohm]

Resistance when switch is turned on [Ohm]

Resistance when switch is turned off [Ohm]

Threshold value, switch is turned on when abs(input) > vt

Transformer

Library

Iconic Diagrams\Electric\Components

Implementations

Default
Induction

11. Library

68020-sim 5.1 Reference Manual

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Default

This models represents an ideal transformer. The transformer does not have internal
resistors, capacitance or inductance. The causality of this model is always mixed: one
port has a voltage causality while the other has a current out causality:

p_1.u = n * p_2.u;
p_2.i = n * p_1.i;

or:

p_2.u = 1/n * p_1.u;
p_1.i = 1/n * p_2.i;

Interface - Default

Ports Description

p_1,p_2 Electrical ports

Causality

p_small notequal

p_large

Parameters

n turns ratio []

Description - Induction

This models represents a transformer with inductance and mutual inductance. The
equations are:

p_1.u = L1 * ddt(p_1.i) + M * ddt(p_2.i);
p_2.u = M * ddt(p_1.i) + L2 * ddt(p_2.i);

Interface - Induction

Ports Description

p_1,p_2 Electrical ports

Causality

indifferent

Parameters

L1

L2

M

Primary inductance [H]

Secondary Inductance [H]

Coupling Inductance [H]

11. Library

68120-sim 5.1 Reference Manual

VoltageSensor

Library

Iconic Diagrams\Electric\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric), Block Diagrams.

Description

This model translates a voltage difference to an output signal. It has a current out
causality. The port p of the model has separate high and low terminals. The equations
are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;
p.i = 0;
u = p.u;

Interface

Ports Description

p_high, p_low Both terminals of the Electric port p.

Causality

fixed current out

Output

u Voltage [V].

Sources

ControlledCurrentSource

Library

Iconic Diagrams\Electric\Sources

Implementations

Voltage
Current

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Voltage

This model represents an ideal voltage controlled current source. Both ports of the
model have separate high and low terminals:

11. Library

68220-sim 5.1 Reference Manual

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;

The equations of this model are:

p_in.i = 0;
p_out.i = p_in.u;
p_out.u = indifferent;

Interface - Voltage

Ports Description

p_in_high,

P_in_low

p_out_high,

P_out_low

Both terminals of the input port p_in (Electric).

Both terminals of the output port p_out (Electric).

Causality

fixed current out

p_in

fixed current out

p_out

Description - Current

This model represents an ideal current controlled current source. Both ports of the
model have separate high and low terminals:

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;

The equations of this model are:

p_in.u = 0;
p_out.i = p_in.i;
p_out.u = indifferent;

Interface - Current

Ports Description

p_in_high,

P_in_low

p_out_high,

P_out_low

Both terminals of the input port p_in (Electric).

Both terminals of the output port p_out (Electric).

11. Library

68320-sim 5.1 Reference Manual

Causality

fixed voltage out

p_in

fixed current out

p_out

ControlledVoltageSource

Library

Iconic Diagrams\Electric\Sources

Implementations

Voltage
Current
PI
KP

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - Voltage

This model represents an ideal voltage controlled voltage source. Both ports of the
model have separate high and low terminals:

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;

The equations of this model are:

p_in.i = 0;
p_out.u = p_in.u;
p_out.i = indifferent;

Interface - Voltage

Ports Description

p_in_high,

P_in_low

p_out_high,

P_out_low

Both terminals of the input port p_in (Electric).

Both terminals of the output port p_out (Electric).

Causality

fixed current out

p_in

11. Library

68420-sim 5.1 Reference Manual

fixed voltage out

p_out

Description - Current

This model represents an ideal current controlled voltage source. Both ports of the
model have separate high and low terminals:

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;

The equations of this model are:

p_in.u = 0;
p_out.u = p_in.i;
p_out.i = indifferent;

Interface - Current

Ports Description

p_in_high,

P_in_low

p_out_high,

P_out_low

Both terminals of the input port p_in (Electric).

Both terminals of the output port p_out (Electric).

Causality

fixed voltage out

p_in

fixed voltage out

p_out

Description - PI

This model represents a voltage controlled voltage source. The output voltage is
connected to the input voltage through a PI-controller and limited to a maximum and
minimum value of ±Vmax. The output voltage is subjected to an output resistance R.

Both ports of the model have separate high and low terminals:

11. Library

68520-sim 5.1 Reference Manual

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;

Interface - PI

Ports Description

p_in_high,

p_in_low

Both terminals of the input port p_in (Electric).

p_out_high,

p_out_low

Both terminals of the output port p_out (Electric).

Causality

fixed current out

p_in

fixed voltage out

p_out

Parameters

Kp

f

Vmax

R

Proportional gain []

Integration frequency [Hz]

Maximum output voltage [V]

Output resistance [Ohm]

Description - KP

This model represents a voltage controlled voltage source. The output voltage is
proportional to the input voltage and is limited to a maximum and minimum value of
±Vmax. The output voltage is subjected to an output resistance R.

Both ports of the model have separate high and low terminals:

p_in.u = p_in_high.u - p_in_low.u;
p_in_high.i = p_in_low.i = p_in.i;
p_out.u = p_out_high.u - p_out_low.u = 0
p_out_high.i = p_out_low.i = p_in.i;

11. Library

68620-sim 5.1 Reference Manual

Interface - KP

Ports Description

p_in_high,

p_in_low

Both terminals of the input port p_in (Electric).

p_out_high,

p_out_low

Both terminals of the output port p_out (Electric).

Causality

fixed current out

p_in

fixed voltage out

p_out

Parameters

Kp

Vmax

R

Proportional gain []

Maximum output voltage [V]

Output resistance [Ohm]

CurrentSource

Library

Iconic Diagrams\Electric\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This model represents an ideal current source with a constant current. The current can
be set to a certain constant value, the voltage is indifferent. The port p of the model has
separate high and low terminals. The equations are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

p.u = indifferent;
p.i = i;

Interface

Ports Description

p_low, p_high Both terminals of the Electric port p.

Causality

fixed current out

Parameters

i Current [A].

11. Library

68720-sim 5.1 Reference Manual

ModulatedCurrentSource

Library

Iconic Diagrams\Electric\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric), Block Diagrams.

Description

This model represents an ideal current source with a variable current. The current can
be set to a (fluctuating) value given by the input signal i, the voltage is indifferent.

p.i = i;

Interface

Ports Description

p Electric port.

Causality

fixed current out

Input

i Current [A].

ModulatedVoltageSource

Library

Iconic Diagrams\Electric\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric), Block Diagrams.

Description

This model represents an ideal voltage source with a variable voltage. The voltage can
be set to a (fluctuating) value given by the input signal u, the current is indifferent.

p.u = u;

Interface

Ports Description

p Electric port.

Causality

11. Library

68820-sim 5.1 Reference Manual

fixed voltage out

Input

u Voltage [V].

VoltageSource

Library

Iconic Diagrams\Electric\Sources

Implementations

DC
AC

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description - DC

This model represents an ideal voltage source with a constant voltage. The voltage can
be set to a certain constant value, the current is indifferent. The port p of the model has
separate high and low terminals. The equations are:

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

p.i = indifferent;
p.u = u;

Interface - DC

Ports Description

p Both terminals of the Electric port p.

Causality

fixed voltage out

Parameters

u Voltage [V].

Description - AC

This model represents an ideal voltage source with a sinusoidal voltage. The voltage can
be set to a certain constant value, the current is indifferent. The port p of the model has
separate high and low terminals. The equations are:

11. Library

68920-sim 5.1 Reference Manual

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

p.i = indifferent;
p.u = U*sin(2*pi*f*time);

Interface - AC

Ports Description

p Both terminals of the Electric port p.

Causality

fixed voltage out

Parameters

U

f

Voltage amplitude [V].

Voltage frequency [Hz]

Hydraulics11.2.3

Hydraulics

The 20-sim Hydraulics library contains components to model the dynamic behavior of
hydraulic circuits. The library has been completely revised in 20-sim 4.9. Compared to
older versions of 20-sim the following changes are made:

1. Most valves and components now use the nominal flow at a given pressure drop to
determine the laminar and turbulent flow characteristics.

2. Fluid Properties are now defined with a separate component.

To get a good impression of the use the components of this library, have a look at the
example circuits.

Library

The Hydraulics library is divided in a number of sections:

Components: Connectors and lines

Cylinders: translational actuators

Fluids: fluid properties

Motors: motors

Pumps: flow and pressure sources, pumps

Restrictions: orifices and restrictions

Sensors: flow and pressure sensor

Valves: check valves, pressure reducing valves, 4-3 way valves and more

11. Library

69020-sim 5.1 Reference Manual

Volumes: volumes, tanks and accumulators

Some of these sections contain subsection with basic components. These elementary
components (without parasitic volumes) should only be used by experienced modelers
who want to create their own library components.

Fluid Properties

In previous versions of 20-sim, the hydraulic fluid properties (eg. bulk modulus,
viscosity) were stored in every component. In this library the fluid properties are stored

in the Fluid Properties component. This means that you only have to define
the properties once, and use them in every component automatically.

Ports

Every library component has one or more hydraulic connectors, which are called ports in
20-sim. Ports always have two variables: pressure [Pa] and volume flow [m3/s]. The
following ports a and b are usually provided:

a

a.p Pressure in [Pa] with respect to atmospheric pressure (p stands for

pressure).

a.phi Volume flow [m3/s], positive if oil is entering the component at port a

(phi stands for flow).

b

b.p Pressure in [Pa] with respect to atmospheric pressure (p stands for

pressure).

b.phi Volume flow [m3/s], negative if oil is entering the component at port b

(phi stands for flow).

Hydraulic components can easily be coupled to other library models. The pumps and
motors have a rotation port that can be coupled to models of the Rotation library. The
cylinder models have a translation port that can be coupled to models of the Translation
library. Some models have a variable input that can be coupled to models of the Signal
library.

Units

20-sim uses SI-units for the hydraulic components. If you want to use other units select
them in the Parameters Editor or the Variables Chooser. The 20-sim hydraulics library
uses the common definition of pressure in Pa:

1 Pa = 1 N/m2 = 1e-5 bar

The air pressure at sea level is taken as the zero value:

0 Pa = air pressure

11. Library

69120-sim 5.1 Reference Manual

Consequently the pressure for liquid oil that starts to vaporize is negative. In 20-sim the
default value of the vapour pressure is:

p_vapour = -0.999e5 Pa

The vapour pressure is the minimum pressure. Some models have a safeguard on the
pressure to prevent it to become smaller. You can change the value of the vapour
pressure but take care that always a value is chosen that is smaller than zero. Otherwise
some of the models will not work correctly.

Parasitic Volumes

Most components have parasitic volumes to ensure a seamless connection with other
components. Therefore almost all components can be connected arbitrarily.

Disclaimer

All models have been tested with standard configurations. This will however not ensure
that valid results will be found at all times. For example temperature effects are not
included and certain parameter values will lead to unstable simulations. Therefore any
application of the library without validation of the user is at his own risk!

Literature

The 20-sim hydraulic library has been based on the following literature:

P. Dransfield, Hydraulic Control Systems - Design and Analysisi of Their Dynamics,
Springer 1981,ISBN 3-540-10890-4.
P. Beater, Entwurf Hydraulischer Maschinen, Modelbildung, Stabilitätsanalyse und
Simulation hydrostatischer Antriebe und Steurungen, Springer 1999, ISBN 3-540-65444-
5.

The models have been designed as close as possible to the Modelica hydraulic library
(www.modelica.org). To compare both libraries the example model Closed Circuit Drive
Train.emx has been added.

Building Hydraulic Models

Example Models

The quickest way to learn how to create hydraulic circuit models is to open some models
from the Examples library.

Model Creation

To create hydraulic circuit models you have to:

1. Drag and drop components from the Hydraulics library to the Editor.

2. Connect the components.

3. Add the Fluid Properties component.

11. Library

69220-sim 5.1 Reference Manual

Simulation

If the model is properly constructed you can start a simulation. Hydraulic circuits can be
simulated with all the available integration methods. In practice the default integration
method (BDF) will give the most accurate and quickest response. Take care with
hydraulic circuits that will give high pressure peaks and small flow rates. These circuits
are sometimes hard to simulate. In practice high pressure peaks should be reduced with
pressure relief valves to avoid damage. Fortunately adding pressure relief valves will in
most cases improve the simulation response.

Common Errors

Simulation will not Run

The most common error with hydraulics models is to forget to insert the Fluid
Properties component. Without this component, the fluid properties are zero
and the simulation will not run.

Bulk modulus and other fluid properties are zero and the simulation will not run. Solution: insert the

Fluid Properties component.

Flow

Laminar flow

Many hydraulic models have a laminar (leakage) flow:

flow = G * dp

with G the flow conductance and dp the pressure difference. The table below shows the
flow rates for various conductance values and pressure differences of 10 [bar] and 400
[bar].

11. Library

69320-sim 5.1 Reference Manual

G

m3/s.Pa

P

Pa

P

bar

flow

m3/s

flow

l/min

1.0e-14 1.0e6 10 2.89e-8 0.002

1.0e-14 4.0e7 400 1.82e-7 0.01

1.0e-12 1.0e6 10 1.44e-6 0.09

1.0e-12 4.0e7 400 9.12e-6 0.6

1.0e-10 1.0e6 10 1.44e-4 9

1.0e-10 4.0e7 400 9.12e-4 55

1.0e-8 1.0e6 10 2.89e-3 173

1.0e-8 4.0e7 400 1.82e-2 1095

If the flow rate is very small (leakage flow), choose G below 1.0e-14 [m3/s.Pa]. If the

flow rate is very large (open connection to a tank), choose G 1.0e-9 or higher if desired.

Leakage Flow

For the valve models in the library, the leakage flow is described with the laminar flow

equation. For leakage flow the conductance is not often given in datasheets. Therefore

the conductance is calculated out of the leakage flow at a nominal pressure drop:

Q_leak = G * p_nom

which gives:

G = Q_leak/P_nom

Turbulent flow

The turbulent flow in an orifice or valve can be described by:

flow = Cd * A * sqrt((2/rho) * dp)

with Cd the discharge coefficient, A the orifice area, rho the fluid density and dp the
pressure difference. The discharge coefficient depends on the shape of the orifice and is
generally not listed in data sheets. Therefore we will write the turbulent flow with
nominal parameters. Given a nominal pressure drop p_nom we find a nominal flow:

Q_nom = Cd * A * sqrt((2/ rho) * p_nom)

we can use this to rewrite the flow equation as:

flow = Q_nom * sqrt(dp / p_nom)

This is the flow equation, that is found in most datasheets. Therefore all the models in
the hydraulics library where the turbulent flow equation is used (orifices, valves) use this
equation.

11. Library

69420-sim 5.1 Reference Manual

Older 20-sim Models

If you have an old 20-sim model that uses the flow equation with a discharge coefficient
and area, and you want to replace it with a new model using the nominal flows here is
what you have to do:

1. Write down the values of the discharge coefficient Cd, valve area A and fluid
density rho of your component.

2. Choose a nominal pressure drop p_nom, e.g. 10e5 Pa (10 bar).

3. Calculate the nominal flow: Q_nom = Cd * A * sqrt((2/ rho) * p_nom)

4. Insert the new library component and fill in the values for p_nom and Q_nom.

Components

HydraulicInertia

Library

Iconic Diagrams\Hydraulics\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

When a fluid flow changes speed, a force is needed to accelerate the fluid. This force is
equal to the acceleration multiplied by the mass of the fluid.

F = m * dv/dt

The fluid mass is equal to the pipe area multiplied by the pipe length and the fluid
density:

m = A * l * rho

The force will result in a pressure differential:

F = A * dp = A * (pa.p - pb.p)

We can rewrite the formulas as

dp = rho * l * dv/dt

and by introducing the fluid flow phi:

11. Library

69520-sim 5.1 Reference Manual

v = phi/A

we get the formula for an hydraulic inertia:

dp = (rho * l / A) * d phi/dt

Interface

Ports Description

pa, pb Both terminals of the hydraulic inertia.

Causality

fixed pressure out

pa

fixed pressure out

pb

Parameters

d

l

pipe diameter [m]

pipe length [m]

Line

Library

Iconic Diagrams\Hydraulics\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

The line model represents a hydraulic pipe or hose with elasticity, inertia and pressure
drop. It is assumed that the pipe or hose is round and has a certain length. The line
model has two implementations: Default and MultipleCells.

Default

The default model of a line consists of two volumes for the compressibility of the fluid, a
hydraulic inertia for the mass of the fluid and a friction element to model to friction of
the fluid with the walls.

11. Library

69620-sim 5.1 Reference Manual

The default line model contains the smallest number of elements to correctly represent
the behaviour of a hydraulic line. A more detailed model is obtained by repeating these
elements in cells. The more cells are used, the more detailed the fluid flow inside the line
can be simulated.

MultipleCells

In general, the default line model will do fine for modelling hydraulic circuits. Only if long
lines are used and the resonances, inside the line are important, the multiple cells line
model should be applied.

1. Select the Line model in the 20-sim Editor

2. Make sure it has the MultipleCells implementation: select Right mouse menu – Edit
Implementation – MultipleCells.

3. Click Go Down to inspect the equations.

4. Change the value of the constant n from 4 to the number of cells that you require
(n>1).

Volume

The pipe with length L [m], diameter D [m] and thickness th [m] will expand under if a
pressure is applied by the fluid flowing in the pipe.

11. Library

69720-sim 5.1 Reference Manual

The expansion is modelled in the radial direction (pipe wall expanding) and in the length
of of the pipe (pipe extending). This expansion can be modelled by a reduction of the
Bulk modulus:

p = B*int(Q/V) with B = 4*th*E*B / (4*th*E + 5*D*B)

where E is Young’s modulus [Pa].

Inertia

The fluid in the pipe will oppose any change in velocity by a pressure drop. This is
modelled by a hydraulic inertia. The equation for the inertia is:

Q = A/(rho*L)

where A is the pipe cross sectional area [m2] and rho is the fluid density [kg/m3].

Friction

Any fluid flowing through a pipe will experience friction resulting in a pressure drop. The
pressure drop depends on the fluid velocity and flow conditions. The flow condition can
be determined by the Reynolds number:

Re = Q*D/(A*kv)

where Q is the fluid flow [m3/s], D the pipe diameter [m], A the pipe cross sectional

area [m2] and kv the kinematic viscosity [m2/s].

For low Reynolds numbers the flow is laminar and for high Reynolds numbers the flow is
turbulent. According to Beater (1999), for a smooth pipe, the friction factor lambda can
be described as:

lambda = 2*dp*D/(v^2*rho*L)

with dp the pressure drop [Pa] over the line, rho the density of the fluid [kg/m3] and v
the average flow velocity of the fluid.

The friction factor lambda depends on the Reynolds number:

Re lambda flow
0 - 1404 64/Re laminar (Hagen=Poiseuille)
1404-2320 0.0456 transition from laminar to

turbulent
> 2320 0.3164 / Re0.25 turbulent (Blasius)

11. Library

69820-sim 5.1 Reference Manual

Interface

Ports Description

pa, pb Both terminals of the hydraulic inertia.

Causality

fixed pressure out pa

fixed pressure out pb

Parameters

D

L

th

E

Line inner diameter [m]

Line length [m]

Wall thickness [m]

Modulus of elasticity [N/m2]

Node

Library

Iconic Diagrams\Hydraulics\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This node model represents a connection between two or more lines of an hydraulic
circuit. The model has only one initial port p defined. Because any number of
connections can be made, successive ports are named p1, p2, p3 etc.

Interface

Ports Description

p [any] Any number of connections can be made.

11. Library

69920-sim 5.1 Reference Manual

Cylinders

Basic Cylinders

Cylinder

Library

Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

Description

This is an ideal model of cylinder with no mass and no friction. The volume of the
chambers is given by:

Va = Vdead + Aa*(x + x_initial)
Vb = Vdead + Ab*(stroke - x - x_initial)

with Aa the piston area and Ab the effective area at the rod side. x is the piston position
and Vdead the initial volume when piston position is zero. The piston areas Aa and Ab
are related to the piston diameter dp and rod diameter dr by:

Aa = pi * dp^2 / 4
Ab = pi * dp^2 / 4 - pi * dr^2 / 4

There is no restriction on the travel of the piston. Only a warning is given when the
maximum stroke is exceeded or the piston position gets negative.

Interface

Ports Description

11. Library

70020-sim 5.1 Reference Manual

pa, pb

pm

hydraulic port

translation port

Causality

preferred pressure out pa

preferred force out pm

Parameters

Vdead

stroke

x_initial

dp

dr

rest volume of oil in cylinder chamber when closed [N.s/

m]

stroke length [m]

starting position of piston [m]

piston diameter [m]

rod diameter [m]

CylinderChamberA

Library

Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

Description

This is an ideal model of a single acting cylinder with no mass and no friction. The
volume of the chamber is given by:

V = Vdead + Aa*(x + x_initial)

with Aa the piston area, x the piston position and Vdead the initial volume when piston
position is zero. The piston area Aa is related to the piston diameter dp by:

11. Library

70120-sim 5.1 Reference Manual

Aa = pi * dp^2 / 4

There is no restriction on the travel of the piston. Only a warning is given when the
maximum stroke is exceeded or the piston position gets negative.

Interface

Ports Description

pa

pm

hydraulic port

translation port

Causality

preferred pressure out pa

preferred force out pm

Parameters

Vdead

stroke

x_initial

dp

rest volume of oil in cylinder chamber when closed [N.s/

m]

stroke length [m]

starting position of piston [m]

piston diameter [m]

CylinderChamberB

Library

Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

11. Library

70220-sim 5.1 Reference Manual

Description

This is an ideal model of a single acting cylinder with no mass and no friction. The
volume of the chamber is given by:

V = Vdead + Aa*(x + x_initial)

with Aa the piston area, x the piston position and Vdead the initial volume when piston
position is zero. The piston area Aa is related to the piston diameter dp by:

Aa = pi * dp^2 / 4

There is no restriction on the travel of the piston. Only a warning is given when the
maximum stroke is exceeded or the piston position gets negative.

Interface

Ports Description

pa

pm

hydraulic port

translation port

Causality

preferred pressure out pa

preferred force out pm

Parameters

Vdead

stroke

x_initial

dp

rest volume of oil in cylinder chamber when closed [N.s/

m]

stroke length [m]

starting position of piston [m]

piston diameter [m]

11. Library

70320-sim 5.1 Reference Manual

CylinderSpringReturn

Library

Iconic Diagrams\Hydraulics\Cylinders\Basic Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

Description

This is an ideal model of a single acting cylinder with no mass and no friction and a
return spring to drive the cylinder back when there is no pressure in the chamber. The
volume of the chamber is given by:

V = Vdead + Aa*(x + x_initial)

with Aa the piston area, x the piston position and Vdead the initial volume when piston
position is zero. The piston area Aa is related to the piston diameter dp by:

Aa = pi * dp^2 / 4

The driving force of the return spring is determined by two parameters: the force for
piston position zero (Fspr_min) and the force when the piston is at the other side
(Fspr_max). The spring constant (kspr) and initial spring position (x0) are calculated out
of these parameters by:

kspr = (Fspr_max - Fspr_min)/stroke
x0 = -Fspr_min/kspr

There is no restriction on the travel of the piston. Only a warning is given when the
maximum stroke is exceeded or the piston position gets negative.

11. Library

70420-sim 5.1 Reference Manual

Interface

Ports Description

pa

pm

hydraulic port

translation port

Causality

preferred pressure out pa

preferred force out pm

Parameters

Vdead

stroke

x_initial

dp

Fspr_min

Fspr_max

rest volume of oil in cylinder chamber when closed [N.s/

m]

stroke length [m]

starting position of piston [m]

piston diameter [m]

minimum return spring force (at x = 0) [N]

maximum return spring force (at x = stroke) [N]

CylinderDouble

Library

Iconic Diagrams\Hydraulics\Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

Description-Default

This model is the extended model of a double acting cylinder with mass, friction and end
stops.

c

11. Library

70520-sim 5.1 Reference Manual

The volume of the chambers is given by:

Va = Vdead + Aa*(x + x_initial)
Vb = Vdead + Ab*(stroke - x - x_initial)

with Aa the piston area and Ab the effective area at the rod side. x is the piston position
and Vdead the initial volume when piston position is zero. The piston areas Aa and Ab
are related to the piston diameter dp and rod diameter dr by:

Aa = pi * dp^2 / 4
Ab = pi * dp^2 / 4 - pi * dr^2 / 4

The travel of the piston is restricted. At the cylinder heads two collision models prevent
the piston from traveling any further. The friction between the piston and the cylinder
walls is modeled by static and viscous friction.

Description - Special_Use

When two cylinders are used in parallel, the chambers are connected and the resulting
model will have algebraic loops. To prevent this, the special_use implementation can be
used. In this implementation, the volumes of the cylinder are described with a Parasitic
Volume.

11. Library

70620-sim 5.1 Reference Manual

CylinderSingleSpringReturn

Library

Iconic Diagrams\Hydraulics\Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

Description

This is the extended model of a single acting cylinder with mass, friction, end stops and
a return spring to drive the cylinder back when there is no pressure in the chamber.

11. Library

70720-sim 5.1 Reference Manual

The volume of the chamber is given by:

V = Vdead + Aa*(x + x_initial)

with Aa the piston area, x the piston position and Vdead the initial volume when piston
position is zero. The piston area Aa is related to the piston diameter dp by:

Aa = pi * dp^2 / 4

The driving force of the return spring is determined by two parameters: the force for
piston position zero (Fspr_min) and the force when the piston is at the other side
(Fspr_max). The spring constant (kspr) and initial spring position (x0) are calculated out
of these parameters by:

kspr = (Fspr_max - Fspr_min)/stroke
x0 = -Fspr_min/kspr

The travel of the piston is restricted. At the cylinder heads two collision models prevent
the piston from traveling any further. The friction between the piston and the cylinder
walls is modeled by static and viscous friction.

Interface

Ports Description

pa

p_barrel, p_rod

hydraulic port

translation ports

Causality

11. Library

70820-sim 5.1 Reference Manual

preferred pressure out pa

preferred force out pm

Parameters

Vdead

stroke

x_initial

dp

m_barrel

m_rod

kc

dc

Fc

dv

slope

Fspr_min

Fspr_max

rest volume of oil in cylinder chamber when closed [m3]

stroke length [m]

starting position of piston [m]

piston diameter [m]

barrel mass [kg]

rod and piston mass [kg]

stiffness during collision with cylinder heads [N/m]

damping during collision with cylinder heads [N.s/m]

static friction [N]

viscous friction coefficient [N.s/m]

steepness of the static friction curve []

minimum return spring force (at x = 0)

maximum return spring force (at x = stroke)

Note

When a the cylinder piston collides with the cylinder heads, simulation may get very slow
or even become unstable. In these cases you are advised to use the BDF-method with
default settings. Try to change the absolute integration error until a stable simulation is
obtained!

CylinderSingle

Library

Iconic Diagrams\Hydraulics\Cylinders

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics/Translational).

Description

This is the extended model of a single acting cylinder with mass, friction and end stops.

11. Library

70920-sim 5.1 Reference Manual

The volume of the chamber is given by:

V = Vdead + Aa*(x + x_initial)

with Aa the piston area, x the piston position and Vdead the initial volume when piston
position is zero. The piston area Aa is related to the piston diameter dp by:

Aa = pi * dp^2 / 4

The travel of the piston is restricted. At the cylinder heads two collision models prevent
the piston from traveling any further. The friction between the piston and the cylinder
walls is modeled by static and viscous friction.

Interface

Ports Description

pa

p_barrel, p_rod

hydraulic port

translation ports

Causality

preferred pressure out pa

preferred force out pm

Parameters

Vdead

stroke

x_initial

rest volume of oil in cylinder chamber when closed [m3]

stroke length [m]

starting position of piston [m]

11. Library

71020-sim 5.1 Reference Manual

dp

m_barrel

m_rod

kc

dc

Fc

dv

slope

piston diameter [m]

barrel mass [kg]

rod and piston mass [kg]

stiffness during collision with cylinder heads [N/m]

damping during collision with cylinder heads [N.s/m]

static friction [N]

viscous friction coefficient [N.s/m]

steepness of the static friction curve []

Note

When a the cylinder piston collides with the cylinder heads, simulation may get very slow
or even become unstable. In these cases you are advised to use the BDF-method with
default settings. Try to change the absolute integration error until a stable simulation is
obtained!

Fluids

FluidProperties

The fluid properties model, contains the properties of hydraulic fluids with the following
parameters:

kinematic viscosity {m2/s}
density {kg/m3}
bulk modulus {Pa}
vapour pressure {Pa}

You can drag and drop the FluidProperties model in the Editor and use all these
parameters automatically in all other hydraulic components of your model.

Fluids

Every fluid is stored as an implementation of the FluidProperties model. When you drag
and drop the FluidProperties model in the Editor, you will be asked which implementation
you want to use. Currently the following fluids are supported:

Default
Diesel
Gasoline
ISO VG 100
ISO VG 150
ISO VG 22
ISO VG 32
ISO VG 46
ISO VG 68
Kerosene
SAE 10W-30
SAE 10W-40
SAE 15W-40
SAE 75W-140

11. Library

71120-sim 5.1 Reference Manual

Sea Water
Skydrol 500B-4
VW13
Water

Default Fluid

The default fluid is meant for use in hydraulic cylinders and hydraulic motors for (heavy)
machines. The properties of the default fluid were used in 20-sim 4.8 and previous
versions:

kin_viscosity = 2.7e-5 {m2/s};// kinematic viscosity

rho = 865.0 {kg/m3}; // density

B = 1.6e9 {Pa}; // effective bulk modulus

p_vapour = -99900.0 {Pa}; // vapour presure

Custom Fluid

You can change the parameters of a fluid in the Parameters Editor.

Multiple Fluids

The fluid properties are valid at the level where the FluidProperties model is inserted. If
you have multiple hydraulic circuits and you want to use multiple fluids, you have to put
every circuit in a submodel and insert FluidProperties model into that submodel.

Parameters

Kinematic Viscosity (kin_viscosity)

The kinematic viscosity is defined in SI units: m2/s. It is used in the line model to
calculate the pressure drop over a hydraulic line because of friction.

Density (rho)

The density of a fluid is defined in SI units: kg/m3. It is used to derive the mass of a
fluid in the hydraulic inertia model and line models and for the pressure drop over an
orifice in the orifice and valve models.

The density of a fluid is defined in SI units: kg/m3.

Bulk modulus (B)

No liquid is fully incompressible. The compliance characteristics of the oil in a hydraulic
system is a vital parameters affecting the response. The effect of compressibility is
incorporated by entering the bulk modulus of the fluid:

dp = -B*dV/V

Here dp is the pressure , V the volume and B the bulk modulus. For small pressure
variations the compressibility effect my be rewritten as:

p = B/V*int(flow)

The bulk modulus is a very uncertain parameter. It depends on the percentage of air
dissolved in the fluid, the pressure and the temperature. In most textbooks a values of
1.5 to 1.75 [GPa] is used. 20-sim uses a default value of 1.6 [GPa]. If fluid should be
simulated at elevated temperatures or with a high percentage or air dissolved, you
should use a smaller value for the bulk modulus.

11. Library

71220-sim 5.1 Reference Manual

Vapour Pressure (p_vapour)

 The 20-sim hydraulics library uses the common definition of pressure in Pa:

1 Pa = 1 N/m2 = 1e-5 bar

The air pressure at sea level is taken as the zero value:

0 Pa = air pressure

Consequently the pressure for a hydraulic fluid that starts to vaporize is negative. In 20-
sim the default value of the vapour pressure is:

p_vapour = -0.999e5 Pa

The vapour pressure is the minimum pressure. Some models have a safeguard on the
pressure to prevent it to become smaller. You can change the value of the vapour
pressure but take care that always a value is chosen that is smaller than zero. Otherwise
some of the models will not work correctly.

Motors

Basic Motors

DisplacementMotor

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes an ideal motor with an axial speed that is proportional to the input
flow rate:

pa.phi = pb.phi = i * p_rot.omega;
i = D / (2*pi);

The torque is equal to:

p.T = i*(pa.p - pb.p);

If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is
zero. If the port pressure becomes larger than the vapour pressure the flow gradually
grows to its normal value, until the atmospheric pressure (p = 0) is reached.

11. Library

71320-sim 5.1 Reference Manual

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed torque out

p_rot

Parameters

D displacement per revolution [m3]

VariableDisplacementMotor

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes an ideal motor with an axial speed that is proportional to the input
flow rate:

pa.phi = pb.phi = i * p_rot.omega;
i = D * c / (2*pi);

The torque is equal to:

p.T = i*(pa.p - pb.p);

The displacement is controllable by the input signal c. For a positive rotation of the
driving axis the flow is:

 c >= 1

c = 0

c <= -1

maximum flow from port 1 to port 2

zero flow

maximum flow from port 2 to port 1

If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is
zero. If the port pressure becomes larger than the vapour pressure the flow gradually
grows to its normal value, until the atmospheric pressure (p = 0) is reached.

11. Library

71420-sim 5.1 Reference Manual

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed torque out

p_rot

Input

c relative displacement

Parameters

D displacement per revolution [m3]

DisplacementMotor-Leakage

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

11. Library

71520-sim 5.1 Reference Manual

This model describes an motor with internal leakage and an axial speed that is
proportional to the input flow rate:

pa.phi = pb.phi = i * p_rot.omega;
i = D / (2*pi);

The actual flows at the inlet and outlet port may be slightly different because of the flow
into the lumped volumes and the leakage flows. The leakage flows are modeled by
laminar resistances. The torque is equal to:

p.T = i*(pa.p - pb.p);

If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is
zero.

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

preferred pressure out pa

preferred pressure out pa

preferred angular velocity out

p_rot

Parameters

D

J

d_m

Displacement per revolution [m3]

Rotational inertia [kg.m2]

Viscous (rotational) friction [N.m.s/rad]

p_static Start pressure, acts as Coulomb friction, set to 2% of

max pressure if unknown [Pa]

G_int Internal laminar leakage conductance, set to 1e-13 if

unknown [m3/s.Pa]

V Dead volume of the pump at each port [m3]

11. Library

71620-sim 5.1 Reference Manual

VariableDisplacementMotor-Leakage

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes an motor with internal leakage and an axial speed that is
proportional to input flow rate:

pa.phi = pb.phi = i * p_rot.omega;
i = D / (2*pi);

The actual flows at the inlet and outlet port may be slightly different because of the flow
into the lumped volumes and the leakage flows. The leakage flows are modeled by
laminar resistances. The torque is equal to:

p.T = i*(pa.p - pb.p);

The displacement is controllable by the input signal c. For a positive rotation of the
driving axis the flow is:

 c >= 1

c = 0

c <= -1

maximum flow from port 1 to port 2

zero flow

maximum flow from port 2 to port 1

If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is
zero.

11. Library

71720-sim 5.1 Reference Manual

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

preferred pressure out pa

preferred pressure out pa

preferred angular velocity out

p_rot

Inputs

c relative displacement

Parameters

D

J

d_m

Displacement per revolution [m3]

Rotational inertia [kg.m2]

Viscous (rotational) friction [N.m.s/rad]

p_static start pressure, acts as Coulomb friction, set to 2% of max

pressure if unknown [Pa]

G_int

V

Conductance of laminar resistance [m3/s.Pa]

Dead volume of the pump at each port [m3]

Pumps

Basic Pumps

DisplacementPump

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes an ideal pump with a displacement that is proportional to the speed
of the input axis:

pa.phi = pb.phi = i * p_rot.omega;
i = D / (2*pi);

11. Library

71820-sim 5.1 Reference Manual

The torque is equal to:

p.T = i*(pa.p - pb.p);

If the inlet pressure is smaller than the vapour pressure(p < p_vapour), the flow is zero.

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

fixed volume flow

out pa

fixed volume flow

out pb

preferred angular

velocity out p_rot

Parameters

D displacement per revolution [m3]

FlowSource

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents an ideal flow source with a fixed flow given by the parameter phi:

p.phi = phi;

The model has no leakage.

Interface

Ports Description

p

Causality

fixed volume flow

out p

Parameters

11. Library

71920-sim 5.1 Reference Manual

phi Volume flow [m3/s]

ModulatedFlowSource

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents an ideal flow source with a variable flow that is given by input
signal phi:

p.phi = phi;

The model has no leakage.

Interface

Ports Description

p

Causality

fixed volume flow

out p

Input

phi Volume flow [m3/s]

ModulatedPressureSource

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents an ideal pressure source with a fixed pressure given by the
parameter pressure:

p.p = pressure;

The model has no leakage.

11. Library

72020-sim 5.1 Reference Manual

Interface

Ports Description

p

Causality

fixed pressure out

Input

pressure Pressure [Pa]

PressureSource

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents an ideal pressure source with a fixed pressure given by the
parameter pressure:

p.p = pressure;

The model has no leakage.

Interface

Ports Description

p

Causality

fixed pressure out

Parameters

p Pressure [Pa]

VariableDisplacementPump

Library

Iconic Diagrams\Hydraulics\Pumps\Basic Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes an ideal pump with a displacement that is proportional to the speed
of the input axis:

11. Library

72120-sim 5.1 Reference Manual

pa.phi = pb.phi = i * p_rot.omega;
i = D * c / (2*pi);

The torque is equal to:

p.T = i*(pb.p - pa.p);

The displacement is controllable by the input signal c. For a positive rotation of the
driving axis the flow is:

 c >= 1

c = 0

c <= -1

maximum flow from port 1 to port 2

zero flow

maximum flow from port 2 to port 1

If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is
zero.

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed torque out

p_rot

Input

c relative displacement

Parameters

D displacement per revolution [m3]

CentrifugalPump

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

11. Library

72220-sim 5.1 Reference Manual

Description

A centrifugal pump converts the input power of a rotating shaft into kinetic energy of a
the liquid by accelerating the liquid through an impeller.

The pump is characterized by two curves:

1. The head (H) as function of the volume flow at a preset speed.

2. The efficiency (n) of the pump as a function of the fluid flow at a present speed. The
efficiency is defined as the flow output power divided by rotational input power.

The pump curves are approximated by two second order polynomials:

H = ha*q2 + hb*q + hc

n = na*q2 + nb*q + nc

To fit the polynomial curves, the heads and efficiencies have to be specified at three

11. Library

72320-sim 5.1 Reference Manual

different flows. The first flow (q0) is zero. The other two flows (q1 and q2) can be chosen
arbitrary.

Note: some pump flows extrapolate the efficiency curves to zero at zero fluid flow. This
would mean that at a zero fluid flow no power can be transmitted and the pump can
never start! Therefore in this model always use an efficiency that is non-zero at zero
flow.

Some pump characteristics give multiple input speeds. This model automatically takes
into account for varying input speeds of the input axis by transforming the pump curve
using the affinity rules.

H
a
 = H

b
*(v

b
/v

a
)2

Q
a
 = Q

b
*(v

b
/v

a
)

Some pump characteristics give the efficiencies as regions. You have then have to
estimate the efficiencies at the chosen flows q0, q1 and q2.

Interface

Ports Description

p_t

p_a

p_rot

inlet port, tank (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

velocity out p_rot

Input

phi Volume flow [m3/s]

11. Library

72420-sim 5.1 Reference Manual

Parameters

q1

q2

H0

H1

H2

n0

n1

n2

v_nom

flow 1 (choose an arbitrary point between zero and nominal)

flow 2 (nominal flow)

head at zero flow

head at flow 1

head at flow 2 (nominal flow)

efficiency (0 < n < 1) at zero flow

efficiency (0 < n < 1) at flow 1

efficiency (0 < n < 1) at flow 2 (nominal flow)

nominal speed of the pump

DisplacementPump-Leakage

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a pump with internal and external leakage and a displacement that
is proportional to the speed of the input axis:

i = D * c / (2*pi);
pa.phi = pb.phi = i * p_rot.omega;

11. Library

72520-sim 5.1 Reference Manual

The actual flows at the inlet and outlet port may be slightly different because of the flow
into the lumped volumes and the leakage flows. The leakage flows are modeled by
laminar resistances. The torque of the pump is equal to:

p.T = i*(pa.p - pb.p);

If the inlet pressure is smaller than the vapour pressure(p < p_vapour), the flow is zero.
If the inlet pressure becomes larger than the vapour pressure the flow gradually grows
to its normal value, until the atmospheric pressure (p = 0) is reached.

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

preferred pressure out pa

preferred pressure out pa

preferred angular velocity out

p_rot

Parameters

D

J

d_m

Displacement per revolution [m3]

Rotational inertia [kg.m2]

Viscous (rotational) friction [N.m.s/rad]

p_static Start pressure, acts as Coulomb friction, set to 2% of

max pressure if unknown [Pa]

G_int Internal laminar leakage conductance, set to 1e-13 if

unknown [m3/s.Pa]

V Dead volume of the pump at each port [m3]

11. Library

72620-sim 5.1 Reference Manual

FlowSource-Leakage

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents a flow source with a fixed flow and leakage. The flow is given by
the parameter phi:

p.phi = phi - G*p.p;

At the output port of the flow source a parasitic volume is mounted. A parasitic volume is
a tiny volume that can be added to elements to make them more easy to simulate.

Interface

Ports Description

p

Causality

fixed volume flow out

p

Input

phi Volume flow [m3/s]

Parameters

FlowSource\phi

TankRes\p_nom

TankRes\p_tank

TankRes\Q_leak

V\V

V\p_initial

Volume flow [m3/s]

Nominal pressure

Tank pressure [Pa]

Leakage flow at nominal pressure [m3/s]

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

11. Library

72720-sim 5.1 Reference Manual

ModulatedFlowSource-Leakage

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents a flow source with a variable flow and leakage. The variable flow
is given by an input signal:

p.phi = phi - G*p.p;

At the output port of the flow source a parasitic volume is mounted. A parasitic volume is
a tiny volume that can be added to elements to make them more easy to simulate.

Interface

Ports Description

p

Causality

fixed volume flow out

p

Input

phi Volume flow [m3/s]

Parameters

TankRes\p_nom

TankRes\p_tank

TankRes\Q_leak

V\V

V\p_initial

Nominal pressure

Tank pressure [Pa]

Leakage flow at nominal pressure [m3/s]

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

11. Library

72820-sim 5.1 Reference Manual

VariableDisplacementPump-Leakage

Library

Iconic Diagrams\Hydraulics\Pumps

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a pump with internal and external leakage and a displacement that
is proportional to the speed of the input axis:

i = D * c / (2*pi);
pa.phi = pb.phi = i * p_rot.omega;

The actual flows at the inlet and outlet port may be slightly different because of the flow
into the lumped volumes and the leakage flows. The leakage flows are modeled by
laminar resistances. The torque of the pump is equal to:

p.T = i*(pa.p - pb.p);

The displacement is controllable by the input signal c. For a positive rotation of the
driving axis the flow is:

 c >= 1 maximum flow from port 1 to port 2

11. Library

72920-sim 5.1 Reference Manual

c = 0

c <= -1

zero flow

maximum flow from port 2 to port 1

If the port pressure is smaller than the vapour pressure (p < p_vapour), the flow is
zero. If the port pressure becomes larger than the vapour pressure the flow gradually
grows to its normal value, until the atmospheric pressure (p = 0) is reached.

Interface

Ports Description

pa

pb

p_rot

inlet port (hydraulic)

outlet port (hydraulic)

axis (rotation)

Causality

preferred pressure out pa

preferred pressure out pa

preferred angular velocity out

p_rot

Input

c relative displacement

Parameters

D

J

d_m

Displacement per revolution [m3]

Rotational inertia [kg.m2]

Viscous (rotational) friction [N.m.s/rad]

p_static Start pressure, acts as Coulomb friction, set to 2% of

max pressure if unknown [Pa]

G_int Internal laminar leakage conductance, set to 1e-13 if

unknown [m3/s.Pa]

V Dead volume of the pump at each port [m3]

11. Library

73020-sim 5.1 Reference Manual

Restrictions

LaminarResistance

Library

Iconic Diagrams\Hydraulics\Restrictions

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes the laminar flow through a component:

pa.phi = pb.phi = G*(pa.p - pb.p);

with the conductance calculated out of the flow (Q_nom) at a nominal pressure drop
(p_nom).

G = Q_nom / p_nom;

The pressure at both ports has a lower limit which is equal to the vapour pressure.
Therefore the actual equations used in this component are:

p1_lim = if pa.p < p_vapour then p_vapour else pa.p end;
p2_lim = if pb.p < p_vapour then p_vapour else pb.p end;
dp = p1_lim - p2_lim;
pa.phi = G*dp;
pb.phi = pa.phi;

There is no check on the validity of laminar flow in this component!

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

p_nom

Q_nom

nominal pressure drop [Pa]

flow at nominal pressure drop {m3/s]

11. Library

73120-sim 5.1 Reference Manual

Orifice

Library

Iconic Diagrams\Hydraulics\Restrictions

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes the laminar/turbulent flow through an orifice if no cavitation occurs.
The flow depends on the pressure difference:

dp = pa.p - pb.p
phi = sign(dp) * Cd * A * sqrt((2/rho) * abs(dp)) + GLeak * dp;

Here Cd the discharge coefficient, A the orifice area, rho the fluid density, GLeak the
conductance of laminar flow and dp the pressure difference. The discharge coefficient
depends on the shape of the orifice and is generally not listed in data sheets. Therefore
we will write the turbulent flow with nominal parameters. Given a nominal pressure drop
p_nom we find a nominal flow:

Q_nom = Cd * A * sqrt((2/ rho) * p_nom)

we can use this to rewrite the flow equation as:

phi = Q_nom * sqrt(dp / p_nom)

Similar we can write the laminar leakage flow as

Q_leak = G * p_nom

we can use this to rewrite the complete orifice equation as:

11. Library

73220-sim 5.1 Reference Manual

phi = Q_nom * sqrt(dp / p_nom) + (Q_leak/p_nom)*dp

The pressure at both ports has a lower limit that is equal to the vapour pressure.
Therefore the actual equations used in this component are:

p1_lim = if pa.p < p_vapour then p_vapour else pa.p end;
p2_lim = if pb.p < p_vapour then p_vapour else pb.p end;
dp = p1_lim - p2_lim;

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

Q_nom

Q_leak

p_nom

Turbulent flow at nominal pressure drop [m3/s]

Leakage flow at nominal pressure drop, make 1e-8 if unknown [m3/s]

Nominal pressure [Pa].

11. Library

73320-sim 5.1 Reference Manual

VariableLaminarResistance

Library

Iconic Diagrams\Hydraulics\Restrictions

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes the laminar flow through a component:

pa.phi = pb.phi = G*(pa.p - pb.p);

The variable conductance G is given by an input signal. The pressure at both ports has a
lower limit that is equal to the vapour pressure. Therefore the actual equations used in
this component are:

p1_lim = if pa.p < p_vapour then p_vapour else pa.p end;
p2_lim = if pb.p < p_vapour then p_vapour else pb.p end;
dp = p1_lim - p2_lim;
pa.phi = G*dp;
pb.phi = pa.phi;

There is no check on the validity of laminar flow in this component!

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Input

G Conductance of laminar resistance [m3/s.Pa], G >= 0.

VariableOrifice

Library

Iconic Diagrams\Hydraulics\Restrictions

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes the laminar/turbulent flow through an orifice if no cavitation occurs.
The flow depends on the pressure difference:

11. Library

73420-sim 5.1 Reference Manual

dp = pa.p - pb.p;
phi = sign(dp) * Cd * sp * A * sqrt((2/rho) * abs(dp)) + GLeak * dp;

Here Cd the discharge coefficient, sp the orifice opening, A the orifice area, rho the fluid
density, GLeak the conductance of laminar flow and dp the pressure difference. The
discharge coefficient depends on the shape of the orifice and is generally not listed in
data sheets. Therefore we will write the turbulent flow with nominal parameters. Given a
nominal pressure drop p_nom we find a nominal flow:

Q_nom = Cd * A * sqrt((2/ rho) * p_nom)

we can use this to rewrite the flow equation as:

phi = sp * Q_nom * sqrt(dp / p_nom)

Similar we can write the laminar leakage flow as

Q_leak = G * p_nom

we can use this to rewrite the complete orifice equation as:

phi = sp * Q_nom * sqrt(dp / p_nom) + (Q_leak/p_nom)*dp

The orifice opening is determined with the input signal sp which can vary between 0
(orifice closed) to 1 (orifice open).

The pressure at both ports has a lower limit that is equal to the vapour pressure.
Therefore the actual equations used in this component are:

11. Library

73520-sim 5.1 Reference Manual

p1_lim = if pa.p < p_vapour then p_vapour else pa.p end;
p2_lim = if pb.p < p_vapour then p_vapour else pb.p end;
dp = p1_lim - p2_lim;

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Input

sp orifice opening, sp <= 0 -> closed, sp >= 1 -> open.

Parameters

Q_nom

Q_leak

p_nom

Turbulent flow at nominal pressure drop [m3/s]

Leakage flow at nominal pressure drop, make 1e-8 if unknown [m3/s]

Nominal pressure [Pa].

Sensors

DifferentialPressure

Library

Iconic Diagrams\Hydraulics\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model gives the measured pressure drop between two ports (plus and min) as an
output signal:

pressure = p_plus.p - p_min.p;
p_plus.phi = p_min.phi = 0;

The model has no leakage.

Interface

Ports Description

p_plus

p_min

 Both pressure terminals of the pressure sensor

11. Library

73620-sim 5.1 Reference Manual

Causality

fixed volume flow

out p_plus

fixed volume flow

out p_min

Output

pressure Pressure drop between the two terminals (plus and min) [Pa]

FlowSensor

Library

Iconic Diagrams\Hydraulics\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model gives the measured flow as an output signal. The port p of the model has
separate high and low terminals. The equations are:

p.phi = p_high.phi = p_low.phi;
p.p = p_high.p - p_low.p;
p.p = 0;
phi = p.phi;

The model has no leakage.

Interface

Ports Description

p

Causality

fixed volume flow

out

Output

phi Volume flow [m3/s]

11. Library

73720-sim 5.1 Reference Manual

HeadSensor

Library

Iconic Diagrams\Hydraulics\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This sensor gives the pressure in head:

H = p / (rho * g)

with rho the density of the fluid and g the specific gravity. The head is the rise of fluid in

meters if an open tube would be connected. The figure below shows an example for
water at 1 bar and 20 degrees (rho = 998 kg/m3 giving a head of 10.2 m.

Interface

Ports Description

p

Causality

indifferent

PowerSensor

Library

Iconic Diagrams\Hydraulics\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model gives the power that is tranferred over a hydraulic line:

p_high.p = p_low.p;
p_high.phi = p_low.phi;
P = p_high.phi*p_high.p;

The model has no leakage.

Interface

Ports Description

p

11. Library

73820-sim 5.1 Reference Manual

Causality

indifferent

Output

P Power [W].

PressureSensor

Library

Iconic Diagrams\Hydraulics\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model gives the measured pressure as an output signal:

pressure = p.p;
p.phi = 0;

The model has no leakage.

Interface

Ports Description

p Pressure terminals of the pressure sensor.

Causality

fixed volume flow

out p

Output

pressure Pressure [Pa].

Valves

Basic Valves

CheckValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

11. Library

73920-sim 5.1 Reference Manual

Description

This model describes a spring-loaded check valve. The resistance depends on the
pressure difference:

dp < pclosed => valve closed, only leakage: pa.phi = pb.phi = (Q_leak/p_nom)*dp
pclosed < dp < popen => working range, i. e. valve partially opened
popen < dp => valve wide open: pa.phi = pb.phi = = Q_nom * sqrt(dp / p_nom)
+ (Q_leak/p_nom)*dp

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

pclosed

popen

Q_nom

Q_leak

p_nom

Valve is closed under this pressure [Pa].

Valve is fully open above this pressure [Pa].

Turbulent flow at nominal pressure drop [m3/s]

Leakage flow at nominal pressure drop, make 1e-12 if unknown [m3/

s]

Nominal pressure [Pa].

11. Library

74020-sim 5.1 Reference Manual

FlowControlValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

Flow control valves have the purpose to provide a constant flow, independent of the
downstream pressure. The flow is obtained by means of a pressure difference controller
using the pressure drop over an orifice. Therefore flow control valves always need a
certain pressure drop before the desired flow can be achieved.

In this model the flow is modeled by an tanh function. The pressure drop is defined as
the pressure where 95% of the desired flow rate is achieved.

dp = pa.p - pb.p
phi = if dp > 0 then
 Q_set*tanh((arctan(0.95)/p_drop) * dp) + GLeak * dp;
else
 GLeak * dp
end;

Here phi is the desired flow and p_drop is the 95% pressure drop. Gleak is the
conductance of laminar leakage flow when the valve is closed. The pressure at both
ports has a lower limit that is equal to the vapour pressure. Therefore the actual
equations used in this model are:

11. Library

74120-sim 5.1 Reference Manual

p1_lim = if pa.p < p_vapour then p_vapour else pa.p end;
p2_lim = if pb.p < p_vapour then p_vapour else pb.p end;
dp = p1_lim - p2_lim;

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

Q_set

p_drop

GLeak

Desired flow [m3/s]

pressure drop at 95% flow [Pa]

Conductance of the laminar leakage flow [m3/s.Pa], GLeak >= 0!

FourThreeWayDirectionalValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model is equal to the four three way proportional valve model, except for the spool
position. The spool position is rounded to 0, 1 or -1:

-0.5 < spoolpos < 0.5 => pos = 0
spoolpos >= 0.5 => pos = 1
spoolpos <= -0.5 => pos = -1

The spool dynamics is modeled by a second order transfer function:

sp = SO(f,d,discrete(pos))

which is characterized by the bandwidth (f) and damping (d).

Implementation

The 4/3-way directional control valve is implemented with various spool centre
configurations. The configurations are shown in the picture below:

11. Library

74220-sim 5.1 Reference Manual

When you drag and drop a model in the editor, you will be asked which implementation
you want to choose. During modeling you can easily change the spool center
configuration:

1. Select the valve model.

2. Click the right mouse button to open the right mouse menu.

3. Click Edit Implementation and choose another implementation.

Interface

Ports Description

pp, pt, pa, pb, All terminals of the valve.

Causality

fixed volume flow

out pp

fixed volume flow

out pt

fixed volume flow

out pa

fixed volume flow

out pb

Inputs

spoolpos position of the spool valve: 0 = closed, 1 = open positive, -1 = open

negative, -1 <= spoolpos <= 1

Parameters

Q_nom Nominal flow at nominal pressure per edge, spool in the open position

[m3/s], Q_nom > 0

Q_nom_central Nominal flow at nominal pressure per edge with, spool in the closed

position, Q_nom_central > 0

Q_leak

p_nom

overlap

Leakage flow at nominal pressure per edge [m3/s], Q_leak > 0

Nominal pressure per edge [Pa], p_nom > 0

Valve overlap as percentage of full stroke, -1 < overlap < 1.

11. Library

74320-sim 5.1 Reference Manual

f Natural frequency, f > 0.

FourThreeWayProportionalValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a 4/3-way proportional control valve with second order spool
dynamics.

The spool position is indicated by the variable sp:

sp = -1 Flow from p to b and a to t

-1 < sp < 0 Partial flow from p to b and a to t

sp = 0 No flow

0 < sp < 1 Partial flow from p to a and b to t

sp = 1 Flow from p to a and b to t

11. Library

74420-sim 5.1 Reference Manual

The flow through the valves is described as laminar/turbulent flow through an orifice. A
detailed description of the flow equations can be found in the description of the model
TwoTwoWayDirectionalValve.

In the neutral spool position (sp = 0) all valves are closed. A positive overlap indicates
that the spool must travel a certain distance before the valves open. A negative overlap
indicates that the valves are already open in the neutral position. A 4/3-way directional
control valve with negative overlap could therefore also be indicated by the figure below.

The overlap is indicated by the parameter overlap, which is given as a fraction of the
spool position. Note that overlap is only active in the neutral position. For the spool
position equal to 1 or -1 the valves are completely open or completely closed.

The spool position sp is a function of the input signal spoolpos:

sp = SO(f,d,discrete(spoolpos))

where SO is a second order transfer function to model the spool dynamics. The function
is characterized by the bandwidth (f) and damping (d). The valve input position spoolpos
should be limited to the range between -1 and 1.

Implementation

The 4/3-way proportional control valve is implemented with various spool centre
configurations. The configurations are shown in the picture below:

When you drag and drop a model in the editor, you will be asked which implementation
you want to choose. During modeling you can easily change the spool center
configuration:

11. Library

74520-sim 5.1 Reference Manual

1. Select the valve model.

2. Click the right mouse button to open the right mouse menu.

3. Click Edit Implementation and choose another implementation

Interface

Ports Description

pp, pt, pa, pb, All terminals of the valve.

Causality

fixed volume flow

out pp

fixed volume flow

out pt

fixed volume flow

out pa

fixed volume flow

out pb

Inputs

spoolpos position of the spool valve: 0 =closed, 1 = open

0 <= spoolpos <= 1

Parameters

Q_nom Nominal flow at nominal pressure per edge, spool in the open position

[m3/s], Q_nom > 0

Q_nom_central Nominal flow at nominal pressure per edge with, spool in the closed

position, Q_nom_central > 0

Q_leak

p_nom

overlap

f

Leakage flow at nominal pressure per edge [m3/s], Q_leak > 0

Nominal pressure per edge [Pa], p_nom > 0

Valve overlap as percentage of full stroke, -1 < overlap < 1.

Natural frequency, f > 0.

11. Library

74620-sim 5.1 Reference Manual

LoopFlushingValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

Loop flushing valves are used to maintain a high quality working fluid in closed hydraulic
circuits. In closed hydraulic circuits the oil is continuously flowing from a pump to an
actuator. A loop flushing valve allows the oil to leave the circuit for cooling and filtering.
If one side (pa) of the valve has a higher pressure, oil will flow from the other side (pb)
out of the closed circuit and vice versa.

The circuit is always equipped (not shown above) with a charge pump to keep the
suction side of the pump on a pre-pressure to avoid cavitation and so damage to the
pump, and to exchange the fluid that is flushed.

Loop flushing valves are spring operated. I.e. a certain pressure difference between
port a and b is required to open the valve. This pressure can be adjusted and is
indicated by the parameter p_sw.

11. Library

74720-sim 5.1 Reference Manual

A small pressure difference is required to turn a valve from completely closed to
completely opened. This overlap pressure is indicated by the parameter p_o.

Interface

Ports Description

pa, pb

p_out

Input terminals of the valve.

Output terminal.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed volume flow

out p_out

Parameters

p_o

p_sw

Q_nom

p_nom

f

d

GLeak

Overlap pressure [Pa].

Switching pressure [Pa].

Turbulent flow at nominal pressure drop [m3/s]

Nominal pressure [Pa].

Bandwidth of the spool dynamics [Hz], f > 0, (hidden).

Damping of the spool dynamics [], d > 0, (hidden).

Conductance of the laminar leakage flows [m3/s.Pa], GLeak >= 0.

(hidden).

11. Library

74820-sim 5.1 Reference Manual

PilotOperatedCheckValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

A pilot operated check valve is a check valve that is normally closed but can be opened
for reverse flow by a signal from an external pilot supply.

The figure above shows the standard design using a pilot piston with a stem to unseat

the check valve poppet for reverse flow. The pilot piston has an area three to four times

that of the poppet seat. This produces enough force to open the poppet against

backpressure. Some pilot-operated check valves have area ratios up to 100:1, allowing

a very low pilot pressure to open the valve against high backpressure.

The flow through a pilot operated check depends on the differential pressure dp between

the inlet port pa and the outlet port pb and is equal to:

flow = Q_nom * sqrt(dp / p_nom) + (Q_leak/p_nom)*dp

The variable valve indicates the valve opening and varies between zero (closed) and 1
(open). The opening depends on a force balance which depends on the pressures of the
inlet and outlet port, the spring force and the pressure of the pilot port px:

valve = limit((pa.p - pb.p - pclosed + px.p*kp)/(popen - pclosed) , 0 , 1)

The pilot ratio kp is ratio of the pilot piston area and the check valve area. For a large

pilot ratio a relatively small pilot pressure is sufficient to open the valve against a large

outlet pressure.

11. Library

74920-sim 5.1 Reference Manual

Interface

Ports Description

pa

pb

px

Inlet port

Outlet port

Pilot port

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed volume flow

out pt

Parameters

Q_nom Nominal flow at nominal pressure per edge, spool in the open position

[m3/s], Q_nom > 0

Q_leak Leakage flow (valve closed) at nominal pressure drop [m3/s], Q_leak

> 0.

p_nom Nominal pressure drop [Pa], p_nom > 0

pclosed

popen

kp

 Valve is closed under this pressure [Pa] and zero pilot pressure.

Valve is fully open above this pressure [Pa] and zero pilot pressure.

Pilot ratio [].

11. Library

75020-sim 5.1 Reference Manual

PressureCompensator

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description - Default

A pressure compensator is an component that maintains a constant differential pressure
across it sensing ports px and py by regulating the flow through the component from
port pa to port pb. A pressure compensator can be used to maintain a constant flow over
a valve by keeping the pressure drop over the valve constant. The sensing ports py and
px are then connected with the input and output of the valve.

The flow through the element is laminar or turbulent depending on the pressure drop
p_ab over pa and pb:

p_ab = pa.p - pb.p;
phi = sign(p_ab) * Cd * A * sqrt((2/rho) * abs(dp)) + GLeak * p_ab;

The opening A depends on the pressure drop p_xy over pa and pb:

11. Library

75120-sim 5.1 Reference Manual

The maximum opening A_max is determined by the maximum flow phi_max at the
maximum pressure drop p_in_max over the component:

A_max = phi_max / (Cd * sqrt((2/rho) * p_in_max));

The opening is at its maximum value when the differential pressure across it sensing
ports px and py is below the pressure ((k-1)/k)*p_set. If the differential pressure across
it sensing ports px and py is too high, the opening is closed. In between it varies
between fully open and fully closed. The speed of response of the components is
determined by the proportional gain k (typical choose k = 2 to 5). The proportional gain
determines the slope of the valve opening. If k is large the regulator will respond quickly
but also induce oscillations in the circuit.

The valve is implemented with second order spool dynamics. I.e. the spool opening is
characterized by the bandwidth (f) and damping (d).

Interface

Ports Description

pa, pb

px, py

Input and output terminals of the component.

Sensing terminals of the component. These are used to measure the

pressure and have almost zero flow.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed volume flow

out px

fixed volume flow

out py

Parameters

11. Library

75220-sim 5.1 Reference Manual

GLeak

p_set

p_in_max

phi_max

f

k

Conductance of the laminar leakage flows [m3/s.Pa], GLeak >= 0.

Desired differential pressure over xy (px.p - py.p), [Pa]

maximum inlet pressure, [Pa]

maximum flow at maximum inlet pressure (pa.p) and zero outlet

pressure (pb.p), [m3/s]

natural frequency of the second order spool dynamics [Hz]

proportional gain [-]

PressureReducingValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

Pressure reducing valves have the purpose to provide a constant pressure (p_set),
independent of the upstream pressure. They are used to limit the pressure of a primary
circuit to a desired pressure for a secondary circuit.

The desired pressure (p_set) is obtained by means of a flow over a valve between an
input port (pa) and an output port (pb). The valve is modeled by a variable
conductance). Depending on the pressure downstream (pb.p) the valve is opened (large
conductance) or closed (zero conductance). Therefore pressure reducing valves always
need a small flow to establish the correct downstream pressure.

When the downstream pressure (pb.p) increases over the desired pressure a second
valve opens to allow flow from the downstream port which is connected to the tank. The
speed of the valve is controlled by the parameter k. If k is high (>> 10) the valve will
respond quickly but can also get into oscillation more quickly. When k is small (<< 10),
the valve is stable but will react more slowly.

11. Library

75320-sim 5.1 Reference Manual

Interface

Ports Description

pa

pb

Upstream port

Downstram port

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

p_set

p_max

Desired pressure a port b [Pa], P_set > 0.

Maximum input pressure at port a [Pa], p_max > 0.

phi_max

Maximum flow at maximum input pressure and zero desired pressure

[m3/s], phi_max > 0.

k Valve gain, k > 0.

PressureReliefValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a pressure relief valve. The resistance depends on the pressure
difference:

11. Library

75420-sim 5.1 Reference Manual

dp = pa.p - pb.p
dp < pclosed => valve closed, only leakage: pa.phi = pb.phi = dp * GLeak
pclosed < dp < popen => working range, i. e. valve partially opened
popen < dp => valve wide open: pa.phi = pb.phi = dp * GOpen

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Parameters

pclosed

popen

GLeak

GOpen

Valve is closed under this pressure [Pa].

Valve is fully open above this pressure [Pa].

Conductance of closed valve [m3/s.Pa].

Conductance of open valve [m3/s.Pa].

11. Library

75520-sim 5.1 Reference Manual

ShuttleValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description - Default

A shuttle valve is a type of valve which allows fluid to flow through it from one of two
sources. Shuttle valves accept flow from two different sources (pa) and (pb) and divert
the highest pressure to a single outlet port (p_out). Shuttle valves are commonly used in
Load Sensing circuits and at a cylinder to measure the working pressure, as well as
Brake circuits. Normal shuttle valve are mostly ball and poppet types valves.

The default implementation of the shuttle valve assumes ideal behaviour:

p.out.p = maximum(pa.p, pb.p)
pa.phi = pb.phi = 0;

This model sets the flows of the input ports to zero and assumes the output flow is zero
as well. However the output flow is determined by the component that is connected with
the output port. A warning is given when the output flow exceeds 1.0e-5 m3. If flows are
important in your model, use the Spool Dynamics implementation of this model (see
below).

Interface - Default

Ports Description

pa, pb

p_out

Input terminals of the valve.

Output terminal.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

11. Library

75620-sim 5.1 Reference Manual

fixed pressure out

p_out

Description - BallDynamics

This implementation is equal to the default implementation but with modeled dynamics.
A small pressure difference between the inlet ports pa and pb is enough to make the ball
switch from one side to the other. This pressure is called the overlap pressure po.

Interface - BallDynamics

Ports Description

pa, pb

p_out

Input terminals of the valve.

Output terminal.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

fixed volume flow

out p_out

Parameters

Q_max flow at maximum pressure drop [m3/s], Q_max > 0.

p_max Maximum pressure drop over the valve [Pa], p_max > 0.

f

p_o

Bandwidth of the valve dynamics [Hz], f > 0.

Overlap pressure [Pa], p_o >= 0.

11. Library

75720-sim 5.1 Reference Manual

TwoTwoWayDirectionalValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a 2/2-way directional control valve with second order spool
dynamics. The flow through the valve is described as laminar/turbulent flow through an
orifice:

dp = pa.p - pb.p
phi = sign(dp) * Cd * A(sp) * sqrt((2/rho) * abs(dp)) + GLeak * dp;

Here Cd is the discharge coefficient which normally has a value between 0.55 and 0.7.
A(sp) is the area of the orifice opening. A(sp) depends linearly on the spool position sp
and varies between 0 (sp = 0) and the maximum area Amax (sp = 1). Gleak is the
conductance of laminar leakage flow when the valve is closed. The relative opening of
the spool valve is indicated by sp. For a closed valve the spool position (sp) is equal to
zero and for an open valve the spool position (sp) is equal to 1.

In the neutral spool position (sp = 0) the valve is just closed. A positive overlap
indicates that the spool must travel a certain distance before the valve opens.

11. Library

75820-sim 5.1 Reference Manual

A negative overlap indicates that the valve is already open in the neutral position.

The overlap is indicated by the parameter overlap, which is given as a fraction of the
spool position.

The spool position sp is a function of the input signal spoolpos:

sp = SO(f,d,discrete(spoolpos))

where SO is a second order transfer function to model the spool dynamics. The function
is characterized by the bandwidth (f) and damping (d). The model acts as a directional
valve (a valve which is either open or closed) because the input signal spoolpos is
rounded to 0 or 1:

spoolpos < 0.5 => 0
spoolpos >= 0.5 => 1

The pressure at both ports has a lower limit which is equal to the vapour pressure.
Therefore the actual equations used in this component are:

pa_lim = if pa.p < p_vapour then p_vapour else pa.p end;
pb_lim = if pb.p < p_vapour then p_vapour else pb.p end;

11. Library

75920-sim 5.1 Reference Manual

Interface

Ports Description

pa, pb Both terminals of the valve.

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Inputs

spoolpos position of the spool valve

spoolpos < 0.5 => valve is closed

spoolpos >= 0.5 => valve is open

Parameters

Q_nom Nominal flow at nominal pressure per edge, spool in the open position

[m3/s], Q_nom > 0

Q_leak

p_nom

overlap

f

Leakage flow at nominal pressure per edge [m3/s], Q_leak > 0

Nominal pressure per edge [Pa], p_nom > 0

Valve overlap as percentage of full stroke, -1 < overlap < 1.

Natural frequency, f > 0.

TwoTwoWayProportionalValve

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

11. Library

76020-sim 5.1 Reference Manual

Description

This model describes a 2/2-way proportional control valve with second order spool
dynamics. The flow through the valve is described as laminar/turbulent flow through an
orifice:

dp = pa.p - pb.p
phi = sign(dp) * Cd * A(sp) * sqrt((2/rho) * abs(dp)) + GLeak * dp;

Here Cd is the discharge coefficient which normally has a value between 0.55 and 0.7.
A(sp) is the area of the orifice opening. A(sp) depends linearly on the spool position sp
and varies between 0 (sp = 0) and the maximum area Amax (sp = 1). Gleak is the
conductance of laminar leakage flow when the valve is closed. The relative opening of
the spool valve is indicated by sp. For a closed valve the spool position (sp) is equal to
zero and for an open valve the spool position (sp) is equal to 1.

In the neutral spool position (sp = 0) the valve is just closed. A positive overlap
indicates that the spool must travel a certain distance before the valve opens.

11. Library

76120-sim 5.1 Reference Manual

A negative overlap indicates that the valve is already open in the neutral position.

The overlap is indicated by the parameter overlap, which is given as a fraction of the
spool position.

The spool position sp is a function of the input signal spoolpos:

sp = SO(f,d,spoolpos)

where SO is a second order transfer function to model the spool dynamics. The function
is characterized by the bandwidth (f) and damping (d). The valve input position spoolpos
should be limited to the range between 0 and 1.

The pressure at both ports has a lower limit which is equal to the vapour pressure.
Therefore the actual equations used in this component are:

pa_lim = if pa.p < p_vapour then p_vapour else pa.p end;
pb_lim = if pb.p < p_vapour then p_vapour else pb.p end;

Interface

Ports Description

pa, pb Both terminals of the valve.

11. Library

76220-sim 5.1 Reference Manual

Causality

fixed volume flow

out pa

fixed volume flow

out pb

Inputs

spoolpos position of the spool valve: 0 =closed, 1 = open

0 <= spoolpos <= 1

Parameters

Q_nom Nominal flow at nominal pressure per edge, spool in the open position

[m3/s], Q_nom > 0

Q_leak

p_nom

overlap

f

Leakage flow at nominal pressure per edge [m3/s], Q_leak > 0

Nominal pressure per edge [Pa], p_nom > 0

Valve overlap as percentage of full stroke, -1 < overlap < 1.

Natural frequency, f > 0.

CheckValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a spring-loaded check valve with parasitic volumes. The resistance
depends on the pressure difference:

11. Library

76320-sim 5.1 Reference Manual

dp < pclosed => valve closed, only leakage: pa.phi = pb.phi = dp * GLeak
pclosed < dp < popen => working range, i. e. valve partially opened
popen < dp => valve wide open: pa.phi = pb.phi = K * sqrt(dp - pclosed);

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

preferred pressure out pa

preferred pressure out pb

Parameters

CheckValve\pclosed

CheckValve\popen

CheckValve\Q_nom

Valve is closed under this pressure [Pa].

Valve is fully open above this pressure [Pa].

Turbulent flow at nominal pressure drop [m3/s].

CheckValve\Q_leak Leakage flow at nominal pressure drop, make 1e-12 if

unknown [m3/s]

CheckValve\p_nom

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Nominal pressure [Pa]

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

11. Library

76420-sim 5.1 Reference Manual

CounterbalanceValve

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model an externally piloted counter balance valve. The model consists of an
externally piloted pressure relief valve with a check valve in parallel. The ports of the
model are connected to parasitic volumes.

The Counterbalance valve is applied as a brake valve to get a positive control on a

hydraulic cylinder or motor with a negative load. The check valve is used to get a free

running actuator in one direction and the pressure relief valve is used to control the

actuator in the other direction. The relief valve is controlled by the external pilot

pressure.

Interface

Ports Description

pa, pb

pt.

Both terminals of the hydraulic component.

Causality

fixed volume flow out pa

fixed volume flow out pb

fixed volume flow out pt

11. Library

76520-sim 5.1 Reference Manual

Parameters

CheckValve\pclosed

CheckValve\popen

CheckValve\Q_nom

Valve is closed under this pressure [Pa].

Valve is fully open above this pressure [Pa].

Turbulent flow at nominal pressure drop [m3/s].

CheckValve\Q_leak Leakage flow at nominal pressure drop, make 1e-12 if

unknown [m3/s].

PressureReliefValve\pclosed

PressureReliefValve\popen

PressureReliefValve\GLeak

PressureReliefValve\GOpen

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Vt\V

Vt\p_initial

Valve is closed under this pressure [Pa].

Valve is fully open above this pressure [Pa].

Conductance of closed valve [m3/s.Pa].

Conductance of open valve [m3/s.Pa].

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

FlowControlValve-States

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a flow control valve with with parasitic volumes.

11. Library

76620-sim 5.1 Reference Manual

In this model the flow is modeled by an tanh function. The pressure drop is defined as
the pressure where 95% of the desired flow rate is achieved.

dp = pa.p - pb.p
phi = if dp > 0 then
 Q_set*tanh((arctan(0.95)/p_drop) * dp) + GLeak * dp;
else
 GLeak * dp
end;

Here phi is the desired flow and p_drop is the 95% pressure drop. Gleak is the
conductance of laminar leakage flow when the valve is closed. The pressure at both
ports has a lower limit that is equal to the vapour pressure. Therefore the actual
equations used in this model are:

p1_lim = if pa.p < p_vapour then p_vapour else pa.p end;
p2_lim = if pb.p < p_vapour then p_vapour else pb.p end;
dp = p1_lim - p2_lim;

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

fixed volume flow out pa

fixed volume flow out pb

Parameters

FlowControlValve\Q_set

FlowControlValve\p_drop

FlowControlValve\GLeak

Va\V

Va\B

Desired flow [m3/s]

pressure drop at 95% flow [Pa]

Conductance of the laminar leakage flow [m3/s.Pa],

GLeak >= 0!

Volume of oil under pressure [m3] (hidden)

11. Library

76720-sim 5.1 Reference Manual

Va\p_initial

Vb\V

Vb\B

Vb\p_initial

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

FourThreeWayDirectionalValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a 4/3-way directional control valve with second order spool
dynamics and parasitic volumes. The flow through the valves is described as laminar/
turbulent flow through an orifice. A detailed description of the valve can be found in
FourThreeWayDirectionalValve.htm.

The spool position is indicated by the input spoolpos:

sp = -1 Flow from p to b and a to t

sp = 0 No flow

sp = 1 Flow from p to a and b to t

Values between -1 and 0 or between 0 and 1 are rounded to the nearest value.

Implementation

The 4/3-way proportional control valve is implemented with various spool center
configurations. The configurations are shown in the picture below:

11. Library

76820-sim 5.1 Reference Manual

When you drag and drop a model in the editor, you will be asked which implementation
you want to choose. During modeling you can easily change the spool center
configuration:

1. Select the valve model.

2. Click the right mouse button to open the right mouse menu.

3. Click Edit Implementation and choose another implementation.

Interface

Ports Description

pp, pt, pa, pb All terminals of the valve.

Causality

preferred effort out pp

preferred effort out pt

preferred effort out pa

preferred effort out pb

Inputs

spoolpos position of the spool valve

spoolpos < 0.5 => valve is closed

spoolpos >= 0.5 => valve is open

Parameters

FourThreeWayDirectionalValv

e\Q_nom

Nominal flow at nominal pressure per edge, spool in the

open position [m3/s], Q_nom > 0.

FourThreeWayDirectionalValv

e\Q_nom_central

Nominal flow at nominal pressure per edge with, spool in

the closed position, Q_nom_central > 0.

FourThreeWayDirectionalValv

e\Q_leak

FourThreeWayDirectionalValv

e\p_nom

Leakage flow at nominal pressure per edge [m3/s],

Q_leak > 0.

Nominal pressure per edge [Pa], p_nom > 0.

11. Library

76920-sim 5.1 Reference Manual

FourThreeWayDirectionalValv

e\overlap

FourThreeWayDirectionalValv

e\f

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Vp\V

Vp\p_initial

Vt\V

Vt\p_initial

The valve overlap in closed position [], -1 < overlap < 1.

Bandwidth of the spool dynamics [Hz], f > 0.

Volume of oil under pressure [m3] (hidden))

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

The starting pressure of the volume [Pa] (hidden)

FourThreeWayProportionalValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a 4/3-way proportional control valve with second order spool
dynamics and parasitic volumes. The flow through the valves is described as laminar/
turbulent flow through an orifice. A detailed description of the valve can be found in
FourThreeWayProportionalValve.htm.

The spool position is indicated by the input spoolpos:

sp = -1 Flow from p to b and a to t

11. Library

77020-sim 5.1 Reference Manual

-1 < sp < 0 Partial flow from p to b and a to t

sp = 0 No flow

0 < sp < 1 Partial flow from p to a and b to t

sp = 1 Flow from p to a and b to t

Implementation

The 4/3-way proportional control valve is implemented with various spool centre
configurations. The configurations are shown in the picture below:

When you drag and drop a model in the editor, you will be asked which implementation
you want to choose. During modeling you can easily change the spool center
configuration:

1. Select the valve model.

2. Click the right mouse button to open the right mouse menu.

3. Click Edit Implementation and choose another implementation.

Interface

Ports Description

pp, pt, pa, pb All terminals of the valve.

Causality

preferred effort out pp

preferred effort out pt

preferred effort out pa

preferred effort out pb

Inputs

spoolpos value of the spool position, -1 <= spoolpos <= 1.

Parameters

FourThreeWayProportionalVal

ve\Q_nom

Nominal flow at nominal pressure per edge, spool in the

open position [m3/s], Q_nom > 0.

11. Library

77120-sim 5.1 Reference Manual

FourThreeWayProportionalVal

ve\Q_nom_central

Nominal flow at nominal pressure per edge with, spool in

the closed position, Q_nom_central > 0.

FourThreeWayProportionalVal

ve\Q_leak

FourThreeWayProportionalVal

ve\p_nom

Leakage flow at nominal pressure per edge [m3/s],

Q_leak > 0.

Nominal pressure per edge [Pa], p_nom > 0.

FourThreeWayProportionalVal

ve\overlap

FourThreeWayProportionalVal

ve\f

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Vp\V

Vp\p_initial

Vt\V

Vt\p_initial

The valve overlap in closed position [], -1 < overlap < 1.

Bandwidth of the spool dynamics [Hz], f > 0.

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

LoopFlushingValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a loop flushing valve with parasitic volumes.

11. Library

77220-sim 5.1 Reference Manual

Loop flushing valves are used to maintain a high quality working fluid in closed hydraulic
circuits. In closed hydraulic circuits the oil is continuously flowing from a pump to an
actuator. A loop flushing valve allows the oil to leave the circuit for cooling and filtering.
If one side (pa) of the valve has a higher pressure, oil will flow from the other side (pb)
out of the closed circuit and vice versa.

The circuit is always equipped (not shown above) with a charge pump to keep the
suction side of the pump on a pre-pressure to avoid cavitation and so damage to the
pump, and to exchange the fluid that is flushed.

Loop flushing valves are spring operated. I.e. a certain pressure difference between
port a and b is required to open the valve. This pressure can be adjusted and is
indicated by the parameter p_sw.

11. Library

77320-sim 5.1 Reference Manual

A small pressure difference is required to turn a valve from completely closed to
completely opened. This overlap pressure is indicated by the parameter p_o.

Interface

LoopFlushingValve\p_o Overlap pressure [Pa].

LoopFlushingValve\p_sw Switching pressure [Pa].

LoopFlushingValve\Q_nom Turbulent flow at nominal pressure drop [m3/s].

LoopFlushingValve\p_nom Nominal pressure [Pa].

LoopFlushingValve\f Bandwidth of the spool dynamics [Hz], f > 0, (hidden).

LoopFlushingValve\d Damping of the spool dynamics [], d > 0, (hidden).

LoopFlushingValve\GLeak Conductance of the laminar leakage flows [m3/s.Pa], GLeak

>= 0. (hidden).

V1\V

V1\p_initial

V2\V

V2\p_initial

V3\V

V3\p_initial

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

PilotOperatedCheckValve-States

Library

Iconic Diagrams\Hydraulics\Valves\Basic Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model is a pilot operated check valve with parasitic volumes.

11. Library

77420-sim 5.1 Reference Manual

The flow through a pilot operated check depends on the differential pressure dp between

the inlet port pa and the outlet port pb and is equal to:

flow = Q_nom * sqrt(dp / p_nom) + (Q_leak/p_nom)*dp

The variable valve indicates the valve opening and varies between zero (closed) and 1
(open). The opening depends on a force balance which depends on the pressures of the
inlet and outlet port, the spring force and the pressure of the pilot port px:

valve = limit((pa.p - pb.p - pclosed + px.p*kp)/(popen - pclosed) , 0 , 1)

The pilot ratio kp is ratio of the pilot piston area and the check valve area. For a large

pilot ratio a relatively small pilot pressure is sufficient to open the valve against a large

outlet pressure.

Interface

Ports Description

pa

pb

px

Inlet port

Outlet port

Pilot port

Causality

fixed volume flow

out pa

fixed volume flow

out pb

11. Library

77520-sim 5.1 Reference Manual

fixed volume flow

out pt

Parameters

PilotOperatedCheckValve

\Q_nom

Nominal flow at nominal pressure per edge, spool in the

open position [m3/s], Q_nom > 0

PilotOperatedCheckValve

\Q_leak

Leakage flow (valve closed) at nominal pressure drop

[m3/s], Q_leak > 0.

PilotOperatedCheckValve

\p_nom

Nominal pressure drop [Pa], p_nom > 0

PilotOperatedCheckValve

\pclosed

PilotOperatedCheckValve

\popen

PilotOperatedCheckValve\kp

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Vx\V

Vx\p_initial

 Valve is closed under this pressure [Pa] and zero pilot

pressure.

Valve is fully open above this pressure [Pa] and zero pilot

pressure.

Pilot ratio [].

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

PressureCompensator-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description - Default

This model is a pressure compensator with parasitic volumes. A pressure compensator is
an component that maintains a constant differential pressure across it sensing ports px
and py by regulating the flow through the component from port pa to port pb. A pressure
compensator can be used to maintain a constant flow over a valve by keeping the
pressure drop over the valve constant. The sensing ports py and px are then connected
with the input and output of the valve.

11. Library

77620-sim 5.1 Reference Manual

The flow through the element is laminar or turbulent depending on the pressure drop
p_ab over pa and pb:

p_ab = pa.p - pb.p;
phi = sign(p_ab) * Cd * A * sqrt((2/rho) * abs(dp)) + GLeak * p_ab;

The opening A depends on the pressure drop p_xy over pa and pb:

The maximum opening A_max is determined by the maximum flow phi_max at the
maximum pressure drop p_in_max over the component:

A_max = phi_max / (Cd * sqrt((2/rho) * p_in_max));

11. Library

77720-sim 5.1 Reference Manual

The opening is at its maximum value when the differential pressure across it sensing
ports px and py is below the pressure ((k-1)/k)*p_set. If the differential pressure across
it sensing ports px and py is too high, the opening is closed. In between it varies
between fully open and fully closed. The speed of response of the components is
determined by the proportional gain k (typical choose k = 2 to 5). The proportional gain
determines the slope of the valve opening. If k is large the regulator will respond quickly
but also induce oscillations in the circuit.

The valve is implemented with second order spool dynamics. I.e. the spool opening is
characterized by the bandwidth (f) and damping (d).

Interface

Ports Description

pa, pb

px, py

Input and output terminals of the component.

Sensing terminals of the component. These are used to

measure the pressure and have almost zero flow.

Causality

preferred pressure out pa

preferred pressure out pb

preferred pressure out px

preferred pressure out py

Parameters

PressureCompensator\rho

PressureCompensator

\GLeak

PressureCompensator\Cd

PressureCompensator

\p_set

PressureCompensator

\p_in_max

PressureCompensator

\phi_max

PressureCompensator\f

PressureCompensator\k

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Vy\V

Vy\p_initial

Mass density of the fluid [kg/m3].

Conductance of the laminar leakage flows [m3/s.Pa], GLeak

>= 0.

Discharge coefficient [], Cd > 0.

Desired differential pressure over xy (px.p - py.p), [Pa].

maximum inlet pressure, [Pa].

maximum flow at maximum inlet pressure (pa.p) and zero

outlet pressure (pb.p), [m3/s].

natural frequency of the second order spool dynamics [Hz].

proportional gain [-].

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

11. Library

77820-sim 5.1 Reference Manual

PressureReducingValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a pressure reducing valve with parasitic volumes. Pressure
reducing valves have the purpose to provide a constant pressure (p_nom), independent
of the upstreamstream pressure. They are used to limit the pressure of a primary circuit
to a desired pressure for a secondary circuit.

Interface

Ports Description

pa, pb

pt

Both terminals of the hydraulic component.

Pilot

Causality

fixed volume flow out pa

fixed volume flow out pb

Parameters

PressureReducingValve

\p_set

PressureReducingValve

\p_max

Desired pressure a port b [Pa], P_set > 0.

Maximum input pressure at port a [Pa], p_max >

PressureReducingValve

\phi_max

Maximum flow at maximum input pressure and zero desired

pressure [m3/s], phi_max > 0.

PressureReducingValve\k Valve gain, k > 0.

11. Library

77920-sim 5.1 Reference Manual

Va\V

Va\p_initial

Vb\V

Vb\p_initial

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden)

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

PressureReliefValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a pressure relief valve with parasitic volumes. The resistance
depends on the pressure difference:

11. Library

78020-sim 5.1 Reference Manual

dp = pa.p - pb.p
dp < pclosed => valve closed, only leakage: pa.phi = pb.phi = dp * GLeak
pclosed < dp < popen => working range, i. e. valve partially opened
popen < dp => valve wide open: pa.phi = pb.phi = dp * GOpen

Interface

Ports Description

pa, pb Both terminals of the hydraulic component.

Causality

preferred pressure out pa

preferred pressure out pb

Parameters

PressureReliefValve\pclosed

PressureReliefValve\popen

PressureReliefValve\GLeak

PressureReliefValve\GOpen

Va1\V

Va\B

Va\p_initial

Vb\V

Vb\B

Vb\p_initial

Valve is closed under this pressure [Pa].

Valve is fully open above this pressure [Pa].

Conductance of closed valve [m3/s.Pa].

Conductance of open valve [m3/s.Pa].

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

11. Library

78120-sim 5.1 Reference Manual

ShuttleValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description - Default

This model describes a loop shuttle valve with parasitic volumes. A shuttle valve is a
type of valve which allows fluid to flow through it from one of two sources. Shuttle
valves accept flow from two different sources (pa) and (pb) and divert the highest
pressure to a single outlet port (p_out). Shuttle valves are commonly used in Load
Sensing circuits and at a cylinder to measure the working pressure, as well as Brake
circuits. Normal shuttle valve are mostly ball and poppet types valves.

The default implementation of the shuttle valve assumes ideal behaviour:

p.out.p = maximum(pa.p, pb.p)
pa.phi = pb.phi = 0;

This model sets the flows of the input ports to zero and assumes the output flow is zero
as well. However the output flow is determined by the component that is connected with
the output port. A warning is given when the output flow exceeds 1.0e-5 m3. If flows are
important in your model, use the Spool Dynamics implementation of this model (see
below).

Interface - Default

Ports Description

pa, pb

p_out

Input terminals of the valve.

Output terminal.

Causality

preferred

pressure out pa

preferred

pressure out pb

11. Library

78220-sim 5.1 Reference Manual

preferred

pressure out

p_out

Description - BallDynamics

This model describes a loop shuttle valve with parasitic volumes. This implementation is
equal to the default implementation but with modeled dynamics. A small pressure
difference between the inlet ports pa and pb is enough to make the ball switch from one
side to the other. This pressure is called the overlap pressure po.

Interface - BallDynamics

Ports Description

pa, pb

p_out

Input terminals of the valve.

Output terminal.

Causality

preferred

pressure out pa

preferred

pressure out pb

preferred

pressure out

p_out

Parameters

ShuttleValve\Q_max flow at maximum pressure drop [m3/s], Q_max > 0.

ShuttleValve\p_max Maximum pressure drop over the valve [Pa], p_max > 0.

ShuttleValve\f

ShuttleValve\p_o\

Bandwidth of the valve dynamics [Hz], f > 0.

Overlap pressure [Pa], p_o >= 0.

11. Library

78320-sim 5.1 Reference Manual

V1\V

V1\p_initial

V2\V

V3\p_initial

V3\V

V3\p_initial

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

Volume of oil under pressure [m3], (hidden).

The starting pressure of the volume [Pa], (hidden).

TwoTwoWayValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model describes a 2/2-way directional control valve with second order spool
dynamics and parasitic volumes. The flow through the valve is described as laminar/
turbulent flow through an orifice. A detailed description of the valve can be found in
TwoTwoWayDirectionalValve.htm.

Interface

Ports Description

pa, pb Both terminals of the valve.

Causality

preferred effort out pa

preferred effort out pb

Inputs

spoolpos position of the spool valve

spoolpos < 0.5 => valve is closed

11. Library

78420-sim 5.1 Reference Manual

spoolpos >= 0.5 => valve is open

Parameters

TwoTwoWayDirectionalValve

\Q_nom

Nominal flow at nominal pressure per edge, spool in the

open position [m3/s], Q_nom > 0.

TwoTwoWayDirectionalValve

\Q_Leak

TwoTwoWayDirectionalValve

\p_nom

TwoTwoWayDirectionalValve

\overlap

TwoTwoWayDirectionalValve

\f

Va\V

Va\B

Va\p_initial

Vb\V

Vb\B

Vb\p_initial

Leakage flow at nominal pressure per edge [m3/s],

Q_leak > 0.

Nominal pressure per edge [Pa], p_nom > 0.

Valve overlap as percentage of full stroke, -1 < overlap

< 1.

Bandwidth of the spool dynamics [Hz], f > 0.

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

TwoTwoWayProportionalValve-States

Library

Iconic Diagrams\Hydraulics\Valves

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

11. Library

78520-sim 5.1 Reference Manual

Description

This model describes a 2/2-way proportional control valve with second order spool
dynamics and parasitic volumes. The flow through the valve is described as laminar/
turbulent flow through an orifice. A detailed description of the valve can be found in
TwoTwoWayProportionalValve.htm.

Interface

Ports Description

pa, pb Both terminals of the valve.

Causality

preferred effort out pa

preferred effort out pb

Inputs

spoolpos position of the spool valve: 0 =closed, 1 = open

0 <= spoolpos <= 1

Parameters

TwoTwoWayDirectionalValve

\Q_nom

Nominal flow at nominal pressure per edge, spool in the

open position [m3/s], Q_nom > 0.

TwoTwoWayDirectionalValve

\Q_leak

TwoTwoWayDirectionalValve

\p_nom

TwoTwoWayDirectionalValve

\overlap

TwoTwoWayDirectionalValve

\f

Va\V

Va\B

Va\p_initial

Leakage flow at nominal pressure per edge [m3/s],

Q_leak > 0.

Nominal pressure per edge [Pa], p_nom > 0.

Valve overlap as percentage of full stroke, -1 < overlap

< 1.

Bandwidth of the spool dynamics [Hz], f > 0.

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

The starting pressure of the volume [Pa] (hidden)

Volume of oil under pressure [m3] (hidden)

Effective bulk modulus [Pa] (hidden)

11. Library

78620-sim 5.1 Reference Manual

Vb\V

Vb\B

Vb\p_initial

The starting pressure of the volume [Pa] (hidden)

Volumes

Accumulator

Library

Iconic Diagrams\Hydraulic\Volumes

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

Accumulators consist of a gas filled chamber, pressurized by an oil filled chamber. The
chambers are separated by a bladder or piston. If oil enters the chamber the gas
chamber will reduce in size and the pressure will rise. If the oil pressures sinks, the gas
chamber will expand and drive oil out of the oil chamber. The accumulator thus acts a a
storage of hydraulic energy. Most accumulators are filled with nitrogen gas which is also
used in this model. You can change to other gasses by changing the gas parameters.

11. Library

78720-sim 5.1 Reference Manual

Use

When preparing an accumulator for use with the oil at ambient pressure, the gas is pre-
charged to a certain pressure p_pr. The gas chamber will expand its maximum size
which is called the accumulator volume V. During operation, oil will flow into the
chamber and the gas chamber will change size. The oil and gas pressure will be in
balance and indicated with the gas pressure p_gas. The resulting gas volume is name
V_gas. We assume that during pre-charging the gas temperature is constant and equal
to the ambient temperature T_amb. During operation, the gas temperature may change
but the ambient temperature is assumed constant.

Thermal Model

Due to compression, the gas temperature will increase and the accumulator will heat up.
This heat may be lost to the environment. In this model the heat loss is modeled by a
first order transfer function using a thermal time constant tau. If the accumulator is
heated up and the gas keeps its volume, an exponential temperature decrease will be
found. The thermal time constant is the time where the temperature is decreased by
63%. However, the gas will be compressed if the temperature sinks. As a rule of thumb
take for the thermal time constant the time it takes for the temperature to sink by 50%.
By making tau infinite, the accumulator does not convert heat to the environment.The
change is gas volume is then called adiabatic expansion or compression. By making tau
very small, the accumulator instantly convert all heat to the environment.The change is
gas volume is then called isothermal expansion or compression.

11. Library

78820-sim 5.1 Reference Manual

Gas Laws

The accumulator model is based on the Van der Waals equation for a real gas. This
model takes into account that gas gas particles have finite size and attractive forces. The
Van der Waals model uses the critical gas temperature T_cr and the critical gas
pressure p_cr as parameters. By taking the parameter T_cr = 0 the Van der Waals
model changes into the ideal gas model.

By changing the parameters, the accumulator model can represent various gas models:

1) Ideal Gas: set T_cr = 0
2) Ideal Gas, Adiabatic Expansion: set T_cr = 0 and tau very large (i.e 1.0e9)
3) Ideal Gas, Isothermal Expansion: set T_cr = 0 and tau very small (i.e 1.0e-9)
4) Real Gas: set the critical temperature of the gas (i.e. nitrogen: T_cr = 126.2 {K}) and
set the thermal time constant to a specific value

Interface

Ports Description

p hydraulic port

Causality

fixed volume flow

out

Parameters

G

V

p_pr

p_oil

T_amb

tau

R_s

c_v

T_cr

p_cr

conductance of the accumulator input [m3/s.Pa].

max gas volume of the accumulator [m3]

pre-charge pressure [Pa]

oil pressure at the start [Pa]

ambient temperature [K]

thermal time constant [s]

specific gas constant [J/kg.K]

specific heat of the gas at constant volume [J/kg.K]

critical gas temperature [K]

critical gas pressure [Pa]

ExternalLeakage

Library

Iconic Diagrams\Hydraulic\Volumes

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents a leakage path to the tank with the leakage is modeled as laminar
flow. The tank has a preload pressure against atmosphere. The default preload pressure
of 0 [Pa] means that the tank has atmospheric pressure.

11. Library

78920-sim 5.1 Reference Manual

Interface

Ports Description

p

Causality

fixed volume flow

out p

Parameters

p_tank

Q_leak

p_nom

tank pressure [Pa], p_tank >= 0.

Leakage flow at nominal pressure drop [m3/s.Pa], Q_nom > 0.

Nominal pressure drop [Pa], p_nom > 0.

ParasiticVolume

Library

Iconic Diagrams\Hydraulic\Volumes

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents a tiny volume (default: 1 ml) if the causality of the port is
pressure out, and a zero flow, if the causality is flow out:

Pressure out: Volume of 1 ml

Flow out: flow source with 0 {m3/s} flow.

A parasitic volume is a tiny volume that can be added to elements to make them more
easy to simulate. Some elements require a pressure as input variable. Coupling two
such elements leads to a mathematical problem: both yield a volume flow as function of
the input pressure. Adding a parasitic volume in between will solve the mathematical
problem (the parasitic volume calculates the pressure) without changing the dynamics
much (the volume is small).

The parasitic element has a likes causality. If two parasitic volumes are coupled, one of
them will get a pressure out causality (representing a tiny volume) and the other will get
a flow out causuality (representing a zero flow). I.e only one of them is a volume and
the other becomes ineffective.

Note: If you want an element to have a specific volume, do not use the parasitic
volume! In case of a flow out causality it will be replaced by a 0 flow (e.g. ero volume).
Use the volume element instead.

Interface

Ports Description

11. Library

79020-sim 5.1 Reference Manual

p

Causality

likes pressure out

Parameters (hidden)

V

p_initial

Volume of oil under pressure [m3].

The starting pressure of the volume [Pa], (hidden).

Tank

Library

Iconic Diagrams\Hydraulic\Volumes

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents a tank with a preload pressure against atmosphere. A default
tank pressure of 0 [Pa] means that the tank has atmospheric pressure.

Interface

Ports Description

p

Causality

fixed pressure out

Parameters

p_tank tank pressure [Pa], p_tank >= 0.

Volume

Library

Iconic Diagrams\Hydraulic\Volumes

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Hydraulics).

Description

This model represents a lumped volume with a constant bulk modulus. If the calculated
pressure falls below the vapour pressure the pressure is NOT limited to the vapour
pressure.

Interface

Ports Description

11. Library

79120-sim 5.1 Reference Manual

p

Causality

preferred

pressure out

Parameters

V

p_initial

Volume of oil under pressure [m3]

The starting pressure of the volume [Pa]

Mechanical11.2.4

Mechanical

The Mechanical library contains components which are very useful for modeling
mechanical systems. The library contains the following sections:

Mechanics

Rotation

Actuators

Components

Friction

Gears

Sensors

Translation

2D Small Rotation

3D Small Rotation

Actuators

Components

Friction

Sensors

Transmission

11. Library

79220-sim 5.1 Reference Manual

Rotation

Actuators

AccelerationActuator-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. An angular acceleration input signal is
integrated to an angular velocity difference between its two terminals:

p_high.omega = p_low.omega + int(alpha,omega_initial);
p_low.T = p_high.T = indifferent;

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed angular

velocity out

Input

alpha Angular acceleration [rad/s2].

Parameters

omega_initial Initial angular velocity output of the integration [rad/s].

AccelerationActuator

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. An angular acceleration input signal is
integrated to an angular velocity at the rotation port. The actuator is mounted to the
fixed world:

11. Library

79320-sim 5.1 Reference Manual

p.omega = int(alpha,omega_initial);
p.T = indifferent;

Interface

Ports Description

p Rotation port.

Causality

fixed angular

velocity out

Input

alpha Angular acceleration [rad/s2].

Parameters

omega_initial Initial angular velocity at the port [rad/s].

ACMotor-TorqueLoop.em

Note

This model was named ServoMotor.emx in previous versions of 20-sim!

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

Industrial servo motors in the medium to high power range generally consist of an AC-
electric and drive (the digital controlled current supply of the motor). The drive takes
care of the correct supply of current to let the motor follow every desired path.
Unfortunately the exact implementation and performance of drives and motors is one of
the trade secrets of the commercial motor suppliers. Fortunately modern servo-motors
are designed well enough to be described by general parameters that can be found in
every data sheet.

11. Library

79420-sim 5.1 Reference Manual

The servo motor model describes a digitally controlled AC-motor that is described by
general parameters. The model is suited for modeling machine dynamics, i.e. models
where the machine behavior is the topic of interest and not the motor itself. For studying
the exact motor behavior (temperature, wear, vibration etc.) other motor models should
be used. A complete description of the motor is given in the second part of this topic.

Interface

Ports Description

p Rotation port.

Causality

preferred angular

velocity out p

Inputs

v velocity setpoint [rad/s]

Parameters

VelocityLimit

\v_max

AccelerationLimit

\a_max

AccelerationLimit

\f_e

PI\K

PI\Ti

PI\Ta

PI\T_max

TorqueGain\vd

Maximum motor speed (>0) [rad/s]

Maximum allowed acceleration (>0) [rad/s2]

Bandwidth drive (half of the sample frequency, >0) [Hz]

Proportional gain []

Integral time constant (>0) [s]

Tracking time constant (>0) [s]

Maximum motor torque (>0) [Nm]

Motor speed where torque gain starts to drop (>0) [rad/s]

TorqueGain\g0 Torque gain at zero motor speed (>0, choose equal to 1 to turn off

torque gain drop []

MotorDynamics\fc

Inertia\J

Bandwidth drive and motor electronics [Hz]

Motor inertia [kg.m2/rad]

Variables There are some variables that can be of interest when inspecting the

servo performance:

PI\error

PositionSensor

\phi

VelocitySensor

\omega

Inertia\alpha

PowerSensor\T

The error between setpoint and motor velocity [rad/s].

Motor Angle [rad]

Motor Speed [rad/s]

Motor Acceleration [rad/s2]

Output Torque [Nm].

Output Power [W].

11. Library

79520-sim 5.1 Reference Manual

PowerSensor\P

Model

The complete servo motor model is shown below. Every block that is used to form this
model will be explained in the next sections. The model has a velocity input signal v and
a rotary output port p.

The servo motor model can be used in a machine model as shown in the example below.

Blocks

Velocity Limit

Most servo motors have a velocity limit to prevent the motor from damage. This limit
can be set in the velocity VelocityLimit block. If no limit is known choose twice the
nominal velocity.

Acceleration Limit

To prevent the motor from damage, most servos have a maximum acceleration limit.
This limit is very important in a model because it can seriously degrade the systems
performance.

To find the acceleration, the derivative of the input must be calculated. This is done by
means of a first order differentiation with bandwidth f_c. The bandwidth is equal to one
half the of the sample frequency of the velocity control loop. Older drives may have
loops that run on sample frequencies ranging from 100 Hz to 500 Hz. Modern drives can
run the velocity control loop on sample frequencies of 2 kHz or more.

11. Library

79620-sim 5.1 Reference Manual

To switch the maximum acceleration limit off, choose the maximum acceleration
parameter high enough and choose the bandwidth sufficiently high, preferably 10 times
as large as the bandwidth f_e of the motor electronics (specified in the motor dynamics
block).

PI-Controller

Most servos will use velocity as the setpoint signal. To calculate the desired torque out of
the velocity setpoint, PI-controllers are widely used. For many servos, the controller
parameters can be changed by the user, but this is not a very easy task. Therefore
these servos often offer automatic tuning facilities.

In 20-sim you can use the Optimization toolbox for automatic tuning. A good starting
point is to take the error variable of the PI-controller and minimize it by changing the
controller parameters Kp , Ti and Ta. It is important to realize that automatic tuning will
tune the controller parameters for a certain task. If you run another task, i.e. perform a
simulation with another setpoint, the results may degrade. For varying tasks it is better
to use parameters the give a good response over a wide area of loads. To help the user
find good starting values, the table below shows some motors, loads and corresponding
starting value for the controller parameters.

The user has to find the load that should be driven in terms of the rotational inertia. If
there is a gear that changes the rotary motion to a linear motion this means the load has
to be divided by the square of the gear ratio to get the corresponding load in the
rotational domain. Do not forget to add the inertia of the motor itself! For many gear
ratios the load in terms of rotational inertia will be of the same magnitude as the motor
inertia.

In this model PI-controller with an anti-windup facility is used. This controller is the heart
of the servo motor model. It is therefore important to know something about PI-control.
More information can be found in the PID controllers section of the library.

AC-motors have a limited output torque which is a complex function of the controller
settings, the applied speed, duty cycle, temperature and more. In the servo motor
model simply the torque limit of the PI-controller T_max is used which limits the
generated torque to a maximum. Because this is a simplification of the real behavior,
the maximum torque limit should only be used to inspect what happens to the system
when the motor torque is approaching its maximum value. For a proper evaluation of its
system, the user should also look at the unconstrained torque. Run a simulation and
note the amount of time that the motor runs at a maximum torque. This is called the
duty cycle. Every motor manual will have tables showing duty cycles and the
corresponding chances of overheating.

11. Library

79720-sim 5.1 Reference Manual

Torque Gain

Standard AC-motors, normally designed to run at base speeds between 850 to 3500
rpm, are not particularly well suited for low-speed operation, as their efficiency drops
with the reduction in speed. They may also be unable to deliver sufficient smooth torque
at low speeds.

An ideal motor will always have a torque gain of 1, i.e. an input signal of 1 Nm will
always result in an output torque of 1 Nm. Most industrial motors have a torque gain that
is only equal to 1 for higher speeds. At low speeds the torque gain will drop due to
electronic limitations. This behavior is represented by the graph below. At speeds below
a drop-off speed vd the torque gain drops linearly to a user defined zero speed torque
gain g0. If no torque gain drop is desired, choose g0 equal to 1.

Motor Dynamics

The electrical circuits of the drive and wiring of the motor have a limited bandwidth. This
is modeled with a first order low-pass filter with a bandwidth f_e. Typical motor
bandwidths vary from 3 kHz tot 20 kHz.

Torque source

In the torque source block the torque signal is converted to an iconic diagram port p.

Inertia

This block describes the rotor inertia. The equations of motion of the inertia are used to
get the angular acceleration without needing derivatives.

Sensors

11. Library

79820-sim 5.1 Reference Manual

Finally four sensors are available to plot the position, velocity, acceleration and output
power.

Variables

There are some variables in the model that may be of special interest

PI\error

PositionSensor

\phi

VelocitySensor

\omega

Inertia\alpha

PowerSensor\T

PowerSensor\P

The error between setpoint and motor velocity [rad/s].

Motor Angle [rad]

Motor Speed [rad/s]

Motor Acceleration [rad/s2]

Output Torque [Nm].

Output Power [W].

All these variables are output signals of their respective blocks. By inserting extra
outputs in the servo motor model you can use as output signals for usage in other parts
of your model. In the pictures below is shown how to define signals for the torque and
power.

In the servo model define a torque and a power output and connect them.

One level higher you can use these signals for modeling, for example in a high level
control unit.

11. Library

79920-sim 5.1 Reference Manual

ACMotor

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This is a model of an industrial AC electric motor with squirrel cage rotor. The motor is
not controlled by a power electric convertor. Instead its performance is directly defined
by a torque speed curve.

The torque speed curve is fully defined by the parameters shown in the picture. The
synchronous speed is defined as:

n = 2 * voltage frequency / no. of poles

Interface

Ports Description

p Output axis (Rotation)

Parameters

Ts

n

Tm

nm

Tf

nf

J

start torque (zero speed) [Nm]

synchronous speed (zero torque) [rad/s]

maximum torque [Nm]

speed at maximum torque [rad/s]

full load torque [Nm]

speed at full load torque [rad/s]

motor inertia [kgm^2/rad]

11. Library

80020-sim 5.1 Reference Manual

DCMotor

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Electric

Implementations

Default
IR

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric, Electric).

Description - Default

This models represents an ideal DC-motor with no energy loss. The electric port has
separate high and low terminals. The equations are

p1.i = p1_high.i = p1_low.i;
p1.u = p1_high.u - p1_low.u;

The model can have mixed forms of causality

p1.u = k * p2.omega;
p2.T = k * p1.i;

or:

p2.omega = p1.u / k;
p1.i = p2.T / k;

Interface - Default

Ports Description

p1_high, p1_low

p2

Both terminals of the Electric port p1.

Rotation port.

Causality

mixed See equations above.

Parameters

k motor constant [Nm/A]

Description - IR

This models represents an ideal DC-motor with inductance and resistance.

11. Library

80120-sim 5.1 Reference Manual

The electric port has separate high and low terminals. The equations are

p1.i = p1_high.i = p1_low.i;
p1.u = p1_high.u - p1_low.u;

Interface - IR

Ports Description

p1_high, p1_low

p2

Both terminals of the Electric port p1.

Rotation port.

Causality

mixed See equations above.

Parameters

k

L

R

motor constant [Nm/A]

motor inductance [H]

motor resistance [Ohm]

PositionActuator-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. An angle input signal is differentiated by a state
variable filter to an angular velocity difference between its two terminals:

p_high.omega = p_low.omega + dphi/dt;
p_low.T = p_high.T = indifferent;

Differentiation is performed by a state variable filter:

11. Library

80220-sim 5.1 Reference Manual

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed angular

velocity out

Input

phi Angle [rad].

Parameters

f

omega_initial

Cut-off frequency of the differentiation [Hz].

Initial angular velocity output of the differentiation [rad/s].

11. Library

80320-sim 5.1 Reference Manual

ServoMotor

Library

Iconic Diagrams\Mechanical\Rotation\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This is a masked model which opens the Servo Motor Editor when edited. The servo
Motor Editor is a tool that can shows the torque speed plots numerous permanent
magnet motors and can generate a dynamic model from any motor that you select. The
following motor types are supported:

1. Brush DC

2. Brushless DC (trapezoidal EMC and square wave currents)

3. AC synchronous (sinusoidal EMC and sinusoidal currents)

4. AC synchronous linear (sinusoidal EMC and sinusoidal currents)

Interface

Depending on the type of motor that you have selected, the interface can vary:

DC Brush

Ports Description

p Rotation port.

Causality

fixed rotational

velocity out

Input

i The input current [A]

DC Brushless

Ports Description

p Rotation port.

Causality

fixed rotational

velocity out

Input

i The maximum input current [A]

11. Library

80420-sim 5.1 Reference Manual

AC Synchronous

Ports Description

p Rotation port.

Causality

fixed rotational

velocity out

Input

i_rms The rms phase current [A]

AC Synchronous Linear

Ports Description

p Translation port.

Causality

fixed velocity out

Input

i_rms The rms phase current [A]

For more information on the parameters an variables of this model is referred to the
Mechatronic Toolbox.

PositionActuator

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. An angle input signal is differentiated by a state
variable filter to an angular velocity at the rotation port. The actuator is mounted to the
fixed world:

p.omega = dphi/dt;
p.T = indifferent;

Differentiation is performed by a state variable filter:

11. Library

80520-sim 5.1 Reference Manual

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

Interface

Ports Description

p Rotation port.

Causality

fixed angular

velocity out

Input

phi Angle [rad].

Parameters

f

omega_initial

Cut-off frequency of the differentiation [Hz].

Initial angular velocity at the port [m/s].

11. Library

80620-sim 5.1 Reference Manual

Steppermotor

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

A stepper motor is a device used to convert electrical pulses into discrete mechanical
rotational movements. The minimum movement, invoked by one pulse, is called the step
angle. The electrical pulses are mostly generated by a pulse generator that converts a
setpoint change in a corresponding amount of pulses. This model describes a
combination of a pulse generator and stepper motor.

At standstill the torque required to deflect the motor a full step is called the holding
torque. The holding torque normally is much higher than required to drive the load, and
thus acts as a strong brake to hold the load. The holding torque as function of the output
angle is shown in the graph below. Around zero angle the curves shows the behavior of
a spring. By changing the input by one step, the force will increase to its maximum and
move the the load.

Motor torque a s function of the angle (holding toque = 1 [N], step angle = [10°]).

If the subsequent steps are generated fast enough the holding torque will start to
decrease. The maximum holding torque as function of the rotation speed is shown in the
figure below. This force curve is commonly describe as the pull out curve.

11. Library

80720-sim 5.1 Reference Manual

Pull out curve: maximum generated torque as a function of the rotational speed.

Ports Description

input

p_out

Desired output angle.

Rotation port.

Causality

fixed current out

p_in

preferred angular

velocity out p_out

Inputs

input Stepper motor input

Parameters

step_angle

tau

Th

J

B

fmax

Minimum change of the output axis [deg].

Time constant coil [s].

Holding torque [Nm].

Inertia rotor [Nm^2]

Relative damping at the stepper motor resonance [].

Maximum frequency motor (frequency at which the torque gets zero)

[rad/s].

11. Library

80820-sim 5.1 Reference Manual

Torque-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an ideal actuator. The actuator applies a torque between its two
terminals. This torque can be set to a certain constant value, the angular velocity is
indifferent.

p_high.T = p_low.T = T

Interface

Ports Description

p_high, p_low Both terminals of the Rotational port p.

Causality

fixed torque out

Input

T Torque [Nm].

Torque

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a torque. The torque can be set to a certain constant value, the angular velocity
is indifferent.

p.T = T;

Interface

Ports Description

p Rotation port.

Causality

11. Library

80920-sim 5.1 Reference Manual

fixed torque out

Parameters

T Torque [Nm].

TorqueActuator-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. The actuator applies a torque between its two
terminals. This torque can be set to a (fluctuating) value given by the input signal T, the
angular velocity is indifferent.

p_high.T = p_low.T = T

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed torque out

Input

T Torque [Nm].

11. Library

81020-sim 5.1 Reference Manual

TorqueActuator

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a torque. The torque can be set to a (fluctuating) value given by the input signal
T, the angular velocity is indifferent.

p.T = T;

Interface

Ports Description

p Rotation port.

Causality

fixed torque out

Input

T Torque [Nm].

Velocity-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an ideal actuator. The actuator applies an angular velocity
difference between its two terminals. This angular velocity can be set to a constant
value omega, the force is indifferent.

p_low.omega = p_high.omega + omega

Interface

Ports Description

11. Library

81120-sim 5.1 Reference Manual

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed angular

velocity out

Parameter

v Angular velocity [rad/s].

Velocity

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies an angular velocity. This angular velocity can be set to a certain constant value,
the torque is indifferent.

p.omega = omega;

Interface

Ports Description

p Rotation port.

Causality

fixed angular

velocity out

Parameters

omega Angular velocity [rad/s].

VelocityActuator-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

11. Library

81220-sim 5.1 Reference Manual

Description

This model represents an ideal actuator. The actuator applies an angular velocity
difference between its two terminals. This angular velocity can be set to a (fluctuating)
value given by the input signal v, the force is indifferent.

p_low.omega = p_high.omega + omega

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed angular

velocity out

Input

omega Angular velocity [rad/s].

VelocityActuator

Library

Iconic Diagrams\Mechanical\Rotation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies an angular velocity. This angular velocity can be set to a (fluctuating) value
given by the input signal omega, the torque is indifferent.

p.omega = omega;

Interface

Ports Description

p Rotation port.

Causality

fixed angular

velocity out

Input

11. Library

81320-sim 5.1 Reference Manual

omega Angular velocity [rad/s].

Components

Backlash

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents backlash by a spring damper system equivalent to the
translational backlash model. The port p of this model has separate high and low
terminals. The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

Interface

Ports Description

p_high, p_low Both terminals of port p (Rotation).

Causality

fixed torque out

Parameters

s

k1

k2

d1

d2

ep

Interval of the play [rad]

Stiffness in the play [Nm/rad]

Stiffness outside the play [Nm/rad]

Damping inside the play [Nms/rad]

Damping outside the play [Nms/rad]

Relative round off (1e-6 -> sharp edges, 1e-2 -> smoother)

Parameters

x_initial Initial position in the play [rad], -s/2 < x_initial < s/2

11. Library

81420-sim 5.1 Reference Manual

Bearing

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

In this model bearing friction is represented as linear viscous friction. The model has
only one initial port p defined. Because any number of connections can be made,
successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations
such that the resulting torque p.T is equal to the sum of the torques of all connected
ports p1 .. pn. The angular velocities of all connected ports are equal to p.omega. The
model can have an torque out as well as an angular velocity out causality. In the last
case the constitutive equation, as shown below, is simply inverted:

p.T = sum(p1.T, p2.T,)
p.omega = p1.omega = p2.omega =

Torque out causality:

p.T = d * p.omega;

Angular velocity out causality:

p.omega = p.T / d;

Interface

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

indifferent

Parameters

d Damping [Nms/rad]

Brake

Library

Iconic Diagrams\Mechanical\Rotation\Components

Implementations

C

11. Library

81520-sim 5.1 Reference Manual

V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Introduction

The brake models represent a disk brake or other type of brake where a rotation is
stopped by applying a friction force. The amount of friction depends on the normal force
that is applied and the friction function that is used. The normal force is given by the
input signal Fn. The brake is mounted to the fixed world.

The model has only one initial port p defined. Because any number of connections can
be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create
equations such that the resulting torque p.T is equal to the sum of the torques of all
connected ports p1 .. pn. The angular velocities of all connected ports are equal to
p.omega.

p.T = sum(p1.T, p2.T,)
p.omega = p1.omega = p2.omega =

Due to the use of normal force, the brake models all have a fixed torque out causality.
The constitutive equations are therefore described as:

p.T = Fn * f(p.omega);

with f the friction function.

Description - C

This model represents a brake with braking force described as coulomb friction. The
brake is mounted to the fixed world. The amount of friction depends on the normal force
that is applied:

p.T = Fn*mu_c*tanh(slope*p.omega);

Fn: normal force (given by the input signal Fn)
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

11. Library

81620-sim 5.1 Reference Manual

Interface - C

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_c

slope

Coulomb friction coefficient [m]

Steepness of Coulomb friction curve [s/rad]

Description - V

This model represents a brake with braking force described as viscous friction. The
brake is mounted to the fixed world. The amount of friction depends on the normal force
that is applied:

p.T = Fn*mu_v*p.omega;

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient

11. Library

81720-sim 5.1 Reference Manual

Interface - V

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_v Viscous friction coefficient [m.s/rad]

Description - CV

This model represents a brake with braking force described as coulomb plus viscous
friction. The brake is mounted to the fixed world. The amount of friction depends on the
normal force that is applied:

p.T = Fn*(mu_c*tanh(slope*p.omega) + mu_v*p.omega);

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

11. Library

81820-sim 5.1 Reference Manual

Interface - CV

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_v

mu_v

slope

Viscous friction coefficient [ms/rad]

Coulomb friction coefficient [m]

Steepness of Coulomb friction curve [s/rad]

Description - SCVS

This model represents a brake with braking force described as static plus coulomb plus
viscous plus Stribeck friction. The brake is mounted to the fixed world. The amount of
friction depends on the normal force that is applied:

p.T = Fn *
((mu_c + (mu_st*abs(tanh(slope*p.omega)) - mu_c)
* exp(-((p.omega / v_st)^2))) * sign(p.omega)
+ mu_v * p.omega);

Fn: normal force (given by the input signal Fn)
mu_s: the static friction coefficient
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

11. Library

81920-sim 5.1 Reference Manual

Interface - SCVS

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_s

mu_v

mu_c

slope

v_st

Static friction coefficient [m]

Viscous friction coefficient [m.s/rad]

Coulomb friction coefficient [m]

Steepness of Coulomb friction curve [s/rad]

Characteristic Stribeck velocity [rad/s]

Description - LuGre

This model represents a brake with braking force described by the LuGre friction model.
The brake is mounted to the fixed world. The amount of friction depends on the normal
force that is applied:

p.T = FN*f_lg(p.omega);

Fn: normal force (given by the input signal Fn)
f_lg: the LuGre friction model

Interface - LuGre

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed Torque out

11. Library

82020-sim 5.1 Reference Manual

Input

Fn Normal force [N]

Parameters

mu_c

mu_s

mu_v

v_st

mu_k

Coulomb friction coefficient

Static friction coefficient [m]

Viscous friction coefficient [ms/rad]

Characteristic Stribeck velocity [rad/s]

rotational stiffness coefficient at zero speed [m/rad]

Clutch

Iconic Diagrams\Mechanical\Rotation\Components

Implementations

C
V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Introduction

The clutch models model represent friction relative to other objects. The amount of
friction depends on the normal force that is applied and the friction function that is used.
The normal force is given by the input signal FN.

The port p of the clutch model has separate high and low terminals. The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

Due to the use of normal force, the clutch models all have a fixed torque out causality.
The constitutive equations are therefore described as:

p.T = Fn * f(p.omega);

with f the friction function.

11. Library

82120-sim 5.1 Reference Manual

Description - C

This model represents bearing with friction force described as coulomb friction. The
amount of friction depends on the normal force that is applied and the friction function
that is used:

p.T = Tc*tanh(slope*p.omega);

Tc: coulomb friction
slope: the steepness of the coulomb friction curve.

Interface - C

Ports Description

p Both terminals of port p (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

Tc

slope

Coulomb friction [N.m]

Steepness of Coulomb friction curve [s/rad]

Description - V

This model represents a clutch with friction force described as viscous friction. The
amount of friction depends on the normal force that is applied and the friction function
that is used:

p.T = Fn*mu_v*p.omega;

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient

11. Library

82220-sim 5.1 Reference Manual

Interface - V

Ports Description

p_high, p_low Both terminals of port p (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_v Viscous friction coefficient [m.s/rad]

Description - CV

This model represents a clutch with friction force described as coulomb plus viscous
friction. The amount of friction depends on the normal force that is applied and the
friction function that is used:

p.T = Fn*(Tc*tanh(slope*p.omega) + mu_v*p.omega);

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
Tc: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

11. Library

82320-sim 5.1 Reference Manual

Interface - CV

Ports Description

p_high, p_low Both terminals of port p (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_v

Tc

slope

Viscous friction coefficient [m.s/rad]

Coulomb friction [N.m]

Steepness of Coulomb friction curve [s/rad]

Description - SCVS

This model represents a clutch with friction force described as static plus coulomb plus
viscous plus Stribeck friction. The amount of friction depends on the normal force that is
applied and the friction function that is used:

p.T = Fn *
((Tc + (mu_st*abs(tanh(slope*p.omega)) - Tc)
* exp(-((p.omega / v_st)^2))) * sign(p.omega)
+ mu_v * p.omega);

Fn: normal force (given by the input signal Fn)
mu_s: the static friction coefficient
mu_v: the viscous friction coefficient
Tc: the coulomb friction coefficient
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

11. Library

82420-sim 5.1 Reference Manual

Interface - SCVS

Ports Description

p_high, p_low Both terminals of port p (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_s

mu_v

Tc

slope

v_st

Static friction coefficient [m]

Viscous friction coefficient [m.s/rad]

Coulomb friction [N.m]

Steepness of Coulomb friction curve [s/rad]

Characteristic Stribeck velocity [rad/s]

Description - LuGre

This model represents a clutch with friction force described by the LuGre friction model.
The amount of friction depends on the normal force that is applied and the friction
function that is used:

p.T = FN*f_lg(p.omega);

Fn: normal force (given by the input signal Fn)
f_lg: the LuGre friction model

Interface- LuGre

Ports Description

p_high, p_low Both terminals of port p (Rotation).

Causality

Fixed torque out

11. Library

82520-sim 5.1 Reference Manual

Input

Fn Normal force [N]

Parameters

Tc

mu_s

mu_v

v_st

mu_k

Coulomb friction coefficient

Static friction coefficient [m]

Viscous friction coefficient [m.s/rad]

Characteristic Stribeck velocity [rad/s]

rotational stiffness coefficient at zero speed [m/rad]

Damper

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents a linear damper. It can have an torque out as well as an angular
velocity out causality. In the last case the constitutive equation, as shown below, is
simply inverted. The port p of the damper model has separate high and low terminals.
The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

Torque out causality:

p.T = d * p.omega;

Angular velocity out causality:

p.omega = p.T / d;

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

indifferent

Parameters

d damping [Nms/rad]

11. Library

82620-sim 5.1 Reference Manual

FixedWorld

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents the fixed world (angular velocity = 0). The model has only one
initial port p defined. Because any number of connections can be made, successive ports
are named p1, p2, p3 etc. which gives the constitutive equations:

p1.omega = p2.omega = .. = pn.omega = 0;
p1.T = free; p2.T = free; ..; pn.T = free;

Interface

Ports Description

p [any] Any number of connections can be made.

Causality

Fixed angular

velocity out

All ports have a fixed angular velocity out causality.

Friction

Iconic Diagrams\Mechanical\Rotation\Components

Implementations

C
V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Introduction

The friction model represent bearing friction with various friction models. The model
have only one initial port p defined. Because any number of connections can be made,
successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations
such that the resulting force p.F is equal to the sum of the forces of all connected ports
p1 .. pn. The velocities of all connected ports are equal to p.v.

11. Library

82720-sim 5.1 Reference Manual

p.F = sum(p1.F, p2.F,)
p.v = p1.v = p2.v =

Description - C

This model represents a bearing with friction torque described as coulomb friction:

p.T = Tc*tanh(slope*p.omega);

Tc: the coulomb friction
slope: the steepness of the coulomb friction curve.

Interface - C

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Parameters

Tc

slope

Coulomb friction [N.m]

Steepness of Coulomb friction curve [s/rad]

Description - V

This model represents a bearing with friction force described as viscous friction:

p.T = d*p.omega;

d: the viscous damping

11. Library

82820-sim 5.1 Reference Manual

Interface - V

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

d Viscous friction torque or damping [N.m.s/rad]

Description - CV

This model represents a bearing with friction force described as coulomb plus viscous
friction:

p.T = Tc*tanh(slope*p.omega) + d*p.omega;

d: the viscous damping
Tc: the coulomb friction
slope: the steepness of the coulomb friction curve.

11. Library

82920-sim 5.1 Reference Manual

Interface - CV

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

mu_v

Tc

slope

Viscous damping [N.m.s/rad]

Coulomb friction [N.m]

Steepness of Coulomb friction curve [s/rad]

Description - SCVS

This model represents a bearing with friction force described as static plus coulomb plus
viscous plus Stribeck friction:

p.T = ((Tc + (Tst*abs(tanh(slope*p.omega)) - Tc)
* exp(-((p.omega / v_st)^2))) * sign(p.omega)
+ d * p.omega);

Tst: the static friction
d: the viscous damping
Tc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

Interface - SCVS

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

11. Library

83020-sim 5.1 Reference Manual

Fixed torque out

Input

Fn Normal force [N]

Parameters

Tst

d

Tc

slope

v_st

Static friction torque [N.m]

Viscous friction torque or damping [N.m.s/rad]

Coulomb friction [N.m]

Steepness of Coulomb friction curve [s/rad]

Characteristic Stribeck velocity [rad/s]

Description - LuGre

This model represents a bearing with friction force described by the LuGre friction
model:

p.T = f_lg(p.omega);

f_lg: the LuGre friction model

Interface- LuGre

Ports Description

p[any] Any number of connections can be made (Rotation).

Causality

Fixed torque out

Input

Fn Normal force [N]

Parameters

Tc

Tst

d

v_st

c

Coulomb friction [N.m]

Static friction torque [m]

Viscous damping [N.m.s/rad]

Characteristic Stribeck velocity [rad/s]

Stiffness at zero speed [N.m/rad]

11. Library

83120-sim 5.1 Reference Manual

Inertia

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an ideal rotational inertia. The element has a preferred angular
velocity out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred torque out causality. The
constitutive equations then contain a derivation. The model has only one initial port p
defined. Because any number of connections can be made, successive ports are named
p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting torque
p.T is equal to the sum of the torques of all connected ports p1 .. pn and that the angular
velocities of all connected prots is equal to p.omega.

p.T = sum(p1.T, p2.T,)
p.omega = p1.omega = p2.omega =

angular velocity out causality (preferred):

alpha = p.T/J;
p.omega = int(alpha);
phi = int(p.omega);

torque out causality:

alpha = ddt(p.omega);
p.T = J*alpha;
phi = int(p.omega);

Interface

Ports Description

p[any] Any number of connections can be made

(Rotation).

Causality

preferred angular velocity out An torque out causality results in a derivative

constitutive equation.

Variables

phi

alpha

angle [rad]

angular acceleration [rad/s^2]

Parameters

J moment of inertia [kgm^2]

11. Library

83220-sim 5.1 Reference Manual

Initial Values

p.omega_initial

phi_initial

The initial velocity of the inertia [rad/s].

The initial angle of the inertia [rad].

Node

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This node model represents a structural connection between two (or more) shafts, where
the velocity of all connected shafts is equal. The model has only one initial port p
defined. Because any number of connections can be made, successive ports are named
p1, p2, p3 etc.

Interface

Ports Description

p [any] Any number of connections can be made (Rotation).

Spring

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an ideal rotational spring. The element has a preferred torque out
causality. The corresponding constitutive equations then contain an integration. The
element can also have the non-preferred angular velocity out causality. The constitutive
equations then contain a derivation. The port p of the spring model has separate high
and low terminals. The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

torque out causality (preferred):

11. Library

83320-sim 5.1 Reference Manual

phi = int(p.omega);
p.T = c * phi;

angular velocity out causality:

p.omega = ddt(phi);
phi = p.T/k;

Interface

Ports Description

p_high, p_low Both terminals of the Rotational port p.

Causality

preferred torque out An angular velocity out causality results in a

derivative constitutive equation.

Variables

phi torsion of the spring [rad]

Parameters

c Stiffness [Nm/rad]

Initial Values

phi_initial The initial torsion of the spring [rad].

SpringDamper

Library

Iconic Diagrams\Mechanical\Rotation\Components

Implementations

Default
Stiffness
Frequency

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description - Default

This model represents an ideal rotational spring with damper. The element has a
preferred torque out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred angular velocity out causality.
The constitutive equations then contain a derivation. The port p of the spring model has
separate high and low terminals. The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

Torque out causality (preferred):

11. Library

83420-sim 5.1 Reference Manual

phi = int(p.omega);
p.T = c * phi + d*p.omega;

Angular velocity out causality:

p.omega = ddt(phi);
phi = (p.T - d*p.omega)/c;

Interface - Default

Ports Description

p_high

p_low

Two ports of the spring (Rotation).

Causality

preferred torque out An angular velocity out causality results in a

derivative constitutive equation.

Variables

phi torsion of the spring [rad]

Parameters

c

d

Rotational stiffness [Nm /rad]

Damping [Nms/rad]

Initial Values

phi_initial The initial torsion of the spring [rad].

Description - Stiffness

This model represents an ideal rotational spring with damper. The damping value (d) is
calculated on the basis of a known stiffness (c), relative damping (b) and reference
inertia (J). The inertia is only used to compute the damping (no actual mass is used in
this component).

The element has a preferred torque out causality. The corresponding constitutive
equations then contain an integration. The element can also have the non-preferred
angular velocity out causality. The constitutive equations then contain a derivation. The
port p of the spring model has separate high and low terminals. The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

Torque out causality (preferred):

phi = int(p.omega);
p.F = c * phi + d*p.omega;
d = 2*b*sqrt(c*J);

Angular velocity out causality:

11. Library

83520-sim 5.1 Reference Manual

p.omega = ddt(phi);
phi = (p.T - d*p.omega)/c;
d = 2*b*sqrt(c*J);

Interface - Stiffness

Ports Description

p_high

p_low

Two ports of the spring (Rotation).

Causality

preferred torque out An angular velocity out causality results in a

derivative constitutive equation.

Variables

phi

d

torsion of the spring [rad]

damping [Nms/rad]

Parameters

c

b

J

Rotational stiffness [Nm /rad]

Relative damping []

Moment of inertia [kgm^2]

Initial Values

phi_initial The initial torsion of the spring [rad].

Description - Frequency

This model represents an ideal rotational spring with damper. The stiffness (c) is
calculated on basis of a known resonance frequency (f). The damping value (d) is
calculated on the basis of the stiffness, relative damping (b) and reference inertia (J).
The inertia is only used to compute the damping (no actual mass is used in this
component).

The element has a preferred torque out causality. The corresponding constitutive
equations then contain an integration. The element can also have the non-preferred
angular velocity out causality. The constitutive equations then contain a derivation. The
port p of the spring model has separate high and low terminals. The equations are:

p.T = p_high.T = p_low.T
p.omega = p_high.omega - p_low.omega

Torque out causality (preferred):

phi = int(p.omega);
p.T = c * phi + d*p.omega;
c = J*(2*pi*f)^2;
d = 2*b*sqrt(c*J);

Angular velocity out causality:

11. Library

83620-sim 5.1 Reference Manual

p.omega = ddt(phi);
phi = (p.T - d*p.omega)/c;
c = J*(2*pi*f)^2;
d = 2*b*sqrt(c*J);

Interface - Frequency

Ports Description

p_high

p_low

Two ports of the spring (Rotation).

Causality

preferred torque out An angular velocity out causality results in a

derivative constitutive equation.

Variables

phi

c

d

torsion of the spring [rad]

rotational stiffness [Nm /rad]

damping [Nms/rad]

Parameters

f

b

J

Resonance frequency [Hz]

Relative damping []

Moment of inertia [kgm^2]

Initial Values

phi_initial The initial torsion of the spring [rad].

Unbalance

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model represents an unbalanced mass with an offset r to the axis of rotation and a
starting angle phi_initial.

11. Library

83720-sim 5.1 Reference Manual

The mass will act as an inertia J with a gravity induced disturbance torque:

J = r^2 * m;
alpha = (p.T + m*r*g_n*sin(phi))/ J;
p.omega = int (alpha);
phi = int (p.omega, phi_initial);

The element has a preferred angular velocity out causality. The corresponding
constitutive equations then contain an integration. The element can also have the non-
preferred torque out causality. The constitutive equations then contain a derivation. The
model has only one rotation port p defined. Because any number of connections can be
made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create
equations such that the resulting torque p.T is equal to the sum of the torques of all
connected ports p1 .. pn and that the angular velocities of all connected ports is equal to
p.omega.

p.T = sum(p1.T, p2.T,)
p.omega = p1.omega = p2.omega =

Interface

Ports Description

p[any] Any number of connections can be made

(Rotation).

Causality

preferred angular velocity out An torque out causality results in a derivative

constitutive equation.

Variables

J

phi

alpha

moment of inertia [kgm^2]

angle [rad]

angular acceleration [rad/s^2]

Parameters

11. Library

83820-sim 5.1 Reference Manual

m

r

mass [kg]

distance of mass from center line of rotation [m]

Initial Values

p.omega_initial

phi_initial

The initial velocity of the inertia [rad/s].

The starting angle of the mass [rad].

ZeroTorque

Library

Iconic Diagrams\Mechanical\Rotation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model can be used to connect any open end of another model that is not connected
to the fixed world. It generates a fixed torque of 0 N while the angular velocity is free:

p.omega = indifferent;
p.T = 0;

Interface

Ports Description

p rotation port

Causality

Fixed torque out

11. Library

83920-sim 5.1 Reference Manual

Gears

BeltPulley

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Description

This models represents a belt and pulley. The connection to the pulley is through the
rotation port p_rot. The connection to the belt is through the translation port p_trans.
The model is ideal, i.e. there are no compliances or inertias. The causality of this model
is always mixed: torque out & velocity out or angular velocity out & force out:

p_rot.T = radius * p_trans.F
p_trans.v = radius * p_rot.omega

or:

p_trans.F = 1/radius * p_rot.T
p_rot.omega = 1/radius * p_trans.v

Interface

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius pulley radius [m]

Cam-Wizard

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Description

This is a masked model which opens the Cam Wizard when edited. Depending on the
selections entered, various cam motion profiles can be generated.

11. Library

84020-sim 5.1 Reference Manual

Interface

Ports Description

p_in

p_out

Driving axis (Rotation)

Output port with resulting motion (Rotation or Translation)

Parameters

stroke

start_angle

stop_angle

return_angle

end_angle

amplitude of resulting motion

start angle motion

angle when the maximum is reached

start angle of the return motion

finish angle of the return motion

CamRod

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This models represents a cam and rod mechanism. If the input shaft is rotating with a
constant speed, the output motion is a pure sinusoidal.

The mechanism starts with the carriage in the most left position. The arm length is half
of the stroke:

11. Library

84120-sim 5.1 Reference Manual

The mechanism is ideal, i.e., it does not have inertia, friction or geometrical limitations.
It has one rotation port (p_in) and one translation port (p_out). The causality of this
model is always mixed: one port has a force out causality while the other has a velocity
out causality:

p_in.T = i * p_out.F
p_out.v = i * p_in.omega

The transmission ratio (i) is the ratio of the velocities of both ports (in fact a sinusoidal
function of the shaft angle).

Interface

Ports Description

p_in

p_out

Driving axis (Rotation)

Output port with resulting motion (Translation)

Causality

fixed torque out

p_in

fixed velocity out

p_out

Parameters

stroke Stroke of the translation port (is equal to half the length of the rod).

11. Library

84220-sim 5.1 Reference Manual

CrankRod

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This models represents a crank and rod mechanism. The mechanism is ideal, i.e., it
does not have inertia, friction or geometrical limitations. It has one rotation port (p_in)
and one translation port (p_out). The causality of this model is always mixed: one port
has a force out causality while the other has a velocity out causality:

p_in.T = i * p_out.F
p_out.v = i * p_in.omega

The transmission ratio (i) is the ratio of the velocities of both ports. It is a function of the
shaft angle, the crank length and the rod length.

Interface

Ports Description

p_in

p_out

Driving axis (Rotation)

Output port with resulting motion (Translation)

Causality

fixed torque out

p_in

fixed velocity out

p_out

Parameters

crank_length

rod_length

Crank length [m]

Rod length [m]

11. Library

84320-sim 5.1 Reference Manual

DifferentialGear

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

A differential gear is well known for its use in automotive mechanics. It transfers power
from the engine to the wheels, dividing the force equally between them but permitting
them to follow paths of different lengths when turning a corner.

When p3 is the drive-shaft and p1 and p3 the shafts connected to the wheels, the
constitutive equations for this model are:

p3.omega*2*i = p1.omega + p2.omega;
p1.T = p2.T = p3.T/(2*i);

with i the gear ratio. The gear ratio is equal to the diameter of the drive shaft pinion
divided by the diameter of the ring gear, which makes it equivalent to the angular
velocity of the drive shaft divided by the average angular velocity of the wheel shafts:

i = p3.omega / ((p1.omega + p2.omega)/2);

Interface

Ports Description

p1 drive shaft port (Rotation)

11. Library

84420-sim 5.1 Reference Manual

p2,p3 driven shafts ports (Rotation)

Parameters

i gear ratio []

Differential

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

This model is equivalent to the fork model of the Translation library. It represents a
special type of node where the torques are equal and the angular velocities are added:

p3.omega = p1.omega + p2.omega;
p1.T = p2.T = p3.T;

This model can for example be used for actuators that generate a torque difference.
With the differential model an equivalent model can be found with the actuator attached
to the fixed world:

Interface

Ports Description

11. Library

84520-sim 5.1 Reference Manual

p1,p2,p3 Rotation ports.

Gear

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Implementations

Ideal
Lossy

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description - Ideal

This models represents any type of gearbox with two counter rotating shafts. The gear is
ideal, i.e., it does not have inertia or friction. The gear has one fast moving shaft and
one slow moving shaft. The gearbox has a reduction of i : 1 and thus a transmission
ratio of 1/i.

The causality of this model is always mixed: one port has a torque out causality while
the other has an angular velocity out causality:

p_in.T = -1/i * p_out.T
p_out.omega = -1/i * p_in.omega

or:

p_out.T = -i * p_in.T
p_in.omega = -i * p_out.omega

Interface - Ideal

Ports Description

p_in

p_out

Input port

Output port

Causality

p_in not equal

p_out

Parameters

i gearbox reduction, i > 1

Description - Efficiency

This models represents any type of gearbox with two counter rotating shafts. The
gearbox has a reduction of i : 1 and thus a transmission ratio of 1/i.

11. Library

84620-sim 5.1 Reference Manual

p_in.omega = -i * p_out.omega

Unlike the model of an ideal gearbox, this model includes power loss. The power loss is
represented by the efficiency, where the efficiency is defined as the output power
divided by the input power:

eff = Pout / Pin

The efficiency is a value between zero and one and given by the gearbox manufacturer.
If you do no know the value, a good guess is a power loss of 3% per stage (eff = 0.97).
If your gearbox for example contains three stages, you can set the efficiency as:

eff = 0.97*0.97*0.97 = 0.91

Interface - Efficiency

Ports Description

p_in

p_out

Input port

Output port

Causality

p_in not equal

p_out

Parameters

i

eff

gearbox reduction [-], i > 1

gearbox efficiency [-]

Description - Lossy

This models represents any type of gearbox with two counter rotating shafts. The
gearbox has a reduction of i : 1 and thus a transmission ratio of 1/i.

p_in.omega = -i * p_out.omega

Unlike the model of an ideal gearbox, this model includes rotational inertia and power
loss. The inertia is defined at the input axis. If the gearbox manufacturer gives the
inertia at the output axis you can calculate the inertia at input axis as:

Jinput = Joutput/i^2

The power loss is represented by the efficiency, where the efficiency is defined as the
output power divided by the input power:

eff = Pout / Pin

The efficiency is a value between zero and one and given by the gearbox manufacturer.
If you do no know the value, a good guess is a power loss of 3% per stage (eff = 0.97).
If your gearbox for example contains three stages, you can set the efficiency as:

11. Library

84720-sim 5.1 Reference Manual

eff = 0.97*0.97*0.97 = 0.91

Interface - Lossy

Ports Description

p_in

p_out

Input port

Output port

Causality

preferred angular

velocity out p_in

preferred angular

velocity out p_out

Parameters

i

J

eff

gearbox reduction [-], i > 1

moment of inertia [kgm^2]

gearbox efficiency [-]

PlanetaryGear

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

A planetary gear is well known for its use in automotive mechanics. It transfers power
from a sun wheel to the planet wheels and the ring. In standard planetary gears, the
planet wheels are connected by a carriage. I.e the gear has three rotation ports: the
sun, the carriage and the ring.

11. Library

84820-sim 5.1 Reference Manual

The model that is used here is ideal. I.e. there is only power flow between the three
axes. No internal dynamics or friction are incorporated. If the inertia cannot be
neglected, you can easily add inertia models to the ports of the planetary gear model.

The number of teeth of the planet wheels are uniquely defined by the number of teeth of
the sun wheel and the ring by:

zp = (zr - zs)/2;

Therefore the ratio between the sun teeth and the ring teeth:

z = zr / zs;

determine the transmission ratio of the gearbox and therefore the dynamic equations of
the gearbox:

carriage.omega = sun.omega * (1/(1 + z)) + ring.omega * (z/(1 + z));
ring.T = carriage.T * (z/(1 + z));
sun.T = carriage.T * (1/(1 + z));

Interface

Ports Description

sun

carriage

ring

shaft attached to the sun wheel (Rotation)

shaft attached to the carriage (Rotation)

shaft attached to the ring (Rotation)

Parameters

z number of ring teeth divided by the number of sun teeth []

11. Library

84920-sim 5.1 Reference Manual

RackPinionGear

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Implementations

FixedPinion
FixedRack

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Description - FixedPionion

This models represents a rack and pinion gear. The connection to the pinion gear is
through the rotation port p_rot. The connection to the rack is through the translation
port p_trans. The model is ideal, i.e. there is no compliance nor inertia nor backlash.

In this model the pinion bearing is connected to the fixed world and the rack is free to
move. This in contrary to the model FixedRackPinionGear where the pinion bearing is
free to move and the rack is connected to the fixed world.

The causality of this model is always mixed: torque out & velocity out or angular velocity
out & force out:

p_rot.T = radius * p_trans.F
p_trans.v = radius * p_rot.omega

or:

p_trans.F = 1/radius * p_rot.T
p_rot.omega = 1/radius * p_trans.v

The rack position is determined by the internal variable x. For x = 0, the pinion gear is
at the middle of the rack. When the pinion crosses the end of the rack, i.e.

11. Library

85020-sim 5.1 Reference Manual

abs(x) > rack_length/2

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion
gear!", and the simulation is stopped.

Interface - FixedPionion

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius

rack_length

pinion gear pitch radius [m]

rack length [m]

Variables

x Internal variable which denotes the rack position, abs(x) <

rack_length/2 else simulation halted.

Initial values

x_initial Initial rack position, abs(x_initial) < rack_length/2

Description - FixedRack

This models represents a fixed rack and pinion gear. The connection to the pinion gear is
through the rotation port p_rot. The connection to the rack is through the translation
port p_trans. The model is ideal, i.e. there is no compliance nor inertia nor backlash.

In this model the pinion bearing is free to move and the rack is connected to the fixed
world. This in contrary to the model RackPinionGear where the pinion bearing is
connected to the fixed world and the rack is free to move.

11. Library

85120-sim 5.1 Reference Manual

The causality of this model is always mixed: torque out & velocity out or angular velocity
out & force out:

p_rot.T = radius * p_trans.F
p_trans.v = radius * p_rot.omega

or:

p_trans.F = 1/radius * p_rot.T
p_rot.omega = 1/radius * p_trans.v

The rack position is determined by the internal variable x. For x = 0 the pinion gear is at
the middle of the rack. When the pinion crosses the end of the rack, i.e.

abs(x) > rack_length/2

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion
gear!", and the simulation is stopped.

Interface - FixedRack

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius

rack_length

pinion gear pitch radius [m]

rack length [m]

Variables

x Internal variable which denotes the rack position, abs(x) <

rack_length/2 else simulation halted.

Initial values

x_initial Initial rack position, abs(x_initial) < rack_length/2

11. Library

85220-sim 5.1 Reference Manual

Spindle

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Introduction

This models represents a spindle and nut. It transfers an angular motion of the spindle
into a translational motion of the nut. The model is ideal, i.e., it does not have inertia or
friction. The causality of this model is always mixed: one port has a torque out causality
while the other has an angular velocity out causality:

p_spindle.T = i * p_nut.F
p_nut.v = i * p_spindle.omega

or:

p_nut.F = 1/i * p_spindle.T
p_spindle.omega = 1/i * p_nut.v

The model has two implementations which calculate the transform ratio i out of different
parameters.

Description - Pitch

In this implementation the transform ratio is calculated using the pitch (the advance of
the nut during one revolution of the spindle):

i = pitch / (2 * pi);

Interface - Pitch

Ports Description

p_spindle

p_nut

Port at the spindle shaft (Rotation).

Port at the wheel (Translation).

Causality

p_spindle

notequal p_nut

Parameters

pitch translation of the nut during one revolution of the spindle [m]

Description - LeadAngle

This implementation calculates the transform ratio out of the lead angle alpha and the
radius r_spindle of the spindle:

i = tan(alpha)*r_spindle;

11. Library

85320-sim 5.1 Reference Manual

The pitch angle is shown in the figure below. r_spindle is the effective radius of the
spindle, i.e. the radius from the center of the spindle to the pitch point p.

Interface -LeadAngle

Ports Description

p_spindle

p_nut

Port at the spindle shaft (Rotation).

Port at the wheel (Translation).

Causality

p_spindle

notequal p_nut

Parameters

r_spindle

alpha

effective radius of the spindle [m]
lead angle of the spindle [rad]

TimingBelt

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Introduction

This models represents a timing belt, used for linear positioning.

11. Library

85420-sim 5.1 Reference Manual

It has a rotating pulley which drives the the belt and clamp. The timing belt is modeled
by a series of spring damper elements that convey the rotation of the pulley to a clamp
translation. Because the output position is moving, stiffness and damping values are not
constant.

The stiffness for a piece of belt can be expressed as:

k = E*A / l

with

E = Modulus of elasticity {N/m2}
A = Belt area {m2}
l = belt length {m}

If the belt is sufficiently pre-tensioned, the stiffness experienced at the clamp can be
expressed as the combination of three individual belt parts:

k = E*A/(0.5*l+x) + 1/(1 / E*A/(0.5*l - x) + 1 / E*A / l)

which can be rewritten to:

k = E*A*(1/(0.5*l+x) + 1/(1.5*l - x))

The stiffness approaches infinity as the clamp moves to the driven pulley (x = -l/2) and
has a minimum value when the clamp moves to the other pulley (x = 0.5*l). The
minimum stiffness is equal to:

k = 2*E*A / l

The belt position is determined by the internal variable x. For x = 0 the clamp is in the
middle. When the position crosses the driven pulley, i.e.

11. Library

85520-sim 5.1 Reference Manual

x < - belt_length/2

the simulation is stopped: "Error: clamp position larger than belt end!". When the
position crosses the other pulley, i.e.

x > belt_length/2

the simulation is also stopped, "Error: clamp position smaller than belt start!".

Description - Default

In this model the minimum stiffness is used, based on an output position at a length L of
the driven pulley.

k = 2*E*A / l

Description - VariableStiffness

In this model a variable stiffness is used equal to:

k = E*A*(1/(0.5*l+x) + 1/(1.5*l - x))

Take care not to let the clamp get too close to the driven pulley, because the stiffness
will then grow to infinity!

Interface

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius

d

E

A

l

pinion gear pitch radius [m]

damping N.s/m]

Modulus of elasticity [N/m2]

A = Belt area [m2]

belt length [m]

Variables

x clamp position, abs(x) < belt length/2

Initial values

x_initial Initial clamp position, abs(x_initial) < belt length/2

11. Library

85620-sim 5.1 Reference Manual

Transmission

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Implementations

Ideal
Lossy

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description - Ideal

This models represents any type of gearbox with two shafts rotating in the same
direction. The gear is ideal, i.e., it does not have inertia or friction. The gear has one fast
moving shaft and one slow moving shaft. The gearbox has a reduction of i : 1 and thus a
transmission ratio of 1/i.

The causality of this model is always mixed: one port has a torque out causality while
the other has an angular velocity out causality:

p_in.T = 1/i * p_out.T
p_out.omega = 1/i * p_in.omega

or:

p_out.T = i * p_in.T
p_in.omega = i * p_out.omega

Interface - Ideal

Ports Description

p_in

p_out

Input port

Output port

Causality

p_in not equal

p_out

Parameters

i gearbox reduction, i > 1

Description - Efficiency

This models represents any type of gearbox with two shafts rotating in the same
direction. The gearbox has a reduction of i : 1 and thus a transmission ratio of 1/i.

p_in.omega = i * p_out.omega

Unlike the model of an ideal gearbox, this model includes power loss. The power loss is
represented by the efficiency, where the efficiency is defined as the output power
divided by the input power:

11. Library

85720-sim 5.1 Reference Manual

eff = Pout / Pin

The efficiency is a value between zero and one and given by the gearbox manufacturer.
If you do no know the value, a good guess is a power loss of 3% per stage (eff = 0.97).
If your gearbox for example contains three stages, you can set the efficiency as:

eff = 0.97*0.97*0.97 = 0.91

Interface - Efficiency

Ports Description

p_in

p_out

Input port

Output port

Causality

p_in not equal

p_out

Parameters

i

eff

gearbox reduction [-], i > 1

gearbox efficiency [-]

Description - Lossy

This models represents any type of gearbox with two shafts rotating in the same
direction. The gearbox has a reduction of i : 1 and thus a transmission ratio of 1/i.

p_in.omega = i * p_out.omega

Unlike the model of an ideal gearbox, this model includes rotational inertia and power
loss. The inertia is defined at the input axis. If the gearbox manufacturer gives the
inertia at the output axis you can calculate the inertia at input axis as:

Jinput = Joutput/i^2

The power loss is represented by the efficiency, where the efficiency is defined as the
output power divided by the input power:

eff = Pout / Pin

The efficiency is a value between zero and one and given by the gearbox manufacturer.
If you do no know the value, a good guess is a power loss of 3% per stage (eff = 0.98).
If your gearbox for example contains three stages, you can set the efficiency as:

eff = 0.97*0.97*0.97 = 0.91

Interface - Lossy

Ports Description

p_in Input port

11. Library

85820-sim 5.1 Reference Manual

p_out Output port

Causality

preferred angular

velocity out p_in

preferred angular

velocity out p_out

Parameters

i

J

eff

gearbox reduction [-], i > 1

moment of inertia [kgm^2]

gearbox efficiency [-]

UniversalCoupling

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description

Universal Joint couplings are used to couple axes which are not aligned. The can be used
in single or double set-up. Consider the single Universal Joint coupling, shown in the
picture below.

11. Library

85920-sim 5.1 Reference Manual

Due to the nature of the coupling, the output angular velocity w1 will show a sinusoidal
ripple, compared to the input angular velocity w2:

with the angle between the two axes and 1 the initial rotation of the input axis. The

initial rotation 1 is defined with respect to a plane that is spanned by the axes (1 and

2).

When two Universal Joint couplings are combined, the angular velocity of the output axis
will be equal to the angular velocity of the input axis (e.g. no ripple) when two conditions
are met. When the output axis of the first coupling is connected to the input axis of the
second coupling, these conditions are:

1. For both couplings the absolute value of the angle should be equal.

2. The difference in initial rotation of both couplings (1 - 2) should be equal to

+ /2 [rad] or - /2 [rad].

Two alignments are shown in the figure below.

= 0.35 ' = -0.35 , 1 = 0, ' /2 [rad] = 0.35 ' = 0.35 , 1 = 0, ' /2 [rad]

Interface

Ports Description

p1, p2 The input and output axes (Rotation)

Causality

11. Library

86020-sim 5.1 Reference Manual

Input

p1 not equal p2

Parameters

alpha The angle between the two axes ().

Initial Values

phi1_initial The initial rotation of the input axis 1).

Wormgear

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Implementations

Ideal
Backlash

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Description - Ideal

This models represents a worm gear with spindle (also referred to as worm) and wheel
(also referred to as gear). The gear is ideal, i.e., it does not have inertia or friction. The
causality of this model is always mixed: one port has a torque out causality while the
other has an angular velocity out causality:

p_spindle.T = i * p_wheel.T
p_wheel.omega = i * p_spindle.omega

or:

p_wheel.T = 1/i * p_spindle.T
p_spindle.omega = 1/i * p_wheel.omega

with

11. Library

86120-sim 5.1 Reference Manual

i = tan(alpha)*r_spindle/r_wheel;

Alpha is the pitch angle as shown in the figure below. r_wheel and r_spindle are the

effective radii of the wheel and spindle, i.e. the radii from the center of the wheel and

spindle to the pitch point p.

Interface - Ideal

Ports Description

p_spindle

p_wheel

Port at the spindle shaft (Rotation).

Port at the wheel (Rotation).

Causality

p_wheel notequal

p_spindle

Parameters

r_spindle

r_wheel

alpha

pitch radius spindle [m]

pitch radius wheel [m]

lead angle of the spindle [rad]

11. Library

86220-sim 5.1 Reference Manual

Description - Backlash

This models represents a worm gear with spindle (also referred to as worm) and wheel
(also referred to as gear). Between spindle and wheel, backlash and friction is modelled.
The causality of this model is always fixed: both ports have a torque out causality.

Analysis

The spindle and wheel have one ore more pair of teeth contacting each other. The

effective point of contact is called the pitch point P. At the pitch point a frame is defined,
with an x- and y-direction. During rotation of the wheel and spindle, the teeth will
experience a normal force Fn in the x-direction and a friction force Ff in the y-direction.

Between each pair of teeth, a clearance exists (y-direction), causing backlash. This
effect is time-dependent, because of the tooth pairs coming in and out of contact. During
normal operation this is a high frequency effect, which is filtered out by the damping of
the construction. We therefore only use an average backlash at the pitch point. Using
the same reasoning as backlash, an average friction is used at the pitch point.

To define both backlash and friction a frame is used at the pitch point (see picture
above) to indicate velocities. The velocity in x-direction is the sliding velocity between
the teeth and used to calculate the friction force. The position in y-direction is the
position in the clearance and used to calculate the backlash force.

11. Library

86320-sim 5.1 Reference Manual

Backlash

The backlash is described by the standard formula that is also used in the Backlash.emx
model. The normal force is modelled by a spring-damper system. Inside the clearance a
low damping and stiffness is used (k1 and d1), while a high stiffness and damping (k2
and d2) is used at both ends of the clearance. This yields a normal force Fn of:

Friction

Friction is described as static plus coulomb plus viscous plus Stribeck friction:

p.F = Fn *
((mu_c + (mu_st*abs(tanh(slope*p.v)) - mu_c)
* exp(-((p.v / v_st)^2))) * sign(p.v)
+ mu_v * p.v);

with:

Fn: the normal force (given by the backlash formula)
mu_s: the static friction coefficient
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

Self-Locking

A worm gear is said to be self-locking, or irreversible when the wheel cannot drive the
spindle. This condition is obtained, if the lead angle of the worm is small and the friction
force between the teeth is high enough. Then the friction force becomes larger than the
driving force on the teeth. Suppose we only consider static and Coulomb friction and
both friction coefficients are equal. Then self locking is obtained when the following
condition holds:

mu_s > tan(alpha)
mu_c > tan(alpha)

Interface - Backlash

Ports Description

p_spindle

p_wheel

Port at the spindle shaft (Rotation).

Port at the wheel (Rotation).

Causality

fixed torque out

p_spindle

Parameters

11. Library

86420-sim 5.1 Reference Manual

r_spindle

r_wheel

alpha

pitch radius spindle [m]

pitch radius wheel [m]

lead angle of the spindle [rad]

s

k1

k2

d1

d2

ep

Interval of the play [m]

Stiffness in the play [N/m]

Stiffness outside the play [N/m]

Damping inside the play [Ns/m]

Damping outside the play [Ns/m]

Relative round off (1e-6 -> sharp edges, 1e-2 -> smoother)

mu_s

mu_v

mu_c

slope

v_st

Static friction coefficient []

Viscous friction coefficient [s/m]

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Characteristic Stribeck velocity [m/s]

Interesting

Variables

Fn

Ff

v_x

v_y

x_x

x_y

Average normal force between teeth [N]

Average friction force between teeth [N]

Velocity in x-direction at the pitch frame [m/s] (used in friction

formula)

Velocity in y-direction at the pitch frame [m/s] (used in backlash

formula)

Position in x-direction at the pitch frame [m/s] (used in friction

formula)

Position in y-direction at the pitch frame [m/s] (used in backlash

formula)

Sensors

AccelerationSensor-Absolute

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model describes an acceleration sensor which derives an angular acceleration
output out of a port angular velocity by differentiation. Differentiation is performed by a
state variable filter:

11. Library

86520-sim 5.1 Reference Manual

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

The equations of this model are:

alpha = d(p.omega)/dt;
p.T = indifferent;

Interface

Ports Description

p Rotation port p.

Causality

fixed force out

Output

alpha Absolute angular acceleration [rad/s2]

Parameters

f

alpha_initial

Cut-off frequency of the differentiation [Hz].

Initial angular acceleration [m/s].

AccelerationSensor-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

11. Library

86620-sim 5.1 Reference Manual

Description

This model describes an acceleration sensor which derives an angular acceleration
output out of a angular velocity difference (between high and low terminals) by
differentiation. Differentiation is performed by a state variable filter:

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

The equations of this model are:

alpha = d(p_high.omega - p_low.omega)/dt;
p_low.T = p_high.T = indifferent;

Interface

Ports Description

p_high, p_low Both terminals of the Mechanical port p.

Causality

fixed force out

Output

alpha Angular acceleration (measured as the difference between both

terminals) [rad/s2]

Parameters

f

alpha_initial

Cut-off frequency of the differentiation [Hz].

Initial angular acceleration [m/s].

11. Library

86720-sim 5.1 Reference Manual

Encoder

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Implementations

Ideal
Absolute
Incremental

Use

Domains: Continuous/Discrete. Size: 1-D. Kind: Iconic Diagrams (Rotation) / Block
Diagrams.

Description - Ideal

This is a model of an optical encoder combined with sampling. The Encoder has no
internal friction. The output signal is equal to the sampled shaft shaft angle (in radians).

Example

The shaft angle is equal to a sine with amplitude 2*pi (one revolution forward and one
back), the sampling rate is 5 Hz.

Interface - Ideal

Ports Description

p Rotation port

Causality

fixed torque out (The output torque is zero)

Outputs Description

output sampled shaft angle (rad)

11. Library

86820-sim 5.1 Reference Manual

Description - Absolute

This is a model of an optical encoder combined with counting logic and analog to digital
conversion. The encoder has no internal friction. Counting is absolute. The shaft angle is
measured with an accuracy of a given number of counts per revolution.

Example

An encoder has an accuracy of 10 counts per revolution. This means an input signal with
value 6.283185307 gives an output of 10. This is illustrated in the figure below. The input
is a sine with amplitude 2*pi (one revolution forward and one back).

Overflow

This model has no overflow.

Interface - Absolute

Ports Description

p Rotation port

Causality

fixed torque out (The output torque is zero)

Outputs Description

output number of counts

Parameters

counts counts per revolution.

Description - Incremental

This is a model of an optical encoder combined with counting logic and analog to digital
conversion. The encoder has no internal friction. Counting is incremental. The shaft
angle is measured with an accuracy of a given number of counts per revolution and a
window defined by the number of bits.

11. Library

86920-sim 5.1 Reference Manual

Example

An encoder has an accuracy of 2000 counts per revolution. This means an input signal
with value 6.283185307 gives an output of 2000.

Example

An encoder has an accuracy of 10 counts per revolution and a 5 bits counter. This
means an input signal with value 6.283185307 gives an output of 10 and the output is
clipping between +15 and -16. This is illustrated in the figure below. The input is a sine
with amplitude 2*pi (one revolution forward and one back).

Encoder output without overflow.

The next figure shows the same settings but only 4 bits are used. This means the output
is clipping between +7 and -8.

Encoder output with overflow.

11. Library

87020-sim 5.1 Reference Manual

Overflow

The maximum and minimum number of counts are equal to 2(bits-1) -1 and -2(bits-1). If
the number of counts passes 2(bits-1) -1, counting continues at -2(bits-1) and vice
versa.

Interface - Incremental

Ports Description

p Rotation port

Causality

fixed torque out (The output torque is zero)

Outputs Description

output number of counts

Parameters

counts

bits

counts per revolution.

maximum counting interval is between 2(bits-1) -1 and -2(bits-1).

Limitations

The output of this model is a discrete signal. 20-sim will automatically detect the
existence of discrete models. Each chain of discrete models will be assigned a specific
sampletime. You can set this sample time to any desired value in the Simulator (choose
Properties, Simulation and Discrete System).

PositionSensor-Absolute

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (, Block Diagrams.), Block
Diagrams.

Description

This model translates a angular position to an output signal. It has a force out causality.
The equations are:

p.T = 0;
phi = int(p.omega);

Interface

Ports Description

p_high, p_low Rotation port p.

Causality

11. Library

87120-sim 5.1 Reference Manual

fixed force out

Output

phi Absolute angular position [rad]

Initial Values

phi_initial Initial angular position [rad]

PositionSensor-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model translates a angular position difference to an output signal. It has a force out
causality. The port p of the model has separate high and low terminals. The equations
are:

p.T = p_high.T = p_low.T;
p.omega = p_high.omega - p_low.omega;
p.T = 0;
phi = int(p.omega);

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed force out

Output

phi Relative angular position [rad]

Initial Values

phi_initial Initial angular position [rad]

11. Library

87220-sim 5.1 Reference Manual

Potentiometer

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation / Electric).

Description

Potentiometers have a variable resistance according to a certain rotation. By
establishing a voltage (see picture below) across the resistor it is possible to get a
proportional relation between the angle and the output voltage.

with

Uout = Umax * angle / (turns*2*pi)

Here Umax is the maximum voltage and turns is the maximum number of turns.

Interface

Ports Description

p1

p2

Rotation port.

Electric port.

Causality

fixed torque out

p1

fixed voltage out

p2

(The output torque is zero)

The output is equal to Uout.

Parameters

Umax

turns

Maximum output voltage [V]

maximum allowed number of turns []

11. Library

87320-sim 5.1 Reference Manual

PowerSensor

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This is an ideal sensor (no dissipation or other effects) that yields the power that flows
through the model as output signal. The equations are:

p_high.T = p_low.T
p_high.omega = p_low.omega
P = p_high.T * p_high.omega;

Interface

Ports Description

p_high, p_low Both rotation ports.

Causality

p_high not equal

p_low

Output

P Power [w].

Tachometer

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous/Discrete. Size: 1-D. Kind: Iconic Diagrams (Rotation) / Block
Diagrams.

Description

A tachometer is a transducer for measuring the rotation speed. It is normally mounted
at the shaft of a motor and gives a voltage signal proportional to the rotation speed:

with Kv the tachometer gradient [V / rad/s] and v the shaft velocity [rad/s]. This
equation represents the ideal case. Due to the slots and commutator segments of the
tachometer, a noise ripple will exists:

11. Library

87420-sim 5.1 Reference Manual

with N the ripple frequency [cycles per turn] and Kn the peak to peak noise Ripple [in %
of the output voltage]. To convert the Voltage Gradient parameter from RPM units [V /
RPM] to radian units [V / rad/s], use the conversion formula:

Interface

Ports Description

p Rotation port.

Causality

fixed torque out (The output torque is zero)

Outputs Description

output Output voltage [V]

Parameters

Kv

Kn

N

Voltage Gradient [V / rad/s].

Noise Ripple , relative to output voltage [%].

Ripple frequency in cycles per turn [].

TorqueSensor

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model translates an applied torque to an output signal. It has an angular velocity
out causality. The port p of the model has separate high and low terminals. The
equations are:

p.T = p_high.T = p_low.T;
p.omega = p_high.omega - p_low.omega;
p.omega = 0;
T = p.T;

11. Library

87520-sim 5.1 Reference Manual

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed angular

velocity out

Output

T Applied torque [N/m]

VelocitySensor-Absolute

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model translates an angular velocity to an output signal. It has a force out causality.
The equations are:

p.T = 0;
omega = p.omega;

Interface

Ports Description

p Mechanical port p.

Causality

fixed force out

Output

omega Absolute angular velocity [rad/s]

11. Library

87620-sim 5.1 Reference Manual

VelocitySensor-Relative

Library

Iconic Diagrams\Mechanical\Rotation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation), Block Diagrams.

Description

This model translates a velocity difference to an output signal. It has a force out
causality. The port p of the model has separate high and low terminals. The equations
are:

p.T = p_high.T = p_low.T;
p.omega = p_high.omega - p_low.omega;
p.T = 0;
omega = p.omega;

Interface

Ports Description

p_high, p_low Both terminals of the Rotation port p.

Causality

fixed force out

Output

omega Relative angular velocity [rad/s]

Translation

2DSmallRotation

2D Library (Small Rotations)

Introduction

The 2DSmallRotation library contains models that describe 2-D planar motion and are
valid for small rotations. Due to these small rotations, the dynamic equations that
describe the various models are simple and can be linearized symbolically. The library is
therefore suited for modeling mechanical systems that experience small rotations and
must be thoroughly analyzed in the frequency domain.

11. Library

87720-sim 5.1 Reference Manual

Consider the guidance system below. Due to the limited stiffness of the guidance wheels,
the central body will experience a small rotation that results in a movement in the x-
direction at the end-effector. To properly model the end-effector movement as a
function of the driven force, this rotation has to be incorporated. To inspect the resulting
resonance frequencies in a bode plot, the model must be linearized. If linearization is
performed symbolically, the effect of parameter changes (af, b, J) can be inspected
directly in the bode plot, which is very useful when the system is still in the design
phase.

To perform symbolic linearization, the example system should be modeled using the
models of the 2DSmallAngles library.

2D

When we speak of 2D motion we often mean all planar motion. However, to describe
this motion, three degrees of freedom (displacement x and y and rotation) are

used. In 20-sim we keep to the common naming standard of 2D for planar motion (3
degrees of freedom) and 3D for spatial motion (6 degrees of freedom). In 20-sim the
three degrees of freedom for planar motion are combined in a vector notation:

d.o.f. identity forces velocities

x position P.F[1] [N] P.v[1] [m/s]

y position P.F[2] [N] P.v[2] [m/s]

angle P.F[3] [Nm] P.v[3] [rad/s]

Note

It is not possible in 20-sim to use vector elements with mixed units. Therefore element
number 3 will be displayed with units [m/s] and [N] although it really is [rad/s] and
[Nm]!

11. Library

87820-sim 5.1 Reference Manual

Ports

1D

The models in the 2DSmallRotation library have two types of connection ports: 1D and
2D. The 1D ports can represent movement and force (x- or y-direction) or an angular
displacement and torque.

The models of the standard translation and rotation libraries can be used connect to
these 1D ports as is shown in the picture below.

2D

The 2D connection port is a vector that represents three degrees of freedom. The vector
notation that is used in 20-sim is:

d.o.f. identity forces velocities

x position P.F[1] [N] P.v[1] [m/s]

y position P.F[2] [N] P.v[2] [m/s]

angle P.F[3] [Nm] P.v[3] [rad/s]

In 20-sim it is not possible to use vector ports with mixed units. This means that element
number 3 will be always be displayed with the units [m/s] and [N] although it should be
interpreted as [rad/s] and [Nm].

To connect 2D ports, only other models with 2D ports can be used. A double line
indicates this vector connection.

11. Library

87920-sim 5.1 Reference Manual

Small Rotations

Consider the body below:

Given a force Fx in x-direction acting upon the body at an offset y1 from the center, the
resulting force at the center of the body is:

F1x = Fx * cos(q)
F1y = Fx * sin(q)
F1q = Fx * -y1

For small angles this can be simplified to:

F1x = Fx
F1y = 0
F1q = Fx * -y1

A force acting upon a body at a certain offset is rewritten to a force at the center of the
body. This is common in multibody dynamics and called a transformation. A force acting
at a certain point can be transformed to see its effect at another point.

Consider two frames which have an arbitrary offset as shown in the picture below. We
want to know how a force in frame 0 is transformed to a force in frame 1. We assume
that frame 1 has an offset of x1 and y1 with respect to frame 0 and a rotation q1 with
respect to frame 0. In order to make clear that the offsets are given with respect to
frame 0 we will write the with extra indices (x1,0 , y1,0 and 1,0).

11. Library

88020-sim 5.1 Reference Manual

Given an arbitrary force F1,0 at frame 0 the resulting force F1,1 at frame 1 is equal to:

For small angles this can be simplified to:

The accuracy of this simplification depends on the angle . For an angle of 0.5 degrees

(0.009 rad) this results in an almost 1% error in the calculation of F1,1. Considering the
cumulative effects of this error when multiple models are used, an angle of maximum
0.05 degrees (<1 mrad) is an upper bound for the models of the 2DSmallRotation
library.

The simplification of the equations has two advantages. First because of the small
rotations there is no frame rotation any more. Therefore all frames have the same
direction (there is only an offset in x-direction and y-direction). Interpreting results is
therefore much easier. But the biggest advantage is the simplification of equations which
allows us to linearize models symbolically and thus perform tasks in the frequency like
parameter sweeps!

Connections

Degrees of Freedom

As described in the previous topic, the models in 2DSmallRotation library have two types
of connection ports: 1D and 2D. The 1D port can represent movement in the x-direction,
the y-direction or an angular displacement .

11. Library

88120-sim 5.1 Reference Manual

The 2D port is a vector that contains all three degrees of freedom. The vector notation
that is used in 20-sim is:

d.o.f. identity forces velocities

x position P.F[1] [N] P.v[1] [m/s]

y position P.F[2] [N] P.v[2] [m/s]

angle P.F[3] [Nm] P.v[3] [rad/s]

The vector element number (1, 2 or 3) denotes the identity of the degree of freedom (x,
y and). To create meaningful models, we have to define the positive direction of each

degree of freedom:

d.o.f. positive direction

x from left to right

y from bottom to top

counter clockwise

This definition is arbitrary. We could as well define it any other way. In the
2DSmallRotation library we have chosen the definition above. It will help us define new
models and interpret simulation results.

Orientation Independent

The connections between models only indicate how variables (forces and velocities) are
transferred from one model to the other and vice versa. The orientation of the models in
the Graph Editor (how they are drawn) is therefore not important. Flipping, rotating or
moving a model does not change the model! All four representations in the figure
below are the same although their individual models are oriented differently.

The figure above shows a point model in x-direction connected to a 2D body. The point
indicates a force in x-direction that is applied to the body. Since we defined that the
positive x-direction is from the left to the right, intuitively figure b leads to the correct
interpretation.

11. Library

88220-sim 5.1 Reference Manual

This indicates a problem. Although all models describe the same behavior, we would
intuitively interpret them differently. It is therefore useful to impose some rules to
prevent misinterpretation of a model by other users.

Drawing Rules

1. Preferably leave the orientation of the models of the 2DSmallRotation library as they
pop up on the screen.

2. If necessary, only flip or rotate models in a direction that does not lead to
misinterpretations.

3. If possible, draw 1D connections in the following direction:

d.o.f. positive direction

x from left to right

y from bottom to top

from left bottom to right top

An example is shown in the figure below:

TwoDBody

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 2-D. Kind: Iconic Diagrams (2D Planar).

11. Library

88320-sim 5.1 Reference Manual

Description

The central model in the 2DSmallRotation library is the TwoDBody model. It describes a
body with three degrees of freedom: x, y and . The TwoDBody is a point mass with

rotational inertia. The constitutive equations are therefore very simple:

P.v = I .* int(P.F);

With

I = [1/M; 1/M; 1/J];

Any number of connections can be made to the TwoDBody model. All forces acting upon
the body are added.

Because any number of connections can be made, successive ports are named P1, P2,
P3 etc. 20-sim will automatically create equations such that the resulting force P.F is
equal to the sum of the forces of all connected ports P1 . Pn. The velocities of all
connected ports are equal to P.v. The model has a preferred velocity out causality. The
corresponding constitutive equations then contain an integration. The model can also
have the non-preferred force out causality. The constitutive equations then contain a
differentiation.

P.F = sum(P1.F, P2.F,)
P.v = P1.v = P2.v =

velocity out causality (preferred):

I = [1/M;1/M;1/J]
P.v = I*int(P.F);

force out causality:

I = [1/M;1/M;1/J]
P.F = I-1*ddt(P.v);

Interface

Ports Description

11. Library

88420-sim 5.1 Reference Manual

P[3] Port with three degrees of freedom (x, y,). Any number of

connections can be made.

Causality

preferred velocity

out

Parameters

M

J

Mass [kg].

Moment of inertia [kgm2/rad]

Note

A TwoDBody model can be connected to any other element of the 2D-library except
other 2D-bodies. Two bodies can always be simplified to one TwoDBody model with
the combined mass and inertia of both single bodies.

TwoDBody models can be connected to 1D models using the TwoDPoint models as
intermediate. If a TwoDPoint is connected to a body, it constrains the movement of
the body in one direct

TwoDPoint Models

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D
force or torque that is applied in a certain direction, onto a body.

A point model forms the connection between the single degree of freedom part of a
system and the center of mass of a body. Consider the example below, where force F in
x-direction (single degree of freedom) is pushing upon a body (three degrees of
freedom) at an offset YP from the body center of mass.

To create such a construct, the TwoDPoint-X model is used:

11. Library

88520-sim 5.1 Reference Manual

The TwoDPoint-X model describes the translation of a 1D force (x-direction) to a 2D-
force (x-, y- and -direction) and vice versa the translation of a 2D-velocity (x-, y- and

-direction) to a 1D velocity (x-direction).

There are four point models. Three point models transform from x-direction, y-direction
and -direction to 2D. One point models transforms from direction with arbitrary

orientation to 2D.

Fixation of bodies

If a TwoDBody model is used in combination with TwoDPoint models, at least three non-
coinciding, unequal (i.e. not having the same offsets) TwoDPoints must be connected to
prevent the body from free motion. This is obvious when we interpret the point models
physically. Point models can be interpreted as constraints on motion in one direction.
The motion in the other two directions is free.

To show that two points are not sufficient to constrain all motions look at the figure
below.

11. Library

88620-sim 5.1 Reference Manual

TwoDPoint

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Implementations

X
Y
theta
XY

Use

Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 2D
Planar).

Description - X

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D
force or torque that is applied in a certain direction, onto a body. The TwoDPoint-X
model forms the connection between the single degree of freedom in x-direction and the
center of mass of a body. Consider the example below, where force F in x-direction
(single degree of freedom) is pushing upon a body (three degrees of freedom) at an
offset YP from the body center of mass.

To create such a construct the TwoDPoint-X model is used:

The TwoDPoint-X model describes the transformation of force in x-direction to a force in
three degrees of freedom. The single degree of freedom port p_in describes the
connection in x-direction and the three three degree of freedom port P_out describes
connection with the 2D-body (x, y and).

P_out.F[1] = p_in.F;

P_out.F[2] = 0;

P_out.F[3] = -p_in.F * YP;

p_in.v = P_out.v[1] - YP *

P_out.v[3];

// x-direction

// y-direction

// rotation

// x-direction

11. Library

88720-sim 5.1 Reference Manual

Interface - X

Ports Description

p_in

P_out[3]

1D Translation port (x).

2D Port with three degrees of freedom (x, y,).

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

YP Distance (y-direction) between connection and center of mass [m].

Description - Y

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D
force or torque that is applied in a certain direction, onto a body. The TwoDPoint-Y
model forms the connection between the single degree of freedom in y-direction and the
center of mass of a body. Consider the example below, where force F in y-direction
(single degree of freedom) is pushing upon a body (three degrees of freedom) at an
offset XP from the body center of mass.

To create such a construct the 2D-point-Y model is used:

11. Library

88820-sim 5.1 Reference Manual

The 2D-point-Y model describes the transformation of force in y-direction to a force in
three degrees of freedom. The single degree of freedom port p_in describes the
connection in y-direction and the three three degree of freedom port P_out describes
connection with the 2D-body (x, y and).

P_out.F[1] = 0;

P_out.F[2] = p_in.F;

P_out.F[3] = p_in.F * XP;

p_in.v = P_out.v[2] + XP *

P_out.v[3];

// x-direction

// y-direction

// rotation

// y-direction

Interface - Y

Ports Description

p_in

P_out[3]

1D Translation port (y).

2D Port with three degrees of freedom (x, y,).

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

XP Distance (x-direction) between connection and center of mass [m].

11. Library

88920-sim 5.1 Reference Manual

Description - theta

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D
force or torque that is applied in a certain direction, onto a body. The TwoDPoint-Theta
model forms the connection between the single degree of freedom rotation and the
center of mass of a body. Consider the example below, where torque (single degree of
freedom) is acting on a body (three degrees of freedom).

To create such a construct the TwoDPoint-Theta model is used:

The TwoDPoint-Theta model describes the transformation of a single rotation to a
rotation of the 2D-body. The single degree of freedom port p_in describes the
connection to the single degree rotation the three three degree of freedom port P_out
describes connection with the 2D-body (x, y and).

P_out.F[1] = 0;

P_out.F[2] = 0;

P_out.F[3] = p_in.T;

p_in.omega = P_out.v[3];

// x-direction

// y-direction

// rotation

// rotation

Interface - theta

Ports Description

p_in

P_out[3]

1D Rotation port ().

2D Port with three degrees of freedom (x, y,).

Causality

fixed force out

P_out

fixed velocity out

p_in

11. Library

89020-sim 5.1 Reference Manual

Description - XY

TwoDPoint models are used to connect 1D models to TwoDBodies. They indicate a 1D
force or torque that is applied in a certain direction, onto a body. The TwoDPoint-XY
model forms the connection between a single degree of freedom in arbitrary direction
and the center of mass of a body. Consider the example below, where force F (single
degree of freedom) is pushing upon a body (three degrees of freedom) with an arbitrary
angle theta at an offset XP and YP from the body center of mass.

To create such a construct the TwoDPoint-XY model is used:

The TwoDPoint-XY model describes the transformation of a one degree of freedom force
in an arbitrary direction to a force in three degrees of freedom. The single degree of
freedom port p_in describes the connection in the arbitrary direction and the three three
degree of freedom port P_out describes connection with the 2D-body (x, y and).

Fx = cos(theta)*p_in.F;

Fy = sin(theta)*p_in.F;

P_out.F[1] = Fx;

P_out.F[2] = Fy;

P_out.F[3] = Fy * XP - Fx * YP;

// arbitrary-direction

// arbitrary-direction

// x-direction

// y-direction

// rotation

11. Library

89120-sim 5.1 Reference Manual

p_in.v = cos(theta)*P_out.v[1] +

sin(theta)*P_out.v[2] +

XP * sin(theta)* P_out.v[3] -

YP * cos(theta) * P_out.v[3];

// arbitrary-direction

Interface - XY

Ports Description

p_in

P_out[3]

1D Translation port in arbitrary direction.

2D Port with three degrees of freedom (x, y,).

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

YP

XP

theta

Distance (y-direction) between connection and center of mass [m].

Distance (x-direction) between connection and center of mass [m].

Angle of impact of the single degree of freedom port [rad].

Note

A TwoDBody has to be connected to at least three unequal TwoDPoint models to
prevent it from free motion (rotation & translation).

Flipping or rotating the model does not change the direction of applied forces or
measured directions. Preferably leave the orientation as it pops up on the screen.

TwoDFixedWorld

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 2-D. Kind: Iconic Diagrams (2D Planar).

Description

The TwoDFixedWorld represents the fixed world in 3 degrees of freedom. It can be
connected to other 2D models to freeze their motion. Models that can be connected to
the fixed world are:

1. TwoDSprings

2. TwoDLinearSlides

11. Library

89220-sim 5.1 Reference Manual

3. TwoDLinearActuators

Although other models like the TwoDBody can also be connected to the TwoDFixedWorld
model, it makes no sense because it completely fixates all equations of motion.

Interface

Ports Description

P Port with three degrees of freedom (x, y,).

Causality

fixed velocity out

P

TwoDZeroForce

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 2-D. Kind: Iconic Diagrams (2D Planar).

Description

This model can be used to connect any open end of another 2D model that is not
connected to the fixed world. It generates a three degree of freedom zero force while
the velocity is free.

Interface

Ports Description

P Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Sensors

To inspect the model behavior you can plot variables. Sometimes not all variables are
available. Then sensor model can be used.

1D

To use the 1D sensor models from the standard library, connect them to the 2D models
using the TwoDPoint models.

11. Library

89320-sim 5.1 Reference Manual

2D

To measure variables directly from the 2D models, three absolute sensors are available
showing the absolute position, velocity and acceleration. Also two relative sensors are
available showing the force and powerflow between two elements.

TwoDPositionSensor

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation,1D
Rotation, 2D Planar).

Description

This model is used to find the absolute position of a TwoDBody model. It has a port P
which can be connected to the body and it has three output signals that denotes the x-
and y-position and the angle of the body. The model has a force out causality. The
equations are:

P.F = 0;
x = int (P.v[1]);
y = int (P.v[2]);
theta = int (P.v[3]);

Interface

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Output

x Absolute position [m].

y Absolute position [m].

theta Absolute angle [rad].

Initial Values

x_initial Initial position [m]

y_initial Initial position [m]

theta_initial Initial angle [m]

11. Library

89420-sim 5.1 Reference Manual

TwoDVelocitySensor

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation,1D
Rotation, 2D Planar).

Description

This model is used to find the absolute velocity of a TwoDBody model. It has a port P
which can be connected to the body and it has three output signals that denotes the x-
and y-velocity and the angular velocity of the body. The model has a force out causality.
The equations are:

P.F = 0;
vx = P.v[1];
vy = P.v[2];
omega = P.v[3];

Interface

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Output

vx Absolute velocity [m].

vy Absolute velocity [m].

omega Absolute angular velocity [rad].

TwoDAccelerationSensor

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D
Rotation, 2D Planar).

Description

This model is used to find the absolute acceleration of a TwoDBody model. It has a port
P which can be connected to the body and it has three output signals that denotes the x-
and y-acceleration and the angular acceleration of the body.

The acceleration output is calculated out of the velocity by differentiation. Differentiation
is performed by a state variable filter:

11. Library

89520-sim 5.1 Reference Manual

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

The equations of this model are:

P.F = 0;
ax = 2*pi*f*(P.v[1] - int(ax, 0));
ay = 2*pi*f*(P.v[2] - int(ay, 0));
alpha = 2*pi*f*(P.v[3] - int(alpha, 0));

Interface

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Outputs

ax Absolute acceleration [m].

ay Absolute acceleration [m].

alpha Absolute acceleration [rad].

Initial Values

ax_initial Initial acceleration [m]

ay_initial Initial acceleration [m]

alpha_initial Initial angular acceleration [m]

11. Library

89620-sim 5.1 Reference Manual

TwoDForceSensor

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D
Rotation, 2D Planar).

Description

This model can be used to measure the forces and torque between two components. It
has a high and a low terminal to connect to both components. The equations are:

P.F = P_high.F = P_low.F;
P.v = P_high.v - P_low.v;
P.v = 0;
Fx = P.F[1];
Fy = P.F[2];
T = P.F[3];

Interface

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed velocity out

P

Outputs

Fx Force [N].

Fy Force [N].

T Torque [Nm].

TwoDPowerSensor

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 1-D/2-D. Kind: Iconic Diagrams (1D Translation, 1D
Rotation, 2D Planar).

Description

This model can be used to measure the powerflow between two models. It has two ports
to to both models. The equations are:

11. Library

89720-sim 5.1 Reference Manual

P.F = P_high.F = P_low.F;
P_high.F = P_low.F;
P_high.v = P_low.v;
P = P_high.v .* P_high.F;
Px = P[1];
Py = P[2];
Ptheta = P[3];

Interface

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed velocity out

P

Outputs

Px Power [W].

Py Power [W].

Ptheta Power [W].

Springs and other Flexible Components

2D Springs

A TwoDSpring model represents a flexible spring between two bodies. The center of
stiffness is located relative to the two bodies. The offsets from the bodies to the center
of stiffness are indicated by x1, y1, x2 and y2 as shown in the picture below (left).

A 2-D spring in rest (left) and stretched (right).

11. Library

89820-sim 5.1 Reference Manual

Note that x1, y1, x2 and y2 are defined with respect to the spring coordinate frame
which is at the center of the spring. This means in the picture above x1 and y1 have a
negative value and x2 and y2 have a positive value.

When the spring is stretched the offsets will change by the spring elongations x, y and

as indicated in the picture (right). The center of stiffness is always located precisely in
the middle of the spring elongations. Because all spring equations will be calculated from
the center of stiffness this means that the offsets for a stretched spring are (x1 - x/2),
(y1 - y/2), (x2 + x/2) and (y2 + y/2).

For a realistic representation of vibration behavior, every 2D spring has a damper in
parallel. If you want to turn off the effects of this damper, choose the damping
parameters equal to zero. If you want to damp out unwanted vibrations, choose the
damping parameters equal to 0.1% to 10% of the spring parameters.

Linear Slides

Take a look at the TwoDSpring model in the picture below. If we replace the spring in x-
direction by a zero force we have created a linear slide.

Linear slide: x = free, y = stiff, = stiff.

Consider a carriage that is clamped with four wheels to a slide. In the x-direction the
carriage is free to move, which is equal to a zero force. The limited stiffness of the
wheels is represented by springs. If there is a force with equal sign on both wheels, the
carriage will slightly move in the y-direction. If there is a force with opposite sign on
both wheels, the carriage will only rotate. This can be represented by two independent
springs: one in the y-direction and -direction.

If we repeat the same experiment and replace the spring in x-direction by a zero force
and the spring in -direction by a zero torque, we have created a linear slide with

rotational freedom. In practice this can be found with carriages that are clamped with a
limited set of wheels as shown below.

11. Library

89920-sim 5.1 Reference Manual

Linear slide: x = free, y = stiff, = free.

The TwoDLibrary contains four Linear Slide models:

1 TwoDLinearSlide-X x = free, y = stiff, = stiff

2 TwoDLinearSlide-Y x = stiff, y = free, = stiff

3 TwoDLinearSlide-XTheta x = free, y = stiff, = free

4 TwoDLinearSlide-YTheta x = free, y = stiff, = free

Linear Actuators

Instead of replacing the spring in x-direction with a zero force as with the linear slides,
we can replace it by a 1D power port to allow all kind of connections with the models
from the standard library. In this way we have created a linear actuator, that allows
every kind of actuation.

Like the linear slides, for the linear actuators we can also replace the spring in -

direction by a zero torque, which makes the total number of linear actuator models
equal to four:

11. Library

90020-sim 5.1 Reference Manual

1 TwoDLinearActuator-X Fx and vx connected to a port

2 TwoDLinearActuator-Y Fy and vy connected to a port

3 TwoDLinearActuator-

XTheta

Fx and vx connected to a port, T = 0, = 0

4 TwoDLinearActuator-

YTheta

Fy and vy connected to a port, T = 0, = 0

With the port connection ever possible form of actuation can be created. Two examples
are shown below.

TwoDSpring

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Use

Domains: Continuous. Size: 2-D. Kind: Iconic Diagrams (2D Planar).

Description

A TwoDSpring model represents a flexible connection between two bodies. The bodies
are located relative to the center of stiffness. The offsets from the bodies to the center
of stiffness are indicated by x1, y1, x2 and y2 as shown in the picture below (left).

11. Library

90120-sim 5.1 Reference Manual

A 2-D spring in rest (left) and stretched (right).

Note that x1, y1, x2 and y2 are defined with respect to the spring coordinate frame
which is at the center of the spring. This means in the picture above x1 and y1 have a
negative value and x2 and y2 have a positive value.

When the spring is stretched the offsets will change by the spring elongations x, y and

as indicated in the picture (right). The center of stiffness is always located precisely in
the middle of the spring elongations. Because all spring equations will be calculated from
the center of stiffness this means that the offsets for a stretched spring are (x1 - x/2),
(y1 - y/2), (x2 + x/2) and (y2 + y/2).

For a realistic representation of vibration behavior, every 2D spring has a damper in
parallel. If you want to turn off the effects of this damper, choose the damping
parameters equal to zero. If you want to damp out unwanted vibrations, choose the
damping parameters equal to 0.1% to 10% of the spring parameters.

Interface

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

kx stiffness in x-direction [N/m]

ky stiffness in y-direction [N/m]

kth rotational stiffness [N.m/rad]

dx damping in x-direction [N.s/m]

11. Library

90220-sim 5.1 Reference Manual

dy damping in y-direction [N.s/m]

dth rotational damping [N.m.s/rad]

Initial Values

x_initial The initial extension of the spring [m].

y_initial The initial extension of the spring [m].

theta_initial The initial rotation of the spring [rad].

TwoDLinearSlide

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Implementations

X
Y
XTheta
YTheta

Use

Domains: Continuous. Size: 2-D. Kind: Iconic Diagrams (2D Planar).

Description - X

The TwoDLinearSlide-X model represents a flexible connection between two bodies in y-
and -direction. The bodies are located relative to the center of stiffness. The offsets

from the bodies to the center of stiffness are indicated by the parameters x1, y1, x2 and
y2 as shown in the picture below.

The TwoDLinearSLide-X model is based on the TwoDSpring model by replacing the
spring and damper in x-direction by a zero force. Consider a carriage that is clamped
with four wheels to a slide. In the x-direction the carriage is free to move, which is equal
to a zero force. The limited stiffness of the wheels is represented by springs. If there is a
force with equal sign on both wheels, the carriage will slightly move in the y-direction. If
there is a force with opposite sign on both wheels, the carriage will only rotate. This can
be represented by two independent springs: one in the y-direction and -direction.

11. Library

90320-sim 5.1 Reference Manual

Linear slide: x = free, y = stiff, = stiff.

For a realistic representation of vibration behavior, every spring has a damper in
parallel. If you want to turn off the effects of this damper, choose the damping
parameters equal to zero. If you want to damp out unwanted vibrations, choose the
damping parameters equal to 0.1% to 10% of the spring parameters.

Interface - X

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

ky stiffness in y-direction [N/m]

kth rotational stiffness [N.m/rad]

dy damping in y-direction [N.s/m]

dth rotational damping [N.m.s/rad]

Initial Values

y_initial The initial extension of the spring [m].

theta_initial The initial rotation of the spring [rad].

Description - Y

The TwoDLinearSlide-Y model is equal to the TwoDLinearSlide-X model except that here
the movement is free in the y-direction.

11. Library

90420-sim 5.1 Reference Manual

Interface - Y

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

kx stiffness in x-direction [N/m]

kth rotational stiffness [N.m/rad]

dx damping in x-direction [N.s/m]

dth rotational damping [N.m.s/rad]

Initial Values

x_initial The initial extension of the spring [m].

theta_initial The initial rotation of the spring [rad].

Description - XTheta

The TwoDLinearSlide-XTheta model represents a flexible connection between two bodies
in y-direction. The bodies are located relative to the center of stiffness. The offsets from
the bodies to the center of stiffness are indicated by the parameters x1, y1, x2 and y2
as shown in the picture below.

The TwoDLinearSLide-X model is based on the TwoDSpring model by replacing the
spring and damper in x- and -direction by a zero force. Consider a carriage that is

clamped with two wheels to a slide. In the x-direction the carriage is free to move, which
is equal to a zero force. The carriage is also free to rotate, which is equal to a zero
torque. The limited stiffness of the wheels is represented by springs. If there is a force
on the wheels, the carriage will slightly move in the y-direction.

11. Library

90520-sim 5.1 Reference Manual

Linear slide: x = free, y = stiff, = stiff.

For a realistic representation of vibration behavior, every spring has a damper in
parallel. If you want to turn off the effects of this damper, choose the damping
parameters equal to zero. If you want to damp out unwanted vibrations, choose the
damping parameters equal to 0.1% to 10% of the spring parameters.

Interface - XTheta

Ports Description

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

ky stiffness in y-direction [N/m]

dy damping in y-direction [N.s/m]

Initial Values

y_initial The initial extension of the spring [m].

Description - YTheta

The TwoDLinearSlide-YTheta model is equal to the TwoDLinearSlide-XTheta model
except that here the movement is free in the y and -direction.

Interface - YTheta

Ports Description

11. Library

90620-sim 5.1 Reference Manual

P[3] Port with three degrees of freedom (x, y,).

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

kx stiffness in x-direction [N/m]

dx damping in x-direction [N.s/m]

Initial Values

x_initial The initial extension of the spring [m].

TwoDLinearActuator

Library

Iconic Diagrams\Mechanical\Translation\2DSmallAngles

Implementations

X
Y
XTheta
YTheta

Use

Domains: Continuous. Size: 1-D / 2-D. Kind: Iconic Diagrams (1D Translation, 2D
Planar).

Description - X

The TwoDLinearActuator-X model represents a flexible connection between two bodies
in y- and -direction. The TwoDLinearActuator-X model is based on the TwoDLinearSlide-

X model. Instead of using a zero force in the x-direction, there is a coupling with a 1D
translation port for the actuator force.

11. Library

90720-sim 5.1 Reference Manual

Consider a carriage that is clamped with four wheels to a slide. In the x-direction the
carriage can be moved by a certain force. The limited stiffness of the wheels is
represented by springs. If there is a force with equal sign on both wheels, the carriage
will slightly move in the y-direction. If there is a force with opposite sign on both wheels,
the carriage will only rotate. This can be represented by two independent springs: one in
the y-direction and -direction.

Linear slide: x = free, y = stiff, = stiff.

For a realistic representation of vibration behavior, every spring has a damper in
parallel. If you want to turn off the effects of this damper, choose the damping
parameters equal to zero. If you want to damp out unwanted vibrations, choose the
damping parameters equal to 0.1% to 10% of the spring parameters.

With the 1D port connection every possible form of actuation can be created using the
models from the standard library. Two examples are shown below.

Interface - X

Ports Description

P[3] Port with three degrees of freedom (x, y,).

11. Library

90820-sim 5.1 Reference Manual

p 1D translation port

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

ky stiffness in y-direction [N/m]

kth rotational stiffness [N.m/rad]

dy damping in y-direction [N.s/m]

dth rotational damping [N.m.s/rad]

Initial Values

y_initial The initial extension of the spring [m].

theta_initial The initial rotation of the spring [rad].

Description - Y

The TwoDLinearActuator-Y model is equal to the TwoDLinearActuator-X model except
that here the force acts in the y-direction.

Interface - Y

Ports Description

P[3]

p

Port with three degrees of freedom (x, y,).

1D translation port

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

kx stiffness in x-direction [N/m]

kth rotational stiffness [N.m/rad]

dx damping in x-direction [N.s/m]

dth rotational damping [N.m.s/rad]

Initial Values

x_initial The initial extension of the spring [m].

theta_initial The initial rotation of the spring [rad].

11. Library

90920-sim 5.1 Reference Manual

Description - XTheta

The TwoDLinearActuator-XTheta model represents a flexible connection between two
bodies in y-direction. The TwoDLinearActuator-XTheta model is based on the
TwoDLinearSlide-XTheta model. Instead of using a zero force in the x-direction, there is
a coupling with a 1D translation port for the actuator force.

Consider a carriage that is clamped with two wheels to a slide. In the x-direction the
carriage can be moved by a certain force. The carriage is free to rotate, which is equal
to a zero torque. The limited stiffness of the wheels is represented by springs. If there is
a force acting on both wheels, the carriage will slightly move in the y-direction. If there
is a force acting on the wheels, the carriage will slightly move in the y-direction.

Linear slide: x = free, y = stiff, = stiff.

For a realistic representation of vibration behavior, the spring has a damper in parallel.
If you want to turn off the effects of this damper, choose the damping parameters equal
to zero. If you want to damp out unwanted vibrations, choose the damping parameter
equal to 0.1% to 10% of the spring parameter.

With the 1D port connection every possible form of actuation can be created using the
models from the standard library. For example see the TwoDLinearActuator-X model.

Interface - XTheta

Ports Description

P[3]

p

Port with three degrees of freedom (x, y,).

1D translation port

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

11. Library

91020-sim 5.1 Reference Manual

ky stiffness in y-direction [N/m]

dy damping in y-direction [N.s/m]

Initial Values

y_initial The initial extension of the spring [m].

Description - YTheta

The TwoDLinearActuator-YTheta model is equal to the TwoDLinearActuator-XTheta
model except that here the force acts in the y-direction.

Interface - YTheta

Ports Description

P[3]

p

Port with three degrees of freedom (x, y,).

1D translation port

Causality

fixed force out P

Parameters

x1 distance in x-direction from center of stiffness to port 1 [m]

y1 distance in y-direction from center of stiffness to port 1 [m]

x2 distance in x-direction from center of stiffness to port 2 [m]

y2 distance in y-direction from center of stiffness to port 2 [m]

kx stiffness in x-direction [N/m]

kth rotational stiffness [N.m/rad]

dx damping in x-direction [N.s/m]

dth rotational damping [N.m.s/rad]

Initial Values

x_initial The initial extension of the spring [m].

theta_initial The initial rotation of the spring [rad].

11. Library

91120-sim 5.1 Reference Manual

Tips

When you are working with the 2D-Library for small angles, it is good to keep the

following tips in mind:

The 2DSmallRotations library is very well suited for frequency domain analysis
through linearization.

The 2DSmallRotations library is not suited for large rotations. Consider a rotation of
0.05 degrees or 1 mrad as an upper bound for every model part.

It is not possible in 20-sim to use vector elements with mixed units. Therefore
element number 3 will be displayed with units [m/s] and [N] although it really is [rad/
s] and [Nm]!

The vector element number (1, 2 or 3) denotes the degree of freedom. Flipping or
rotating of a model does not change this degree (e.g. a rotation does not change
from x into y). Preferably leave the orientation of the models as they pop up on the
screen.

To create intuitive models, the positive direction of each degree of freedom is defined
as: x from left to right, y from bottom to top, ? counter clockwise.

To prevent misinterpretation of a model by other users, stick to the drawing rules
that are given.

A TwoDBody model can be connected to any other element of the 2D-library except
other 2D-bodies.

A TwoDBody model can be connected to 1D models using the TwoDPoint models as
intermediate.

TwoDPoint models can only be connected to TwoDBody models.

If a TwoDBody model is connected to TwoDPoint models only, it has to be connected
to at least three non-coinciding, unequal (i.e. not having the same offsets)
TwoDPoints to prevent it from free motion.

3DSmallRotation

ThreeDLibrary

Library

The 3DSmallRotation library contains 3D models that are only suited for small rotations.
The library is comparable to the 2DSmallRotation library and suited for modeling
systems that, due to limited stiffness, experience rotation that should be accounted for.

Degrees of Freedom

All models in 3DSmallRotation library contain one or more ports with 6 degrees of
freedom The first three degrees of freedom denote the x-, y- and z-position and the last

three degrees of freedom denote the rotation around the x-, y- and z-axes. A vector
notation is used to denote the forces and velocities for these degrees of freedom. For a
model with a port P the notation is:

degree identity forces velocities

x position P.F[1] [N] P.v[1] [m/s]

11. Library

91220-sim 5.1 Reference Manual

y position P.F[2] [N] P.v[2] [m/s]

z position P.F[3] [N] P.v[3] [m/s]

x angle P.F[4] [Nm] P.v[4] [rad/s]

y angle P.F[5] [Nm] P.v[5] [rad/s]

z angle P.F[6] [Nm] P.v[6] [rad/s]

Note

It is not possible in 20-sim to use vector elements with mixed units. Therefore
element number 4 to 6 will be displayed with units [m/s] and [N] although it really is
[rad/s] and [Nm]!

The vector element number (1 to 6) denotes the identity of the degree of freedom.
Flipping or rotating of a model does not change the this identity (e.g. a rotation does
not change x into y). Preferably leave the orientation of the models as they pop up
on the screen.

3D-body

The central model in the 3DSmallRotation library is the 3D-body model which describes a
body with 6 degrees of freedom.

3D-mass

The 3D-mass model is a body with only mass and zero rotational inertia.

Points

The 3D-body model is nothing more than a center of mass. To connect a 3D-body with
the outside (single degree of freedom) world, 3D-points are used. A 3D-point describes
the offset between the center of mass and the connection point.

A 3D-body has to be connected to 3D-points with at least three orthogonal nonzero
offsets to prevent it from free rotation.

A 3D-body has to be connected to at least three orthogonal 3D-point models to
prevent it from free motion.

Sensors

The velocities of bodies can be inspected directly in the body models. To find positions
sensor models are available.

11. Library

91320-sim 5.1 Reference Manual

ThreeDBody

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 6D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This is a model of a 6 degree of freedom body. It is the equivalent of the 2D-body
model. The first three degrees of freedom in this model are represented by a single
mass and the last three degrees of freedom by a rotational inertia. The 3D-body has to
be connected to at least three orthogonal 3D-points, which define the reaction forces.

The model has a preferred velocity out causality. The corresponding constitutive
equations then contain an integration. The model can also have the non-preferred force
out causality. The constitutive equations then contain a differentiation. Because any
number of connections can be made, successive ports are named P1, P2, P3 etc. 20-sim
will automatically create equations such that the resulting force P.F is equal to the sum of
the forces of all connected ports P1 .. Pn. The velocities of all connected ports are equal
to P.v

P.F = sum(P1.F, P2.F,)
P.v = P1.v = P2.v =

velocity out causality (preferred):

I = [1/M;1/M;1/M;1/J[1];1/J[2];1/J[3]];
P.v = I.*int(P.F);

force out causality:

I = [1/M;1/M;1/M;1/J[1];1/J[2];1/J[3]];
P.F = I-1.*ddt(P.v);

Interface

Ports Description

P[6] Port with 6 degrees of freedom. Any number of connections can be

made.

Causality

preferred velocity

out

Parameters

M

J[3]

Mass [kg].

Moment of inertia for three axes [kgm2]

11. Library

91420-sim 5.1 Reference Manual

Note

A body has to be connected to 3D-points with at least three orthogonal nonzero
offsets to prevent it from free rotation.

A 3D-body has to be connected to at least three orthogonal 3D-point models to
prevent it from free motion.

Flipping or rotating the model does not change the direction of applied forces or
measured directions. Preferably leave the orientation as it pops up on the screen.

It is not possible in 20-sim to use vector elements with mixed units. Therefore
element number 4 to 6 will be displayed with units [m/s] and [N] although it really is
[rad/s] and [Nm]!

ThreeDFixedWorld

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This model represents the fixed world in 6 degrees of freedom It can be connected to a

3D-body model to freeze its motion.

Interface

Ports Description

P Port with 6 degrees of freedom.

Causality

fixed velocity out

P

ThreeDForceActuator-Relative

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This model represents an ideal actuator. The actuator applies a force between its two
terminals. This force can be set to a (fluctuating) value given by the input signal F, the
velocity is indifferent.

11. Library

91520-sim 5.1 Reference Manual

This model is the equivalent of the 1 degree of fredom model ForceActuator-
Relative.emx. It model represents an ideal actuator. The actuator applies a force

between its two terminals. The force can be set to a (fluctuating) value given by a vector
K multiplied by a signal F, the velocity is indifferent. By setting the elements of the
vector K equal to zero or one, specific elements of the 6 degrees of freedom output
force can set equal to the input signal F.

P_high.F[1:6] = P_low.F[1:6] = K*F;

Interface

Ports Description

P_high[6],

P_low[6]

Both terminals of the port with 6 degrees of freedom.

Causality

fixed force out P

Parameters

K[6] Vector with 6 elements to set the 6 force elements on or off.

ThreeDForceActuator

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This model is the equivalent of the 1 degree of fredom model ForceActuator.emx. It
model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a force. The force can be set to a (fluctuating) value given by a vector K
multiplied by a signal F, the velocity is indifferent. By setting the elements of the vector
K equal to zero or one, specific elements of the 6 degrees of freedom output force can
set equal to the input signal F.

P.F[1:6] = K*F;

Interface

Ports Description

P Port with 6 degrees of freedom.

Causality

fixed force out P

Parameters

K[6] Vector with 6 elements to set the 6 force elements on or off.

11. Library

91620-sim 5.1 Reference Manual

ThreeDMass

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 6D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This is a model of a 6 degree of freedom body without rotational inertia. The 3D-mass
has to be connected to at least three orthogonal 3D-points, which define the reaction
forces.

The model has a fised velocity out causality. Because any number of connections can be
made, successive ports are named P1, P2, P3 etc. 20-sim will automatically create
equations such that the resulting force P.F is equal to the sum of the forces of all
connected ports P1 .. Pn. The velocities of all connected ports are equal to P.v

P.F = sum(P1.F, P2.F,)
P.v = P1.v = P2.v =
I = [1/M;1/M;1/M];
P.v[1..3] = I.*int(P.F);
P.v[4..6] = 0;

Interface

Ports Description

P[6] Port with 6 degrees of freedom. Any number of connections can be

made.

Causality

fixed velocity out

Parameters

M Mass [kg].

Note

A 3D-body has to be connected to 3D-points with at least three orthogonal nonzero
offsets to prevent it from free rotation.

A 3D-body has to be connected to at least three orthogonal 3D-point models to
prevent it from free motion.

Flipping or rotating the model does not change the direction of applied forces or
measured directions. Preferably leave the orientation as it pops up on the screen.

It is not possible in 20-sim to use vector elements with mixed units. Therefore
element number 4 to 6 will be displayed with units [m/s] and [N] although it really is
[rad/s] and [Nm]!

11. Library

91720-sim 5.1 Reference Manual

ThreeDPoint

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Implementations

X
Y

Z

XYZ

Use

Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description - X

A point model forms the connection between the single degree of freedom part of a
system and the center of mass of a 3D-body.
The 3D-point-X model is the equivalent of the 2D-point-X model. It describes the
translation of force in x-direction to a force in 6 degrees of freedom. Because there are
three rotational degrees of freedom, the 3D-point-X model has two offsets, YP and ZP.

The single degree of freedom port p_in describes the connection in x-direction and the 6
degree of freedom port P_out describes connection with the 3D-body.

P_out.F[1] = p_in.F;

P_out.F[2] = 0;

P_out.F[3] = 0;

P_out.F[4] = 0;

P_out.F[5] = ZP*p_in.F;

P_out.F[6] = -YP*p_in.F;

p_in.v = P_out.v[1] - YP*P_out.v[6]

+ ZP *P_out.v[5];

// x-direction

// y-direction

// z-direction

// x-rotation

// y-rotation

// z-rotation

// x-direction

As can bee seen from the equations, a nonzero offset YP or ZP (distance from center of
mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be
connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from
free rotation.

The equations also show that the y-direction and z-direction are not affected by the 3D-
point-X model. Therefore each 3D-body has to be connected to at least three orthogonal
3D-point models to prevent it from free motion.

Interface - X

Ports Description

11. Library

91820-sim 5.1 Reference Manual

p_in

P_out[3]

Translation port with one degree of freedom (x [m]).

Port with 6 degrees of freedom.

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

YP

ZP

Distance (y-direction) between connection and center of mass [m].

Distance (z-direction) between connection and center of mass [m].

Description - Y

A point model forms the connection between the single degree of freedom part of a
system and the center of mass of a 3D-body.
The 3D-point-Y model is the equivalent of the 2D-point-Y model. It describes the
translation of force in x-direction to a force in 6 degrees of freedom. Because there are
three rotational degrees of freedom, the 3D-point-Y model has two offsets, XP and ZP.

The single degree of freedom port p_in describes the connection in x-direction and the 6
degree of freedom port P_out describes connection with the 3D-body.

P_out.F[1] = 0;

P_out.F[2] = p_in.F;

P_out.F[3] = 0;

P_out.F[4] = -ZP*p_in.F;

P_out.F[5] = 0;

P_out.F[6] = XP*p_in.F;

p_in.v = P_out.v[2] + XP*P_out.v[6]

- ZP *P_out.v[4];

// x-direction

// y-direction

// z-direction

// x-rotation

// y-rotation

// z-rotation

// y-direction

As can bee seen from the equations, a nonzero offset XP or ZP (distance from center of
mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be
connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from
free rotation.

The equations also show that the x-direction and z-direction are not affected by the 3D-
point-Y model. Therefore each 3D-body has to be connected to at least three orthogonal
3D-point models to prevent it from free motion.

Interface - Y

Ports Description

11. Library

91920-sim 5.1 Reference Manual

p_in

P_out[3]

Translation port with one degree of freedom (x [m]).

Port with 6 degrees of freedom.

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

XP

ZP

Distance (x-direction) between connection and center of mass [m].

Distance (z-direction) between connection and center of mass [m].

Description - Z

A point model forms the connection between the single degree of freedom part of a
system and the center of mass of a 3D-body.
The 3D-point-Z model is the equivalent of the 2D-point-X model. It describes the
translation of force in z-direction to a force in 6 degrees of freedom. Because there are
three rotational degrees of freedom, the 3D-point-Y model has two offsets, XP and YP.

The single degree of freedom port p_in describes the connection in x-direction and the 6
degree of freedom port P_out describes connection with the 3D-body.

P_out.F[1] = 0;

P_out.F[2] = 0;

P_out.F[3] = p_in.F;

P_out.F[4] = YP*p_in.F;

P_out.F[5] = -XP*p_in.F;

P_out.F[6] = 0;

p_in.v = P_out.v[3] - XP*P_out.v[5]

+ YP *P_out.v[4];

// x-direction

// y-direction

// z-direction

// x-rotation

// y-rotation

// z-rotation

// y-direction

As can bee seen from the equations, a nonzero offset XP or YP (distance from center of
mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be
connected to 3D-points with at least three orthogonal nonzero offsets to prevent it from
free rotation.

The equations also show that the x-direction and y-direction are not affected by the 3D-
point-Z model. Therefore each 3D-body has to be connected to at least three orthogonal
3D-point models to prevent it from free motion.

Interface - Z

Ports Description

p_in Translation port with one degree of freedom (x [m]).

11. Library

92020-sim 5.1 Reference Manual

P_out[3] Port with 6 degrees of freedom.

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

XP

YP

Distance (x-direction) between connection and center of mass [m].

Distance (y-direction) between connection and center of mass [m].

Description - XYZ

A point model forms the connection between the single degree of freedom part of a
system and the center of mass of a 3D-body.

The 3D-point-XYZ model is a combination of the 3D-point-X model, the 3D-point-Y model
and the 3D-point-Z model. It describes the translation of force in x-direction, y-direction
and z-ditrection to a force in 6 degrees of freedom. Because there are three rotational
degrees of freedom, the model has three offsets, XP, YP and ZP.

The single degree of freedom ports p_inx, p_iny and p_inz describes the connection in x-
direction, y-direction and z-direction and the 6 degree of freedom port P_out describes
connection with the 3D-body.

P_out.F[1] = p_inx.F;

P_out.F[2] = p_iny.F;

P_out.F[3] = p_inz.F;

P_out.F[4] = YP*p_inz.F - ZP*p_iny.F;

P_out.F[5] = -XP*p_inz.F + ZP*p_inx.F;

P_out.F[6] = XP*p_iny.F - YP*p_inx.F;

p_inx.v = P_out.v[1] - YP*P_out.v[6] + ZP

*P_out.v[5];

p_iny.v = P_out.v[2] + XP*P_out.v[6] - ZP

*P_out.v[4];

p_inz.v = P_out.v[3] - XP*P_out.v[5]

+ YP *P_out.v[4];

// x-direction

// y-direction

// z-direction

// x-rotation

// y-rotation

// z-rotation

// x-direction

// y-direction

// z-direction

As can bee seen from the equations, a nonzero offset XP, YP or ZP (distance from center
of mass) in a 3D-point will result in a momentum. Therefore a 3D-body has to be
connected to 3D-points with at least three orthogonal nonzero offsets to
prevent it from free rotation.

11. Library

92120-sim 5.1 Reference Manual

Interface - XYZ

Ports Description

p_inx

p_iny

p_inz

P_out[3]

Translation port with one degree of freedom [m].

Translation port with one degree of freedom [m].

Translation port with one degree of freedom [m].

Port with 6 degrees of freedom.

Causality

fixed force out

P_out

fixed velocity out

p_in

Parameters

YP

XP

theta

Distance (y-direction) between connection and center of mass [m].

Distance (x-direction) between connection and center of mass [m].

Angle of impact of the single degree of freedom port [rad].

Note

A body has to be connected to 3D-points with at least three orthogonal nonzero
offsets to prevent it from free rotation.

A 3D-body has to be connected to at least three orthogonal 3D-point models to
prevent it from free motion.

Flipping or rotating the model does not change the direction of applied forces or
measured directions. Preferably leave the orientation as it pops up on the screen.

It is not possible in 20-sim to use vector elements with mixed units. Therefore
element number 4 to 6 will be displayed with units [m/s] and [N] although it really is
[rad/s] and [Nm]!

ThreeDPositionSensor

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 1-D/6D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This model is used to find the positions of a 3D-body model. It has a port P which can be
connected to the body and an output signal pos that denotes the positions
(x,y,z, x y z) of the body.

11. Library

92220-sim 5.1 Reference Manual

Interface

Ports Description

P[3] Port with 6 degrees of freedom.

Causality

fixed force out P

Output

Pos(6) Absolute positions [m].

Initial Values

Pos_initial[6] Initial positions [m]

Note

The sensor model yields an absolute position starting at 0. Set the initial values to
yield a position starting at other values.

It is not possible in 20-sim to use vector elements with mixed units. Therefore
element number 4 to 6 will be displayed with units [m] although it really is [rad]!

ThreeDSpringDamper

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 1-D/6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This model is the equivalent of the 1 degree of freedom model SpringDamper.emx. It

model represents an ideal spring-damper. The model has a preferred force out
causality. The corresponding constitutive equations then contain integrations. The
element can also have the non-preferred velocity out causality. The constitutive
equations then contain derivatives. The spring-damper model has separate high and low
ports. The equations are

P.F = P_high.F = P_low.F
P.v = P_high.v - P_low.v

Force out causality (preferred):

X = int(P.v);
P.F = S*X + D*P.v;

Velocity out causality:

11. Library

92320-sim 5.1 Reference Manual

P.v = ddt(X);
X = S-1*(P.F - D*P.v);

Interface

Ports Description

P_high[6],

P_low[6]

Both terminals of a port with 6 degrees of freedom.

Causality

preferred force

out P

Variables

X Vector with 6 spring extension values [m].

Parameters

S[6]

D[6]

Stiffness vector [N/m]

Damping vector [N.s/m]

Initial Values

X_initial[6] Vector with 6 initial extension values of the spring [m].

Note

It is not possible in 20-sim to use vector elements with mixed units. Therefore element
number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and
[Nm] etc.!

ThreeDZeroForce

Library

Iconic Diagrams\Mechanical\Translation\3DSmallAngles

Use

Domains: Continuous. Size: 6-D. Kind: Iconic Diagrams (Translation,Rotation).

Description

This model can be used to connect any open end of another 3D model that is not
connected to the fixed world. It generates a three degree of freedom zero force while
the velocity is free.

Interface

Ports Description

P Port with 6 degrees of freedom.

Causality

fixed force out P

11. Library

92420-sim 5.1 Reference Manual

Note

It is not possible in 20-sim to use vector elements with mixed units. Therefore element
number 4 to 6 will be displayed with units [m/s] and [N] although it really is [rad/s] and
[Nm] etc.!

Actuators

AccelerationActuator-Relative

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. An acceleration input signal is integrated to a
velocity difference between its two terminals:

p_high.v = p_low.v + int(a,v_initial);
p_low.F = p_high.F = indifferent;

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed velocity out

Input

a Acceleration [m/s2].

Parameters

v_initial Initial velocity output of the integration [m/s].

AccelerationActuator

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. An acceleration input signal is integrated to a
velocity at the translation port. The actuator is mounted to the fixed world:

11. Library

92520-sim 5.1 Reference Manual

p.v = int(a,v_initial);
p.F = indifferent;

Interface

Ports Description

p Translation port.

Causality

fixed velocity out

Input

a Acceleration [m/s2].

Parameters

v_initial Initial velocity at the port [m/s].

CMABender

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents a piezo actuator. The actuator translates a voltage difference at
port p1 to a mechanical position difference between the base at port p2 and the end
effector at port p3.

Although the underlying equations of this model are equal to the equations of the
CMAStrecher.emx model, the default parameter values are typical for bending.

Interface

Ports Description

p Translation port.

Causality

fixed force out

Input

C

KF

m

k

B

Capacitance [F]

Voltage to force conversion factor [N/V]

Equivalent mass [kg]

Stiffness [N/m]

Relative damping ratio []

11. Library

92620-sim 5.1 Reference Manual

KB Force to voltage conversion factor [V/N]

CMAStretcher

Library

Iconic Diagrams\Electric\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents a piezo actuator. The actuator translates a voltage difference at
port p1 to a mechanical position difference between the base at port p2 and the end
effector at port p3.

Although the underlying equations of this model are equal to the equations of the
CMABender.emx model, the default parameter values are typical for stretching.

Interface

Ports Description

p Translation port.

Causality

fixed force out

Input

C

KF

m

k

B

KB

Capacitance [F]

Voltage to force conversion factor [N/V]

Equivalent mass [kg]

Stiffness [N/m]

Relative damping ratio []

Force to voltage conversion factor [V/N]

11. Library

92720-sim 5.1 Reference Manual

Force-Relative

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. The actuator applies a force between its two
terminals. This force can be set to a constant value F, the velocity is indifferent.

p_high.F = p_low.F = F

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed force out

Parameters

F Force [N]

Force

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a force. The force can be set to a certain constant value, the velocity is
indifferent.

p.F = F;

Interface

Ports Description

p Translation port.

Causality

fixed force out

Parameters

11. Library

92820-sim 5.1 Reference Manual

F Force [N].

ForceActuator-Relative

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. The actuator applies a force between its two
terminals. This force can be set to a (fluctuating) value given by the input signal F, the
velocity is indifferent.

p_high.F = p_low.F = F

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed force out

Input

F Force [N]

ForceActuator

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a force. The force can be set to a (fluctuating) value given by the input signal F,
the velocity is indifferent.

11. Library

92920-sim 5.1 Reference Manual

p.F = F;

Interface

Ports Description

p Translation port.

Causality

fixed force out

Input

F Force [N].

PositionActuator-Relative

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. A position input signal is differentiated by a
state variable filter to a velocity difference between its two terminals:

p_high.v = p_low.v + dx/dt;
p_low.F = p_high.F = indifferent;

Differentiation is performed by a state variable filter:

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

11. Library

93020-sim 5.1 Reference Manual

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed velocity out

Input

x Position [m].

Parameters

f

v_initial

Cut-off frequency of the differentiation [Hz].

Initial velocity output of the differentiation [m/s].

PositionActuator

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. A position input signal is differentiated by a
state variable filter to a velocity at the translation port. The actuator is mounted to the
fixed world:

p.v = dx/dt;
p.F = indifferent;

Differentiation is performed by a state variable filter:

The S-domain function of this filter is equal to:

11. Library

93120-sim 5.1 Reference Manual

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

Interface

Ports Description

p Translation port.

Causality

fixed velocity out

Input

x Position [m].

Parameters

f

v_initial

Cut-off frequency of the differentiation [Hz].

Initial velocity at the port [m/s].

ServoMotor

Library

Iconic Diagrams\Mechanical\Rotation\Actuators
Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric).

Description

This is a masked model which opens the Servo Motor Editor when edited. The servo
Motor Editor is a tool that can shows the torque speed plots numerous permanent
magnet motors and can generate a dynamic model from any motor that you select. The
following motor types are supported:

1. Brush DC

2. Brushless DC (trapezoidal EMC and square wave currents)

3. AC synchronous (sinusoidal EMC and sinusoidal currents)

4. AC synchronous linear (sinusoidal EMC and sinusoidal currents)

11. Library

93220-sim 5.1 Reference Manual

Interface

Depending on the type of motor that you have selected, the interface can vary:

DC Brush

Ports Description

p Rotation port.

Causality

fixed rotational

velocity out

Input

i The input current [A]

DC Brushless

Ports Description

p Rotation port.

Causality

fixed rotational

velocity out

Input

i The maximum input current [A]

AC Synchronous

Ports Description

p Rotation port.

Causality

fixed rotational

velocity out

Input

i_rms The rms phase current [A]

AC Synchronous Linear

Ports Description

p Translation port.

Causality

fixed velocity out

Input

11. Library

93320-sim 5.1 Reference Manual

i_rms The rms phase current [A]

For more information on the parameters an variables of this model is referred to the
Mechatronic Toolbox.

Velocity-Relative

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents an ideal actuator. The actuator applies a velocity difference
between its two terminals. This velocity can be set to a constant value v, the force is
indifferent.

p_low.v = p_high.v + v

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed velocity out

Parameter

v Velocity [m/s].

Velocity

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a velocity. This velocity can be set to a certain constant value, the force is
indifferent.

11. Library

93420-sim 5.1 Reference Manual

p.v = v;

Interface

Ports Description

p Translation port

Causality

fixed velocity out

Parameters

v velocity [m/s]

VelocityActuator-Relative

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. The actuator applies a velocity difference
between its two terminals. This velocity can be set to a (fluctuating) value given by the
input signal v, the force is indifferent.

p_high.v = p_low.v + v

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed velocity out

Input

v Velocity [m/s].

11. Library

93520-sim 5.1 Reference Manual

VelocityActuator

Library

Iconic Diagrams\Mechanical\Translation\Actuators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model represents an ideal actuator. The actuator is mounted to the fixed world and
applies a velocity. This velocity can be set to a (fluctuating) value given by the input
signal v, the force is indifferent.

p.v = v;

Interface

Ports Description

p Translation port.

Causality

fixed velocity out

Input

v Velocity [m/s].

Components

Backlash

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents backlash by a spring damper system. Inside an outside the play,
spring and damping can be set separately. Discontinuities are avoided by adding a round
off. The model can has a force out causality. The port p of this model has separate high
and low terminals. The equations are:

11. Library

93620-sim 5.1 Reference Manual

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

with x the position within the play. Real backlash behavior is obtained by choosing low
stiffness and damping values inside the play and choosing high stiffness and damping
values outside the play.

The parameter ep determines the smoothness of the force curve that is obtained. A
larger value (> 0.01) makes the force change gradually when the position reaches the
play boundaries. A smaller value (< 0.001) makes the force change abruptly. This is
shown in the figure below. A good starting value for ep is 1e-4.

Interface

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality

fixed force out

Parameters

s

c1

c2

Interval of the play [m]

Stiffness in the play [N/m]

Stiffness outside the play [N/m]

11. Library

93720-sim 5.1 Reference Manual

d1

d2

ep

Damping inside the play [Ns/m]

Damping outside the play [Ns/m]

Relative round off (1e-6 -> sharp edges, 1e-2 -> smoother)

Initial Values

x_initial Initial position in the play [m], -s/2 < x_initial < s/2

Collision-Relative

Library

Iconic Diagrams\Mechanical\Translation\Components

Implementations

Right
Left

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description - Right

This model represents an collision of an object with another object. It can be used to
indicate a possible collision to the right of an object.

The collision force is modeled by a spring and damper:

p.F = if x > x0 then k*(x-x0) + d*limit(p.v,0,1e20) else 0 end;

with a stiffness k and damping d. The limit function is used to prevent the damper force
to become negative. The initial position of the spring is indicated by x0 (see the figure
above). Note that the positive direction is to the right. If x is larger that x0, the two sides
have collided and are in contact. The collision model has separate high and low ports.
The equations are

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Interface - Right

Ports Description

p_high Two ports of the collision model.

11. Library

93820-sim 5.1 Reference Manual

p_low

Causality

fixed force out

Variables

x extension of the spring [m]

Parameters

x0

k

d

unstretched spring position

stiffness [N/m]

damping [N.s/m]

Initial Values

x_initial The initial extension of the spring [m].

Description - Left

This model represents an collision of an object with another object. It can be used to
indicate a possible collision to the left of an object.

The collision force is modeled by a spring and damper. Note that the positive direction is
to the right, so the initial position of the spring x0 has a negative value in the figure
above. If x is smaller that x0, the two sides have collided and are in contact.

Interface - Left

Ports Description

p_high

p_low

Two ports of the collision model.

Causality

fixed force out

Variables

x extension of the spring [m]

Parameters

x0 unstretched spring position

11. Library

93920-sim 5.1 Reference Manual

k

d

stiffness [N/m]

damping [N.s/m]

Initial Values

x_initial The initial extension of the spring [m].

Collision

Library

Iconic Diagrams\Mechanical\Translation\Components

Implementations

Right
Left

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description - Right

This model represents an collision of an object with the ground.

The collision force is modeled by a spring and damper:

p.F = if x > x0 then k*(x-x0) + d*limit(p.v,0,1e20) else 0 end;

with a stiffness k and damping d. The limit function is used to prevent the damper force
to become negative. The initial position of the spring is indicated by x0 (see the figure
above). Note that the positive direction is to the right. If x is larger that x0, the two sides
have collided and are in contact. The collision model has separate high and low ports.
The equations are

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Interface - Right

Ports Description

p_high

p_low

Two ports of the collision model.

11. Library

94020-sim 5.1 Reference Manual

Causality

fixed force out

Variables

x extension of the spring [m]

Parameters

x0

k

d

unstretched spring position

stiffness [N/m]

damping [N.s/m]

Initial Values

x_initial The initial extension of the spring [m].

Description - Left

This model represents an collision of an object with the ground.

The collision force is modeled by a spring and damper. Note that the positive direction is
to the right, so the initial position of the spring x0 has a negative value in the figure
above. If x is smaller that x0, the two sides have collided and are in contact.

Interface - Left

Ports Description

p_high

p_low

Two ports of the collision model.

Causality

fixed force out

Variables

x extension of the spring [m]

Parameters

x0

k

d

unstretched spring position

stiffness [N/m]

damping [N.s/m]

11. Library

94120-sim 5.1 Reference Manual

Initial Values

x_initial The initial extension of the spring [m].

Damper

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents a linear damper. It can have an force out as well as an velocity
out causality. In the last case the constitutive equation, as shown below, is simply
inverted. The port p of the damper model has separate high and low terminals. The
equations are:

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Force out causality:

p.F = d * p.v;

Velocity velocity out causality:

p.v = p.F / d;

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

indifferent

Parameters

d damping [Ns/m]

11. Library

94220-sim 5.1 Reference Manual

FixedWorld

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents the fixed world (velocity = 0). The model has only one initial port
p defined. Because any number of connections can be made, successive ports are
named p1, p2, p3 etc. which gives the constitutive equations:

p1.v = p2.v = .. = pn.v = 0;
p1.F = free; p2.F = free; ..; pn.F = free;

Interface

Ports Description

p [any] Any number of connections can be made (Translation).

Causality

Fixed angular

velocity out

All ports have a fixed velocity out causality.

Friction

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Implementations

C
V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Introduction

These models represents friction with the fixed world. The amount of friction depends on
the normal force that is applied and the friction function that is used. The normal force is
given by the input signal Fn.

11. Library

94320-sim 5.1 Reference Manual

The models have only one initial port p defined. Because any number of connections can
be made, successive ports are named p1, p2, p3 etc. 20-sim will automatically create
equations such that the resulting force p.F is equal to the sum of the forces of all
connected ports p1 .. pn. The velocities of all connected ports are equal to p.v.

p.F = sum(p1.F, p2.F,)
p.v = p1.v = p2.v =

Due to the use of normal force, the friction models all have a fixed force out causality.
The constitutive equations are therefore described as:

p.F = Fn * f(p.v);

with f the friction function.

Description - C

This model represents friction with the fixed world described as coulomb friction:

p.F = Fn*mu_c*tanh(slope*p.v);

Fn: normal force (given by the input signal Fn)
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

Interface - C

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Input

11. Library

94420-sim 5.1 Reference Manual

Fn Normal force [N]

Parameters

mu_c

slope

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Description - V

This model represents friction with the fixed world described as viscous friction:

p.F = Fn*mu_v*p.v;

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient

Interface - V

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_v Viscous friction coefficient [s/m]

Description - CV

This model represents friction with the fixed world described as coulomb plus viscous
friction:

11. Library

94520-sim 5.1 Reference Manual

p.F = Fn*(mu_c*tanh(slope*p.v) + mu_v*p.v);

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

Interface - CV

Ports Description

p[any] Any number of connections can be made (Translation)

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_v

mu_c

slope

Viscous friction coefficient [s/m]

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Description - SCVS

This model represents friction with the fixed world described as static plus coulomb plus
viscous plus Stribeck friction:

p.F = Fn *
((mu_c + (mu_st*abs(tanh(slope*p.v)) - mu_c)
* exp(-((p.v / v_st)^2))) * sign(p.v)
+ mu_v * p.v);

Fn: normal force (given by the input signal Fn)
mu_s: the static friction coefficient
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient

11. Library

94620-sim 5.1 Reference Manual

slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

Interface - SCVS

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_s

mu_v

mu_c

slope

v_st

Static friction coefficient []

Viscous friction coefficient [s/m]

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Characteristic Stribeck velocity [m/s]

Description - LuGre

This model represents friction with the fixed world described by the LuGre friction model:

p.F = FN*f_lg(p.v);

Fn: normal force (given by the input signal Fn)
f_lg: the LuGre friction model

Interface - LuGre

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

11. Library

94720-sim 5.1 Reference Manual

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_c

mu_s

mu_v

v_st

mu_k

Coulomb friction coefficient []

Static friction coefficient []

Viscous friction coefficient [s/m]

Characteristic Stribeck velocity [m/s]

Stiffness coefficient at zero speed []

Friction-Relative

Library

Iconic Diagrams\Mechanical\Translation\Components

Implementations

C
V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Introduction

These models represents friction relative to other objects. The amount of friction
depends on the normal force that is applied and the friction function that is used. The
normal force is given by the input signal Fn.

The port p of the friction models have separate high and low terminals. The equations
are:

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Due to the use of normal force, the friction models all have a fixed torque out causality.
The constitutive equations are therefore described as:

p.F = Fn * f(p.v);

with f the friction function.

Description -C

This model represents friction between two terminals described as coulomb friction:

11. Library

94820-sim 5.1 Reference Manual

p.F = Fn*mu_c*tanh(slope*p.v);

Fn: normal force (given by the input signal Fn)
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

Interface - C

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_c

slope

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Description - V

This model represents friction between two terminals described as viscous friction:

p.F = Fn*mu_v*p.v;

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient

11. Library

94920-sim 5.1 Reference Manual

Interface -V

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_v Viscous friction coefficient [s/m]

Description - CV

This model represents friction between two terminals described as coulomb plus viscous
friction:

p.F = Fn*(mu_c*tanh(slope*p.v) + mu_v*p.v);

Fn: normal force (given by the input signal Fn)
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb friction curve.

11. Library

95020-sim 5.1 Reference Manual

Interface - CV

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_v

mu_c

slope

Viscous friction coefficient [s/m]

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Description - SCVS

This model represents friction between two terminals described as static plus coulomb
plus viscous plus Stribeck friction:

p.F = Fn *
((mu_c + (mu_st*abs(tanh(slope*p.v)) - mu_c)
* exp(-((p.v / v_st)^2))) * sign(p.v)
+ mu_v * p.v);

Fn: normal force (given by the input signal Fn)
mu_s: the static friction coefficient
mu_v: the viscous friction coefficient
mu_c: the coulomb friction coefficient
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

11. Library

95120-sim 5.1 Reference Manual

Interface - SCVS

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_s

mu_v

mu_c

slope

v_st

Static friction coefficient []

Viscous friction coefficient [s/m]

Coulomb friction coefficient []

Steepness of Coulomb friction curve [s/m]

Characteristic Stribeck velocity [m/s]

Description - LuGre

This model represents friction between two terminals described by the LuGre friction
model:

p.F = FN*f_lg(p.v);

Fn: normal force (given by the input signal Fn)
f_lg: the LuGre friction model

Interface - LuGre

Ports Description

p_high, p_low Both terminals of port p (Translation).

Causality

11. Library

95220-sim 5.1 Reference Manual

Fixed force out

Input

Fn Normal force [N]

Parameters

mu_c

mu_s

mu_v

v_st

mu_k

Coulomb friction coefficient []

Static friction coefficient []

Viscous friction coefficient [s/m]

Characteristic Stribeck velocity [m/s]

Stiffness coefficient at zero speed []

FrictionSimple

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Implementations

C
V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Introduction

These models represents friction with the fixed world. The amount of friction does not
depend on the normal force but determined by parameters directly. The models have
only one initial port p defined. Because any number of connections can be made,
successive ports are named p1, p2, p3 etc. 20-sim will automatically create equations
such that the resulting force p.F is equal to the sum of the forces of all connected ports
p1 .. pn. The velocities of all connected ports are equal to p.v.

p.F = sum(p1.F, p2.F,)
p.v = p1.v = p2.v =

Description - C

This model represents friction with the fixed world described as coulomb friction:

p.F = Fc*tanh(slope*p.v);

Fc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.

11. Library

95320-sim 5.1 Reference Manual

Interface - C

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

Fc

slope

Coulomb friction [N]

Steepness of Coulomb friction curve [s/m]

Description - V

This model represents friction with the fixed world described as viscous friction:

p.F = d*p.v;

d: the viscous friction or damping

11. Library

95420-sim 5.1 Reference Manual

Interface - V

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

d Viscous friction or damping [N.s/m]

Description - CV

This model represents friction with the fixed world described as coulomb plus viscous
friction:

p.F = Fc*tanh(slope*p.v) + d*p.v;

d: the viscous friction or damping
Fc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.

Interface - CV

Ports Description

p[any] Any number of connections can be made (Translation)

Causality

Fixed force out

Parameters

Fc

d

slope

Coulomb friction [N]

Viscous friction or damping [N.s/m]

Steepness of Coulomb friction curve [s/m]

11. Library

95520-sim 5.1 Reference Manual

Description - SCVS

This model represents friction with the fixed world described as static plus coulomb plus
viscous plus Stribeck friction:

p.F = ((Fc + (Fst*abs(tanh(slope*p.v)) - Fc) * exp(-((p.v / v_st)^2))) *
sign(p.v) + d * p.v);

Fst: the static friction
d: the viscous friction or damping
Fc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

Interface - SCVS

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

Fc

Fst

d

v_st

slope

Coulomb friction [N]

Static friction [N]

Viscous friction or damping [N.s/m]

Characteristic Stribeck velocity [m/s]

Steepness of Coulomb friction curve [s/m]

Description - LuGre

This model represents friction with the fixed world described by the LuGre friction model:

p.F = f_lg(p.v);

f_lg: the LuGre friction model

11. Library

95620-sim 5.1 Reference Manual

Interface - LuGre

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

Fc

Fst

d

v_st

k

Coulomb friction [N]

Static friction [N]

Viscous friction or damping [N.s/m]

Characteristic Stribeck velocity [m/s]

Stiffness at zero speed [N/m]

FrictionSimple-Relative

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Implementations

C
V
CV
SCVS
LuGre

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Introduction

These models represents friction with the fixed world. The amount of friction does not
depend on the normal force but determined by parameters directly. The models have
only one initial port p defined. The port p of the friction models have separate high and
low terminals. The equations are:

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Description - C

This model represents friction with the fixed world described as coulomb friction:

p.F = Fc*tanh(slope*p.v);

Fc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.

11. Library

95720-sim 5.1 Reference Manual

Interface - C

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

Fc

slope

Coulomb friction [N]

Steepness of Coulomb friction curve [s/m]

Description - V

This model represents friction with the fixed world described as viscous friction:

p.F = d*p.v;

d: the viscous friction or damping

11. Library

95820-sim 5.1 Reference Manual

Interface - V

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

d Viscous friction or damping [N.s/m]

Description - CV

This model represents friction with the fixed world described as coulomb plus viscous
friction:

p.F = Fc*tanh(slope*p.v) + d*p.v;

d: the viscous friction or damping
Fc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.

Interface - CV

Ports Description

p[any] Any number of connections can be made (Translation)

Causality

Fixed force out

Parameters

Fc

d

slope

Coulomb friction [N]

Viscous friction or damping [N.s/m]

Steepness of Coulomb friction curve [s/m]

11. Library

95920-sim 5.1 Reference Manual

Description - SCVS

This model represents friction with the fixed world described as static plus coulomb plus
viscous plus Stribeck friction:

p.F = ((Fc + (Fst*abs(tanh(slope*p.v)) - Fc) * exp(-((p.v / v_st)^2))) *
sign(p.v) + d * p.v);

Fst: the static friction
d: the viscous friction or damping
Fc: the coulomb friction
slope: the steepness of the coulomb and static friction curve.
v_st: the characteristic Stribeck velocity.

Interface - SCVS

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

Fc

Fst

d

v_st

slope

Coulomb friction [N]

Static friction [N]

Viscous friction or damping [N.s/m]

Characteristic Stribeck velocity [m/s]

Steepness of Coulomb friction curve [s/m]

Description - LuGre

This model represents friction with the fixed world described by the LuGre friction model:

p.F = f_lg(p.v);

f_lg: the LuGre friction model

11. Library

96020-sim 5.1 Reference Manual

Interface - LuGre

Ports Description

p[any] Any number of connections can be made (Translation).

Causality

Fixed force out

Parameters

Fc

Fst

d

v_st

k

Coulomb friction [N]

Static friction [N]

Viscous friction or damping [N.s/m]

Characteristic Stribeck velocity [m/s]

Stiffness at zero speed [N/m]

Mass

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description-Default

This model represents an ideal mass (no gravity). The element has a preferred velocity
out causality. The corresponding constitutive equations then contain an integration. The
element can also have the non-preferred force out causality. The constitutive equations
then contain a derivation. Because any number of connections can be made, successive
ports are named p1, p2, p3 etc. 20-sim will automatically create equations such that the
resulting force p.F is equal to the sum of the forces of all connected ports p1 .. pn. The
velocities of all connected ports are equal to p.v.

p.F = sum(p1.F, p2.F,)
p.v = p1.v = p2.v =

velocity out causality (preferred):

a = p.F/m;
p.v = int(a);
x = int(p.omega);

force out causality:

11. Library

96120-sim 5.1 Reference Manual

a = ddt(p.v);
p.F = m*a;
x = int(p.v);

Description-Gravity

This model represents an ideal mass with gravity. It is equal to the default model with a
gravitational acceleration g added:

a = p.F/m - g;
p.v = int(a);
x = int(p.omega);

The gravitational acceleration g acts in the negative direction. E.g. a free fall will give the
model a negative acceleration, negative velocity and negative position.

Interface

Ports Description

p[any] Any number of connections can be made

(Translation).

Causality

preferred velocity out An torque out causality results in a derivative

constitutive equation.

Variables

x

a

p

position [m]

acceleration [m/s^2]

impulse [Ns]

Parameters

m

g

mass [kg]

acceleration of gravity [m/s^2]

Initial Values

p.v_initial

x_initial

The initial velocity of the mass.

The initial position of the mass.

11. Library

96220-sim 5.1 Reference Manual

Modal

Library

Iconic Diagrams\Mechanical\Translation\Components

Implementations

Stiffness
Frequency

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description - Stiffness

This model represents a spring-damper-mass system that can be used for modal

analysis. The springdamper is equivalent tot the SpringDamper-Stiffness.emx model.

The mass is equivalent to the Mass.emx model. The model has one output that can be

connected to the modal-summer.emx model.

Interface - Stiffness

Ports Description

p Translation port.

Causality

preferred velocity out

Parameters

k

b

m

Stiffness [N/m]

Relative damping []

Equivalent mass [kg]

Description - Frequency

This model represents a spring-damper-mass system that can be used for modal
analysis. The springdamper is equivalent tot the SpringDamper-Frequency model. The
mass is equivalent to the Mass model. The model has one output that can be connected
to the Modal-Summer model.

Interface - Frequency

Ports Description

p Translation port.

Causality

preferred velocity out

Parameters

b

f

Relative damping []

Resonance frequency [Hz]

11. Library

96320-sim 5.1 Reference Manual

m Equivalent mass [kg]

ModalSummer

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model combines the results from all modal.emx models to one resulting output. The
model has 8 input ports and one output port that shows the combined result. If more or
less input ports are needed, you have to adapt the model (Choose Go Down and alter
the internal description).

Interface

Ports Description

p1 .. p8 Input ports for modal.emx models (Translation).

p_out Port with the modal result (Translation)

Causality

preferred force out p1..p8

preferred velocity out p_out

Parameters

A1 .. A8 Gains for each input port.

Node

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This node model represents a structural connection between two or more parts, where
the velocity of all connected parts is equal. The model has only one initial port p defined.
Because any number of connections can be made, successive ports are named p1, p2,
p3 etc.

11. Library

96420-sim 5.1 Reference Manual

Interface

Ports Description

p [any] Any number of connections can be made (Translation).

ShockAbsorber

Library

Iconic Diagrams\Mechanical\Translation\Components

Implementations

Right
Left

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Introduction

This model represents a shock absorber with an open end. This type of shock absorbers
is used to protect equipment from large impacts when reaching the end of a line.

The damper has an internal piston which can travel a certain length (i.e. the stroke l)
until it collides with the end cap. The shock absorber is modeled by a damper for the
active damping part and a spring damper to model the impact with the end cap. The
position of the damper is indicated by the parameter x0. Two implementations are
available: one with the impact at the right and one with the impact at the left.

The damper is modeled by viscous damping, where the damping force is proportional
with the velocity:

p.F = d * v;

After a stroke of length l, the end caps are reached which a are modeled by a spring
damper:

p.F = k * x;

11. Library

96520-sim 5.1 Reference Manual

To get the damper back in its original position a return force is added.

Description - Right

The ShockAbsorber-Right models a shock absorber with impact at the right of the
system.

Shock absorber model with impact at the right.

Description - Right

The ShockAbsorber-Left models a shock absorber with impact at the left of the system.

Shock absorber model with impact at the left.

Interface

Ports Description

p_high

p_low

Two ports of the shock absorber model.

Causality

fixed force out

Parameters

k

d

l

x0

stiffness at the end cap [N/m]

damping [N.s/m]

shock absorber stroke [m]

position of the damper [m]

11. Library

96620-sim 5.1 Reference Manual

Fr return force [N]

SkyHookDamper

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents a skyhook damper. It can have an force out as well as an velocity
out causality. In the last case the constitutive equation, as shown below, is simply
inverted. The model has a fixed force out causality. The equations are:

Force out causality:

p_high.F = d * p_high.v;
p_low.F = p_high.F

As the equations point out, the force of the skyhook damper only depends on the
velocity at the port p_high. The position of p_high is indicated by an arrow, as shown in
the figure below.

In this figure two models are shown. In the top model, the damping force of the skyhook
damper is zero because the velocity at p_high is zero. Consequently the mass is free to
move.

In the lower model, the damping force is proportional to the velocity of the mass. Here
the skyhook damper acts as a normal damper.

Interface

Ports Description

p_high, p_low Both Translation ports of the skyhook damper.

11. Library

96720-sim 5.1 Reference Manual

Causality

fixed force out

Parameters

d damping [Ns/m]

Spring

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents an ideal translational spring. The element has a preferred force
out causality. The corresponding constitutive equations then contain an integration. The
element can also have the non-preferred velocity out causality. The constitutive
equations then contain a derivation. The spring model has separate high and low ports.
The equations are

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Force out causality (preferred):

x = int(p.v);
p.F = k * x;

Velocity out causality:

p.v = ddt(x);
x = p.F/k;

A positive force will compress the spring. The length x is positive when the spring is
compressed. It is negative when the spring is stretched.

Interface

Ports Description

p_high

p_low

Two ports of the spring (Translation).

Causality

preferred force out An velocity out causality results in a derivative

constitutive equation.

Variables

11. Library

96820-sim 5.1 Reference Manual

x compression of the spring [m]

Parameters

k Stiffness [N/m]

Initial Values

x_initial The initial extension of the spring [m].

SpringDamper

Library

Iconic Diagrams\Mechanical\Translation\Components

Implementations

Default
Stiffness
Frequency

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description - Default

This model represents an ideal translational spring with damper. The element has a
preferred force out causality. The corresponding constitutive equations then contain an
integration. The element can also have the non-preferred velocity out causality. The
constitutive equations then contain a derivation. The spring-damper model has separate
high and low ports. The equations are

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Force out causality (preferred):

x = int(p.v);
p.F = k*x + d*p.v;

Velocity out causality:

p.v = ddt(x);
x = (p.F - d*p.v)/k;

A positive force will compress the spring damper. The length x is positive when the
spring damper is compressed. It is negative when the spring damper is stretched.

Interface - Default

Ports Description

11. Library

96920-sim 5.1 Reference Manual

p_high

p_low

Two ports of the spring (Translation).

Causality

preferred force out

Variables

x compression of the spring [m]

Parameters

k

d

Stiffness [N/m]

damping [N.s/m]

Initial Values

x_initial The initial extension of the spring [m].

Description - Stiffness

This model represents another implementation of the ideal translational spring with
damper. The damping value (d) is calculated on the basis of a known stiffness (k),
relative damping (b) and mass reference (m). The mass is only used to compute the
damping (no actual mass is used in this component).

The element has a preferred force out causality. The corresponding constitutive
equations then contain an integration. The element can also have the non-preferred
velocity out causality. The constitutive equations then contain a derivation. The spring-
damper model has separate high and low ports. The equations are

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Force out causality (preferred):

x = int(p.v);
p.F = k * x + d*p.v;
d = 2*b*sqrt(k*m);

Velocity out causality:

p.v = ddt(x);
x = (p.F - d*p.v)/k;
d = 2*b*sqrt(k*m);

A positive force will compress the spring damper. The length x is positive when the
spring damper is compressed. It is negative when the spring damper is stretched.

Interface - Stiffness

Ports Description

p_high Two ports of the spring (Translation).

11. Library

97020-sim 5.1 Reference Manual

p_low

Causality

preferred force out

Variables

x

d

compression of the spring [m]

damping [N.s/m]

Parameters

k

b

m

Stiffness [N/m]

Relative damping []

Reference mass [kg]

Initial Values

x_initial The initial extension of the spring [m].

Description - Frequency

This model represents another implementation of the ideal translational spring with
damper. The stiffness (k) is calculated on basis of a known resonance frequency. The
damping value (d) is calculated on the basis of the calculated stiffness (k), relative
damping (b) and mass reference (m). The mass is only used to compute the damping
(no actual mass is used in this component).

The element has a preferred force out causality. The corresponding constitutive
equations then contain an integration. The element can also have the non-preferred
velocity out causality. The constitutive equations then contain a derivation. The spring-
damper model has separate high and low ports. The equations are

p.F = p_high.F = p_low.F
p.v = p_high.v - p_low.v

Force out causality (preferred):

x = int(p.v);
p.F = k * x + d*p.v;
k = m*(2*pi*F)^2;
d = 2*b*sqrt(k*m);

Velocity out causality:

p.v = ddt(x);
x = (p.F - d*p.v)/k;
k = m*(2*pi*f)^2;
d = 2*b*sqrt(k*m);

A positive force will compress the spring damper. The length x is positive when the
spring damper is compressed. It is negative when the spring damper is stretched.

11. Library

97120-sim 5.1 Reference Manual

Interface - Frequency

Ports Description

p_high

p_low

Two ports of the spring (Translation).

Causality

preferred force out

Variables

x

k

d

compression of the spring [m]

stiffness [N/m]

damping [N.s/m]

Parameters

b

f

m

Relative damping []

Resonance frequency [Hz]

Reference mass [kg]

Initial Values

x_initial The initial extension of the spring [m].

ZeroForce

Library

Iconic Diagrams\Mechanical\Translation\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model can be used to connect any open end of another model that is not connected
to the fixed world. It generates a fixed force of 0 N while the velocity is free:

p.v = indifferent;
p.F = 0;

Interface

Ports Description

p Translation port

Causality

11. Library

97220-sim 5.1 Reference Manual

Fixed force out

Sensors

AccelerationSensor-Absolute

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model describes an acceleration sensor which derives an acceleration output out of
a port velocity by differentiation. Differentiation is performed by a state variable filter:

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

The equations of this model are:

a = d(p.v)/dt;
p.F = indifferent;

Interface

Ports Description

p Translation port p.

Causality

fixed force out

Output

11. Library

97320-sim 5.1 Reference Manual

alpha Acceleration [m/s2]

Parameters

f

a_initial

Cut-off frequency of the differentiation [Hz].

Initial acceleration [m/s].

AccelerationSensor-Relative

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model describes an acceleration sensor which derives an acceleration output out of
a velocity difference (between high and low terminals) by differentiation. Differentiation
is performed by a state variable filter:

The S-domain function of this filter is equal to:

where f is the cut-off frequency. For very high values of f, the output becomes the pure
derivative of the input. High values of f, however, increase simulations times. A good
trade-off is a starting value of 1e5.

The equations of this model are:

a = d(p_high.v - p_low.v)/dt;
p_low.F = p_high.F = indifferent;

Interface

Ports Description

p_high, p_low Both terminals of the Translational port p.

11. Library

97420-sim 5.1 Reference Manual

Causality

fixed force out

Output

a Acceleration (measured as the difference between both terminals)

[m/s2]

Parameters

f

a_initial

Cut-off frequency of the differentiation [Hz].

Initial acceleration [m/s].

ForceSensor

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model translates an applied force to an output signal. It has a velocity out causality.
The port p of the model has separate high and low terminals. The equations are:

p.F = p_high.F = p_low.F;
p.v = p_high.v - p_low.v;
F = p.F;
p.v = 0;

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed velocity out

Output

F Applied force [N].

11. Library

97520-sim 5.1 Reference Manual

PositionSensor-Absolute

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model translates a position to an output signal. It has a force out causality. The
equations are:

p.F = 0;
x = int(p.v);

Interface

Ports Description

p_high, p_low Translation port p.

Causality

fixed force out

Output

x Absolute position [m].

Initial Values

x_initial Initial position [m]

PositionSensor-Relative

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model translates a position difference to an output signal. It has a force out
causality. The port p of the model has separate high and low terminals. The equations
are:

p.F = p_high.F = p_low.F;
p.v = p_high.v - p_low.v;
p.F = 0;
x = int(p.v);

11. Library

97620-sim 5.1 Reference Manual

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed force out

Output

x Relative position [m].

Initial Values

x_initial Initial position [m].

PowerSensor

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This is an ideal sensor (no dissipation or other effects) that yields the power that flows
through the model as output signal. The equations are:

p_high.F = p_low.F
p_high.v = p_low.v
P = p_high.F * p_high.v;

Interface

Ports Description

p_high, p_low Both translation ports.

Causality

p_high not equal

p_low

Output

P Power [w].

11. Library

97720-sim 5.1 Reference Manual

VelocitySensor-Absolute

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model translates a velocity to an output signal. It has a force out causality. The
equations are:

p.F = 0;
v = p.v;

Interface

Ports Description

p Translation port p.

Causality

fixed force out

Output

v Absolute velocity [m/s].

VelocitySensor-Relative

Library

Iconic Diagrams\Mechanical\Translation\Sensors

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation), Block
Diagrams.

Description

This model translates a velocity difference to an output signal. It has a force out
causality. The port p of the model has separate high and low terminals. The equations
are:

11. Library

97820-sim 5.1 Reference Manual

p.F = p_high.F = p_low.F;
p.v = p_high.v - p_low.v;
p.F = 0;
v = p.v;

Interface

Ports Description

p_high, p_low Both terminals of the Translation port p.

Causality

fixed force out

Output

v Relative velocity [m/s].

Transmission

BeltPulley

Library

Iconic Diagrams\Mechanical\Rotation\Gears

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Description

This models represents a belt and pulley. The connection to the pulley is through the
rotation port p_rot. The connection to the belt is through the translation port p_trans.
The model is ideal, i.e. there are no compliances or inertias. The causality of this model
is always mixed: torque out & velocity out or angular velocity out & force out:

p_rot.T = radius * p_trans.F
p_trans.v = radius * p_rot.omega

or:

p_trans.F = 1/radius * p_rot.T
p_rot.omega = 1/radius * p_trans.v

Interface

Ports Description

p_rot Rotation port.

11. Library

97920-sim 5.1 Reference Manual

p_trans Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius pulley radius [m]

Cam-Wizard

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Description

This is a masked model which opens the Cam Wizard when edited. Depending on the
selections entered, various cam motion profiles can be generated.

Interface

Ports Description

p_in

p_out

Driving axis (Rotation)

Output port with resulting motion (Rotation or Translation)

Parameters

stroke

start_angle

stop_angle

return_angle

end_angle

amplitude of resulting motion

start angle motion

angle when the maximum is reached

start angle of the return motion

finish angle of the return motion

CamRod

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This models represents a cam and rod mechanism. If the input shaft is rotating with a
constant speed, the output motion is a pure sinusoidal.

11. Library

98020-sim 5.1 Reference Manual

The mechanism starts with the carriage in the most left position. The arm length is half
of the stroke:

The mechanism is ideal, i.e., it does not have inertia, friction or geometrical limitations.
It has one rotation port (p_in) and one translation port (p_out). The causality of this
model is always mixed: one port has a force out causality while the other has a velocity
out causality:

p_in.T = i * p_out.F
p_out.v = i * p_in.omega

The transmission ratio (i) is the ratio of the velocities of both ports (in fact a sinusoidal
function of the shaft angle).

Interface

Ports Description

p_in

p_out

Driving axis (Rotation)

Output port with resulting motion (Translation)

11. Library

98120-sim 5.1 Reference Manual

Causality

fixed torque out

p_in

fixed velocity out

p_out

Parameters

stroke Stroke of the translation port (is equal to half the length of the rod).

CrankRod

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This models represents a crank and rod mechanism. The mechanism is ideal, i.e., it
does not have inertia, friction or geometrical limitations. It has one rotation port (p_in)
and one translation port (p_out). The causality of this model is always mixed: one port
has a force out causality while the other has a velocity out causality:

p_in.T = i * p_out.F
p_out.v = i * p_in.omega

The transmission ratio (i) is the ratio of the velocities of both ports. It is a function of the
shaft angle, the crank length and the rod length.

Interface

Ports Description

p_in

p_out

Driving axis (Rotation)

Output port with resulting motion (Translation)

Causality

11. Library

98220-sim 5.1 Reference Manual

fixed torque out

p_in

fixed velocity out

p_out

Parameters

crank_length

rod_length

Crank length [m]

Rod length [m]

Fork

Library

Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model is equivalent to the differential model of the Rotation library. It represents a
special type of node where the forces are equal and the velocities are added:

p3.v = p1.v + p2.v;
p1.F = p2.F = p3.F;

This model can for example be used for actuators that generate a force difference. With
the fork model an equivalent model can be found with the actuator attached to the fixed
world:

11. Library

98320-sim 5.1 Reference Manual

Interface

Ports Description

p1,p2,p3 Translation ports.

Lever

Library

Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This models represents any type of lever with two counter-moving ports. The lever is
ideal, i.e., it does not have inertia, friction or geometrical limitations. The lever has one
fast moving port and one slow moving port. The lever ratio is the (absolute) ratio of the
velocities of both ports. The causality of this model is always mixed: one port has a
force out causality while the other has an velocity out causality:

p_fast.F = -i * p_slow.F
p_slow.v = -i * p_fast.v

or:

p_slow.F = -1/i * p_fast.F
p_fast.v = -1/i * p_slow.v

11. Library

98420-sim 5.1 Reference Manual

Interface

Ports Description

p_fast

p_slow

Fast moving translation port.

Slow moving translation port.

Causality

p_slow notequal

p_fast

Parameters

i lever ratio p_slow.v / p_fast.v [], 0 < i < 1

Note

Keep the lever ratio i between 0 and 1. Confusion might otherwise exist:

i > 1: the fast moving port is slower than the slow moving port (you better
interchange the connections of the lever model).

i < 0: the ports are not counter-moving (use the transmission model instead).

RackPinionGear

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Implementations

FixedPinion
FixedRack

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Description - FixedPionion

This models represents a rack and pinion gear. The connection to the pinion gear is
through the rotation port p_rot. The connection to the rack is through the translation
port p_trans. The model is ideal, i.e. there is no compliance nor inertia nor backlash.

11. Library

98520-sim 5.1 Reference Manual

In this model the pinion bearing is connected to the fixed world and the rack is free to
move. This in contrary to the model FixedRackPinionGear where the pinion bearing is
free to move and the rack is connected to the fixed world.

The causality of this model is always mixed: torque out & velocity out or angular velocity
out & force out:

p_rot.T = radius * p_trans.F
p_trans.v = radius * p_rot.omega

or:

p_trans.F = 1/radius * p_rot.T
p_rot.omega = 1/radius * p_trans.v

The rack position is determined by the internal variable x. For x = 0, the pinion gear is
at the middle of the rack. When the pinion crosses the end of the rack, i.e.

abs(x) > rack_length/2

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion
gear!", and the simulation is stopped.

Interface - FixedPionion

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius

rack_length

pinion gear pitch radius [m]

rack length [m]

Variables

11. Library

98620-sim 5.1 Reference Manual

x Internal variable which denotes the rack position, abs(x) <

rack_length/2 else simulation halted.

Initial values

x_initial Initial rack position, abs(x_initial) < rack_length/2

Description - FixedRack

This models represents a fixed rack and pinion gear. The connection to the pinion gear is
through the rotation port p_rot. The connection to the rack is through the translation
port p_trans. The model is ideal, i.e. there is no compliance nor inertia nor backlash.

In this model the pinion bearing is free to move and the rack is connected to the fixed
world. This in contrary to the model RackPinionGear where the pinion bearing is
connected to the fixed world and the rack is free to move.

The causality of this model is always mixed: torque out & velocity out or angular velocity
out & force out:

p_rot.T = radius * p_trans.F
p_trans.v = radius * p_rot.omega

or:

p_trans.F = 1/radius * p_rot.T
p_rot.omega = 1/radius * p_trans.v

The rack position is determined by the internal variable x. For x = 0 the pinion gear is at
the middle of the rack. When the pinion crosses the end of the rack, i.e.

abs(x) > rack_length/2

a warning is given, "WARNING: rack length has been exceeded at the rack and pinion
gear!", and the simulation is stopped.

11. Library

98720-sim 5.1 Reference Manual

Interface - FixedRack

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

Causality

p_rot notequal

p_trans

Parameters

radius

rack_length

pinion gear pitch radius [m]

rack length [m]

Variables

x Internal variable which denotes the rack position, abs(x) <

rack_length/2 else simulation halted.

Initial values

x_initial Initial rack position, abs(x_initial) < rack_length/2

Spindle

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation).

Introduction

This models represents a spindle and nut. It transfers an angular motion of the spindle
into a translational motion of the nut. The model is ideal, i.e., it does not have inertia or
friction. The causality of this model is always mixed: one port has a torque out causality
while the other has an angular velocity out causality:

p_spindle.T = i * p_nut.F
p_nut.v = i * p_spindle.omega

or:

p_nut.F = 1/i * p_spindle.T
p_spindle.omega = 1/i * p_nut.v

The model has two implementations which calculate the transform ratio i out of different
parameters.

11. Library

98820-sim 5.1 Reference Manual

Description - Pitch

In this implementation the transform ratio is calculated using the pitch (the advance of
the nut during one revolution of the spindle):

i = pitch / (2 * pi);

Interface - Pitch

Ports Description

p_spindle

p_nut

Port at the spindle shaft (Rotation).

Port at the wheel (Translation).

Causality

p_spindle

notequal p_nut

Parameters

pitch translation of the nut during one revolution of the spindle [m]

Description - LeadAngle

This implementation calculates the transform ratio out of the lead angle alpha and the
radius r_spindle of the spindle:

i = tan(alpha)*r_spindle;

The pitch angle is shown in the figure below. r_spindle is the effective radius of the
spindle, i.e. the radius from the center of the spindle to the pitch point p.

Interface -LeadAngle

Ports Description

p_spindle

p_nut

Port at the spindle shaft (Rotation).

Port at the wheel (Translation).

11. Library

98920-sim 5.1 Reference Manual

Causality

p_spindle

notequal p_nut

Parameters

r_spindle

alpha

effective radius of the spindle [m]
lead angle of the spindle [rad]

TimingBelt

Library

Iconic Diagrams\Mechanical\Rotation\Gears
Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Rotation/Translation).

Introduction

This models represents a timing belt, used for linear positioning.

It has a rotating pulley which drives the the belt and clamp. The timing belt is modeled
by a series of spring damper elements that convey the rotation of the pulley to a clamp
translation. Because the output position is moving, stiffness and damping values are not
constant.

The stiffness for a piece of belt can be expressed as:

k = E*A / l

11. Library

99020-sim 5.1 Reference Manual

with

E = Modulus of elasticity {N/m2}
A = Belt area {m2}
l = belt length {m}

If the belt is sufficiently pre-tensioned, the stiffness experienced at the clamp can be
expressed as the combination of three individual belt parts:

k = E*A/(0.5*l+x) + 1/(1 / E*A/(0.5*l - x) + 1 / E*A / l)

which can be rewritten to:

k = E*A*(1/(0.5*l+x) + 1/(1.5*l - x))

The stiffness approaches infinity as the clamp moves to the driven pulley (x = -l/2) and
has a minimum value when the clamp moves to the other pulley (x = 0.5*l). The
minimum stiffness is equal to:

k = 2*E*A / l

The belt position is determined by the internal variable x. For x = 0 the clamp is in the
middle. When the position crosses the driven pulley, i.e.

x < - belt_length/2

the simulation is stopped: "Error: clamp position larger than belt end!". When the
position crosses the other pulley, i.e.

x > belt_length/2

the simulation is also stopped, "Error: clamp position smaller than belt start!".

Description - Default

In this model the minimum stiffness is used, based on an output position at a length L of
the driven pulley.

k = 2*E*A / l

Description - VariableStiffness

In this model a variable stiffness is used equal to:

k = E*A*(1/(0.5*l+x) + 1/(1.5*l - x))

Take care not to let the clamp get too close to the driven pulley, because the stiffness
will then grow to infinity!

Interface

Ports Description

p_rot

p_trans

Rotation port.

Translation port.

11. Library

99120-sim 5.1 Reference Manual

Causality

p_rot notequal

p_trans

Parameters

radius

d

E

A

l

pinion gear pitch radius [m]

damping N.s/m]

Modulus of elasticity [N/m2]

A = Belt area [m2]

belt length [m]

Variables

x clamp position, abs(x) < belt length/2

Initial values

x_initial Initial clamp position, abs(x_initial) < belt length/2

Transmission

Library

Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This models represents any type of lever with ports moving in the same direction. The
lever is ideal, i.e., it does not have inertia, friction or geometrical limitations. The lever
has one fast moving port and one slow moving port. The transmission ratio is the ratio of
the velocities of both ports. The causality of this model is always mixed: one port has a
force out causality while the other has an velocity out causality:

p_fast.F = i * p_slow.F
p_slow.v = i * p_fast.v

or:

p_slow.F = 1/i * p_fast.F
p_fast.v = 1/i * p_slow.v

Interface

Ports Description

11. Library

99220-sim 5.1 Reference Manual

p_fast

p_slow

Fast moving rotation port.

Slow moving rotation port.

Causality

p_slow notequal

p_fast

Parameters

i transmission ratio p_slow.v / p_fast.v [], 0 < i < 1

Note

Keep the transmission ratio i between 0 and 1. Confusion might otherwise exist:

i > 1: the fast moving port is slower than the slow moving port (you better
interchange the connections of the transmission model).

i < 0: the ports are counter-moving (use the lever model instead).

UniversalLever

Library

Iconic Diagrams\Mechanical\Translation\Transmission

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description

This model represents an ideal transmission with a free pivot point. The relations are:

p3.v = (i/(1+i))*p1.v + (1/(1+i))*p2.v;
p2.F = (1/(1+i)*p3.F;
p1.F = (i/(1+i)*p3.F;

Ground

Although each of the three ports may be connected to the ground, it is more efficient to
use other models. When p1 or p2 is connected to the ground, this model is equal to the
Transmission.emx model. When p3 is connected to the ground, this model is equal to
the Lever.emx model.

11. Library

99320-sim 5.1 Reference Manual

 Transmission-Universal Transmission Lever

Interface

Ports Description

p1,p2,p3 Translation ports.

Parameters

i Transmission ratio []

Thermal11.2.5

Thermal

The Thermal library contains components which are very useful for modeling thermal
systems. The following libraries are available.

Components

Generators

Sensors

Note

For domains that have port variables that do no multiply to power the name
pseudo is used. This model has pseudothermal ports. The port variables of a
pseudothermal port are the heat flow, p.dQ [W], and the temperature, p.T
[K], which do not multiply to power.

The base unit of temperature is degrees Kelvin. You can select degrees Celsius in

the Parameters Editor or Variables Chooser desired. 20-sim will take care that
internally always SI units (Kelvin) are used for calculations.

11. Library

99420-sim 5.1 Reference Manual

Components

Convection

Library

Iconic Diagrams\Mechanical\Thermal\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This model describes linear heat convection between a material surface and gas or fluid
flow. The basic equation is:

p.dQ = (p1.T - p2.T)*Gc;

where p1.T is the temperature of at the surface and p2.T the gas or fluid temperature.
Gr is the thermal conductance which is function of the surface area A and the convection
coefficient h:

Gr = A*h;

In most cases h is not contant but a non-analytical function of the gas or fluid speed and
other poperties. In most cases Gr is experimentally defined. Therefore G is given as an
input signal.

Interface

Ports Description

p1

p2

Material port

Fluid port

Causality

indifferent

Input

G thermal conductance [W/K]

Ground

Library

Iconic Diagrams\Mechanical\Thermal\Components

11. Library

99520-sim 5.1 Reference Manual

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This is a general model for the heat storage that is so large that is can be considered
constant (e.g. the environment). It is comparable to the ground in the electrical domain.

T0 = 25 {degC};
p.T = T0;

Interface

Ports Description

p[any] Any number of connections can be made

(pseudothermal).

Causality

fixed temperature out An torque out causality results in a derivative

constitutive equation.

Parameters

T0 temperature [K]

HeatCapacity

Library

Iconic Diagrams\Mechanical\Thermal\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This is a general model for the heat storage in a specific material. A constant
temperature distribution in the material is assumed and a constant heat capacity:

E = int(p.dQ) + C*T0;
p.T = E/C;

T0 is the initial temperature of the material, E the internal energy {J} and C the thermal
capacity {J/K}. Because any number of connections can be made, successive ports are
named p1, p2, p3 etc. 20-sim will automatically create equations such that the resulting
heat flow p.dQ is equal to the sum of the heatflows of all connected ports p1 .. pn. The
temperatures of all connected ports are equal to element temperature p.T.

p.dQ = sum(p1.dQ, p2.dQ,)
p.T = p1.T = p2.T =

11. Library

99620-sim 5.1 Reference Manual

The thermal capacity can be calculated with the specific heat capacity cp and material
mass m:

C = cp*m;

Typical values for cp are:

 water

granite

glass

aluminium

concrete

copper

silver

iron / steel

wood

air (50 °C)

4186

790

840

900

840?

387

235

452

1674

1046

Interface

Ports Description

p[any] Any number of connections can be made

(pseudothermal).

Causality

preferred temperature out An torque out causality results in a derivative

constitutive equation.

Variables

E internal energy [J]

Parameters

C

T0

thermal capacity [J/K]

initial temperature [K]

Radiation

Library

Iconic Diagrams\Mechanical\Thermal\Components

11. Library

99720-sim 5.1 Reference Manual

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This model describes the heat transfer between to bodies through radiation:

p.dQ =Gr*sigma*(p1.T^4 - p2.T^4);

where p1.T and p2.T are the temperatures of the body surfaces and sigma is the Stefan-
Boltzmann constant. For simple cases, Gr may be analytically computed. The analytical
equations use epsilon, the surface emissitivy of a body which is in the range 0..1.
Epsilon=1, if the body absorbs all radiation (= black body). Epsilon=0, if the body
reflects all radiation and does not absorb any.

Typical values for epsilon are:

 aluminium, polished

copper, polished

gold, polished

paper

rubber

wood

0.04

0.04

0.02

0.09

0.95

0.85..0.9

Analytical Equations for Gr

Small convex object in large enclosure (e.g., a hot machine in a room):

 Gr = e*A;

where

e: Emission value of object (0..1)
A: Surface area of object where radiation heat transfer takes place

Two parallel plates:

Gr = A/(1/e1 + 1/e2 - 1);

where

e1: Emission value of plate1 (0..1)
e2: Emission value of plate2 (0..1)
A : Area of plate1 (= area of plate2)

Interface

Ports Description

p1

p2

Material port

Fluid port

Causality

indifferent

11. Library

99820-sim 5.1 Reference Manual

Input

G thermal conductance [W/K]

ThermalConductance

Library

Iconic Diagrams\Mechanical\Thermal\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

When a temperature difference exists in a material, heat will flow from the high
temperature part to the low temperature part. This model describes the transport of heat
through a block of material with a temperature difference on both sides of the block. The
heat conducting capacity of the material is indicated by the parameter G (thermal
conductance):

p.dQ = p.T*G;

This model is the dual form of the thermal resistor where the insulation capacity of the
block is indicated by the parameter R (thermal resistance):

p.dQ = p.T/R;

The heat flow through the material is ideal. I.e. there is no heat storage modeled. The
thermal resistance model has separate high and low ports. The equations are

p.dQ = p_high.dQ = p_low.dQ
p.T = p_high.T - p_low.T

Block

The thermal conductance of a block can be calculated with the specific thermal
conductivity k, the length L of the block, and the area A of both sides of the block:

 G = k*A/L

Typical values of the thermal conductivity [W.m-1.K-1] are:

 water

granite

glass

aluminium

concrete

copper

silver

iron / steel

0.6

2,1

1.0

210

1.28

390

430

40-70

11. Library

99920-sim 5.1 Reference Manual

wood

air

0.13

0.026

Interface

Ports Description

p_high, p_low Both terminals of the pseudothermal port p

Causality

indifferent

Parameters

G thermal conductance [W/K]

ThermalResistor

Library

Iconic Diagrams\Mechanical\Thermal\Components

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

When a temperature difference exists in a material, heat will flow from the high
temperature part to the low temperature part. This model describes the transport of heat
through a block of material with a temperature difference on both sides of the block. The
insulation capacity of the block is indicated by the parameter R (thermal resistance):

p.dQ = p.T/R;

This model is the dual form of the thermal conductor where the heat conducting capacity

of the material is indicated by the parameter G (thermal conductance):

p.dQ = p.T*G;

The heat flow through the material is ideal. I.e. there is no heat storage modeled. The
thermal resistance model has separate high and low ports. The equations are

p.dQ = p_high.dQ = p_low.dQ
p.T = p_high.T - p_low.T

Block

The thermal resistance of a block can be calculated with the specific thermal
conductivity k, the length L of the block, and the area A of both sides of the block:

11. Library

100020-sim 5.1 Reference Manual

 R = L/(k*A)

Typical values of the thermal conductivity [W.m-1.K-1] are:

 water

granite

glass

aluminium

concrete

copper

silver

iron / steel

wood

air

0.6

2,1

1.0

210

1.28

390

430

40-70

0.13

0.026

Interface

Ports Description

p_high, p_low Both terminals of the pseudothermal port p

Causality

indifferent

Parameters

R thermal resistance [K/W]

Generators

HeatFlow

Library

Iconic Diagrams\Mechanical\Thermal\Generators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This model yields a heat flow that is set to a constant value. The temperature is
indifferent. The model can represent any heat generating object with a constant heat
flow.

Interface

Ports Description

p

11. Library

100120-sim 5.1 Reference Manual

Causality

fixed heat flow out

Parameters

dQ Heat flow [J/s]

ModulatedHeatFlow

Library

Iconic Diagrams\Mechanical\Thermal\Generators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This model yields a heat flow that is equal to a (fluctuating) value given by the input
signal dQ. The temperature is indifferent. The model can represent any heat generating
object with a fluctuating heat flow.

Interface

Ports Description

p

Causality

fixed heat flow out

Parameters

dQ Heat flow [J/s]

ModulatedTemperatureSource

Library

Iconic Diagrams\Mechanical\Thermal\Generators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This model has a temperature that is equal to a (fluctuating) value given by the input
signal T. The heat flow is indifferent. This model can represent an object that has a heat
capacity which is so much larger than the rest of the system, that its temperature can be
seen as an independant variable.

11. Library

100220-sim 5.1 Reference Manual

Interface

Ports Description

p

Causality

fixed temperature out

Input

T Variable temperature signal [K]

Resistor

Library

Iconic Diagrams\Thermal\Generators\Generators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal, Electric).

Description

This is a model of a resistor with a temperature coefficient. The resistance and voltage
equation can be written as:

R = R_ref*(1 + alpha*(p_th.T - T_ref));
p_el.u = p_el.i * R;

where R_ref is the reference resistance at reference temperature T_ref and alpha the
temperature coefficient of resistance. The actual temperature of the resistor is given by
the pseudothermal port of the model , p_el.T. The heat generated by the resistor is
equal to

p_th.dQ = p_el.u * p_el.i;

The electrical port p of the resistor model has separate high and low terminals. The
equations are:

p_el.i = p_high_el.i = p_low_el.i;
p_el.u = p_el_high.u - p_el_low.u;

Interface

Ports Description

p_el_high

p_el_low

p_th

Both terminals of the Electric port.

The pseudothermal port

Causality

indifferent p_el

11. Library

100320-sim 5.1 Reference Manual

fixed heat flow

out p_th

Parameters

R_ref

T_ref

alpha

Reference resistance [Ohm].

Reference temperature [K].

Temperature coefficient of the resistance []

TemperatureSource

Library

Iconic Diagrams\Mechanical\Thermal\Generators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This model has a temperature that is set to a certain constant value. The heat flow is
indifferent. The model can represent a piece of material which is so large that its
temperature variation is neglectable (e.g. the environment) and thus can be seen as an
ideal temperature source

Interface

Ports Description

p

Causality

fixed temperature out

Parameters

T Fixed temperature [K]

Thermistor

Library

Iconic Diagrams\Thermal\Generators

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal, Electric).

Description

This is a model of a linear thermistor. Thermistors are thermally sensitive resistors and
have, according to type, a negative (NTC), or positive (PTC) resistance/temperature
coefficient. For linear thermistors the resistance and voltage equation can be written as:

11. Library

100420-sim 5.1 Reference Manual

R = R_ref*(1 + alpha*(p_th.T - T_ref));
p_el.u = p_el.i * R;

where R_ref is the reference resistance at reference temperature T_ref and alpha the
temperature coefficient of resistance. The actual temperature of the themistor is given
by the pseudothermal port of the model , p_el.T. The heat generated by the thermistor
is equal to

p_th.dQ = p_el.u * p_el.i;

The electrical port p of the thermistor model has separate high and low terminals. The
equations are:

p_el.i = p_high_el.i = p_low_el.i;
p_el.u = p_el_high.u - p_el_low.u;

Interface

Ports Description

p_el_high

p_el_low

p_th

Both terminals of the Electric port.

The pseudothermal port

Causality

indifferent p_el

fixed heat flow

out p_th

Parameters

R_ref

T_ref

alpha

Reference resistance [Ohm].

Reference temperature [K].

Temperature coefficient of the resistance []

Sensors

HeatFlowSensor

Library

Iconic Diagrams\Mechanical\Thermal

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

11. Library

100520-sim 5.1 Reference Manual

Description

This is a model of an ideal heat flow sensor with an output signal dQ that is equal to the
measured heat flow. The sensor is ideal which means that is does not store, loses or
adds heat.

Interface

Ports Description

p_high, p_low Both ports of the sensor

Causality

p_high not equal p_low

Parameters

dQ Measured heat flow [J/s]

TemperatureSensor

Library

Iconic Diagrams\Mechanical\Thermal

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Pseudothermal).

Description

This is a model of an ideal temperature sensor with an output signal T that is equal to
the measured temperature. The heat flow into the model is zero to assure zero power
loss.

Interface

Ports Description

p

Causality

fixed heat flow out

Parameters

T Measured temperature [K]

11. Library

100620-sim 5.1 Reference Manual

11.3 Signal

Block Diagram11.3.1

Attenuate

Library

Signal\Block Diagram

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model divides an input signal by a constant value.
output = input/K

Interface

Inputs Description

input

Outputs

output

Parameters

K Division parameter

Delay-Pade

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model delays the input signal by "T" seconds using a 4th order Pade approximation.
The model is linear which means that it can be used in models that should be linearized.

Interface

Inputs Description

input

Outputs

output

Parameters

T Delay time.

11. Library

100720-sim 5.1 Reference Manual

Delay-Step

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model delays its input signal one simulation step.

output = initial; (time = 0)
output = inp(time - hk); (time > 0)

where hk = simulation step size.

Note

To correctly use models with constant delays, simulation runs must be performed using
integration algorithms with a constant time-step. Otherwise the model Delay-Time.emx
should be used!

Interface

Inputs Description

input

Outputs

output

Parameters

initial The initial output value.

Note

To correctly use models with constant delays, simulation runs must be performed
using integration algorithms with a constant time-step. Otherwise the model Delay-
Time.emx should be used!

The delay-step.emx submodel is non-linear: i.e. models which include the delay-
step.emx submodel cannot be linearized. Use the linear time delay Delay-Pade.emx
if you want to perform linearization.

Delay-Time

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

11. Library

100820-sim 5.1 Reference Manual

Description

This model stores the input signal and corresponding time in a buffer. After "delay"
seconds the stored values are retrieved. When the simulation time step does not
coincide with the delay time "delay", the output is calculated by first order interpolation.

output = initial; (time < delay)
output = inp(time - delay); (time >= delay)

Interface

Inputs Description

input

Outputs

output

Parameters

initial
delay

The initial output value.
Delay time.

Delay-VariableTime

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model stores the input signal and corresponding time in a buffer. After "delay"
seconds the stored values are retrieved. This delay is a variable input signal. When the
simulation time step does not coincide with the delay time "delay", the output is
calculated by first order interpolation.

output = initial; (time < delay)
output = input(time - delay); (time >= delay)
output = input(time); (delay < 0)

Interface

Inputs Description

input

Outputs

output

Parameters

initial
delay

The initial output value.
Delay time.

11. Library

100920-sim 5.1 Reference Manual

Note

The maximum storage capacity of the buffer is 58254 input values. When many input
values are stored the simulation speed may slow down considerably!

The delay-variabletime.emx submodel is non-linear: i.e. models which include the
delay-variabletime.emx submodel cannot be linearized. Use the linear time delay
Delay-Pade.emx if you want to perform linearization.

Demux

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use the Mux model to combine multiple input signals into one multi-dimensional
signal.
This model can be used to spit the multi-dimensional signal again into single signals.

Interface

Inputs Type Description

inputs real Default 2 signals can be
connected. Use the right mouse

menu and choose Edit
Implementation to change the

number of signals.

Outputs

output[any] real The output signal size is equal
to the number of inputs.

11. Library

101020-sim 5.1 Reference Manual

DemuxBoolean

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use the Mux model to combine multiple input signals into one multi-dimensional
signal.
This model can be used to spit the multi-dimensional signal again into single signals.

Interface

Inputs Type Description

inputs boolean Default 2 signals can be
connected. Use the right mouse

menu and choose Edit
Implementation to change the

number of signals.

Outputs

output[any] boolean The output signal size is equal
to the number of inputs.

DemuxInteger

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use the Mux model to combine multiple input signals into one multi-dimensional
signal.
This model can be used to spit the multi-dimensional signal again into single signals.

11. Library

101120-sim 5.1 Reference Manual

Interface

Inputs Type Description

inputs integer Default 2 signals can be
connected. Use the right mouse

menu and choose Edit
Implementation to change the

number of signals.

Outputs

output[any] integer The output signal size is equal
to the number of inputs.

DemuxString

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use the Mux model to combine multiple input signals into one multi-dimensional
signal.
This model can be used to spit the multi-dimensional signal again into single signals.

11. Library

101220-sim 5.1 Reference Manual

Interface

Inputs Type Description

inputs string Default 2 signals can be
connected. Use the right mouse

menu and choose Edit
Implementation to change the

number of signals.

Outputs

output[any] string The output signal size is equal
to the number of inputs.

Differentiate-Calculus

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model approximates the differentiation of an input signal by the equation:

where hk = simulation step size. The initial value of the output is equal to the parameter
"initial". When the simulation step size is zero (time event, state event) the output value
will be equal to the previous output value (the simulation step size part is not calculated
to prevent a division by zero).

Interface

Inputs Description

input

Outputs

11. Library

101320-sim 5.1 Reference Manual

output

Parameters

initial The initial value of the output.

Differentiate-FO

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model is a first order approximation of a differentiation. The transfer function is:

As shown in the figure below, the model behaves as a differentiator for frequencies
below fl.

Interface

Inputs Description

input

Outputs

output

11. Library

101420-sim 5.1 Reference Manual

Parameters

kd
fl

Differentiation gain []
Differentiation limit [Hz]

Initial Values

output_initial The initial value of the integral.

Differentiate-SVF

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model approximates the differentiation of an input with a state variable filter:

As can be seen, no differentiation is used in this model and consequently all integration
algorithms can be used. In the S-domain the output of this model is equal to:

For very high values of N, the output becomes the pure derivative of the input. High
values of N, however, increase simulations times. A good trade-off is a starting value of
10. If more accuracy is needed, this value can be increased.

Interface

Inputs Description

input

Outputs

output

Parameters

N
initial

Derivative Gain Limitation.
The initial value of the output.

11. Library

101520-sim 5.1 Reference Manual

Differentiate

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model differentiates an input signal. The initial value of the output is equal to the
parameter "initial".

output = ddt(input,initial);

Interface

Inputs Description

input

Outputs

output

Parameters

initial The initial value of the output.

Filter

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

When you select this model and click Go Down a special editor opens (Filter Editor),
allowing you to choose a filter:

11. Library

101620-sim 5.1 Reference Manual

Interface

Inputs Description

input

Outputs

output

Initial Values

 The model has internal states that are not
accessible.

Parameters

 Parameters are entered by the Filter Editor.

Gain

Library

Signal\Block Diagram

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model multiplies an input signal with a constant value.

output = K * input

Interface

Inputs Description

11. Library

101720-sim 5.1 Reference Manual

input

Outputs

output

Parameters

K Gain

Integrate-ExpWindow

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model integrates an input signal over an exponential window with time constant T0
[s].

The model behaves as a signal averager, with an effective window of T0 [s].

Interface

Inputs Description

input

Outputs

output

Initial Values

state(0) The initial value of the integral.

Parameters

T0 Window constant [s].

11. Library

101820-sim 5.1 Reference Manual

Integrate-FO

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model is a first order approximation of an integration. The transfer function is:

As shown in the figure below, the model behaves as an integrator for frequencies above
the fl

Interface

Inputs Description

input

Outputs

output

Parameters

ki
fl
output_initial

Integration gain []
Integration limit [Hz]
Initial value.

11. Library

101920-sim 5.1 Reference Manual

Integrate-FOLimited

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model is a first order approximation of an integration with an output value limited to
a minimum and maximum value. The model checks the output value to see if the
maximum of minimum values have been crossed. If so the input value is set to zero to
prevent the integral from winding-up. Between the bounds the transfer function is:

As shown in the figure below, the model behaves as an integrator for frequencies above
the fl

Interface

Inputs Description

input

11. Library

102020-sim 5.1 Reference Manual

Outputs

output

Parameters

ki
fl
output_initial
maximum
minimum

Integration gain []
Integration limit [Hz]
Initial value.
Maximum output value
Minimum output value

Integrate-Limited

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model integrates an input signal. The output of this integral is limited between a
maximum and minimum bound. If the integral is in saturated condition and the input
changes sign, the output wanders away from the bounds immediately.

output = int(inp) + state(0); (minimum <= output <= maximum)

Interface

Inputs Description

input

Outputs

output

Initial Values

state(0) The initial value of the integral.

Parameters

minimum
maximum

Minimum output value.
Maximum output value.

11. Library

102120-sim 5.1 Reference Manual

Integrate-RectWindow

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model integrates an input signal over a limited time interval which is T0 [s] wide.

The model behaves as a signal averager, with a rectangular window of T0 [s].

Interface

Inputs Description

input

Outputs

output

Initial Values

state(0) The initial value of the integral.

Parameters

T0 Integration interval.

Integrate-Reset

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description-Default

This model integrates an input signal. The output of this integral may be reset to any
desired value each time the reset signal is unequal to zero.

output = int(inp) + state(0); (reset = 0)
output = reset to newoutput; (reset <> 0)

11. Library

102220-sim 5.1 Reference Manual

This implementation uses a normal integrator. That is why the model will also work when
c-code is generated.

Interface-Default

Inputs Description

input
reset

newoutput

Input signal
When reset <> 0, the output changes to newoutput.
New output.

Outputs

output

Initial Values

state(0) The initial value of the integral.

Description-Pure

This model integrates an input signal. The output of this integral may be reset to any
desired value each time the reset signal is unequal to zero.

output = int(inp) + state(0); (reset = 0)
output = reset to newoutput; (reset <> 0)

This implementation uses the function resint. This function forces the integration method
with a state event to search for the exact time where the integral is reset. The result is
more accurate than the Default implementation, but this implementation will not work
when c-code is generated.

Interface-Pure

Inputs Description

input
reset

newoutput

Input signal
When reset <> 0, the output changes to newoutput.
New output.

Outputs

output

Initial Values

state(0) The initial value of the integral.

Integrate

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model integrates an input signal:

11. Library

102320-sim 5.1 Reference Manual

output = int(input) + state(0)

Interface

Inputs Description

input

Outputs

output

Initial Values

state(0) The initial value of the integral.

Inverse

Library

Signal\Block Diagram

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the inverse of the input signal.

output = 1 / input

Interface

Inputs Description

input

Outputs

output

Linear System

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

When you select this model and click Go Down a special editor opens (Linear System
Editor), allowing you to enter a linear system in State Space form, as a Transfer
Function or by adding poles and zeros:

11. Library

102420-sim 5.1 Reference Manual

Interface

Inputs Description

input

Outputs

output

Initial Values

 The model has internal states that are not
accessible.

Parameters

 Parameters are entered by the Linear System
Editor.

11. Library

102520-sim 5.1 Reference Manual

MultiplyDivide

Library

Signal\Block Diagram , System

Use

Domains: Continuous, Discrete. Size: [n,m]. Kind: Block Diagrams.

Description

This model yields a multiplication and/or division of one or more input signals. While
connecting input signals, 20-sim will ask whether the signals should be multiplied or
divided. The signals may have either size, but the size of all connected signals should be
equal.

For example the MultiplyDivide model can have 2 signals connected that are multiplied
and 2 signals that must be divided. 20-sim treats them as an array multiply and an array
divide with:

multiply = [multiply1;multiply2];

and

divide = [divide1;divide2];

The output will then be equal to:

output = (multiply1 * multiply2) / (divide1 * divide2);

Interface

Inputs Description

multiply[any]
divide[any]

Any number of input signals (each of the same
size) may be connected to be multiplied (multiply)
or divided (divide).

Outputs

output

Limitations

The signals connected to this model should all have the same size.

11. Library

102620-sim 5.1 Reference Manual

Mux

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use this model to combine multiple input signals into one multi-dimensional
signal.
The Demux model can be used to spit the multi-dimensional signal again into single
signals.

Interface

Inputs Type Description

inputs real Default 2 signals can be connected.
Use the right mouse menu and

choose Edit Implementation to

change the number of signals.

Outputs

output[any] real The output signal size is equal to the
number of inputs.

MuxBoolean

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

11. Library

102720-sim 5.1 Reference Manual

Description

You can use this model to combine multiple input signals into one multi-dimensional
signal.
The Demux model can be used to spit the multi-dimensional signal again into single
signals.

Interface

Inputs Type Description

inputs boolean Default 2 signals can be connected.
Use the right mouse menu and

choose Edit Implementation to

change the number of signals.

Outputs

output[any] boolean The output signal size is equal to the
number of inputs.

MuxInteger

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use this model to combine multiple input signals into one multi-dimensional
signal.
The Demux model can be used to spit the multi-dimensional signal again into single
signals.

11. Library

102820-sim 5.1 Reference Manual

Interface

Inputs Type Description

inputs integer Default 2 signals can be connected.
Use the right mouse menu and

choose Edit Implementation to

change the number of signals.

Outputs

output[any] integer The output signal size is equal to the
number of inputs.

MuxString

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

You can use this model to combine multiple input signals into one multi-dimensional
signal.
The Demux model can be used to spit the multi-dimensional signal again into single
signals.

11. Library

102920-sim 5.1 Reference Manual

Interface

Inputs Type Description

inputs string Default 2 signals can be connected.
Use the right mouse menu and

choose Edit Implementation to

change the number of signals.

Outputs

output[any] string The output signal size is equal to the
number of inputs.

Negate

Library

Signal\Block Diagram

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the negative of the input signal.

output = -input

Interface

Inputs Description

input

Outputs

output

11. Library

103020-sim 5.1 Reference Manual

PlusMinus

Library

Signal\Block Diagram , System

Use

Domains: Continuous, Discrete. Size: [n,m]. Kind: Block Diagrams.

Description

This model yields a subtraction and/or summation of one or more input signals. While
connecting input signals, 20-sim will ask whether the signals should be added or
subtracted. The signals may have either size, but the size of all connected signals should
be equal.

For example the PlusMinus model can have 2 signals connected that are added and 2
signals that must be subtracted. 20-sim treats them as an array plus and an array minus
with:

plus = [plus1;plus2];

and

minus = [minus1;minus2];

The output will then be equal to:

output = plus1 + plus2 - minus1 - minus2;

Interface

Inputs Description

plus[any]
minus[any]

Any number of input signals (each of the same size)
may be connected to be added (plus) or subtracted
(minus).

Outputs

output

Limitations

The signals connected to this model should all have the same size.

11. Library

103120-sim 5.1 Reference Manual

SignalMonitor

Library

Signal\Block Diagram , Signal\Sources

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model shows the value of its input in the Simulator. When you open the Simulator
(select Properties and Plot) the input of this model is automatically selected as
plotvariable. As label for this variable the local name of the SignalMonitor model is
chosen. It is therefore advised to give each SignalMonitor model a useful name (select
the model, click the right mouse button and select Attributes from the right mouse
menu).

Interface

Inputs Description

input The value of the input is shown in the Simulator
using the local name of the model as label.

Splitter

Library

Signal\Block Diagram , System

Use

Domains: Continuous, Discrete. Size: [n,m]. Kind: Block Diagrams.

Description

This model can split one output signal into two or more output signals. The signals may
have either size, but the size of all connected signals should be equal.

11. Library

103220-sim 5.1 Reference Manual

Interface

Inputs Description

input One input signal must be connected

Outputs

output[any] Any number of input signals (each of the same
size) may be connected.

Limitations

The signals connected to this model should all have the same size.

Block Diagram Non-Linear11.3.2

DeadZone

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates zero output when the input is within a specified region, called the
dead zone. Otherwise the output equals the input plus or minus half the zone.

11. Library

103320-sim 5.1 Reference Manual

output = input + zone/2; (input < -zone/2)
output = 0; (-zone/2 <= input <= zone/2)
output = input - zone/2; (input > zone/2)

Interface

Inputs Description

input

Outputs

output

Parameters

zone Magnitude of the dead zone.

Limitations

Only single signals (i.e. signals of size 1) can be connected to this model.

Function-2DTable

Library

Signal\Block Diagram Non-Linear

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model uses a two-dimensional table with data points to calculate the output z =
f(x,y) as a function of the input x and y. The output z is calculated using linear
interpolation between the table data points.

11. Library

103420-sim 5.1 Reference Manual

The first row denotes the x-values and the first column denotes the y-values.

The input data of the first column and first row needs to be monotonically increasing.

Discontinuities are allowed, by providing the same input point twice in first row or
first column of the table.

Values outside of the table range, are computed by linear extrapolation of the last
two points.

A table must be stored as an ASCII (text) file and should consist rows and columns of
data. The first row consists of the x-values first column consist of the y-values. The row-
column pairs are the corresponding z-values. Values must be separated by a space or a
tab. No comment or other text may be part of the table-file. The filename of the input
file can be specified using the complete path (e.g. c:\data\data.tbl). When no path is
given, the file is assumed to be in the experiment directory.

Example

Suppose we want to use the well known Matlab peaks function:

This function can be put in a matrix form as:

11. Library

103520-sim 5.1 Reference Manual

The first row and column denote the x-values and y-values and the other row-column
pairs the corresponding peaks function values. This matrix can be entered in a text file:

The model 2DTableLookup.emx (Examples\Signal Processing) shows how to use this text
file as a 2-D table.

Interface

Inputs Description

input1
input2

x-value
y-value

Outputs

output z-value

Parameters

filename The filename of the table file.

11. Library

103620-sim 5.1 Reference Manual

Function-Absolute

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the absolute value of an input signal.

outp = abs(inp);

Interface

Inputs Description

input

Outputs

output

Function-Cosine

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the cosine of an input signal.

output = cos(input);

Interface

Inputs Description

input

Outputs

output

11. Library

103720-sim 5.1 Reference Manual

Function-DB

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model returns an output signal in decibel (dB):

output = 20*log10(input);

Interface

Inputs Description

input

Outputs

output

Function-Log

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model returns the natural logarithm of the input.

output = log(input);

Interface

Inputs Description

input

Outputs

output

11. Library

103820-sim 5.1 Reference Manual

Function-Power

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model raises the values of an input signal to the power p.

output = input^p;

Interface

Inputs Description

input

Outputs

output

Parameters

p

Function-Sign

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model returns the sign of the input. A zero input results in a zero output.

output = -1; (input < 0)
output = 0; (input = 0)
output = 1; (input > 0)

Interface

Inputs Description

input

Outputs

output

11. Library

103920-sim 5.1 Reference Manual

Function-Sine

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the sine of an input signal.

output = sin(input);

Interface

Inputs Description

input

Outputs

output

Function-Square

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model returns the square of the input signal.

output = input^2;

Interface

Inputs Description

input

Outputs

output

11. Library

104020-sim 5.1 Reference Manual

Function-SquareRoot

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the square root of an input signal.

outp = sqrt(inp);

Interface

Inputs Description

input

Outputs

output

Function-SquareRootSign

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the square root of an input signal with sign and multiplied by a
parameter p.

output = sign(input)*sqrt(inp)/p;

Interface

Inputs Description

input

Outputs

output

Parameters

p

11. Library

104120-sim 5.1 Reference Manual

Function-SquareSign

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the square of an input signal with sign and multiplied by a parameter
p.

output = p*sign(input)*input*input;

Interface

Inputs Description

input

Outputs

output

Parameters

p

Function-Table

Library

Signal\Block Diagram Non-Linear

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model uses a one-dimensional table with data points to calculate the output y = f(x)
as a function of the input x. The output y is calculated using linear interpolation between
the table data points.

The input data of the first column needs to be monotonically increasing.

Discontinuities are allowed, by providing the same input point twice in the table.

Values outside of the table range, are computed by linear extrapolation of the last
two points.

11. Library

104220-sim 5.1 Reference Manual

table

-2.5

-2

 0

 1

 2

 3

 5

 6

-0.5

-1

-1

 0

 2

 3.0

 4

 4.0

A table must be stored either as an ASCII (text) file or as a matrix inside the equation
model. In both cases the table should consist two columns of data. The first column
consists of the x-values and the second column of the corresponding y-values.

Reading data from a file

If the table is read from a file, each line of the file may only contain one x- and one
corresponding y-value. The two values must be separated by a space or a tab. Each new
set of x- and y-values must start on a new line. No comment or other text may be part
of the table-file. The filename of the input file can be specified using the complete path
(e.g. C:\data\data.tbl). When no path is given, the file is assumed to be in the

experiment directory.

Interface

Inputs Description

input

Outputs

output

Parameters

filename The filename of the table file.

Reading data from a matrix

If the table is read from a matrix in an equation model, each row may only contain one
x- and one corresponding y-value. The two values must be separated by a coma and
each column must be separated by a semi-colon.

Note

Table interpolation can also be used directly in an equation model by using the function
table.

11. Library

104320-sim 5.1 Reference Manual

Function-Tan

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the tangent of an input signal.

output = tan(input);

Note that the tangent goes infinity for input signals that are a multiple of pi.

Interface

Inputs Description

input

Outputs

output

Function-Truncation

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model rounds the input towards zero (i.e. it removes the fraction of the input).

output = trunc(input);

Interface

Inputs Description
input

Outputs

output

Parameters

11. Library

104420-sim 5.1 Reference Manual

p

SignalLimiter-Backlash

Library

Signal\Block Diagram Non-Linear

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model represents mechanical backlash between an input position and an output
position.

output = 0; (input is within the dead zone)
output = input - zone/2; (input is increasing and out of the dead zone)
output = input + zone/2; (input is decreasing and out of the dead zone)

Interface

Inputs Description

input

Outputs

output

Parameters

zone Size of the dead zone.
zone >= 0

initial Value of the output at time = 0.
initial >= input(time = 0) - zone/2
initial <= input(time = 0) + zone/2

11. Library

104520-sim 5.1 Reference Manual

SignalLimiter-Hysteresis

Library

Signal\Block Diagram Non-Linear

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

The output signal of this submodel switches between maximum and minimum, depending
on the sign of the input signal, with hysteresis applied. When traversing between
minimum and maximum (dead zone), the rate of change is defined by the parameter k.

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

hysteresis

k

Minimum value of the output.
Maximum value of the output.

Magnitude of the hysteresis.

Rate of change in the dead zone.

11. Library

104620-sim 5.1 Reference Manual

SignalLimiter-Limit

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model limits the input signal to minimum and maximum bounds.

output = minimum; (input < minimum)
output = input; (minimum <= input <= maximum)
output = maximum (input > maximum)

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

Minimum value of the output.

Maximum value of the output.

11. Library

104720-sim 5.1 Reference Manual

SignalLimiter-JumpRateLimit

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model limits the input signal to a minimum and maximum jump and a minimum and
maximum rate.

for minimum < input < maximum:

output = input

else

doutput/dt = dinput/dt; (minimumrate < dinput/dt < maximumrate)

doutput/dt = minimum; (dinput/dt < minimumrate)

output = maximum (dinput/dt > maximumrate)

En example is shown below where a sinusoidal input signal is limited to a minmum jump
of -0.2, a maximum jump of 0.2, a maximum rate of 0.4 and a minimum rate of -0.4.

Interface

Inputs Description

input The inputs signal to be limited

Outputs

output The limited output signal

Parameters

minimum
maximum
minimumrate
maximumrate

Minimum jump of the output.
Maximum jump of the output.
Minimum rate of the output.
Maximum rate of the output.

11. Library

104820-sim 5.1 Reference Manual

SignalLimiter-PWM

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

Pulse width modulation (PWM) is a powerful technique for controlling analog circuits with
a processor's digital outputs. PWM is employed in a wide variety of applications, ranging
from measurement and communications to power control and conversion. The output of
a PWM block is a pulse train. The duty cycle, (the time that a pulse is on divided by the
time the pulse is off) is proportional to the value of the input signal if the input is within
the range < -input_amp , +input_amp >. For Bipolar PWM the output signal witches
between a positive and a negative value. For Unipolar PWM the output signal witches
between zero and positive or negative value.

 input bipolar PWM Unipolar PWM

 > input_amp 100% output_amp
0% -output_amp

100% output_amp
0% 0

 input_amp 100% output_amp
0% -output_amp

100% output_amp
0% 0

 0.5*input_amp 75% output_amp
25% -output_amp

50% output_amp
50% 0

 0 50% output_amp
50% -output_amp

0

 -0.5*input_amp 25% output_amp
75% -output_amp

50% 0
50% -output_amp

 -input_amp 0% output_amp
100% -output_amp

0% 0
100% -output_amp

 <-input_amp 0% output_amp
100% -output_amp

0% 0
100% -output_amp

An example is shown in the graph below. The parameter input_amp is equal to 1 and the
parameter max output is equal to 5. The frequency of the PWM signal is 10 Hz.

11. Library

104920-sim 5.1 Reference Manual

Bipolar and Unipolar PWM conversion.

Interface

Inputs Description

input

Outputs

output

Parameters

f
input_amp
output_amp

The modulating frequency [Hz].
Maximum value of the input signal.
The output value will switch between output_amp, 0
and -output_amp.

SignalLimiter-RateLimit

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model limits the input signal to a minimum and maximum rate.

doutput/dt = dinput/dt; (minimum < dinput/dt < maximum)
doutput/dt = minimum; (dinput/dt < minimum)
output = maximum (dinput/dt > maximum)

11. Library

105020-sim 5.1 Reference Manual

En example is shown below where a sinusoidal input signal is limited to a maximum rate
of 0.4 and a minimum rate of -0.8.

The rate limiter uses a first order filter to approximate the derivative of the input. Below
the cut-off frequency fl the approximation is accurate and the model behaves as a rate
limiter. Above the cut-off frequency fl the model output weakens to zero. For high values
of the cut-off frequency fl, the model will slow down simulation because it forces the
integration method to take very small time-steps. A good trade-off for most models is a
starting value of 100 [Hz].

Interface

Inputs Description

input

Outputs

output

Parameters

minimum
maximum
fl

Minimum rate of the output.
Maximum rate of the output.
Cut-off frequency [Hz]

SignalLimiter-Relay

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

11. Library

105120-sim 5.1 Reference Manual

Description

The output signal of this submodel switches between a max and a min parameter using
the sign of the input signal.

output = minimum; (input < 0)
output = maximum; (input >= 0)

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

Minimum value of the output.

Maximum value of the output.

11. Library

105220-sim 5.1 Reference Manual

SignalLimiter-RelayHysteresis

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this submodel switches between max and min parameters,
depending on the sign of the input signal, with hysteresis and dead zone applied.

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

zone

hysteresis

Minimum value of the output.

Maximum value of the output.

Magnitude of the dead zone.

Magnitude of the hysteresis.

11. Library

105320-sim 5.1 Reference Manual

switch-Break

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model switches between zero and the input signal, depending on the value of a
condition input signal.

output = 0; (condition > 0)
output = input; (condition <= 0)

Interface

Inputs Description

input_high

input_low

condition

Switching condition

Outputs

output

Switch-Default

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model switches between two input signals, depending on the value of a third input
signal.

output = input_high; (condition >= 0)
output = inp_low; (condition < 0)

Interface

Inputs Description

input_high

input_low

11. Library

105420-sim 5.1 Reference Manual

condition Switching condition

Outputs

output

Switch-Make

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model switches between the input signal and zero, depending on the value of a
condition input signal.

output = input; (condition > 0)
output = 0; (condition <= 0)

Interface

Inputs Description

input_high

input_low

condition

Switching condition

Outputs

output

Switch-Maximum

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the maximum of two input signals.

11. Library

105520-sim 5.1 Reference Manual

output = input1; (input1 >= input2)
output = input2; (input1 < input2)

Interface

Inputs Description

input1

input2

Outputs

output

Switch-Minimum

Library

Signal\Block Diagram Non-Linear

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model yields the minimum of two input signals.

output = input1; (input1 <= input2)
output = input2; (input1 > input2)

Interface

Inputs Description

input1

input2

Outputs

output

11. Library

105620-sim 5.1 Reference Manual

Control11.3.3

Controlled Linear Systems

ControlledLinearSystem

Library

Signal\Control\Controlled Linear Systems

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a masked model which opens the Controller Design Editor when edited. Using this
editor the settings for a controlled linear system can be entered.

Depending on the choices made, various inputs and outputs are available. In the picture
above, the most complex model is shown. Read more about it in the Controller Design
Editor topic.

Interface

Inputs Description

r

d

n

di

uff

Controller setpoint

Output Disturbance

Measurement Disturbance

Input Disturbance
Feedforward Input

Outputs Description

z

uc

Plant output

Feedforward Error Signal

Parameters

11. Library

105720-sim 5.1 Reference Manual

hidden The parameters and initial values of this model are hidden

for the user. Use the Controller Design Editor to edit this

model (select the model and choose Go Down).

ControlledSystem

Library

Signal\Control\Controlled Linear Systems

Implementations

rz
rzff
rzffn
rzffnd
rzffnddi
rzn
rznd
rznddi

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Translation).

Description - rz

This model represents a controlled linear system described by graphically connected
Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rz

Inputs Description

r Controller setpoint

Outputs Description

z Plant output

Parameters

 Depends on the implementation of the submodels.

11. Library

105820-sim 5.1 Reference Manual

Description - rzff

This model represents a controlled linear system described by graphically connected
Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rzff

Inputs Description

r

uff

Controller setpoint

Feedforward Input

Outputs Description

z

uc

Plant output

Feedforward Error Signal

Parameters

 Depends on the implementation of the submodels.

Description - rzffn

This model represents a controlled linear system described by graphically connected
Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rzffn

Inputs Description

11. Library

105920-sim 5.1 Reference Manual

r

n

uff

Controller setpoint

Measurement Disturbance

Feedforward Input

Outputs Description

z

uc

Plant output

Feedforward Error Signal

Parameters

 Depends on the implementation of the submodels.

Description - rzffnd

This model represents a controlled linear system described by graphically connected
Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rzffnd

Inputs Description

r

d

n

uff

Controller setpoint

Output Disturbance

Measurement Disturbance

Feedforward Input

Outputs Description

z

uc

Plant output

Feedforward Error Signal

Parameters

 Depends on the implementation of the submodels.

Description-rzffnddi

This model represents a controlled linear system described by graphically connected
Linear systems:

11. Library

106020-sim 5.1 Reference Manual

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface-rzffnddi

Inputs Description

r

d

n

di

uff

Controller setpoint

Output Disturbance

Measurement Disturbance

Input Disturbance

Feedforward Input

Outputs Description

z

uc

Plant output

Feedforward Error Signal

Parameters

 Depends on the implementation of the submodels.

Description - rzn

This model represents a controlled linear system described by graphically connected
Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rzn

Inputs Description

r Controller setpoint

11. Library

106120-sim 5.1 Reference Manual

n Measurement Disturbance

Outputs Description

z Plant output

Parameters

 Depends on the implementation of the submodels.

Description - rznd

This model represents a controlled linear system described by graphically connected
Linear systems:

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rznd

Inputs Description

r

d

n

Controller setpoint

Output Disturbance

Measurement Disturbance

Outputs Description

z Plant output

Parameters

 Depends on the implementation of the submodels.

Description - rznddi

This model represents a controlled linear system described by graphically connected
Linear systems:

11. Library

106220-sim 5.1 Reference Manual

These Linear Systems (F,C,P and M) can be edited using the Linear Systems Editor or
replaced by drag and drop (any desired model) giving maximum flexibility.

Interface - rznddi

Inputs Description

r

d

n

di

Controller setpoint

Output Disturbance

Measurement Disturbance

Input Disturbance

Outputs Description

z Plant output

Parameters

 Depends on the implementation of the submodels.

Neural Networks

BSplineNetwork

Library

Signal\Control\Neural Networks

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a masked model which opens the BSpline Editor when edited. Using this editor the
settings for a B-Spline Network can be entered.

Interface

Inputs Description

any The user can defined any input.

11. Library

106320-sim 5.1 Reference Manual

error

The error signal: the difference between the desired output

and the network output.

Outputs Description

output The network output

Parameters

learning_rate

network_order

online_learning

The learning rate

The order of the spline-interpolation.

A boolean: Learn at each sample (True) or Learn after

Leaving Spline (False).

regularization

regularization_width

load_weights

save_weights

Not yet supported.

Not yet supported.

A boolean: Load weights before simulation.

A boolean: Save weights after simulation.

MLPNetwork

Library

Signal\Control\Neural Networks

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a masked model which opens the MLP Editor when edited. Using this editor the
settings for a MLP Network can be entered.

Interface

Inputs Description

any The user can defined any network input.

error

The error signal: the difference between the desired output

and the network output.

Outputs Description

any The user can defined any network output.

Parameters

nr_hidden

learning_rate

readWeights

writeWeights

Number of hidden neurons.

The learning rate.

A boolean: Load weights before simulation.

A boolean: Save weights after simulation.

11. Library

106420-sim 5.1 Reference Manual

PID Control

PIDControl

PID control stands for Proportional, Integral and Derivative control. PID controllers have
been around since about 1940. Modern controllers perform the same functions as those,
perhaps with a few embelishments and certainly more accurately, but the same
functions nonetheless.

PID controllers are the best general purpose controllers to do the job. More sophisticated
control algorithms will produce better performance when fitted to a specific process, but
poorer performance results if the process changes. This sensitivity to process changes is
called robustness, with more robust being less sensitive. The PID algorithm is an
excellent trade-off between robustness and performance.

Although theory on PID-controllers is widespread and more or less uniform nowadays, in
practice there are many algorithms and parameter settings. The 20-sim Control library,
supports the most common algorithms.

Setpoint and other Variables

A standard control loop is shown in the figure below. A controller tries to steer a process
in a way that minimizes the difference between a given setpoint and the output of that
process. In other words, the controller tries to get the process output as close as
possible to the given setpoint.

Setpoint

The setpoint (SP) is where the process output should match. It can be a static value
(e.g. the desired temperature of a room) or a varying value (e.g. the desired position of
a robot-tip).

The setpoint is where you would like the measurement to be. Error is defined as the
difference between set-point and measurement.

Process

The process is the system that should be controlled. It is sometimes referred to as
plant or system. The process should have has at least one impute to control its
behavior and at least one output that is a measure of its behavior. Consider for example
a gas heated house as process. The heater feed could be the process input and the
measured room temperature the process output.

11. Library

106520-sim 5.1 Reference Manual

The process input is connected to the controller output or controller variable (CV).
It is mostly the input for an actuator that can drive the process to a desired setpoint.

The process output is commonly known as process variable (PV), or measured
variable (MV). Other names of the process output are system output and measurement.

Error

The error is defined as the setpoint minus the process output. It is a measure for how
much the process deviates from the desired setpoint, and thus how much the controller
should respond to get the process back to the desired setpoint.

Setpoint Weighting

For many controllers the controller input is equal to the error signal. Some controllers,
however use specialized inputs for their proportional, integral and derivative parts
(setpoint weighting). They have two inputs, one for the setpoint and one for the
measured variable and are therefore also described as 2-DOF controllers.

Proportional Control

Gain

When we talk about the proportional action of a controller, we generally refer to the
proportional gain. The action means that the controller moves in proportion to the
error between setpoint (SP) and process output (PV):

controller output = K*error = K*(SP - PV)

where the gain is denoted by the parameter K. Many terms have been used by different
manufacturers to designate this action. It has been called proportional gain, gain,
throttling band, sensitivity and proportional band.

Proportional Band

In practice, the controller output is limited, either by its own limitations or by the
limitations of the corresponding actuator. Let umax and umin denote the minimum and
maximum output of the controller. The proportional band of the controller is then defined
as:

In the ideal case, a controller can have an unlimited output. The proportional band
(PB) is then defined as:

This definition of proportional band is often used instead of the controller gain. The value
is expressed in percent (%).

11. Library

106620-sim 5.1 Reference Manual

Direct Acting / Reverse Acting

Suppose a process with a controller output CV and a process output PV is in steady state
and kept to a certain setpoint SP. For proportional control the following equations can be
found:

PV = P(CO)
CV = K*error = K*(SP - PV)

where P is the process function that yields a measured variable as a result of the
controller output. If the controller output decreases as the measured variable increases
the controller is said to be direct acting. If the controller output increases as the
measured variable increases, then it is called reverse acting. In other words, the
controller is direct acting if the gain K is positive and reverse acting if the gain K is
negative.

This is not only valid for proportional control, but for all PID controllers in the 20-sim
library. If you need a reverse acting controller, simply use a negative gain.

Offset

If you look at the equation for the proportional gain:

CV = K*error = K*(SP - PV)

you will notice that there has to be an error to produce a controller output. This means
that with proportional control only, there will always be a small offset between the
setpoint and the measured variable. To remove this offset, integral control has to be
used.

Integral Control

With integral action, the controller output is proportional to the amount of time the
error is present. Integral action eliminates offset that remains when proportional control
is used.

controller output = (1/Ti)*int(error)

where the parameter Ti is called the integral time. Integral action is also know as reset
and the parameter Ti as reset time.

Integral action gives the controller a large gain at low frequencies that results in
eliminating offset. Integrals give information concerning the past. That is why integrals
are always late. Integrals provide stability but have a tendency to get stuck in the past.
In most controllers the proportional and integral action are combined. The output of the
combined proportional and integral action (in s-domain) is then:

with E equal to SP - PV.

11. Library

106720-sim 5.1 Reference Manual

Derivative Control

With derivative action, the controller output is proportional to the rate of change of the
measurement or error. Some manufacturers use the term rate or pre-act instead of
derivative. Derivative, rate and pre-act are the same thing. The controller output is
calculated by the rate of change of the error with time.

controller output = Td*d(error)/dt = Td*d(SP - PV)/dt

where the parameter Td is called derivative time. Derivative control is
mathematically the opposite of integral action, but while we might have an integral-only
controller, we would never have a derivative-only controller. The reason for this is that
derivative control only knows the error is changing. It does not know what the setpoint
actually is.

Derivative action has the potential to improve performance when sudden changes in
measured variable occur, but is should be used with care. It is mostly a matter of using
enough, not too much.

Derivative Gain Limitation

In most commercial processes sudden changes in process output may appear. In most
cases a sudden change in the slope of such a process output cannot be avoided at all
times. Using such a process output in controllers with pure derivative action, would lead
to unwanted steps in the controller output. Moreover, high frequency noise in the
measured signals may lead to unwanted large outputs of the controller.

To prevent this unwanted effect, the derivative action can be filtered by a first-order
system with time constant Td/N.

This approximation acts as a derivative for low-frequency signal components. The gain,
however, is limited to K*N. This means that high-frequency measurement noise is
amplified at most by a factor KN. This is why the parameter N is called the derivative
gain limitation. Typical values of N are 8 to 20. Sometimes the reciprocal value of N is
used, mostly with the name beta (beta = 1/N).

PID Controller Types

In literature various PID controller laws and types have been described. In industry two
types prevail: the parallel form and the series form.

Parallel Form

A PID controller in parallel form (also known as standard form, ISA form or non-
interacting form), has the control equation:

11. Library

106820-sim 5.1 Reference Manual

The controller actions (P, I and D) act independently as can be seen in the
corresponding block diagram representation.

Series Form

A PID controller in series form (also known as interacting form), has the control
equation:

The controller actions (P, I and D) act dependently as can be seen in the corresponding
block diagram representation.

Note
P and PI controllers are the same in series and parallel form.

Setpoint Weighting

Standard PID controller equations operate on the error signal (Error Based):

A more flexible structure is obtained by treating the setpoint (SP) and the process output
(PV) separately (Setpoint Weighting):

11. Library

106920-sim 5.1 Reference Manual

The I-action always operates on the error to insure that the error between setpoint and
process output will be minimized.

In most commercial controllers, the parameters b an c are chosen 1 or 0:

b = 1 -> proportional control using the error: SP - PV (error feedback).
b = 0 -> only proportional control on the process output (PV).
c = 1 -> derivative control using the error: SP - PV (error feedback).
c = 0 -> only derivative control on the process output (PV).

Anti-Windup

All actuators have physical limitations, a control valve cannot be more than fully open or
fully closed, a motor has limited velocity, etc. This has severe consequences for control.
Integral action in a PID controller is an unstable mode. This does not cause any
difficulties when the loop is closed. The feedback loop will, however, be broken when the
actuator saturates because the output of the saturating element is then not influenced by
its input. The unstable mode in the controller may then drift to very large values. When
the actuator desaturates it may then take a long time for the system to recover. It may
also happen that the actuator bounces several time between high and low values before
the system recovers.

Integrator windup

Integrator windup is illustrated in the figure below, which shows simulation of a system
where the process dynamics is a saturation at a level of ±0.1 followed by a linear
system with the transfer function:

11. Library

107020-sim 5.1 Reference Manual

Because of the saturation in the actuator, the control signal saturates immediately when
the step is applied. The control signal then remains in saturation level and the feedback
is broken. The integral part continues to increase because the error (SP - PV) is positive.
The integral part starts to decrease when the process output (PV) has become larger
than the setpoint (SP), but the process output remains saturated because of the large
integral part. Slowly the process output decreases towards the setpoint.

The net effect is that there is a large overshoot. This phenomenon is called "integrator
windup". A good insight in windup is found when looking at the proportional band.

Proportional Band and Windup

The values of the process output that correspond to the minimum and maximum output
are denoted as ymax and ymin. The controller operates linearly only if the process
output is in the range (ymax , ymin). The controller output saturates when the process
output is outside this band. A good insight into the windup problem is obtained by
investigating the range (ymax , ymin). All 20-sim controller models in parallel form with
anti-windup scheme, have the extra variables PB_high and PB_low which are equal to
ymax and ymin.

An illustration of the proportional band is given below. The same linear system is used
with the same controller. As can be seen, the actuator is saturated from t = 0 until t =
14. At t = 14 the process output enters the range (PB_high , PB_low) and controller
feedback is regained.

11. Library

107120-sim 5.1 Reference Manual

Anti-Windup

Integrator windup can be avoided, by making sure that the integral is kept to a proper
value when the actuator saturates, so that the controller is ready to resume action, as
soon as the control error changes. This anti-windup scheme is known as tracking or back
calculation.

parallel form

As well known form of tracking is linear feedback anti windup. It is shown in the figure
below (parallel form). The actuator is represented by a signal limiter. The difference
between actuator input and output (TR) is fed back to the integrator through the gain 1/
Ta. As soon as the limiter saturates, this signal becomes non-zero and prevents the
integrator from winding up. The tracking time constant Ta can be used to tune then
amount of anti windup.

11. Library

107220-sim 5.1 Reference Manual

series form

The same scheme can also be used for controllers with a series form. A diagram is
shown below.

Tracking Time constant

To prevent the integrator from saturating, the tracking time constant must be chosen
small. Too small values, however decrease the controller performance. As a rule of
thumb Åström suggested to choose the tracking time constant Td <= Ta <= Ti. Some
authors prefer a good controller performance and suggest to choose Ta = Ti.

External Tracking

As long as the actuator output is equal to the controller output, anti-windup scheme will
not be activated and the controller is in normal operation (control mode). When the
actuator saturates, the anti-windup scheme will be activated and prevent the controller
output from wandering away. In effect the anti-windup scheme matches the controller
output and actuator output. This is why the actuator output is also known as the tracking
signal (TR).

11. Library

107320-sim 5.1 Reference Manual

When an external actuator signal is used (external tracking signal) is is important to
compensate for the actuator gain. Otherwise the tracking signal is not equal to the
controller output, during normal operation and the anti-windup scheme is activated.

Actuator Model
Anti-windup schemes are based on the difference between actuator input (controller
output) and actuator output. These signals are not always available. Therefore an
actuator model can be used inside the controller to yield this difference. In the library
models, a signal limiter is used the actuator model:

output = minimum; (input < minimum)
output = input; (minimum <= input <= maximum)
output = maximum (input > maximum)

11. Library

107420-sim 5.1 Reference Manual

Initial Output

The output of PID controllers at time 0 depends on the given setpoint (SP), process
output (PV) and control law. In general the process will not be at rest (PV <> 0) and the
setpoint will not be equal to the process output (SP <> 0). This will result in an undesired
step in the controller signal at startup. Even if the setpoint is equal to the process output
(SP = PV) at startup, the use of setpoint weighting may result in a step in the control
signal:

Let PV be a non zero value and b or c equal to zero. The P or D -action will then lead to
a step in the control signal.

To avoid such a step, the initial output of some PID-controllers can be set to any value.
The slope of the the control output of these controllers at startup is equal to zero.

Initial output for with delays

Controllers with manual output at start-up, use the process output at t = 0, PV(0), to
calculate an internal offset that compensates for the initial controller output. Care should
be taken when delays are available between the process output and the controller input.
Due to these, the measured process output at t = 0 in the controller (PV(0)') may not
be the same as the real process output at t = 0 (PV(0)). As a result, a wrong offset will
be calculated and the initial output will not have the desired value. To avoid this, all
initial values of delay elements between the process and controller should be chosen
properly (e.g. equal to the initial process output) !

Commercial Controllers

According to b Åström the table below summarizes the properties of some commercial
controllers.

Controller Structure Setpoint
Weighting
b

Setpoint
Weightin
g
c

Derivative
Gain
Limitation
N

Sampling
Period
s

1. Allen Bradley PLC 5
2. Baliley Net 90
3. Fisher Controls Provox
4. Fisher Controls DPR
900,910
5. Fisher Porter Micro DCI
6. Foxboro Model 761
7. Honeywell TDC
8. Moore Products Type
352
9. Alfa Laval ECA40, ECA
400

P
P
S
S
S
S
S
S
S
S
S
S

1.0
0.0 or 1.0
1.0
0.0
1.0
1.0
1.0
1.0
0.0
0.0 or 1.0
1.0
1.0

1.0
0.0 or
1.0
0.0
0.0
0.0 or
1.0
0.0
1.0
0.0
0.0
0.0

None
10
8
8
none
10
8
1-30
8
17 or 20
3.3 – 10
none

Load dependent
0.25
0.1, 0.25 or 1.0
0.2
0.1
0.25
0.33, 0.5 or 1.0
0.1
0.2
0.25
0.2
0.036 – 1.56

11. Library

107520-sim 5.1 Reference Manual

10. Taylor Mod 30
11. Toshiba TOSDIC 200
12. Turnbull TCS 6000
13. Yokogawa SLPC

P 0.0 or 1.0 1.0
1.0
0.0 or
1.0

10 0.1

Literature

1. K.J. Astrom, T. Hagglund, Pid Controllers, Instrument Society of America; ISBN:
1556175167, (1995), (avalaible at www.amazon.com)

2. B.G. Liptak, Instrument Engineers' Handbook, Volume 1: Process Measurement,
CRC Pr; ISBN: 0801981972, (2000), (avalaible at www.amazon.com).

3. B.G. Liptak, Instrument Engineers' Handbook, Volume 2: Process Control, CRC Pr;
ISBN: 0801982421, (2000), (avalaible at www.amazon.com).

4. G.K. McMillan, D.M. Considine, Process/Industrial Instruments and Controls
Handbook, McGraw Hill Text, ISBN: 0070125821, (1999), (avalaible at
www.amazon.com).

5. B. Wittenmark, K.J. Astrom, Computer-Controlled Systems: Theory and Design,
Prentice Hall; ISBN: 0133148998, (1996), (avalaible at www.amazon.com).

Expert information can also be found in the sci.eng.control newsgroup. An exelent
frequently asked questions list can be found on the internet pages of Ron Graham
(http://www.tcnj.edu/~rgraham/PID-tuning.html).

Continuous

Naming Conventions

Two types of PID-controllers are available in this library. The first type of controllers use
an error input and the second type of controllers use separate Setpoint (SP) and
Measured Variable (MV) input.

Error Input

PID-Controllers with the error as a direct input signal, are all in series form. The name
simply denotes the type of controller: P, PI, PD or PID. Two versions of each controller
exists: continuous time and discrete time. They can be found in the subdirectories

Continuous and Discrete.

Ports

All controllers have one input ports and one output port:

1. error: The error between setpoint and measured variable.

2. output: The controller output.

Parameters

Depending on the type of controller, the following parameters can be used:

11. Library

107620-sim 5.1 Reference Manual

1. kd: The proportional gain of the controller.

2. tauD: The derivative time constant.

3. beta: The reciprocal derivative gain limitation.

4. tauI: The integral time constant.

Controller Wizard

A special form of controllers with error input is generated by the ControllerWizard.emx
submodel. When you select this model and click Go Down the Filter Editor is opened,
allowing you to specify controllers with frequency oriented parameters.

Separate Input

Controllers with separate inputs come in many forms. The naming denotes the type of
controller and the options that are available. The type and options are also available in
the model icons.

1. Two versions of each controller exists: continuous time and discrete time.
They can be found in the subdirectories Continuous and Discrete. Continuous-
time controllers have icons with blue text and discrete-time controllers have
icons with green text.

2. The first characters denote the type of controller: P, PD, PI or PID.

3. The character p or s denote the form: parallel (p) or series (p).

4. If setpoint weighting is used, the term sp is added.

5. If an anti-windup scheme is incorporated, the term aw is added.

6. If the output at startup can be set manually, the term u0 is added.

7. If an external tracking signal is used, the term tr is added.

Ports

All controllers have two inputs ports and one output port:

11. Library

107720-sim 5.1 Reference Manual

1. SP: The setpoint

2. MV: The measured variable (also called process variable).

3. output: The controller output.

Parameters

Depending on the type of controllers, the following parameters can be used:

1. K: The proportional gain of the controller.

2. Td: The derivative time constant.

3. N: The derivative gain limitation.

4. Ti: The integral time constant.

5. b: The setpoint weighting constant for the proportional part of the controller.

6. c: The setpoint weighting constant for the derivative part of the controller.

7. Ta: The tracking time constant of the anti-windup scheme.

8. minimum: The minimum controller output representing actuator saturation.

9. maximum: The maximum controller output representing actuator saturation.

10. output_initial: The controller output at start-up.

Initial Values

Although most controllers have one or more internal states, the initial values of these
states do not need to be set manually. You use the default values (0) at the start of a
simulation. To get a desired output of the controller at startup , the parameter
output_initial should be used.

Discrete Controllers

The discrete controllers that are available in the library are directly derived from their
continuous counterparts, using approximation by backward differences. These discrete
models have identical behavior, as long as the sample time is not chosen too low.
Discrete loops in 20-sim are automatically detected and assigned a default sampletime.
You can change the sample time in the Run Properties Editor (in the Simulator from
the Properties menu select the Simulation command).

Variables

Some PID controllers (parallel form with anti-windup) have two internal variables that
are of interest. PB_high and PB_low. These parameters are the upper and lower bound
of the proportional band.

11. Library

107820-sim 5.1 Reference Manual

Controller Use

All controllers must can be used as shown in the figure below. The upper part shows a
continuous time controller and the bottom part shows a discrete time controller.

Error Input

1. An error signal is generated with a plus minus element. Its serves as an
input of the controller.

2. The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors
should be used, when connecting a discrete-time controller to a continuous-time process.

Separate Input

1. A setpoint signal is connected with the SP port of the controller.

2. The process output is connected with the PV port of the controller.

3. The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors
should be used, when connecting a discrete-time controller to a continuous-time
process.

11. Library

107920-sim 5.1 Reference Manual

ControllerWizard

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

A special form of controllers with error input is generated by the

ControllerWizard.emx submodel. When you select this model and click Go Down the

Filter Editor is opened, allowing you to specify controllers with frequency oriented
parameters.

Interface

Inputs Description

u The error input signal: plant-output minus
set point.

Outputs

y Output signal: input for the plant.

Parameters

 Look in the Filter Editor helpfile to find a
detailed description of the possible controller
types and their parameters.

Controller-P

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a P controller. The output of this controller (in s-domain) is:

with E equal to SP - PV.

Interface

Inputs Description

SP

PV

Setpoint.

Process output.

11. Library

108020-sim 5.1 Reference Manual

Outputs

CV Controller output: input for the process.

Parameters

K Proportional gain.

Controller-PD_p

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PD controller in parallel form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Proportional gain.
Derivative time constant (Td > 0).
Derivative gain limitation.

Initial Values

yes Should be left default!

11. Library

108120-sim 5.1 Reference Manual

Controller-PD_s

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PD controller in series form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Initial Values

yes Should be left default!

Controller-PI

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller. The output of this controller (in s-domain) is:

11. Library

108220-sim 5.1 Reference Manual

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

Proportional gain.

Integral time constant (Ti > 0).

Initial Values

yes Should be left default!

Controller-PI_sp

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

11. Library

108320-sim 5.1 Reference Manual

Parameters

K

Ti

b

Proportional gain.
Integral time constant (Ti > 0).
Proportional setpoint weighting parameter.

Initial Values

yes Should be left default!

Controller-PI_sp_aw

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

An anti-windup scheme has been added to this controller.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Ta

minimum

maximum

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Tracking time constant.
Minimum controller output.
Maximum controller output.

11. Library

108420-sim 5.1 Reference Manual

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PI_sp_aw_u0

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Ta

minimum

maximum

output_initial

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

11. Library

108520-sim 5.1 Reference Manual

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PI_sp_aw_u0_tr

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up. An external tracking signal must be supplied to activate the anti-
windup scheme.

Interface

Inputs Description

SP

MV

TR

Setpoint.

Measured variable or process output.

Tracking signal.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Ta

output_initial

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Tracking time constant.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

11. Library

108620-sim 5.1 Reference Manual

Controller-PID_p

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Initial Values

yes Should be left default!

11. Library

108720-sim 5.1 Reference Manual

Controller-PID_p_sp.

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

11. Library

108820-sim 5.1 Reference Manual

Controller-PID_p_sp_aw

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

11. Library

108920-sim 5.1 Reference Manual

Controller-PID_p_sp_aw_u0

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

11. Library

109020-sim 5.1 Reference Manual

Controller-PID_p_sp_aw_u0_tr

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up. An external tracking signal must be supplied to activate the anti-
windup scheme.

Interface

Inputs Description

SP

MV

TR

Setpoint.

Measured variable or process output.

Tracking signal.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

11. Library

109120-sim 5.1 Reference Manual

Controller-PID_s

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Initial Values

yes Should be left default!

11. Library

109220-sim 5.1 Reference Manual

Controller-PID_s_sp

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Initial Values

yes Should be left default!

11. Library

109320-sim 5.1 Reference Manual

Controller-PID_s_sp_aw

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

Initial Values

yes Should be left default!

11. Library

109420-sim 5.1 Reference Manual

Controller-PID_s_sp_aw_u0

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

The controller output at start-up.

Initial Values

yes Should be left default!

11. Library

109520-sim 5.1 Reference Manual

Controller-PID_s_sp_aw_u0_tr

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up. An external tracking signal must be supplied to activate the anti-
windup scheme.

Interface

Inputs Description

SP

MV

TR

Setpoint.

Measured variable or process output.

Tracking signal.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

The controller output at start-up.

Initial Values

yes Should be left default!

11. Library

109620-sim 5.1 Reference Manual

P

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a P controller. The output of this controller is:

with the input of the controller equal to the error and the output of the controller used as

the plant input:

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp Proportional gain.

PD

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a PD controller in series form. The transfer function of an ideal PD-controller is:

11. Library

109720-sim 5.1 Reference Manual

with the input of the controller equal to the error and the output of the controller used as
the plant input:

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp

tauD

beta

Proportional gain.

Derivative gain (tauD <> 0).

Tameness constant (0 < beta << 1).

Initial Values

state_initial output(0) = state_initial - kp*error(0)*/beta

PI

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller. The transfer function of the controller is:

with the input of the controller equal to the error and the output of the controller used as
the plant input:

11. Library

109820-sim 5.1 Reference Manual

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp

tauI

Proportional gain.

Integral gain (tauI <> 0).

Initial Values

state(0) output(0) = state(0) - kp*error(0)

PID

Library

Signal\Control\PID Control\Continuous

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form. The transfer function is:

with the input of the controller equal to the error and the output of the controller used as
the plant input:

11. Library

109920-sim 5.1 Reference Manual

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp

tauD

tauI

beta

Proportional gain.

Derivative gain (tauD <> 0).

Integral gain (tauD <> 0).

Tameness constant (0 < beta << 1).

Initial Values

pdstate(0) pdout(0) = pdstate(0) - kp*error(0)*/beta

pistate(0) output(0) = pistate(0) - pdout(0)

Discrete

Naming Conventions

Two types of PID-controllers are available in this library. The first type used an error
input and the second type of controller use separate setpoint and Measured Variable
input. Both types use the same internal description, so the use is just a question of
flavor.

Error Input

PID-Controllers with the error as a direct input signal, are all in series form. The name
simply denotes the type of controller: P, PI, PD or PID. Two versions of each controller
exists: continuous time and discrete time. They can be found in the subdirectories

Continuous and Discrete.

Ports

All controllers have one input ports and one output port:

1. error: The error between setpoint and measured variable.

2. output: The controller output.

11. Library

110020-sim 5.1 Reference Manual

Parameters

Depending on the type of controller, the following parameters can be used:

1. kd: The proportional gain of the controller.

2. tauD: The derivative time constant.

3. beta: The reciprocal derivative gain limitation.

4. tauI: The integral time constant.

Separate Input

Controllers with separate inputs come in many forms. The naming denotes the type of
controller and the options that are available. The type and options are also available in
the model icons.

1. Two versions of each controller exists: continuous time and discrete time.
They can be found in the subdirectories Continuous and Discrete. Continuous-
time controllers have icons with blue text and discrete-time controllers have
icons with green text.

2. The first characters denote the type of controller: P, PD, PI or PID.

3. The character p or s denote the form: parallel (p) or series (p).

4. If setpoint weighting is used, the term sp is added.

5. If an anti-windup scheme is incorporated, the term aw is added.

6. If the output at startup can be set manually, the term u0 is added.

7. If an external tracking signal is used, the term tr is added.

Ports

All controllers have two inputs ports and one output port:

11. Library

110120-sim 5.1 Reference Manual

1. SP: The setpoint

2. MV: The measured variable (also called process variable).

3. output: The controller output.

Parameters

Depending on the type of controllers, the following parameters can be used:

1. K: The proportional gain of the controller.

2. Td: The derivative time constant.

3. N: The derivative gain limitation.

4. Ti: The integral time constant.

5. b: The setpoint weighting constant for the proportional part of the controller.

6. c: The setpoint weighting constant for the derivative part of the controller.

7. Ta: The tracking time constant of the anti-windup scheme.

8. minimum: The minimum controller output representing actuator saturation.

9. maximum: The maximum controller output representing actuator saturation.

10. output_initial: The controller output at start-up.

Initial Values

Although most controllers have one or more internal states, the initial values of these
states do not need to be set manually. You use the default values (0) at the start of a
simulation. To get a desired output of the controller at startup , the parameter
output_initial should be used.

Discrete Controllers

The discrete controllers that are available in the library are directly derived from their
continuous counterparts, using approximation by backward differences. These discrete
models have identical behavior, as long as the sample time is not chosen too low.
Discrete loops in 20-sim are automatically detected and assigned a default sampletime.
You can change the sample time in the Run Properties Editor (in the Simulator from
the Properties menu select the Simulation command).

Variables

Some PID controllers (parallel form with anti-windup) have two internal variables that
are of interest. PB_high and PB_low. These parameters are the upper and lower bound
of the proportional band.

11. Library

110220-sim 5.1 Reference Manual

Controller Use

All controllers must can be used as shown in the figure below. The upper part shows a
continuous time controller and the bottom part shows a discrete time controller.

Error Input

1. An error signal is generated with a plus minus element. Its serves as an
input of the controller.

2. The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors
should be used, when connecting a discrete-time controller to a continuous-time process.

Separate Input

1. A setpoint signal is connected with the SP port of the controller.

2. The process output is connected with the PV port of the controller.

The controller output is connected with the process input.

As shown in the figure, analog to digital convertors and digital to analog convertors
should be used, when connecting a discrete-time controller to a continuous-time process.

11. Library

110320-sim 5.1 Reference Manual

Controller-P

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a P controller. The output of this controller (in s-domain) is:

with E equal to SP - PV.

Interface

Inputs Description

SP

PV

Setpoint.

Process output.

Outputs

CV Controller output: input for the process.

Parameters

K Proportional gain.

Controller-PD_p

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PD controller in parallel form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

11. Library

110420-sim 5.1 Reference Manual

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Initial Values

yes Should be left default!

Controller-PD_s

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PD controller in series form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

11. Library

110520-sim 5.1 Reference Manual

K

Td

N

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Initial Values

yes Should be left default!

Controller-PI

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

Proportional gain.

Integral time constant (Ti > 0).

Initial Values

yes Should be left default!

11. Library

110620-sim 5.1 Reference Manual

Controller-PI_sp

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Initial Values

yes Should be left default!

Controller-PI_sp_aw

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

11. Library

110720-sim 5.1 Reference Manual

An anti-windup scheme has been added to this controller.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Ta

minimum

maximum

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PI_sp_aw_u0

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

11. Library

110820-sim 5.1 Reference Manual

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Ta

minimum

maximum

output_initial

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PI_sp_aw_u0_tr

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller with setpoint weighting. The output of this controller (in s-domain)
is:

11. Library

110920-sim 5.1 Reference Manual

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up. An external tracking signal must be supplied to activate the anti-
windup scheme.

Interface

Inputs Description

SP

MV

TR

Setpoint.

Measured variable or process output.

Tracking signal.

Outputs

output Controller output: input for the process.

Parameters

K

Ti

b

Ta

output_initial

Proportional gain.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Tracking time constant.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PID_p

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form. The output of this controller (in s-domain) is:

11. Library

111020-sim 5.1 Reference Manual

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Initial Values

yes Should be left default!

Controller-PID_p_sp.

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

11. Library

111120-sim 5.1 Reference Manual

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PID_p_sp_aw

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

11. Library

111220-sim 5.1 Reference Manual

An anti-windup scheme has been added to this controller.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PID_p_sp_aw_u0

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

11. Library

111320-sim 5.1 Reference Manual

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

Controller-PID_p_sp_aw_u0_tr

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

11. Library

111420-sim 5.1 Reference Manual

Description

This is a PID controller in parallel form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up. An external tracking signal must be supplied to activate the anti-
windup scheme.

Interface

Inputs Description

SP

MV

TR

Setpoint.

Measured variable or process output.

Tracking signal.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

The controller output at start-up.

Initial Values

yes Should be left default!

Interesting Variables

PB_high, PB_low Upper and lower bound of the proportional band.

11. Library

111520-sim 5.1 Reference Manual

Controller-PID_s

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form. The output of this controller (in s-domain) is:

with E equal to SP - MV.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Initial Values

yes Should be left default!

Controller-PID_s_sp

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

11. Library

111620-sim 5.1 Reference Manual

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Initial Values

yes Should be left default!

Controller-PID_s_sp_aw

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

11. Library

111720-sim 5.1 Reference Manual

An anti-windup scheme has been added to this controller.

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

Initial Values

yes Should be left default!

Controller-PID_s_sp_aw_u0

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up.

11. Library

111820-sim 5.1 Reference Manual

Interface

Inputs Description

SP

MV

Setpoint.

Measured variable or process output.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

minimum

maximum

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

Minimum controller output.

Maximum controller output.

The controller output at start-up.

Initial Values

yes Should be left default!

Controller-PID_s_sp_aw_u0_tr

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form with setpoint weighting. The output of this
controller (in s-domain) is:

An anti-windup scheme has been added to this controller as well as an offset for manual
output at start-up. An external tracking signal must be supplied to activate the anti-
windup scheme.

11. Library

111920-sim 5.1 Reference Manual

Interface

Inputs Description

SP

MV

TR

Setpoint.

Measured variable or process output.

Tracking signal.

Outputs

output Controller output: input for the process.

Parameters

K

Td

N

Ti

b

c

Ta

output_initial

Proportional gain.

Derivative time constant (Td > 0).

Derivative gain limitation.

Integral time constant (Ti > 0).

Proportional setpoint weighting parameter.

Derivative setpoint weighting parameter.

Tracking time constant.

The controller output at start-up.

Initial Values

yes Should be left default!

P

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a P controller. The output of this controller is:

with the input of the controller equal to the error and the output of the controller used as
the plant input:

11. Library

112020-sim 5.1 Reference Manual

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp Proportional gain.

PD

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a PD controller in series form. The transfer function of an ideal PD-controller is:

with the input of the controller equal to the error and the output of the controller used as
the plant input:

Interface

Inputs Description

11. Library

112120-sim 5.1 Reference Manual

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp

tauD

beta

Proportional gain.

Derivative gain (tauD <> 0).

Tameness constant (0 < beta << 1).

Initial Values

state_initial output(0) = state_initial - kp*error(0)*/beta

PI

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a PI controller. The transfer function of the controller is:

with the input of the controller equal to the error and the output of the controller used as
the plant input:

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

11. Library

112220-sim 5.1 Reference Manual

kp

tauI

Proportional gain.

Integral gain (tauI <> 0).

Initial Values

state(0) output(0) = state(0) - kp*error(0)

PID

Library

Signal\Control\PID Control\Discrete

Use

Domains: Continuous, Discrete Size: 1-D. Kind: Block Diagrams.

Description

This is a PID controller in series form. The transfer function is:

with the input of the controller equal to the error and the output of the controller used as
the plant input:

Interface

Inputs Description

error Input signal: plant-output minus set point.

Outputs

output Output signal: input for the plant.

Parameters

kp

tauD

tauI

beta

Proportional gain.

Derivative gain (tauD <> 0).

Integral gain (tauD <> 0).

Tameness constant (0 < beta << 1).

Initial Values

pdstate(0) pdout(0) = pdstate(0) - kp*error(0)*/beta

11. Library

112320-sim 5.1 Reference Manual

pistate(0) output(0) = pistate(0) - pdout(0)

Cost Functions11.3.4

Continuous

CostFunction

Library

Signal\Cost Functions\Continuous

Implementations

IE
ISE
IAE
ISTE
ITAE
ITSE
IAEWAI
ISEWSI
ITAEWAI

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric, Electric).

Description - IE

This submodel yields the following cost function:

output = int(e);

Description - ISE

This submodel yields the following cost function:

output = int(e2);

Description

This submodel yields the following cost function:

output = int(abs(e));

Description - ISTE

This submodel yields the following cost function:

output = int(time2*e2);

Description - ITAE

This submodel yields the following cost function:

11. Library

112420-sim 5.1 Reference Manual

output = int(time*abs(e));

Description - ITSE

This submodel yields the following cost function:

output = int(time*e2);

I

Description - IAEWAI

This submodel yields the following cost function:

output = int(abs(e) + lambda*abs(input));

Description - ISEWSI

This submodel yields the following cost function:

output = int(e2 + lambda*input2);

Description

This submodel yields the following cost function:

output = int(time*abs(e) + lambda*abs(input));

Interface

Inputs Description

e

input

Input signal

Input signal

Outputs

output

Parameters

lambda Weighting factor.

Initial Values

output_initial The initial value of the output.

Discrete

CostFunction

Library

Signal\Cost Functions\Discrete

Implementations

IE
ISE
IAE

11. Library

112520-sim 5.1 Reference Manual

ISTE
ITAE
ITSE
IAEWAI
ISEWSI
ITAEWAI

Use

Domains: Continuous. Size: 1-D. Kind: Iconic Diagrams (Electric, Electric).

Description - IE

This submodel yields the following cost function:

output = sum(e);

Description - ISE

This submodel yields the following cost function:

output = sum(e2);

Description - IAE

This submodel yields the following cost function:

output = sum(abs(e));

Description - ISTE

This submodel yields the following cost function:

output = sum(time2*e2);

Description - ITAE

This submodel yields the following cost function:

output = sum(time*abs(e));

Description - ITSE

This submodel yields the following cost function:

output = sum(time*e2);

I

Description - IAEWAI

This submodel yields the following cost function:

output = sum(abs(e) + lambda*abs(input));

Description - ISEWSI

This submodel yields the following cost function:

output = sum(e2 + lambda*input2);

Description

This submodel yields the following cost function:

11. Library

112620-sim 5.1 Reference Manual

output = sum(time*abs(e) + lambda*abs(input));

Interface

Inputs Description

e

input

Input signal

Input signal

Outputs

output

Parameters

lambda Weighting factor.

Initial Values

output_initial The initial value of the output.

Discrete11.3.5

AD

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model incorporates the basic functions of an analog to digital convertor: sample and
hold, output window (i.e. restriction of the output between a minimum and maximum
value) and quantization. The quantization is specified in bits. For example 8 bits
quantization means the output has 2^8 - 1 = 255 possible values between the given
minimum and maximum.

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

bits

initial

Minimum output value.

Maximum output value

Quantization levels (bits).

Initial output

11. Library

112720-sim 5.1 Reference Manual

Limitations

The input of this model is a continuous signal. The output of this model is a
discrete signal. 20-sim will automatically detect the existence of discrete
models. Each chain of discrete models will be assigned a specific sampletime.
You can set this sample time to any desired value in the Simulator (choose
Properties, Simulation and Discrete System).

The initial output is bounded by the window given by the minimum and
maximum and rounded by the number of bits used.

Clock-Discrete

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This models generates a logical discrete clock signal, i.e. a signal that changes from true
(1) to false (0) and vice-versa, each sample time.

Interface

Outputs Description

output

Parameters

initial Initial value of the output.

11. Library

112820-sim 5.1 Reference Manual

Limitations

The output of this model is a discrete signal. 20-sim will automatically detect the
existence of discrete models. Each chain of discrete models will be assigned a specific
sampletime. You can set this sample time to any desired value in the Simulator (choose
Properties, Simulation and Discrete System).

DA-Delay

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model incorporates the basic functions of a digital to analog convertor: zero order
hold, output window (i.e. restriction of the output between a minimum and maximum
value) and quantization. The quantisation is specified in bits. For example 8 bits
quantisation means the output has 2^8 - 1 = 255 possible values between the given
minimum and maximum.

The standard models of the discrete library assume that there is no time needed to
perform the calculations the a discrete loop. In general these calculations do take time.
To take this into account, the output of this model is delayed in time. This time delay can
be set by the user and should correspond to the time needed to perform all calculations
of the discrete loop in a real system.

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

bits

t_calc

Minimum output value.
Maximum output value
Quantisation levels (bits).
Time needed to perform all calculations of
the discrete loop.

Limitations

The input of this model is a discrete signal. The output of this model is a continuous
signal. 20-sim will automatically detect the existence of discrete models. Each chain of
discrete models will be assigned a specific sampletime. You can set this sample time to
any desired value in the Simulator (choose Properties, Simulation and Discrete
System).

11. Library

112920-sim 5.1 Reference Manual

DA

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model incorporates the basic functions of a digital to analog convertor: zero order
hold, output window (i.e. restriction of the output between a minimum and maximum
value) and quantization. The quantization is specified in bits. For example 8 bits
quantization means the output has 2^8 - 1 = 255 possible values between the given
minimum and maximum.

Interface

Inputs Description

input

Outputs

output

Parameters

minimum

maximum

bits

Minimum output value.

Maximum output value

Quantization levels (bits).

Limitations

The input of this model is a discrete signal. The output of this model is a continuous
signal. 20-sim will automatically detect the existence of discrete models. Each chain of
discrete models will be assigned a specific sampletime. You can set this sample time to
any desired value in the Simulator (choose Properties > Run and then the Discrete
System tab.)

Delay-n

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is the z-delay function with n samples delay.

11. Library

113020-sim 5.1 Reference Manual

output(k) = input(k - n*T)
with k = n * T , n = 1,2,3,...

The sample time T can be set in the Simulator (choose Properties, Simulation and
Discrete System).

Interface

Inputs Description

input

Outputs

output

Initial Values

output_initial The initial value of the block.

Parameters

n The number of sample delays (n = 1,2,3,..).

Limitations

The parameter n can not be changed during simulation. If it is increased, re-
processing of the model is necessary.

The input and output of this model are discrete signals. 20-sim will
automatically detect the existence of discrete models. Each chain of discrete
models will be assigned a specific sample time. You can set this sample time
to any desired value in the Simulator (choose Properties, Simulation and
Discrete System).

Delay

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This is the the z-delay function with one sample interval delay.

output(k) = input(k - T)
with k = n * T , n = 0,1,2,3,...

The sampletime T can be set in the Simulator (choose Properties, Simulation and
Discrete System).

11. Library

113120-sim 5.1 Reference Manual

Interface

Inputs Description

input

Outputs

output

Initial Values

output_initial The initial value of the block.

Limitations

The input and output of this model are discrete signals. 20-sim will automatically detect
the existence of discrete models. Each chain of discrete models will be assigned a
specific sampletime. You can set this sample time to any desired value in the Simulator
(choose Properties, Simulation and Discrete System).

DiscreteDifferential

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This model represents the discrete equivalent of the continuous differentiation:

output(0) = initial; (k = 0)
output(1) = (u(1) - initial)/sampletime; (k = 1)
output (k) = (u(k) - u(k-1))/sampletime; (k = n * T , n = 2,3,4,...

The sampletime T can be set in the Simulator (choose Properties, Simulation and
Discrete System). The discrete transfer function of this model is:

H(z) = (z - 1) / (z * sampletime)

which is the equivalent (using the backward difference transformation) of the continuous
time transferential:

H(s) = s

Interface

Inputs Description

input

11. Library

113220-sim 5.1 Reference Manual

Outputs

output

Parameters

initial Initial value of the output.

Limitations

The input and output of this model are discrete signals. 20-sim will automatically detect
the existence of discrete models. Each chain of discrete models will be assigned a
specific sampletime. You can set this sample time to any desired value in the Simulator
(choose Properties, Simulation and Discrete System).

DiscreteIntegral

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This model represents the discrete equivalent of the continuous integration:

output(k) = initial; (k = 0)
inp(k-T)*T + inp(k-2T)*T + inp(k-3T)*T
+ ... + inp(0)*T + initial; (k = n * T , n = 1,2,3,...)

The sampletime T can be set in the Simulator (choose Properties, Simulation and
Discrete System). The discrete transfer function of this model is:

H(z) = sampletime / (z - 1)

which is the equivalent (using the forward difference transformation) of the continuous
time transfer function:

H(s) = 1/s

Interface

Inputs Description

input

Outputs

output

Parameters

11. Library

113320-sim 5.1 Reference Manual

initial Initial value of the output.

Limitations

The input and output of this model are discrete signals. 20-sim will automatically detect
the existence of discrete models. Each chain of discrete models will be assigned a
specific sampletime. You can set this sample time to any desired value in the Simulator
(choose Properties, Simulation and Discrete System).

Hold

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model forms the interconnection between a discrete and continuous system: zero
order hold.

Interface

Inputs Description

input discrete signal

Outputs

output continuous signal

Limitations

The input of this model is a discrete signal. The output of this model is a continuous
signal. 20-sim will automatically detect the existence of discrete models. Each chain of
discrete models will be assigned a specific sampletime. You can set this sample time to
any desired value in the Simulator (choose Properties, Simulation and Discrete
System).

LinearSystem

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Kind: Block Diagrams.

11. Library

113420-sim 5.1 Reference Manual

Description

When you select this model and click Go Down a special editor opens (Linear System
Editor), allowing you to enter a linear system in State Space form, as a Transfer
Function or by adding poles and zeros:

Note

This is a discrete linear system, using the transformation. The transformation is based
on a sampletime (here 0.1 s). You can change the sampletime by going to a continuous-

time linear system (click the button) and back (click again the
button).

Interface

Inputs Description

input

Outputs
output

Initial Values

 The model has internal states that are not
accessible.

Parameters

11. Library

113520-sim 5.1 Reference Manual

 Parameters are entered by the Linear
System Editor.

Quantize-Round

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model can be used to represent quantization of an input signal. It rounds the input
as shown in the graph below. The quantization interval is specified by the least
significant bit (lsb). The maximum output error is half a least significant bit.

Note

Compare this model with the model Quantisize-Truncate which represents quantization
by truncation. Truncation results in a maximum error of a least significant bit.

Interface

Inputs Description

input

Outputs

output

Parameters

lsb Least significant bit.

11. Library

113620-sim 5.1 Reference Manual

Quantize-Truncate

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model can be used to represent quantization of an input signal. It truncates the
input as shown in the graph below. The quantization interval is specified by the least
significant bit (lsb). The maximum output error is a least significant bit.

Note

Compare this model with the model Quantisize-Round which represents quantization by
rounding. Rounding results in a maximum error of half a least significant bit.

Interface

Inputs Description

input

Outputs

output

Parameters

lsb Least significant bit.

11. Library

113720-sim 5.1 Reference Manual

Sample

Library

Signal\Discrete

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model samples and holds the input every T [s].

output = input; (t = k)
where k = n*T , with n = 0,1,2,3, ...

The sampletime T can be set in the Simulator (choose Properties, Run and Discrete
System).

Interface

Inputs Description

input

Outputs

output

Limitations

The input of this model is a continuous signal. The output of this model is a discrete
signal. 20-sim will automatically detect the existence of discrete models. Each chain of
discrete models will be assigned a specific sampletime. You can set this sample time to
any desired value in the Simulator (choose Properties, Simulation and Discrete
System).

SampleTime

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model outputs the current sampletime [s].

output = sampletime; (t = k)

The sampletime T can be set in the Simulator (choose Properties, Run and Discrete
System).

11. Library

113820-sim 5.1 Reference Manual

Interface

Inputs Description

-

Outputs

output sampletime {s}

Sigma

Library

Signal\Discrete

Use

Domains: Discrete. Size: 1-D. Kind: Block Diagrams.

Description

This model represents a discrete summation operator:

output(k) = initial;
with k = 0
outp(k) = inp(k-T) + inp(k-2T) + inp(k-3T) + ...+ inp(0) + initial
with k = n * T , n = 1,2,3,...

The sampletime T can be set in the Simulator (choose Properties, Simulation and
Discrete System).

Interface

Inputs Description

input

Outputs

output

Parameters

initial Initial value of the output.

Limitations

The input and output of this model are discrete signals. 20-sim will automatically detect
the existence of discrete models. Each chain of discrete models will be assigned a
specific sampletime. You can set this sample time to any desired value in the Simulator
(choose Properties, Simulation and Discrete System).

11. Library

113920-sim 5.1 Reference Manual

Events11.3.6

Event

Library

Signal\Events

Implementations

CrossingBoth
CrossingDown
CrossingUp

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - CrossingBoth

This is the block implementation of the event function. The output signal is a boolean
which goes from false (0) to true (1) when the input signal crosses zero (offset = 0):

output = event (input - offset);

If desired, you can change the parameter offset to trigger the event on a non-zero input
value.

The output of the event block for a sinusoidal input (parameter offset = 0).

Interface - CrossingBoth

Inputs Description

input

Outputs Description

11. Library

114020-sim 5.1 Reference Manual

output event signal (boolean)

Parameters

offset

output is true (event) when the input signal crosses

this value (default = 0)

Description - CrossingDown

This is the block implementation of the eventdown function. The output signal is a
boolean which goes from false (0) to true (1) when the input signal crosses zero with a
negative slope (offset = 0):

output = eventdown (input - offset);

If desired, you can change the parameter offset to trigger the event on a non-zero input
value.

The output of the event block for a sinusoidal input (parameter offset = 0).

Interface - CrossingDown

Inputs Description

input

Outputs Description

output event signal (boolean)

Parameters

offset

output is true (event) when the input signal crosses

this value (default = 0).

11. Library

114120-sim 5.1 Reference Manual

Description - CrossingUp

This is the block implementation of the eventup function. The output signal is a boolean
which goes from false (0) to true (1) when the input signal crosses zero with a positive
slope (offset = 0):

output = eventup (input - offset);

If desired, you can change the parameter offset to trigger the event on a non-zero input
value.

The output of the event block for a sinusoidal input (parameter offset = 0).

Interface - CrossingUp

Inputs Description

input

Outputs Description

output event signal (boolean)

Parameters

offset

output is true (event) when the input signal crosses

this value (default = 0).

11. Library

114220-sim 5.1 Reference Manual

FrequencyEvent

Library

Signal\Events

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This is the block implementation of the frequencyevent function. The output signal is a
boolean which is true (1) every time when p [s] have passed. The function starts after
an offset of o [s]. The offset parameter is optional.

output = frequencyevent(p,o);

The output of the frequencyevent block with a period of 1 s and an offset of 2 s.

Interface

Outputs Description

output event signal (boolean)

Parameters

period

offset

period in [s]

offset in [s]

11. Library

114320-sim 5.1 Reference Manual

TimeEvent

Library

Signal\Events

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This is the block implementation of the timeevent function. The output signal is a boolean
which is true (1) at a specific time given by the parameter triggerTime:

output = timeevent(triggerTime);

The output of the timeevent block with a triggerTime of 5 s.

Interface

Outputs Description

output event signal (boolean)

Parameters

triggerTime time in [s] when the output is true.

11. Library

114420-sim 5.1 Reference Manual

Filters11.3.7

Filter

Library

Signal\Block Diagram

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

When you select this model and click Go Down a special editor opens (Filter Editor),
allowing you to choose a filter:

Interface

Inputs Description

input

Outputs

output

Initial Values

 The model has internal states that are not

accessible.

Parameters

 Parameters are entered by the Filter Editor.

11. Library

114520-sim 5.1 Reference Manual

LowPassFilter-BW2

Library

Signal\Filters

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a second order Butterworth filter. The bandwidth is given in Hz. The phase and
magnitude plot (bandwidth = 1 Hz) are shown in the figure below.

Interface

Outputs Description

input,output

Parameters

BW Bandwidth (Hz)

Initial Values

y_initial Output value of the filter at t = 0 s.

11. Library

114620-sim 5.1 Reference Manual

LowPassFilter-BW4

Library

Signal\Filters

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a fourth order Butterworth filter. The bandwidth is given in Hz. The phase and
magnitude plot (bandwidth = 1 Hz) are shown in the figure below.

Interface

Outputs Description

input,output

Parameters

11. Library

114720-sim 5.1 Reference Manual

BW Bandwidth (Hz)

Initial Values

y_initial Output value of the filter at t = 0 s.

LowPassFilter-FO

Library

Signal\Filters

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a first order filter. with transfer function:

The bandwidth is given in Hz. The phase and magnitude plot (bandwidth = 1 Hz) are
shown in the figure below.

11. Library

114820-sim 5.1 Reference Manual

Interface

Outputs Description

input,output

Parameters

BW Bandwidth (Hz)

Initial Values

state_initial Output value of the filter at t = 0 s.

11. Library

114920-sim 5.1 Reference Manual

LowPassFilter-SO

Library

Signal\Filters

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a second order filter. with transfer function:

The bandwidth is given in Hz. The phase and magnitude plot (bandwidth = 1 Hz) are
shown in the figure below.

Interface

Outputs Description

input,output

Parameters

11. Library

115020-sim 5.1 Reference Manual

BW

Q

Bandwidth (Hz)

Quality ()

Initial Values

state1_initial

state2_initial

Output rate of the filter at t = 0 s.

Output value of the filter at t = 0 s.

Import Export11.3.8

Matlab

DoFromMatlab

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends a command to the Matlab workspace during simulation, and gets
the output signal from the Matlab workspace.

Interface

Outputs Description

output The variable from the Matlab workspace.

Parameters

command Command string in Matlab format

11. Library

115120-sim 5.1 Reference Manual

name Name of the variable inside the Matlab workspace.

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

DoMatlab-Final

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends a command to the Matlab workspace at the end of the simulation.

Interface

Parameters Description

command Command string in Matlab format

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

DoMatlab-Initial

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends a command to the Matlab workspace at the start of the simulation.

Interface

Inputs Description

Outputs

11. Library

115220-sim 5.1 Reference Manual

Parameters

command Command string in Matlab format

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

DoMatlab

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends a command to the Matlab workspace during simulation.

Interface

Parameters Description

command Command string in Matlab format

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

FromMatlab

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel gets an output from the Matlab workspace during simulation.

Interface

Parameters Description

name Name of the variable inside the Matlab workspace

11. Library

115320-sim 5.1 Reference Manual

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

ToDoFromMatlab

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the input signal to the Matlab workspace, sends the command to
the workspace, and gets the output variable back. This is done during the 20-sim
simulation.

Interface

Inputs Description

input The variable for the Matlab workspace.

Outputs

output The variable from the Matlab workspace

Parameters

command Command string in Matlab format

nameInput Name of the input variable in the Matlab workspace.

nameOutput Name of the output variable in the Matlab
workspace.

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

11. Library

115420-sim 5.1 Reference Manual

ToDoMatlab

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the input signal and a command to the Matlab workspace during
simulation.

Interface

Inputs Description

input The variable for the Matlab workspace.

Outputs

Parameters

command Command string in Matlab format

name Name of the variable inside the Matlab workspace.

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

ToMatlab-Plot

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the input signal to the Matlab workspace, stores the input inside the
Matlab workspace into a matrix, and plots the result in a graph. Each row of the matrix
corresponds with a major simulation step, so the input is limited to a scalar or vector.
Note: the name is set during the processing phase only

Interface

Inputs Description

input The variable to send to the Matlab workspace.

Parameters

11. Library

115520-sim 5.1 Reference Manual

name Name of the variable inside the Matlab workspace

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

ToMatlab-Store

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the input signal to the Matlab workspace and stores the input inside
the Matlab workspace into a matrix. Each row of the matrix corresponds with a major
simulation step, so the input is limited to a scalar or vector. Note: the name is set during
the processing phase only.

Interface

Inputs Description

input The variable to send to the Matlab workspace.

Outputs

Parameters

name Name of the variable inside the Matlab workspace

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

11. Library

115620-sim 5.1 Reference Manual

ToMatlab-Timed

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the time and input signal to the Matlab workspace. The input is
limited to a scalar or vector. Note: the name is set during the processing phase only.
Interface

Inputs Description

input The variable to send to the Matlab workspace.

Parameters

name Name of the variable inside the Matlab workspace

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

ToMatlab-TimedPlot

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the time and input signal to the Matlab workspace, stores the time
and input inside the Matlab workspace into a matrix, and plots the result in a graph. Each
row of the matrix corresponds with a major simulation step, so the input is limited to a
scalar or column vector. Note: the name is set during the processing phase only

Interface

Inputs Description

input The variable to send to the Matlab workspace.

Parameters

name Name of the variable inside the Matlab workspace

11. Library

115720-sim 5.1 Reference Manual

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

ToMatlab-TimedStore

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends the time and input signal to the Matlab workspace and stores the
time and input inside the Matlab workspace into a matrix. Each row of the matrix
corresponds with a major simulation step, so the input is limited to a scalar or column
vector. Note: the name is set during the processing phase only

Interface

Inputs Description

input The variable to send to the Matlab workspace.

Parameters

name Name of the variable inside the Matlab workspace

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

ToMatlab

Library

Signal\Import Export\Matlab

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel sends a variable to the Matlab workspace during simulation.

11. Library

115820-sim 5.1 Reference Manual

Interface

Inputs Description

input The variable to send to the Matlab workspace.

Parameters

name Name of the variable inside the Matlab workspace

Tip

20-sim uses a single quote ' for strings. If you wish to include a single quote inside the
command string for Matlab, use 2 single quotes '' in the command string instead.

Logical11.3.9

Boolean

And

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This submodel has 8 implementations varying from a 2-input AND to a 9-input AND.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this model is according the truth table below:

input1 input2 output
false false false
false true false
true false false

11. Library

115920-sim 5.1 Reference Manual

true true true

The output signal for the other AND implementations follows a similar pattern. The
output signal is only true when all input signals are equal to true.

Interface

Port name Data type Description Range

Inputs

input1 boolean First AND input false/true

input2 boolean Second AND input false/true

Outputs

output boolean Result of the AND operation false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

Clock

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Kind: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

This models generates a logical continuous clock signal, i.e. a signal that changes from
true (1) to false (0) and back, each period T with T = (1/frequency)

11. Library

116020-sim 5.1 Reference Manual

If the discrete implementation is chosen, the frequency must be smaller than half of the the sample

frequency, otherw ise not a good clock signal w ill result. To have the top part of the clock signal equally

long to the dow n part, choose the frequency equal to the sample frequency divided by 2^n, w ith n an

integer equal or larger than one.

Interface

Port name Data type Description Unit Range

Parameter
s

initial boolean initial output false/true

frequency real clock frequency Hz > 0.0 Hz

Outputs

output boolean Clock output false/true

Restrictions

Make sure that the simulation uses step sizes which are small enough to calculate the
clock signal going up and going down: step size << clock period.

CMOS_CD4020

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

11. Library

116120-sim 5.1 Reference Manual

Description

Binary counter modeled after the CMOS 4020 chip. The 4020 is a 14-stage binary ripple
counter with a clock input (CP), an overriding asynchronous master reset input (MR) and
12 buffered parallel outputs (Q0, and Q3 to Q13). The counter advances on the true-to-
false transition of CP. A HIGH on MR clears all counter stages and forces all outputs to
false, independent of the state of CP.

Interface

Port name Data type Description Range

Inputs

CP boolean clock input (HIGH-to-LOW, edge-triggered) false/true

MR boolean master reset input (active HIGH) false/true

Outputs

Q0 … Q13 boolean counter outputs false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

CompareGE

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as a boolean output
according to the following table:

inputs output

input1 >= input 2 true

input1 < input 2 false

Interface

Port name Data type Description Range

Inputs

input1 real First input real

input2 real Second input real

Outputs

output boolean Result of the input1 >= input2 false/true

11. Library

116220-sim 5.1 Reference Manual

CompareGT

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as a boolean output
according to the following table:

inputs output

input1 > input 2 true

input1 <= input 2 false

Interface

Port name Data type Description Range

Inputs

input1 real First input real

input2 real Second input real

Outputs

output boolean Result of the input1 > input2 false/true

CompareLE

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as a boolean output
according to the following table:

inputs output

input1 <= input 2 true

input1 > input 2 false

Interface

Port name Data type Description Range
Inputs
input1 real First input real
input2 real Second input real
Outputs
output boolean Result of the input1 <= input2 false/true

11. Library

116320-sim 5.1 Reference Manual

CompareLT

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as a boolean output
according to the following table:

inputs output

input1 < input 2 true

input1 >= input 2 false

Interface

Port name Data type Description Range

Inputs

input1 real First input real

input2 real Second input real

Outputs

output boolean Result of the input1 < input2 false/true

False

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is equal to false

Interface

Port name Data type Description Range

Outputs

output boolean False false

11. Library

116420-sim 5.1 Reference Manual

FTriggerTypeFlipFlop

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

Initially the output is equal to the parameter initial. Otherwise the output signal is
changed each time the control input changes from true to false (falling edge of the
control input):

output = not oldoutput; (oldcontrol = true and control = false)
output = oldoutput; (otherwise)

Interface

Port name Data type Description Range

Inputs

control boolean control input false/true

Outputs

output boolean output false/true

Parameters

initial boolean initial output false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

Invertor

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is according the truth table below:

input output
false true
true false

11. Library

116520-sim 5.1 Reference Manual

Interface

Port name Data type Description Range

Inputs

input boolean Invertor input false/true

Outputs

output boolean inverse of the input false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

Nand

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This has 8 implementations varying from a 2-input NAND to a 9-input NAND.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this model is according the truth table below:

input1 input2 output

false false true

false true true

true false true

true true false

The output signal for the other NAND implementations follows a similar pattern. The
output signal is only false when all input signals are equal to true.

Interface

Port name Data type Description Range

11. Library

116620-sim 5.1 Reference Manual

Inputs
input1 boolean First NAND input false/true
input2 boolean Second NAND input false/true
Outputs
output boolean Result of the NAND operation false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

Nor

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This block has 8 implementations varying from a 2-input NOR to a 9-input NOR.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this submodel for the two-input NOR is according the truth table
below:

input1 input2 output

false false true

false true false

true false false

true true false

The output signal for the other NOR implementations follows a similar pattern. The
output signal is only true when all input signals are equal to false.

Interface

Port name Data type Description Range
Inputs
input1 boolean First NOR input false/true
input2 boolean Second NOR input false/true

11. Library

116720-sim 5.1 Reference Manual

Outputs
output boolean Result of the NOR operation false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

Or

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This block has 8 implementations varying from a 2-input OR to a 9-input OR.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this submodel for the two-input OR is according the truth table
below:

input1 input2 output

false false false

false true true

true false true

true true true

The output signal for the other OR implementations follows a similar pattern. The output
signal is only false when all input signals are equal to false.

Interface

Port name Data type Description Range
Inputs
input1 boolean First OR input false/true
input2 boolean Second OR input false/true
Outputs
output boolean Result of the OR operation false/true

11. Library

116820-sim 5.1 Reference Manual

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

ResetSetFlipFlop

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

The initial output of this model is equal to the parameter initial. Otherwise the output
signal is according the truth table below:

set reset output

false false previous output

true false true set condition

false true false reset condition

true true false reset condition

The truth table shows an R-dominated latch, meaning that if both set and reset are true,
the reset input dominates.

Interface

Port name Data type Description Range

Inputs

set boolean set input false/true

reset boolean reset input false/true

Outputs

output boolean output false/true

Parameters

initial boolean initial output false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

11. Library

116920-sim 5.1 Reference Manual

RTriggerTypeFlipFlop

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

Initially the output is equal to the parameter initial. Otherwise the output signal is
changed each time the control input changes from false to true (rising edge of the
control input):

output = not oldoutput; (oldcontrol = false and control = true)
output = oldoutput; (otherwise)

Interface

Port name Data type Description Range

Inputs

control boolean control input false/true

Outputs

output boolean output false/true

Parameters

initial boolean initial output false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

SetResetFlipFlop

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

11. Library

117020-sim 5.1 Reference Manual

Description

The initial output of this model is equal to the parameter initial. Otherwise the output
signal is according the truth table below:

set reset output

false false previous output

true false true set condition

false true false reset condition

true true true set condition

The truth table shows an S-dominated latch, meaning that if both set and reset are true,
the set input dominates.

Interface

Port name Data type Description Range

Inputs

set boolean set input false/true

reset boolean reset input false/true

Outputs

output boolean output false/true

Parameters

initial boolean initial output false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

True

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is equal to true

Interface

Port name Data type Description Range

Outputs

output boolean True true

11. Library

117120-sim 5.1 Reference Manual

Xor

Library

Signal\Logical\Boolean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This block has 8 implementations varying from a 2-input XOR to a 9-input XOR.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this submodel for the two-input XOR is according the truth table
below:

input1 input2 output

false false false

false true true

true false true

true true false

The output signal for the other XOR implementations follows a similar pattern. The

output signal is only true when there are an odd number of true inputs.

Interface

Port name Data type Description Range

Inputs

input1 boolean First XOR input false/true

input2 boolean Second XOR input false/true

Outputs

output boolean Result of the XOR operation false/true

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

11. Library

117220-sim 5.1 Reference Manual

Real

And

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This has 8 implementations varying from a 2-input AND to a 9-input AND.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this model is according the truth table below:

input1 input2 output

false false false

false true false

true false false

true true true

with

false true

inputs <= 0.5 > 0.5

output 0 1

The output signal for the other AND implementations follows a similar pattern. The
output signal is only true when all input signals are equal to true.

Interface

Port name Data type Description Range

Inputs

input1 real First AND input <= 0.5 / > 0.5

input2 real Second AND input <= 0.5 / > 0.5

Outputs

output real Result of the AND operation 1 or 0

11. Library

117320-sim 5.1 Reference Manual

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

Clock

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Kind: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

This models generates a logical continuous clock signal, i.e. a signal that changes from
true (1) to false (0) and back, each period T with T = (1/frequency)

If the discrete implementation is chosen, the frequency must be smaller than half of the the sample

frequency, otherw ise not a good clock signal w ill result. To have the top part of the clock signal equally

long to the dow n part, choose the frequency equal to the sample frequency divided by 2^n, w ith n an

integer equal or larger than one.

Interface

Port name Data type Description Range

11. Library

117420-sim 5.1 Reference Manual

Parameters
initial real initial output <= 0.5 / > 0.5
frequency real clock frequency {Hz} > 0.0 Hz
Outputs
output real Clock output 1 or 0

Restrictions

Make sure that the simulation uses step sizes which are small enough to calculate the
clock signal going up and going down: step size << clock period.

CMOS_CD4020

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

Binary counter modeled after the CMOS 4020 chip. The 4020 is a 14-stage binary ripple
counter with a clock input (CP), an overriding asynchronous master reset input (MR) and
12 buffered parallel outputs (Q0, and Q3 to Q13). The counter advances on the 1-to-0
transition of CP. A HIGH on MR clears all counter stages and forces all outputs to 0,
independent of the state of CP.

Interface

Port name Data type Description Range

Inputs

CP real clock input (HIGH-to-LOW, edge-triggered) <= 0.5 / > 0.5

MR real master reset input (active HIGH) <= 0.5 / > 0.5

Outputs

Q0 … Q13 real parallel outputs 1 or 0

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

CompareGE

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as 0 or 1 according to
the following table:

11. Library

117520-sim 5.1 Reference Manual

inputs output
input1 >= input 2 1
input1 < input 2 0

Interface

Port name Data type Description Range
Inputs
input1 real First input real
input2 real Second input real
Outputs
output real Result of the input1 >= input2 1 or 0

CompareGT

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as 0 or 1 according to
the following table:

inputs output

input1 > input 2 1

input1 <= input 2 0

Interface

Port name Data type Description Range
Inputs
input1 real First input real
input2 real Second input real
Outputs
output real Result of the input1 > input2 1 or 0

CompareLE

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as 0 or 1 according to
the following table:

inputs output

11. Library

117620-sim 5.1 Reference Manual

input1 <= input 2 1
input1 > input 2 0

Interface

Port name Data type Description Range
Inputs
input1 real First input real
input2 real Second input real
Outputs
output real Result of the input1 <= input2 1 or 0

CompareLT

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model compares two input real signals and outputs the result as 0 or 1 according to
the following table:

inputs output

input1 < input 2 1

input1 >= input 2 0

Interface

Port name Data type Description Range
Inputs
input1 real First input real
input2 real Second input real
Outputs
output real Result of the input1 < input2 1 or 0

DTypeFlipFlop

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

11. Library

117720-sim 5.1 Reference Manual

Description

The initial output of this model is equal to the initial value oldoutput_initial. Otherwise the

output signal is equal to the input signal each time the control input changes from false

to true:

output = input; (oldcontrol = false and control = true)
output = oldoutput; (otherwise)

with

 false true

inputs <= 0.5 > 0.5

output 0.0 1.0

Interface

Port name Data type Description Range

Inputs

input real input <= 0.5 / > 0.5

control real control input <= 0.5 / > 0.5

Outputs

output real output 0 or 1

Parameters

oldcontrol_initial

oldoutput_initial

real
real

Initial value of the control signal.

Initial value of the output

<= 0.5 / > 0.5
<= 0.5 / > 0.5

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

False

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is equal to 0

Interface

Port name Data type Description Range

Outputs

output real False 0

11. Library

117820-sim 5.1 Reference Manual

FTriggerTypeFlipFlop

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

Initially the output is equal to the parameter initial. Otherwise the output signal is
changed each time the control input changes from true to false (falling edge of the
control input):

output = not oldoutput; (oldcontrol = true and control = false)
output = oldoutput; (otherwise)

with

false true

inputs <= 0.5 > 0.5

output 0 1

Interface

Port name Data type Description Range

Inputs

control real control input <= 0.5 / > 0.5

Outputs

output real output 1 or 0

Parameters

initial real initial output <= 0.5 / > 0.5

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

Invertor

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is according the truth table below:

11. Library

117920-sim 5.1 Reference Manual

input output
<= 0.5 1
> 0.5 0

Interface

Port name Data type Description Range

Inputs

input boolean Invertor input <= 0.5 / > 0.5

Outputs

output boolean inverse of the input 1 or 0

Restrictions

This block operates with boolean inputs. Real of integer inputs can also be used but will
lead to a warning during processing. Be careful with using real or integer inputs: A value
of 0.0 is converted to false, any other value is converted to true.

Nand

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This has 8 implementations varying from a 2-input NAND to a 9-input NAND.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this model is according the truth table below:

input1 input2 output

false false true

false true true

true false true

true true false

with

11. Library

118020-sim 5.1 Reference Manual

false true

inputs <= 0.5 > 0.5
output 0 1

The output signal for the other NAND implementations follows a similar pattern. The
output signal is only false when all input signals are equal to true.

Interface

Port name Data type Description Range

Inputs

input1 real First AND input <= 0.5 / > 0.5

input2 real Second AND input <= 0.5 / > 0.5

Outputs

output real Result of the NAND operation 1 or 0

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

Nor

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This has 8 implementations varying from a 2-input NOR to a 9-input NOR.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this submodel for the two-input NOR is according the truth table
below:

input1 input2 output

false false true

false true false

true false false

true true false

11. Library

118120-sim 5.1 Reference Manual

with

false true

inputs <= 0.5 > 0.5

output 0 1

The output signal for the other NOR implementations follows a similar pattern. The
output signal is only true when all input signals are equal to false.

Interface

Port name Data type Description Range

Inputs

input1 real First AND input <= 0.5 / > 0.5

input2 real Second AND input <= 0.5 / > 0.5

Outputs

output real Result of the NOR operation 1 or 0

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

Or

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This has 8 implementations varying from a 2-input AND to a 9-input AND.

inputs_2

inputs_3

inputs_4

inputs_5

inputs_6

inputs_7

inputs_8

inputs_9

Description

The output signal of this submodel for the two-input OR is according the truth table
below:

input1 input2 output
false false false
false true true
true false true

11. Library

118220-sim 5.1 Reference Manual

true true true

with

false true

inputs <= 0.5 > 0.5

output 0 1

The output signal for the other OR implementations follows a similar pattern. The output
signal is only 0 when all input signals are equal to 0.

Interface

Port name Data type Description Range

Inputs

input1 real First OR input <= 0.5 / > 0.5

input2 real Second OR input <= 0.5 / > 0.5

Outputs

output real Result of the OR operation 1 or 0

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

ResetSetFlipFlop

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

The initial output of this model is equal to the parameter initial. Otherwise the output
signal is according the truth table below:

set reset output

false false previous output

true false true set condition

false true false reset condition

true true false reset condition

11. Library

118320-sim 5.1 Reference Manual

with

false true

inputs <= 0.5 > 0.5

output 0 1

The truth table shows an R-dominated latch, meaning that if both set and reset are true,
the reset input dominates.

Interface

Port name Data type Description Range

Inputs

set boolean set input <= 0.5 / > 0.5

reset boolean reset input <= 0.5 / > 0.5

Outputs

output boolean output 1 or 0

Parameters

initial boolean initial output <= 0.5 / > 0.5

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

RTriggerTypeFlipFlop

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

Initially the output is equal to the parameter initial. Otherwise the output signal is
changed each time the control input changes from false to true (rising edge of the
control input):

output = not oldoutput; (oldcontrol = false and control = true)
output = oldoutput; (otherwise)

with

false true

inputs <= 0.5 > 0.5

output 0 1

11. Library

118420-sim 5.1 Reference Manual

Interface

Port name Data type Description Range

Inputs

control boolean control input <= 0.5 / > 0.5

Outputs

output boolean output 1 or 0

Parameters

initial boolean initial output <= 0.5 / > 0.5

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

SetResetFlipFlop

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Implementations

This model has a continuous-time and a discrete-time implementation.

Continuous

Discrete

Description

The initial output of this model is equal to the parameter initial. Otherwise the output
signal is according the truth table below:

set reset output

false false previous output

true false true set condition

false true false reset condition

true true true set condition

with

false true

inputs <= 0.5 > 0.5

output 0 1

The truth table shows an S-dominated latch, meaning that if both set and reset are true,
the set input dominates.

Interface

Port name Data type Description Range

11. Library

118520-sim 5.1 Reference Manual

Inputs
set boolean set input <= 0.5 / > 0.5
reset boolean reset input <= 0.5 / > 0.5
Outputs
output boolean output 0 or 1

Parameters
initial boolean initial output <= 0.5 / > 0.5

Restrictions

This block operates with real inputs. Boolean inputs can also be used but will lead to a
warning during processing.

TriggerTypeFlipFlop

This model has been renamed to RTriggerTypeFlipFlop. Please use the
RTriggerTypeFlipFlop, because the TriggerTypeFlipFlop will be removed from future
versions of 20-sim.

True

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is equal to 1.0 (true)

Interface

Port name Data type Description Range

Outputs

output real 1.0 fixed output

Xor

Library

Signal\Logical\Real

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output signal of this model is according the truth table below:

 input2

false

true

11. Library

118620-sim 5.1 Reference Manual

input1

false false

true true

with

 false true

inputs <= 0.5 > 0.5

output 0.0 1.0

Interface

Inputs Description

input1

input2

Outputs

output

Signal Processing11.3.10

AmplitudeSensor

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model measures the amplitude of harmonic signals, i.e. periodic signals, that go
through zero twice every period. For half a period (between the passes through zero)
the input signal is monitored. The largest value is stored and given as the absolute
output signal, the next half period. That is why this sensor always has an output delay of
half a period.

11. Library

118720-sim 5.1 Reference Manual

Interface

Inputs Description

input

Outputs

output

Parameters

initial Initial output value

AssertSignal

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

11. Library

118820-sim 5.1 Reference Manual

Introduction

The AssertSignal model can be used to test if model gives the correct outcome (test)
during a simulation, by comparing it with a known signal (valid). If the difference is
smaller than a preset tolerance, the output boolean signal testResult is true. If the
difference is larger than the tolerance, the boolean signal testResult becomes false and
stays false until the end of the simulation run. In combination with the Scenario Manager
you can use this for test automation.

Description - Default

This model compares a test input signal with a valid input signal. If both signals are the
same within a given tolerance, the testResult is true:

if abs(valid -test) < tolerance
testresult = true
timeAtFailure = -1

else
testresult = true
timeAtFailure = first time when condition failed

Description - Boolean
This model compares a test input signal with a valid input signal. If both signals are the
same, the testresult is true:

if valid = test
testresult = true
timeAtFailure = -1

else
testresult = true
timeAtFailure = first time when condition failed

Interface

Inputs Description

test

valid

Outputs

testResult boolean

timeAtFailure time at which

Parameters

tolerance > 0

11. Library

118920-sim 5.1 Reference Manual

Maximum

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the maximum value of an input signal.

Interface

Inputs Description

input Input signal

Outputs

output Maximum value of the input signal

Mean

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the mean of an input signal using the integral function:

output = int(input)/time

Interface

Inputs Description

input Input signal

Outputs

output Mean value of the input signal

11. Library

119020-sim 5.1 Reference Manual

Minimum

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the minimum value of an input signal.

Interface

Inputs Description

input Input signal

Outputs

output Minimum value of the input signal

MovingAverage

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the average of an input signal over a window T0 (s) using an
integral function:

output = int(input,0)/T0

Interface

Inputs Description

input Input signal

Outputs

output

Parameters

T0 Time window

11. Library

119120-sim 5.1 Reference Manual

PhaseSensor

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model measures the phase of a harmonic signals (i.e. periodic signals, that go
through zero twice every period) with respect to another harmonic signal. Two inputs are
used:

Reference
Input

The PhaseSensor block measures the zero crossings of both the input and the reference,
to assess the phase difference between both. The phase output is the phase of the input
signal with respect to the reference signal. The measurement will not work if the input
sines have a non-zero
mean.

Interface

Inputs Description

input the signal of which the phase is measured

11. Library

119220-sim 5.1 Reference Manual

reference with respect to this signal

Outputs

output the measured phase

Parameters

initial Initial output value

allow_negative_phase True: measured phase between -pi and +pi
False: measured phase between 0 and 2*pi

RootMeanSquare

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the root mean square of an input signal using an integral function:

output = sqrt(int(input2,0)/time)

Interface

Inputs Description

input Input signal

Outputs

output

StandardDeviation

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the standard deviation of an input signal using an integral function:

output = sqrt(int((input - mean)2 / time))

where mean is the mean of the input

11. Library

119320-sim 5.1 Reference Manual

Interface

Inputs Description

input Input signal

Outputs

output Standard deviation of the input signal

Variance

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the variance of an input signal using an integral function:

output = int((input - mean)2 / time)

where mean is the mean of the input

Interface

Inputs Description

input Input signal

Outputs

output Variance of the input signal

Sources11.3.11

Constant

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output of this model is equal to the parameter C.

11. Library

119420-sim 5.1 Reference Manual

output = C;

Interface

Outputs Description

output

Parameters

C The output is equal to C.

DataFromFile

Library

Signals\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a masked model which opens the Data Input Wizard when edited. You can use
this wizard to open a data file.

11. Library

119520-sim 5.1 Reference Manual

Items

Filename: Enter the filename of the datafile or use the Browse button.

Name in 20-sim: The 20-sim name that corresponds with the column data. You
can enter any desired name.

Variable / Output: The data may be a variable (useful for plotting in the
simulator) or an output of the model (use as an input for other models).

More / Less: If you open the options below with the More button.

Time: The column that stores the time data and the units in which the time
data is stored (seconds, milliseconds,...)

Offset First Data Point: If the file data is a recording that starts at for example
11.1 s, the simulation will not show any output until the time has passed
11.1 s. You can force the simulation to start at 0 s by selecting the Offset First
Data Point option.

Interface

Outputs Description

outputs user defined outputs

11. Library

119620-sim 5.1 Reference Manual

File format

20-sim supports data files in Comma Separated Values format (.csv). The first line is
used as a header describing the column name. Without a proper header line, you have
to define the 20-sim variable names for each column yourself. The first column should
always contain the time values. The other columns should contain the corresponding
data values (see also data).

Example CSV file format with header:

"time","x","y"

0.0, 1, 2

0.1, 5, 10

0.2, 6, 11

Compatibility

This model has been extended in 20-sim 4.8 and is not backward compatible with
previous versions of 20-sim! It means that once you have opened the Data Input Wizard
the model can only be run in 20-sim 4.8 or higher.

Joystick

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model uses the joystick.dll function to get a joystick input.

Tips

Use attempting real-time simulation when using joystick input to prevent the
simulation from being calculated to quickly.

Interface

Outputs Description

outputs Various outputs

Parameters

Scale Various scaling parameters

11. Library

119720-sim 5.1 Reference Manual

Keyboard

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model uses the keyboard.dll function to get a keyboard input. The keyboard input is
an integer number and displayed by the output signal keycode. The default model has
four additional output signals with a default value of zero and a value of 1 when the
keyboard arrows are pressed.

Tips

Inspect the contents of the model and change it to read other keyboard inputs.

Open the Example model Examples/2D mechanics/ScaraRobotKeyboard to see a
demonstration of the keyboard input.

Use attempting real-time simulation when using keyboard inputs to prevent the
simulation from being calculated to quickly.

Interface

Outputs Description

left

right

up

down

keycode

left keyboard arrow pressed

right keyboard arrow pressed

up keyboard arrow pressed

down keyboard arrow pressed

number of the keyboard input

Parameters

Scale Various scaling parameters

MotionProfile

Library

Signals\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a masked model which opens the Motion Profile Editopr when edited.

Interface

Outputs Description

11. Library

119820-sim 5.1 Reference Manual

x

v

a

position

velocity

acceleration

Parameters

stroke

start_time

stop_time

return_time

end_time

period

amplitude of the profile

start time of the profile

time when the maximum is reached

start time of the return motion

finish time of the return motion

period of the profile

Tip

For advanced options with motion profiles you can use the Motion Profile Wizard block.

MotionProfile-Wizard

Library

Signals\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This is a masked model which opens the Motion Profile Wizard when edited. Depending
on the selections entered, various motion profiles can be generated.

Interface

Outputs Description

x

v

a

position

velocity

acceleration

Parameters

stroke

start_time

stop_time

return_time

end_time

period

amplitude of the profile

start time of the profile

time when the maximum is reached

start time of the return motion

finish time of the return motion

period of the profile

11. Library

119920-sim 5.1 Reference Manual

One

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output of this model is equal to one.

output = 1.0;

Interface

Outputs Description

output

Pi

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output of this model is equal to pi.

output = ;

Interface

Outputs Description

output

SignalGenerator-Cycloid

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a cycloidal step signal:

11. Library

120020-sim 5.1 Reference Manual

tDelta = 2*pi*(time - start_time)/(stop_time - start_time)

output = 0; (tDelta < 0)
output = amplitude*(tDelta - sin(tDelta))/2*pi; (0 <= tDelta <= 2*pi)
output = amplitude; (tDelta > 2*pi)

Interface

Outputs Description

output

Parameters

start_time

stop_time

amplitude

The start time of the step.

The stop time of the step.

The amplitude of the step.

SignalGenerator-FileInput

Library

Signal\Source

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Note

This model is obsolete. Use the DataFromFile block instead to read data file.

Description

This model generates an output by linear interpolation of data read from file. The data
on file is stored in columns. The first column contains the time values (t) and the second
column contains the corresponding output values (y).

The time data of the first column needs to be monotonically increasing.

Discontinuities are allowed, by providing the same time point twice in the
table.

Values outside of the range, are computed by linear extrapolation of the last
two points.

11. Library

120120-sim 5.1 Reference Manual

file:

0

0.5

2.5

3.5

4.5

5.5

7

8

 0.5

-1

-1

 0

 1

 1.75

 2.5

 2.5

Example of an input file.

The input file must be an ASCII (text) file and should consist at least two columns of
data. The first column (number 0) should always contain the time values. The other
columns (number 1, 2, 3, etc.) should contain the corresponding data values. The
parameter column is used to specify which column is used for as output data.

The various values must be separated by a comma, a space or a tab. Each new set of
time and data values must start on a new line. No comment or other text may be part of
the file. The filename of the input file can be specified using the complete path (e.g. c:
\data\data.tbl). When no path is given, the file is assumed to be in the experiment
directory.

Interface

Outputs Description

output

Parameters

filename

column

Filename of the input file.

column number.

Example

Example data.tbl file with header and 1 column with data:

"time","y"

0.0, 0.5

0.5, -1

2.5, -1

3.6, 9

11. Library

120220-sim 5.1 Reference Manual

SignalGenerator-Gaussian Noise

Library

Signal\Sources

Implementations

frequency_limited_FOH
frequency_limited_ZOH
unlimited

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - frequency_limited_FOH

This model generates a gaussian noise signal with gaussian distribution and variance 1

and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_FOH

Outputs Description

output

Parameters

seed

amplitude

frequency

random seed

output scaling factor: does not influence the distribution

frequency band of the noise

Description - frequency_limited_ZOH

This model generates a gaussian noise signal with gaussian distribution and variance 1

and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_ZOH

Outputs Description

output

Parameters

seed random seed

11. Library

120320-sim 5.1 Reference Manual

amplitude

frequency

output scaling factor: does not influence the distribution

frequency band of the noise

Description - unlimited

This model generates a gaussian noise signal with gaussian distribution and variance 1

and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal has no frequency limitation.

Note

It is advised only to use this implementation with fixed step integration methods such as
Euler and Runge Kutta 2/4. If you run this implementation with a variable step
integration method, simulations may get very slow!

Interface - unlimited

Outputs Description

output

Parameters

seed

amplitude

random seed

output scaling factor: does not influence the distribution

Limitations

seed must be a number in the region <0,65000>.

Random Seed

20-sim generates a sequence of random numbers for each simulation differently
depending upon the value of the random seed parameter. The random noise function
and gaussian noise function are affected by this. The default value of the random seed is
0. The maximum value is 65000.

Default value (0)

When the random seed value is 0 (default value), 20-sim generates a new sequence of
random numbers for each simulation and for each new random function. E.g. when two
random functions with default random seed value (0) are used in one model, they will
generate different sequences of random numbers during a simulation.

Other values (>0)

When the random seed value is chosen larger than zero, 20-sim generates the same
sequence of random numbers for each simulation. Moreover 20-sim will generate the
same sequence of random numbers for each random function that uses the same
random seed parameter (>0). E.g. when two random functions with random seed value
50, are used in one model, they will generate the same sequence of random numbers
during a simulation.

11. Library

120420-sim 5.1 Reference Manual

SignalGenerator-Pulse

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This models yields a pulse signal:

output = 0; (time < start_time)
output = amplitude; (start_time <= time <= stop_time)
output = 0; (time >= stop_time)

Interface

Outputs Description

output

Parameters

start_time

stop_time

amplitude

The start time of the pulse.

The stop time of the pulse.

The amplitude of the step.

SignalGenerator-Ramp

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This models yields a ramp signal:

output = 0; (time < start_time)
output = slope * ramp(start_time); (time >= start_time)

Interface

Outputs Description

output

11. Library

120520-sim 5.1 Reference Manual

Parameters

start_time

slope

The start time of the ramp.

The slope of the ramp.

SignalGenerator-Random

Library

Signal\Sources

Implementations

frequency_limited_FOH
frequency_limited_ZOH
unlimited

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - frequency_limited_FOH

This model generates a random (noise) signal with values between -amplitude and

+amplitude and random seed s. The

output = ran(ampl,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_FOH

Outputs Description

output

Parameters

seed

amplitude

frequency

random seed

-amplitude <= output <= +amplitude

frequency band of the noise

Description - frequency_limited_ZOH

This model generates a random (noise) signal with values between -amplitude and

+amplitude and random seed s.

output = ran(ampl,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

11. Library

120620-sim 5.1 Reference Manual

Interface - frequency_limited_ZOH

Outputs Description

output

Parameters

seed

amplitude

frequency

random seed

-amplitude <= output <= +amplitude

frequency band of the noise

Description - unlimited

This model generates a random (noise) signal with values between -amplitude and

+amplitude and random seed s.

output = ran(ampl,seed);

The noise signal has no frequency limitation.

Note

It is advised only to use this implementation with fixed step integration methods such as
Euler and Runge Kutta 2/4. If you run this implementation with a variable step
integration method, simulations may get very slow!

Interface - unlimited

Outputs Description

output

Parameters

seed

amplitude

random seed

-amplitude <= output <= +amplitude

Limitations

seed must be a number in the region <0,65000>.

SignalGenerator-Step

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This models yields a step signal:

11. Library

120720-sim 5.1 Reference Manual

output = 0; (time < start time)
output = amplitude; (time >= start_time)

Interface

Outputs Description

output

Parameters

start_time

amplitude

The start time of the step.

The amplitude of the step.

SignalGenerator-StepTime

Library

Signal\Sources

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

This model generates an output signal equal to the simulator time step.

Interface

Outputs Description

output Simulated time.

Signalgenerator-Sweep

Library

Signal\Sources

Implementations

Default
Logarithmic
ZeroMean

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - Default

The output of this model is a linear sine sweep. The signal starts with angular frequency
"omega_start" and ends at an angular frequency "omega_stop".

11. Library

120820-sim 5.1 Reference Manual

In the picture below the three available sweep functions are shown. The curve on top
shows the linear sine sweep. The middle curve shows the logarithmic sine sweep and the
bottom curve shows the linear sine sweep with zero mean.

Interface - Default

Outputs Description

output

Parameters

start_time

stop_time

amplitude

omega_start

omega_stop

The start time of the sweep.

The stop time of the sweep.

The amplitude of the sweep.

The start frequency of the sweep.

The stop frequency of the sweep.

Description - Logarithmic

The output of this model is a logarithmic sine sweep. Compared to the linear sine sweep
the lower frequencies are stretched out and the higher frequencies are squeezed. The
signal starts with angular frequency "omega_start" and ends at an angular frequency
"omega_stop".

In the picture below the three available sweep functions are shown. The curve on top
shows the linear sine sweep. The middle curve shows the logarithmic sine sweep and the
bottom curve shows the linear sine sweep with zero mean. The middle curve clearly
uses more time for the lower frequencies and less time for the higher frequencies.

11. Library

120920-sim 5.1 Reference Manual

Interface - Logarithmic

Outputs Description

output

Parameters

start_time

stop_time

amplitude

omega_start

omega_stop

The start time of the sweep.

The stop time of the sweep.

The amplitude of the sweep.

The start frequency of the sweep.

The stop frequency of the sweep.

Description - ZeroMean

The output of this model is a linear sine sweep with compensation in the first period to
get a zero mean output. A zero mean is important when the signal is integrated twice. To
prevent drift the mean should be zero. Double integrals can occur in physical systems.
For example when a force sweep is applied to a mechanical system and the position is
measured, the mean force should be precisely zero to prevent the system from drifting
away. The signal starts with angular frequency "omega_start" and ends at an angular
frequency "omega_stop".

In the picture below the three available sweep functions are shown. The curve on top
shows the linear sine sweep. The middle curve shows the logarithmic sine sweep and the
bottom curve shows the linear sine sweep with zero mean. The bottom curve differs
slightly from the top curve in the first period.

11. Library

121020-sim 5.1 Reference Manual

Interface - ZeroMean

Outputs Description

output

Parameters

start_time

stop_time

amplitude

omega_start

omega_stop

The start time of the sweep.

The stop time of the sweep.

The amplitude of the sweep.

The start frequency of the sweep.

The stop frequency of the sweep.

SignalGenerator-Time

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates an output signal equal to the (simulated) time.

11. Library

121120-sim 5.1 Reference Manual

output = time;

Interface

Outputs Description

output Simulated time.

SignalMonitor

Library

Signal\Block Diagram , Signal\Sources

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model shows the value of its input in the Simulator. When you open the Simulator
(select Properties and Plot) the input of this model is automatically selected as
plotvariable. As label for this variable the local name of the SignalMonitor model is
chosen. It is therefore advised to give each SignalMonitor model a useful name (select
the model, click the right mouse button and select Attributes from the right mouse
menu).

Interface

Inputs Description

input The value of the input is shown in the Simulator
using the local name of the model as label.

WaveGenerator-Cosine

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a cosine wave.

output = amplitude * cos(omega * time);

Interface

Outputs Description

11. Library

121220-sim 5.1 Reference Manual

output

Parameters

amplitude

omega

The amplitude of the wave.

The angular frequency of the wave.

WaveGenerator-PhasedSine

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a sine wave with phase shift.

output = amplitude * sin(omega * time + phase);

Interface

Outputs Description

output

Parameters

amplitude

omega

phase

The amplitude of the wave.

The angular frequency of the wave.

The phase shift of the wave.

WaveGenerator-Saw

Library

Signal\Source

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a saw wave.

11. Library

121320-sim 5.1 Reference Manual

output = upward ramp; (each cycle)

Interface

Outputs Description

output

Parameters

amplitude

omega

The amplitude of the wave.

The angular frequency of the wave.

WaveGenerator-Sine

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a sine wave.

output = amplitude * sin(omega * time);

Interface

Outputs Description

output

Parameters

amplitude

omega

The amplitude of the wave.

The angular frequency of the wave.

WaveGenerator-Square

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a block wave:

11. Library

121420-sim 5.1 Reference Manual

output = amplitude; (first wave halve)
output = 0; (second wave halve)

Interface

Outputs Description

output

Parameters

amplitude

omega

The amplitude of the wave.

The angular frequency of the wave.

WaveGenerator-SquareExp

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a non-ideal block wave. The steepness of the edges are defined
by the rise time. The rise time is defined as 63% of the amplitude being reached.

The output can be described as an exponential function:

11. Library

121520-sim 5.1 Reference Manual

output = amplitude*(1-exp(time/rise_time)); (first wave halve)
output = amplitude*exp(time/rise_time); (second wave halve)

Interface

Outputs Description

output

Parameters

amplitude

omega

rise_time

The amplitude of the wave.

The angular frequency of the wave.

Rise time

WaveGenerator-Triangle

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a triangular wave.

output = upward ramp; (first wave halve)
output = downward ramp; (second wave halve)

Interface

Outputs Description

output

Parameters

amplitude

omega

The amplitude of the wave.

The angular frequency of the wave.

11. Library

121620-sim 5.1 Reference Manual

Zero

Library

Signal\Sources

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

The output of this model is equal to zero.

output = 0.0;

Interface

Outputs Description

output

Stochastic11.3.12

Mean

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the mean of an input signal using the integral function:

output = int(input)/time

Interface

Inputs Description

input Input signal

Outputs

output Mean value of the input signal

11. Library

121720-sim 5.1 Reference Manual

SignalGenerator-Gaussian Noise

Library

Signal\Sources

Implementations

frequency_limited_FOH
frequency_limited_ZOH
unlimited

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - frequency_limited_FOH

This model generates a gaussian noise signal with gaussian distribution and variance 1

and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_FOH

Outputs Description

output

Parameters

seed

amplitude

frequency

random seed

output scaling factor: does not influence the distribution

frequency band of the noise

Description - frequency_limited_ZOH

This model generates a gaussian noise signal with gaussian distribution and variance 1

and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_ZOH

Outputs Description

output

Parameters

seed random seed

11. Library

121820-sim 5.1 Reference Manual

amplitude

frequency

output scaling factor: does not influence the distribution

frequency band of the noise

Description - unlimited

This model generates a gaussian noise signal with gaussian distribution and variance 1

and random seed s. The noise is multiplied by the parameter amplitude.

output = amplitude*gauss(1,seed);

The noise signal has no frequency limitation.

Note

It is advised only to use this implementation with fixed step integration methods such as
Euler and Runge Kutta 2/4. If you run this implementation with a variable step
integration method, simulations may get very slow!

Interface - unlimited

Outputs Description

output

Parameters

seed

amplitude

random seed

output scaling factor: does not influence the distribution

Limitations

seed must be a number in the region <0,65000>.

Signalgenerator-Random

Library

Signal\Sources

Implementations

frequency_limited_FOH
frequency_limited_ZOH
unlimited

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - frequency_limited_FOH

This model generates a random (noise) signal with values between -amplitude and

+amplitude and random seed s. The

output = ran(ampl,seed);

11. Library

121920-sim 5.1 Reference Manual

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_FOH

Outputs Description

output

Parameters

seed

amplitude

frequency

random seed

-amplitude <= output <= +amplitude

frequency band of the noise

Description - frequency_limited_ZOH

This model generates a random (noise) signal with values between -amplitude and

+amplitude and random seed s.

output = ran(ampl,seed);

The noise signal is limited to a maximum frequency, which can be adjusted (parameter).
Values in-between two noise samples are interpolated (first order hold).

Interface - frequency_limited_ZOH

Outputs Description

output

Parameters

seed

amplitude

frequency

random seed

-amplitude <= output <= +amplitude

frequency band of the noise

Description - unlimited

This model generates a random (noise) signal with values between -amplitude and

+amplitude and random seed s.

output = ran(ampl,seed);

The noise signal has no frequency limitation.

Note

It is advised only to use this implementation with fixed step integration methods such as
Euler and Runge Kutta 2/4. If you run this implementation with a variable step
integration method, simulations may get very slow!

11. Library

122020-sim 5.1 Reference Manual

Interface - unlimited

Outputs Description

output

Parameters

seed

amplitude

random seed

-amplitude <= output <= +amplitude

Limitations

seed must be a number in the region <0,65000>.

SignalGenerator-RandomInteger

Library

Signal\Stochastic

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates uniformly distributed random integers in the range [0, m-1],
where m is an integer. All output random variables are independent and identically

distributed. With the parameter random seed you can choose to make the distribution
variable or fixed for each simulation run.

RandomInteger output with a frequency of 1 Hz and m = 5.

The output signal is limited to a maximum frequency, which can be adjusted
(parameter). Values in-between two samples are interpolated (first order hold).

11. Library

122120-sim 5.1 Reference Manual

Interface

Outputs Description

output

Parameters

seed

m

frequency

random seed

the output range [0, m-1]

frequency band of the output

Limitations

seed must be a number in the region <0,65000>.

SignalGenerator-VariableBlock

Library

Signal\Stochastic

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a block signal that alternates between 0 and 1. The mean time
interval of a section is given by the parameter meanTimeInterval. The distribution of the

time interval is uniform between [0, 2*meanTimeInterval]. With the parameter random
seed you can choose to make the distribution variable or fixed for each simulation run.

11. Library

122220-sim 5.1 Reference Manual

VariableBlock output with a mean time interval of 1 s.

Interface

Outputs Description

output

Parameters

meanTimeInterval

seed

mean time {s} before the output signal changes

random seed

Limitations

seed must be a number in the region <0,65000>.

SignalGenerator-VariablePulse

Library

Signal\Stochastic

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

11. Library

122320-sim 5.1 Reference Manual

Description

This model generates a pulse train with a pulse value of 1. The pulse width is given by
the parameter pulseLength. The mean time interval between two pulses is given by the
parameter meanTimeInterval. The distribution of the time interval is uniform between

[0, 2*meanTimeInterval]. With the parameter random seed you can choose to make
the distribution variable or fixed for each simulation run.

VariablePulse output with a pulse length of 0.3 s and a mean time interval of 1 s.

Interface

Outputs Description

output

Parameters

meanTimeInterval

pulseLength

seed

mean time {s} before the output signal changes

length of the pulse {s}

random seed

Limitations

seed must be a number in the region <0,65000>.

11. Library

122420-sim 5.1 Reference Manual

StandardDeviation

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the standard deviation of an input signal using an integral function:

output = sqrt(int((input - mean)2 / time))

where mean is the mean of the input

Interface

Inputs Description

input Input signal

Outputs

output Standard deviation of the input signal

Variance

Library

Signal\Signal Processing

Use

Domains: Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description

This submodel yields the variance of an input signal using an integral function:

output = int((input - mean)2 / time)

where mean is the mean of the input

Interface

Inputs Description

input Input signal

Outputs

output Variance of the input signal

11. Library

122520-sim 5.1 Reference Manual

Transfer Functions11.3.13

Using Transfer Functions

The Transfer Functions library contains a number of predefined transfer functions and a
general transfer function model that opens the Linear System Editor.

Without Dead Time

name formula description

LinearSystem - Any Linear System without

time delay

FO First Order

FOL First Order with Lead Time

FOLA First Order with Lag

SOI Second Order with

Integrator

SOO Second Order Overdamped

SOOL Second Order Overdamped

with Lead Time

SOU Second Order

Underdamped

SOUO Second Order

Underdamped, Omega

description

With Dead Time

name formula description

ZOD Zero Order plus Dead Time

11. Library

122620-sim 5.1 Reference Manual

FOD First Order plus Dead Time

SOID Second Order with

Integrator plus Dead Time

SOOD Second Order Overdamped

plus Dead Time

SOOLD Second Order Overdamped

with Lead Time plus Dead

Time

SOUD

Second Order

Underdamped plus Dead

Time

SOUDO Second Order

Underdamped plus Dead

Time, Omega description

Linear System

Library

Signal\TransferFunctions

Use

Domains: Continuous. Size: 1-D. Kind: Block Diagrams.

Description

When you select this model and click Go Down a special editor opens (Linear System
Editor), allowing you to enter a linear system in State Space form, as a Transfer
Function or by adding poles and zeros:

11. Library

122720-sim 5.1 Reference Manual

Interface

Inputs Description

input

Outputs

output

Initial Values

 The model has internal states that are not

accessible.

Parameters

 Parameters are entered by the Linear System

Editor.

11. Library

122820-sim 5.1 Reference Manual

TransferFunction

Library

Signal\Transfer Functions

Implementations

FO
FOL
FOLA
SOI
SOO
SOU
SOUO
SOOL

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - FO

This model describes a first order process determined by k and tau. The transfer
function of this process is:

Interface - FO

Inputs Description

input

Outputs

output

Initial Values

state_initial The initial value of the output.

Parameters

k

tau

Proportional gain [].

Process time constant [s].

Description - FOL

This model describes a first order process with lead time determined by the parameters
k, tau and tauL. The transfer function of this process is:

11. Library

122920-sim 5.1 Reference Manual

Interface - FOL

Inputs Description

input

Outputs

output

Initial Values

state_initial Internal state.

Parameters

k

tau

tauL

Proportional gain [].

Process time constant [s].

Lead time constant [s].

Description - FOLA

This model describes a first order process with lag determined by the parameters k, tau
and tauL. The transfer function of this process is:

Interface - FOLA

Inputs Description

input

Outputs

output

Initial Values

state_initial Internal state.

Parameters

k

tau

tauL

Proportional gain [].

Process time constant [s].

Lag time constant [s].

11. Library

123020-sim 5.1 Reference Manual

Description - SOI

This model describes a second order process with integrator determined by the
parameters k and tau. The transfer function of this process is:

Interface - SOI

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output.

Parameters

k

tau

Proportional gain [].

Process time constant [s].

Description - SOO

This model describes an overdamped second order process determined by the
parameters k, tau1 and tau2. The transfer function of this process is:

Interface - SOO

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output.

Parameters

11. Library

123120-sim 5.1 Reference Manual

k

tau1

tau2

Proportional gain [].

First process time constant [s].

Second process time constant [s].

Description - SOU

This model describes an underdamped second order process, determined by the
parameters k, tau and zeta. The transfer function of this process is:

Interface - SOU

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

tau

zeta

Proportional gain [].

Natural period of oscillation [s].

Damping factor [].

Description - SOUO

This model describes an underdamped second order process, determined by the
parameters k, omega and zeta. The transfer function of this process is:

Interface - SOUO

Inputs Description

input

Outputs

11. Library

123220-sim 5.1 Reference Manual

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

omega

zeta

Proportional gain [].

Natural frequency [rad/s].

Damping factor [].

Description - SOOL

This model describes an overdamped second order process with lead time determined
by the parameters k, tau1, tau2 and tauL. The transfer function of this process is:

Interface - SOOL

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output.

Parameters

k

tau1

tau2

tauL

Proportional gain [].

First process time constant [s].

Second process time constant [s].

Lead time constant [s].

11. Library

123320-sim 5.1 Reference Manual

TransferFunctionWithDeadTime

Library

Signal\Transfer Functions

Implementations

ZOD
FOD
SOID
SOOD
SOUD
SOOLD
SOUDO

Use

Domains: Discrete, Continuous. Size: 1-D. Allowed in: Block Diagrams.

Description - ZOD

This model describes a first zero process plus dead time determined by k and theta. The
transfer function of this process is:

Interface - ZOD

Inputs Description

input

Outputs

output

Parameters

k

theta

Proportional gain [].

Dead time [s].

Description - FOD

This model describes a first order process plus dead time determined by k tau and theta.
The transfer function of this process is:

11. Library

123420-sim 5.1 Reference Manual

Interface - FOD

Inputs Description

input

Outputs

output

Initial Values

state_intitial The initial value of the output after the dead time

has passed.

Parameters

k

tau

theta

Proportional gain [].

Process time constant [s].

Dead time [s].

Description - SOID

This model describes a second order process with integrator plus dead time determined
by the parameters k and tau. The transfer function of this process is:

Interface - SOID

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

tau

theta

Proportional gain [].

Process time constant [s].

Dead Time [s].

11. Library

123520-sim 5.1 Reference Manual

Description - SOOD

This model describes an overdamped second order process plus dead time determined
by the parameters k, tau1 and tau2. The transfer function of this process is:

Interface - SOOD

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

tau1

tau2

theta

Proportional gain [].

First process time constant [s].

Second process time constant [s].

Dead Time [s].

Description - SOUD

This model describes an underdamped second order process plus Dead Time,
determined by the parameters k, tau and zeta. The transfer function of this process is:

Interface - SOUD

Inputs Description

input

Outputs

output

Initial Values

11. Library

123620-sim 5.1 Reference Manual

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

tau

zeta

theta

Proportional gain [].

Natural period of oscillation [s].

Damping factor []

Dead Time [s].

Description - SOOLD

This model describes an overdamped second order process with lead time plus dead
time determined by the parameters k, tau1, tau2 and tauL. The transfer function of this
process is:

Interface - SOOLD

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

tau1

tau2

tauL

theta

Proportional gain [].

First process time constant [s].

Second process time constant [s].

Lead time constant [s].

Dead Time [s].

Description - SOUDO

This model describes an underdamped second order process plus Dead Time,
determined by the parameters k, omega and zeta. The transfer function of this process
is:

11. Library

123720-sim 5.1 Reference Manual

Interface - SOUDO

Inputs Description

input

Outputs

output

Initial Values

state1_initial

state2_initial

Internal state.

The initial value of the output after the dead time

has passed.

Parameters

k

omega

zeta

theta

Proportional gain [].

Natural frequency [rad/s].

Damping factor []

Dead Time [s].

Various11.3.14

Library.Signal.Various.PlaySound

Library

Signal\Various

Use

Domains: Continuous, Discrete. Size: 1-D. Allowed in: Block Diagrams.

Description

This model generates a sound whenever the input is true. The sound must be stored on
a .wav-file. At every simulation point where the input is true, the sound is restarted. This
may result in the sound not to be hear because of every restart. Therefor it is best to
make the input only true at one simulation point. This is demonstrated in the Examples
library by the model:

Examples\Tips and Tricks\PlaySound

Interface

Inputs Description

11. Library

123820-sim 5.1 Reference Manual

input Boolean: If true, a sound is played

Parameters

wave Sting: File name of the .wav-file (including the path)

12. Modeling Tutorial

123920-sim 5.1 Reference Manual

12 Modeling Tutorial

12.1 Friction

Introduction12.1.1

In all machines incorporating parts with relative motion, friction is present. Friction is a
natural resistance to relative motion between two contacting bodies. At particular
locations in machines, friction is an undesirable property. Friction can lead to bad
performance of for example a servo system. At other locations, friction plays an
important role and is desirable, as is the case for example in actions as walking and
grasping and in a brake system.
In most systems, friction has a negative influence on the performance of the system.
Under certain conditions, friction in a system can result in effects like a steady state
error, tracking errors, especially nearby velocity reversals (reversal bump effect:
getting stuck when moving through zero velocity), limit cycles (hunting) and/or stick-slip.

To overcome these negative effects, insight in friction phenomena, and proper models of
these phenomena are useful. This chapter will give attention to these aspects of friction
and describe the friction models that are available in the 20-sim library.

Normal Force12.1.2

Assume a mass is dragged over a surface and experiences friction.

A tension force Ft has to be applied to overcome the amount of friction force Ff. The
friction force will depend on the applied normal force as:

Ft = Fn * f(x,v,...);

where f is the friction function which depends on the displacement x, velocity v etc.

In most cases a normal force is available (disk breaks, surface friction, clutches etc.).
Therefore all models in the 20-sim friction library are described with a normal force
input. For those models that do not experience a normal force (bearings), a unity normal
force Fn = 1 [N] is applied.

12. Modeling Tutorial

124020-sim 5.1 Reference Manual

Friction Phenomena12.1.3

There are different phenomena of friction. The following friction phenomena are
described in the friction models in 20-sim:

static friction: the torque or force necessary to initiate motion from rest (the so
called break-away force); it is often larger than the Coulomb friction,

Coulomb friction (kinetic friction, dynamic friction): the friction component that is
only dependent of the direction of velocity, not of the magnitude of the
velocity,

viscous friction: the friction component that is proportional to velocity and goes
to zero at zero velocity,

Stribeck friction (Stribeck effect): the friction phenomenon that arises from the
use of fluid lubrication and gives rise to decreasing friction with increasing
velocity at low velocity,

pre-sliding displacement (Dahl effect): the spring-like behavior of friction that
causes a displacement linear dependent on the applied force if this applied
force is less than the break-away force,

varying break-away force (rising static friction): the dependence of the break-
away force on the rate of increase of the applied force,

frictional lag: the delay in the change of the friction force as a function of a
change in the velocity.

Beside the friction phenomena mentioned above, some other effects with respect to
friction are reported in the literature. These effects are not incorporated into the 20-sim
library of friction models:

Time-dependent friction: From experiments it is known that friction changes
with time. These changes of friction with time are due to such things as loss
of lubricant, deformation of the surface material, change in temperature due
to generated heat and/or accumulation of wear debris.

Position-dependent friction: A dependence of the friction on the position of a
system is another effect that is experimentally observed and is well known by
a lot of researchers. This position-dependency is caused by spatial
inhomogeneities in the transmission of the system due to contact geometry
and/or loading which varies as a function of position. As the load varies, the
normal force between the sliding surfaces varies, causing a varying friction
(friction is linear dependent on the normal force). By preloading the
transmission elements and roller bearings this dependency of friction on the
load can be decreased.

Direction-dependent friction: A lot of researchers have found the friction to be
dependent on the direction of the motion of a system. Different Coulomb and
viscous friction levels in the left and right directions of a single, linear motion
have been observed experimentally on many occasions. Theoretically, this
may be due to anisotropies in material or geometry.

12. Modeling Tutorial

124120-sim 5.1 Reference Manual

Wet and Dry Friction12.1.4

Wet Friction

Most machines are lubricated in order to decrease the effects of friction. But in most
cases, this is not sufficient and significant friction effects remain.

There are four regimes of lubrication in a system with grease or oil in which the
phenomena act that are mentioned in the previous section: static friction, boundary
lubrication, partial fluid lubrication and full lubrication. Each of these four regimes
contribute to the dynamics of the system. In the figure below, these four regimes are
given in the plot of the friction force as a function of the sliding velocity, sometimes
referred to as the Stribeck curve.

A description of the four regimes is:

Regime 1: Static friction and pre-sliding displacement

Although in this regime of static friction there is no sliding, because of the fact that
contacts between two surfaces are compliant, there are small motions when a force is
applied. The contact between two surfaces can be seen as an elastic contact. The
displacement is an approximately linear function of the applied force (a spring-like
behavior), up to a critical force at which breakaway occurs and sliding begins. The
transition from the elastic contact with pre-sliding displacement in static friction to sliding
is not abrupt: first sliding starts at the boundary of a contact and then it propagates
toward the center.

Regime 2: Boundary lubrication

In this regime the sliding velocity is very low and is not adequate to build a fluid film of
the lubricant between the sliding surfaces. The boundary layer of the surfaces serves to
provide lubrication. In most cases, the friction in this boundary lubrication regime is
higher than in case of fluid lubrication, as is the situation in regimes three and four.

Regime 3: Partial fluid lubrication

Lubricant is brought into the load-bearing region between the sliding surfaces through
motion. Some lubricant is expelled by pressure arising from the load, but as a result of
the viscosity not all of the lubricant will escape and thus a thin film of lubricant is formed
between the sliding surfaces. Not at all places of the contact of the surfaces this film will
exist; at some places there is still solid-to-solid contact: there is partial fluid lubrication.
As the velocity becomes larger, more lubricant will be brought between the surfaces and
less solid-to-solid contacts will exist. This explains the descending friction force when the
velocity increases, called the Stribeck effect.

12. Modeling Tutorial

124220-sim 5.1 Reference Manual

There is a time lag between a change in the velocity or load conditions and the change in
friction to a new steady state level: the phenomenon of frictional lag takes place. This
effect is a consequence of the state in the frictional contact that does not come to its new
equilibrium instantly: it takes time for the lubricant to be brought or removed between
the load bearing region of the sliding surfaces.

Regime 4: Full fluid lubrication

In this regime the solid-to-solid contacts are all eliminated. The wear is reduced by
orders of magnitude. The viscosity of the lubricant is determinative for the friction force
and the friction phenomenon now at work is the well-behaved viscous friction, besides
the Coulomb friction.

The four dynamic regimes of friction in the plot of friction force as a function of sliding velocity.

Dry Friction

Dry friction is friction between two bodies in absence of contaminations of the contact
surfaces. This is an ideal situation which is not possible to achieve in real systems, due
to the fact that chemical reactions will occur at the surfaces. Therefore dry friction will
show some of the effects described above. Some special effects due to the use of
lubricants, such as the Stribeck effect and sometimes viscous friction will not be
significant in dry friction.

12. Modeling Tutorial

124320-sim 5.1 Reference Manual

Static and Dynamic Phenomena12.1.5

The friction phenomena can be grouped in static and dynamic phenomena:

static friction phenomena:

static friction

Coulomb friction (dynamic friction)

viscous friction

Stribeck friction (Stribeck effect)

dynamic friction phenomena:

pre-sliding displacement (Dahl effect)

rising static friction (varying break-away force)

frictional lag

Static friction models only have a static dependency on velocity. Even when the applied
force is very small, the result is a non-zero velocity. This means a significant
displacement is found after some time. Therefore static friction models should only be
used in systems where the applied forces are large (>> static friction), or change sign
often.

Dynamic friction models incorporate a spring like behavior for small forces. I.e. no
significant displacement is found when the applied force is smaller that the static friction.

Coulomb friction

Static friction phenomena only have a static dependency on velocity. The first static
friction model was the classic model of friction of Leonardo Da Vinci: friction force is
proportional to load, opposes the direction of motion and is independent of contact area.
Coulomb (1785) further developed this model and the friction phenomena described by
the model became known as Coulomb friction. The model is given in the figure below.

The Coulomb friction model.

The friction force can be described as:

12. Modeling Tutorial

124420-sim 5.1 Reference Manual

Ff = Fn * mu_c * sign (v);

with mu_c the Coulomb friction coefficient. The Coulomb friction model is, because of its
simplicity, often used. In many textbooks is is also referred to as dynamic friction and
mu_s described as the dynamic friction coefficient.

Static Friction

Morin (1833) introduced the idea of static friction: friction force opposes the direction of
motion when the sliding velocity is zero.

The static friction force is equal to the tensile forces until a maximum or minimum is
reached:

Ff_max = Fn * mu_s;
Ff_min = -Fn * mu_s;

with mu_s the static friction coefficient.

Viscous friction

Reynolds (1866) developed expressions for the friction force caused by the viscosity of
lubricants. The term viscous friction is used for this friction phenomenon.

The viscous friction model.

The friction force can be described as:

12. Modeling Tutorial

124520-sim 5.1 Reference Manual

Ff = Fn * mu_v * v;

with mu_v the viscous friction coefficient.

Coulomb plus Viscous friction

This viscous friction combined with the Coulomb friction gave the model given in the
figure below.

 The Coulomb plus viscous friction model.

Static plus Coulomb plus Viscous friction

When static friction is added, a friction model appears that is commonly used in
engineering: the Static plus Coulomb plus Viscous friction model. This model is depicted
in the figure below.

The static, Coulomb plus viscous friction model.

Static plus Coulomb plus Viscous plus Stribeck friction

Stribeck (1902) observed that for low velocities, the friction force is decreasing
continuously with increasing velocities and not in a discontinuous matter as described
above. This phenomenon of a decreasing friction at low, increasing velocities is called
the Stribeck friction or effect. The model including Static, Coulomb, Viscous and Stribeck
friction is given below.

12. Modeling Tutorial

124620-sim 5.1 Reference Manual

The static, Coulomb, viscous plus Stribeck friction model.

The Stribeck effect is described by the parameter v_st which is the characteristic
Stribeck velocity. It denotes the sliding velocity where only a 37% of the static friction is
active. In other words, small values of v_st give a fast decreasing Stribeck effect and
large values of v_st give a slow decreasing Stribeck effect.

Continuous Functions

All these friction models above show a discontinuity at zero velocity. At zero velocity the
friction force as a function of only velocity is not specified. What for example should the
friction force be at zero velocity in the Coulomb friction model? The discontinuous
behavior of this model near zero velocity is sometimes approximated with a continuous
function, for example:

F = tanh(slope*v);

and the inverse

v = arctanh(F)/slope;

with slope a very large constant. The use of continuous functions results in
straightforward models that are easy to simulate for large forces and velocities. For
small forces and velocities, the the slope parameter has to be chosen sufficiently high, to
avoid creep (the model starts to move, even when the applied force is smaller than the
static or Coulomb friction force). This results in stiff models, which are hard to simulate.

LuGre friction model

The LuGre model is inspired by the bristle interpretation of friction (surfaces are very
irregular at the microscopic level and two surfaces make contact at a number of
asperities, which can be thought of as elastic bristles), in combination with lubricant
effects.

12. Modeling Tutorial

124720-sim 5.1 Reference Manual

Friction is modeled as the average deflection force of elastic springs. When a tangential
force is applied the bristles will deflect. If the deflection is sufficiently large, the bristles
start to slip. The average defection at steady state slip is determined by the velocity, so
that for low velocities the steady state deflection, and therefore the friction force,
decreases with increasing velocity. This corresponds to more lubricant being forced into
the interface, and pushing the surfaces apart, as the velocity increases. This produces
the Stribeck effect. The model also includes rate dependent friction phenomena such as
varying break-away force and frictional lag. The model behaves like a well damped
spring with a stiffness at zero speed for small motions.

Comparison of Friction Models12.1.6

In order to get insight in the friction phenomena, a friction model should incorporate as
much friction phenomena and behave as much as real friction. In the table below an
overview of the different models of the 20-sim library with respect to the friction
phenomena is given.

 Coulomb

model

Coulomb,

viscous model

static,

Coulomb,

viscous

model

static,

Coulomb,

viscous,

Stribeck

model

LuGre

model

static friction

phenomena

Coulomb V V V V V

viscous V V V V

static V V V

Stribeck V V

dynamic

friction

phenomena

pre-sliding

displacement

 V

varying break-

away force

 V

frictional lag V

From this overview it can be seen that all friction phenomena are incorporated in the
LuGre model. From the literature, it is known that the behavior of the LuGre model is
much alike real friction.

12. Modeling Tutorial

124820-sim 5.1 Reference Manual

For most engineering applications, a static friction model, for example a static, Coulomb,
viscous friction model, is sufficient. If all friction effects should be modeled, the LuGre
friction model seems best suited.

Literature12.1.7

1. Altpeter, F., Ghorbel, F., Longchamp, R., A Singular Perturbation Analysis Of Two
Friction Models Applied To A Vertical EDM-Axis, Motion Control ’98, France,
September 1998, pp. 7-12

2. Altpeter, F., Ghorbel, F., Longchamp, R., Relationship Between Two Friction Models:
A Singular Perturbation Approach, Proceedings of the 37th IEEE Conference on
Decision & Control, Tampa, Florida USA, December 1998, pp. 1572-1574

3. Altpeter, F., Myszkorowski, M., Longchamp, R., Identification For Control Of Drives
With Friction, IFAC Conference of Industrial Systems, Belfort, France, May 1997, pp.
673-677

4. Altpeter, F., Necsulescu, D., Longchamp, R., Friction Modelling And Identification
Issues For Electric Drives, Electromotion ’97, Cluj-Napoca, Romania, May 1997, pp.
149-154

5. Armstrong-Hélouvry, B., Control of Machines with Friction, Kluwer Academic
Publishers, Boston, 1991

6. Armstrong-Hélouvry, B., Dupont, P., Wit, C.C. de, A Survey of Models, Analysis
Tools and Compensation Methods for the Control of Machines with Friction,
Automatica, Vol. 30, No. 7, 1994, pp. 1083-1138

7. Canudas de Wit, C., Olssen, H., Aström, K.J., Lischinsky, P., A New Model for Control
of Systems with Friction, IEEE Transactions On Automatic Control, Vol. 40, No. 3,
March 1995, pp. 419-425

8. Du, H., Nair, S.S., Modelling and Compensation of Low-Velocity Friction With Bounds,
IEEE Transactions On Control Systems Technology, Vol. 7, No. 1, January 1999, pp.
110-121

9. Gäfvert, M., Comparison of Two Dynamic Friction Models, Department of Automatic
Control, Lund Institute of Technology, 1996

10. Lischinsky, P., Wit, C.C. de, Morel, G., Friction Compensation for an Industrial
Hydraulic Robot, IEEE Control Systems, February 1999, pp. 25-32

11. Menon, K., Krishnamurthy, K., Control of Low velocity friction and gear backlash in a
machine tool feed drive system, Mechatronics, 9, 1999, pp. 33-52

12. Modeling Tutorial

124920-sim 5.1 Reference Manual

12.2 Bond Graphs

Dynamic Systems12.2.1

An important aspect in mechatronic systems is the dynamic behavior, i.e. the behavior
of the system as function of time. Especially in systems that display swift changes or
systems that should behave accurately, the dynamic behavior is important. It is
therefore useful to predict the dynamic behavior of a system. Modeling and simulation is
useful for making such predictions.

There are various methods of modeling and simulating dynamic systems. A well known
one is the Lumped Parameter Method.

With the Lumped Parameter Method, the dynamic behavior of a system is
concentrated in discrete points. The interaction of these points gives us insight
in the behavior of the real system. The more discrete points are used the more
accurate the model will be.

There are various ways to represent lumped parameter models. Well known
representations are iconic diagrams, differential equations, block diagrams and bond
graphs.

Let's consider the suspension of a car. A lumped parameter model starts with the
identification of the various lumps (or parts or components) of this system. We start with
the car body. It is supposed to be a rigid body and therefore this part is represented
with the icon of a mass. The suspension of the car is represented by a spring damper
combination. The wheel is considered to have a significant mass and to be elastic. This
component is therefore represented by a mass and spring icon. Finally the road is
modeled by path generator function. The resulting ideal physical model (IPM) is shown
below.

Iconic diagram of a car suspension.

12. Modeling Tutorial

125020-sim 5.1 Reference Manual

Bond Graphs12.2.2

Bond graphs are a network-like description of physical systems in terms of ideal physical
processes. With the bond graph method we split up the system characteristics into an
(imaginary) set of separate elements. Each element describes an idealized physical
process. To facilitate drawing of bond graphs, the common elements are denoted by
special symbols.

Look again at the car suspension example. In the picture below at the right a bond graph
is shown that has been entered in 20-sim. All elements of the ideal physical model have
corresponding elements in the bond graph. The connections between the elements in the
bond graph, which are known as bonds, represent ideal energy transfer between the
elements, i.e. no energy is stored, generated or dissipated. Bonds are drawn with
harpoons (the half arrows).

The car suspension model (middle) and corresponding bond graph model (right).

For the mechanical domain, ideal velocity sources are in bond graphs denoted by the
symbol Sf. Dampers are denoted by an R, springs by a C and masses by a I. With a 1 a
structural connection of elements is denoted and with a 0 a velocity difference is
denoted.

A bond graph describes a physical system as a number of physical concepts (the
elements) connected by energy flows (the bonds).

Effort and Flow12.2.3

A bond between two elements transfers power from one element to the other. This flow
of energy can be described in many ways. For bond graphs a uniform approach is
chosen:

The flow of energy between two elements (and thus a bond) is always
characterized by two variables, of which the product is power. According to the
bond graph notation, these variables are called effort (e) and flow (f).

12. Modeling Tutorial

125120-sim 5.1 Reference Manual

Effort and flow as variables of a bond.

The effort and flow variables make up a combination that is typical for a physical
domain. The product of effort and flow is always power. We call such a pair of variables
power conjugated variables. For example voltage and current are used for electrical
networks and force and velocity are used for mechanical (translation) systems. The
table below shows the variables for the domains that are currently supported in 20-sim.

Domain effort (e) flow (f)

power effort e flow f

mechanical

(translation)

force F [N] velocity v [m/s]

mechanical

(rotation)

torque T [Nm] angular velocity omega [rad/s]

pneumatic pressure p [Pa] volume flow phi [m3/s]

thermal temperature T [K] entropy flow dS [J/Ks]

electric voltage u [V] current i [A]

hydraulic pressure p [Pa] volume flow phi [m3/s]

magnetic current i [A] voltage u [V]

pseudothermal temperature T [K] heat flow dQ [W]

The effort and flow variables for several domains.

To most general domain is power. Bonds of this domain can connected to elements of all
domains. For the thermal domain there is one pair of effort and flow, T and dS, that
multiplies to power. The pair T and dQ however, is more often used but does not
multiply to power. Therefore the domain with these variables is called pseudothermal.

Note

There is a direct relation between the across and through variables of an iconic
diagram an the effort and flow variables of a bond graph:

Domain Non-

mechanical

domains

Mechanical

Domains

across variable effort flow

through variable flow effort

The relation between across and through variables and effort and flow variables.

12. Modeling Tutorial

125220-sim 5.1 Reference Manual

20-sim propagates domains. If a bond of the general power domain is coupled with
an element of the electrical domain, it automatically becomes an electrical bond. The
other end of the bond can then only be connected to another element of the electrical
domain.

If you want to use a bond of a domain that is not supported or has variables other
than across and through, use the general power domain. The across and through
variables can then be used as an alias for your own variables.

Bonds12.2.4

The power of a bond is positive when both effort and flow have a positive value or both
effort and flow have a negative value (power = effort × flow).

To denote the orientation, i.e. the direction of positive power, we use the
harpoon at the end of a bond. An element with an inward bond connected,
consumes power when the product of effort and flow is positive.

A bond as power connection.

When two elements are connected by a bond, one element will always determine the
effort, while the opposite element will always determine the flow. The element that
determines the effort, gets an enforced flow from the other element.

We can therefore also see a bond as a bilateral signal connection (effort-signal and flow-
signal), of which the directions are opposite to each other.

With direction we mean the direction of the flow of information, just like in a block
diagram. In a block diagram the effort and flow variables, which together form the flow
of power, are not shown as a couple. This breaks up the symmetry between the physical
system and the the structure of the model.

A bond as a bilateral signal flow.

The interpretation of a bond as a bilateral signal flow, does not fix the individual direction
of the effort and the flow. It only means the direction of the effort and flow are opposite.
For the derivation of a simulation model out of a bond graph however, the individual
directions are of importance.

12. Modeling Tutorial

125320-sim 5.1 Reference Manual

To indicate the individual direction of the effort and flow, we use a small stroke (causal
stroke) perpendicular to the bond. This stroke indicates the direction of the effort. The
direction of the flow is opposite.

The choice of the direction of signals, also known as causality, depends on the element
that is connected to the bond.

Standard Elements12.2.5

To facilitate drawing of bond graphs, the common elements are denoted by special
mnemonic symbols. The elements can be divided in several classes:

Junctions: (0 junction, 1 junction) elements that couple energy between various other
elements.

Buffers: (C,I) elements that store energy.

Dissipators: (R) elements that dissipate energy.

Sources: (Se,Sf) elements that generate energy.

Modulated Sources: (MSe, MSf) elements that generate energy (driven by signals).

Transformers and Gyrators: (TF, GY) elements that convert energy (ideally).

Modulated Transformers and Gyrators: (MTF, MGY) elements that convert energy
(driven by signals).

Other elements: other elements and user defined elements.

Orientation12.2.6

The orientation of a bond, i.e. the direction of the half arrow, denotes the direction of
positive power. An element with an incoming bond consumes power when the product of
effort and flow is positive. For R, C and I-elements an incoming bond is the standard
orientation. For sources the standard orientation is outgoing, because a source supplies
power to the rest of the system. For the TF and GY-element the standard orientation is
one incoming bond and one outgoing bond, since this reflects the natural flow of power.
For the other bonds in a model, as much as possible an orientation from source to load
is applied.

Bonds and Signals12.2.7

Bonds Graph models are useful when describing systems with powerflow. In mechatronic
systems these systems are usually coupled to systems that handle (powerless) signals.
These systems are more conveniently described by block diagrams. Bond graphs can be
combined with block diagrams. The coupling can be performed by special submodels.

Sensors

In general a sensor measures the flow, the effort, the integral of the flow or the integral
of the effort. Sensors can be found in the 20-sim bond graph library.

EffortSensor FlowSensor Psensor Qsensor

12. Modeling Tutorial

125420-sim 5.1 Reference Manual

measures effort measures flow measures integral off

effort

measures integral of

flow

Junctions

In 20-sim 1 junctions have a signal output which is equal to the flow. From a 1 junction a
signal can be drawn which can be used as input for a block diagram. In a similar way an
effort signal can be drawn from a 0 junction.

0 junction 1 junction

Modulated Elements

The result of a block diagram can be converted into power by means of a generator. In
a bond graph model, this can be done by connecting a signal to modulated source
elements. These elements convert input signals into efforts or flows. Other elements that
use a signal input are modulated transformers and modulated gyrators.

Example

An example model where a bond graph and a block diagram are coupled is shown in the
picture below. As can be seen an effort signal is measured at the 0 junction. In the block
diagram part it is processed and fed back into the bond graph at the modulated effort
source.

12. Modeling Tutorial

125520-sim 5.1 Reference Manual

Simplification of Bond Graph Models12.2.8

When a bond graph model has been created by converting all elements of the iconic
diagram into bond graph elements and connecting the elements, simplifications can be
performed. This can be easily done by applying the following set of rules (the bonds that
have no half arrow, are allowed in both orientations).

1. Eliminate loose junctions.

2. Eliminate junctions.

3. Melt equal junctions.

4. Eliminate sources with a zero output.

5. Eliminate junction in combination

with a sign change on the source

element.

12. Modeling Tutorial

125620-sim 5.1 Reference Manual

6. Eliminate a double difference (two 0-

junctions coupled with two 1-

junctions)

Note

Simplification rules 1, 2, 3 and 6 can be performed automatically in 20-sim using the
Simplify Model command.

Causality12.2.9

Causal analysis is the determination of the direction of the efforts and flows in a bond
graph model. The result is a causal bond graph which can be considered as a compact
block diagram. From causal bond graph we can directly derive an equivalent block
diagram. In 20-sim causality is assigned automatically. To create a causal bond graph
20-sim will perform the following steps.

1. Apply causality for all elements with fixed causality (Se,Sf,Mse,MSf,user defined
models), i.e. assign a causal stroke to all bonds connected to elements with fixed
causality.

2. Apply,as much as possible, causality for elements that have a constraint
causality (0 junction, 1 junction, TF,GY,MTF,MGY,user defined models).

3. Apply causality for an arbitrary element with preferred causality (C,I,user
defined models). If possible, let this be the preferred causality. Now iterate step 2
and 3 as far as possible.

4. Apply causality for an arbitrary element with indifferent causality (R,user
defined models). If this causality is not fixed, choose a causality arbitrarily. Now
iterate step 2, 3 and 4 as far as possible.

In many cases, the bond graph model is causal after step 2. However, sometimes as
causal conflict occurs. This means the model is not correct arithmetically. Often this
points out an ill-defined model. Redefinition of the ideal physical model will solve the
problem. Sometimes the model is only causal after step 4. This means the model
contains an algebraic loop. Models with algebraic loops are generally hard to simulate.

12. Modeling Tutorial

125720-sim 5.1 Reference Manual

Example

Causal assignment will be illustrated by an example. We will manually create a causal
bond graph out of the following model:

1. Apply fixed causality:

2. Apply constraint causality. This step is not yet applicable.

3. Apply preferred causality. We can choose between the two I-elements. Let's
select the left one and assign causality in its preferred form:

4. Apply constraint causality. The 1 junction on the left has one bond with
effort-out causality (seen from the 1 junction). The other bonds connected
must therefore have effort-in causality (seen from the 1 junction). In a same
way we can now assign causality for the GY-element:

5. Apply preferred causality. Only the right I-element is left. We can assign
causality in its preferred form:

12. Modeling Tutorial

125820-sim 5.1 Reference Manual

6.Apply constraint causality. The 1 junction on the right has one bond with
effort-out causality (seen from the 1 junction). The other bonds connected
must therefore have effort-in causality. Therefore we can assign causality for
the R-element:

Creating a Bond Graph model12.2.10

There are various methods described in literature to convert a ideal physical model into
a bond graph. The simplest method is a direct conversion of the parts of the ideal
physical model into bond graph elements. It is based on the fact that for every physical
domain, junctions have a special interpretation. This allows us to make tables of ideal
physical model parts and their direct representation as bond graph elements. The
drawback of the method is that it is not generally applicable: for physical domains that
are not described here, the user is referred to other methods.

1. Create an ideal physical model.

2. Replace each part of the ideal physical model with corresponding bond graph
elements. Standard replacements are shown in the tables of this tutorial.

3. Select the bond graph elements in the 20-sim library and drag and drop
them to the 20-sim editor.

4. Connect the elements according to the ideal physical model.

5. Simplify the bond graph according to the given rules.

6. Compile the bond graph model and run a simulation.

12. Modeling Tutorial

125920-sim 5.1 Reference Manual

From Iconic Diagram to Bond Graph12.2.11

There are various methods described in literature to convert a iconic diagrams into bond
graph models. The simplest method is a direct conversion of iconic diagrams into bond
graph elements. It is based on the fact that for every physical domain, junctions have a
special interpretation. This allows us to make tables of iconic diagrams and their direct
representation as bond graph elements. The drawback of the method is that it is not
generally applicable: for physical domains that are not described here, the user is
referred to other methods.

Mechanical Domain

Electrical Domain

Iconic Diagrams to Bond Graphs (Electrical
Domain)

12.2.12

In the electrical domain, terminals and knots can be replaced by 0 junctions. With this
knowledge and the description of various icons a table can be created that shows icons
of electrical elements and their equivalent bond graph elements. The method of creating
a bond graph model is:

1. Create an iconic diagram of the electrical system.

2. Reference points or grounds are split up as much as possible.

3. Replace every element of the diagram by its bond graph equivalent using
the conversion table.

4. Replace every knot that has been left by a 0 junction.

5. Connect all elements and junctions with bonds according to the layout of the
electrical system.

6. Simplify the resulting bond graph model, using the given set of simplification
rules.

Example

The method will be illustrated by an example. We will convert an electrical circuit into a
bond graph model.

1. Create an iconic diagram

2. Split up reference points.

12. Modeling Tutorial

126020-sim 5.1 Reference Manual

3. Replace elements by bond graph equivalents. Note that we have arranged
the orientation of the bonds (the direction of the half arrow) as much as
possible in the direction of the power flow from the source to the load
elements.

4. Replace every knot that has been left by a 0 junction. In this model no knots
have been left. Step 4 is therefore not applicable.

5. Connect all elements and junctions with bonds, according to the layout of
the electrical system. A comparison between the iconic diagram and the bond
graph model clearly shows the symmetry between both representations. It is
obvious that any change or addition in the iconic diagram, can be easily
implemented in the bond graph model.

7. Simplify the resulting bond graph model. First we eliminate the Sources (Se
elements) with zero output.

12. Modeling Tutorial

126120-sim 5.1 Reference Manual

8. Eliminate loose junctions.

9. Eliminate junctions.

The simplified model does not show a direct symmetry with the iconic diagram. It does
give a clear insight in the flows of power from the voltage source to the other elements.

Iconic Diagrams to Bond Graphs (Mechanical
Domain)

12.2.13

In the mechanical domain, both translational and rotational, terminals and knots can be
replaced by 1 junctions. With this knowledge and the description of various icons a table
can be created that shows icons of mechanical elements and their equivalent bond graph
elements. The method of creating a bond graph model is:

1. Create an iconic diagram of the mechanical system.

2. Reference points or grounds are split up as much as possible.

3. Replace every element of the diagram by its bond graph equivalent using
the conversion table.

4. Replace every knot that has been left by a 1 junction.

5. Connect all elements and junctions with bonds, according to the layout of
the mechanical system.

6. Simplify the resulting bond graph model, using the given set of simplification
rules.

12. Modeling Tutorial

126220-sim 5.1 Reference Manual

Example

The method will be illustrated by an example. We will convert an mechanical structure
(translational) into a bond graph model.

1. Create an iconic diagram

2. Split up reference points. In this diagram this is not possible.

3. Replace elements by bond graph equivalents. Note that we have arranged
the orientation of the bonds (the direction of the harpoon) as much as
possible in the direction of the power flow from the source to the load
elements.

4. Replace every knot that has been left by a 1 junction.

12. Modeling Tutorial

126320-sim 5.1 Reference Manual

5. Connect all elements and junctions with bonds, according to the layout of
the mechanical system. A comparison between the iconic diagram and the
bond graph model clearly shows the symmetry between both
representations. It is obvious that any change or addition in the iconic
diagram, can be easily implemented in the bond graph model.

6. Simplify the resulting bond graph model. First we eliminate the Sources (Se
elements) with zero output.

7. Eliminate loose junctions.

12. Modeling Tutorial

126420-sim 5.1 Reference Manual

8. Eliminate junctions.

The simplified model does not show a direct symmetry with the iconic diagram. It does
give a clear insight in the flows of power from the force source to the other elements.

From Bond Graph to Block Diagram12.2.14

With a causal bond graph model, equivalent block diagram models can easily be
derived. To create a block diagram, the following steps have to be performed.

Change bonds by equivalent bilateral

signals.

Replace elements by corresponding

block diagram symbols. Use the

correct effort and flow description

which can be found in the element

tables. As an example both

descriptions for the R-element are

given.

12. Modeling Tutorial

126520-sim 5.1 Reference Manual

Replace the junctions by signal

summation points and signal

splitters. If correct, the bonds have

already be replaced by effort and

flow signals. Out of these signals and

the junction description you can

derive the effort and flow equations

for the junction. As an example the

conversion for a 1 junction is shown.

Example

As an example in the figure below a causal bond graph model is shown.

Using the given set of rules and the element descriptions an equivalent block diagram
models is found, which is shown below.

The resulting block diagram model can be simplified by combining blocks and elimination
of loops. Out of the block diagram, easily a set of dynamic equations can be deduced.

12. Modeling Tutorial

126620-sim 5.1 Reference Manual

From Bond Graph to Equations12.2.15

With a causal bond graph model, equivalent dynamic equations can easily be derived. To
create the dynamic equations, the following steps have to be performed.

Denote for every bond its effort and flow

pair. You can use names that are obvious

or methodically use numbers. Some

examples are shown at the right.

Replace elements by corresponding

dynamic equations. Use the correct effort

and flow description which can be found in

the element tables. As an example

descriptions for the R-element are given.

Replace the junctions by the correct

equations. For 0 junctions the efforts are

equal. All flows of the bonds pointing

towards the 0 junction should be added and

all flows of the bonds pointing from the 0

junction should be subtracted. For 1

junctions the flows are equal. All efforts of

the bonds pointing towards the 0 junction

should be added and all efforts of the bonds

pointing from the 0 junction should be

subtracted. Some examples are shown at

the right.

Rearrange the equations by removing

redundant variables.

Example

As an example in the figure below a causal bond graph model is shown. We will derive
the set of dynamic equations out of this model.

12. Modeling Tutorial

126720-sim 5.1 Reference Manual

1. Denote all efforts and flows. This is shown below:

2. Write the dynamic equations of the elements and junctions:

elements equations

Se uin = constant , iin = free

R ur = Re ir

I il = (1/L) int(ul)

1 junction iin = ir = il = im

uin - ur - ul - um = 0

GY um = km m

Tm = km im

I Tj = (1/J) int(j)

R Tr = d r

1 junction m = j = r

Tm - Tl - Tr = 0

3. Reduce the amount of equations. We replace the equalities of the 1
junctions: iin = ir = il = im= i and m = j = r= .

elements equations

Se uin = constant

R ur = Re i

12. Modeling Tutorial

126820-sim 5.1 Reference Manual

I i = (1/L) int(ul)

1 junction uin - ur - ul - um = 0

GY um = km

Tm = km i

I Tj = (1/J) int()

R Tr = d

1 junction Tm - Tl - Tr = 0

The resulting dynamic equations can be used for simulation. 20-sim can automatically
extract the dynamic equations out of a bond graph model. The equations can be shown
using the Show Equations command or used in the Simulator for simulation.

Ports12.2.16

A port is a location where an element can exchange information (in case of a signal port)
or power (in case of a power port) with its environment. So, it is the model port that
defines the connection with the element. A port is an important concept, as it allows you
to describe the properties of the bonds that can be connected to the element, i.e., its
direction, size, domain, etc. Ports can be defined in 20-sim using the Interface Editor.

12. Modeling Tutorial

126920-sim 5.1 Reference Manual

Port Variables

All ports of a submodel are shown in the Interface tab. In the figure below a standard C-
element is shown with one power port p. Each bond graph port has an effort and a flow
variable. In 20-sim these variables are be denoted with the extensions .e and .f and are
also known as power-port variables. You can see an example in the figure below where
equations are defined using the variables p.e and p.f.

12. Modeling Tutorial

127020-sim 5.1 Reference Manual

Port Properties

Ports can be added and defined in the 20-sim Interface Editor. The Interface Editor of
the C-element is shown below.

Bond graph ports have several properties:

Name: The name of the port.

Type: Next to bond graph ports, 20-sim also knows iconic diagram ports and
signal ports

12. Modeling Tutorial

127120-sim 5.1 Reference Manual

Orientation: The orientation of a connected bond (indicated by the half arrow).

fixed in orientation: The bond will point towards the element.

fixed out orientation: The bond will point from the element to another
element.

Rows/Columns: The standard size of a port and corresponding bond is 1 but
you can also define ports with larger sizes.

Domain: The domain of the port.

Causality: The preferred causality of the port variable (effort and flow). You
have to defined here what should be the input variable (effort or flow) and
what should be the output variable (effort or flow).

Creating your own Elements12.2.17

In 20-sim you can easily create your own bond graph elements. The process of creation
consists of three parts:

1. For any bond connected to your submodel an internal port has to be defined.
For each port you have to specify some data:

The physical domain.

The size.

The orientation.

The causality.

2. Create the icon for the component. This can be done with a specialized
drawing editor.

3. Create the element description. This can be done by (differential) equations
or by a bond graph.

Bond Graph Literature12.2.18

A vast number of publications and books on bond graph modeling have been issued.
Here is only referred to some well known books. A comprehensive collection of bond
graph literature can be found on the Internet pages of prof. F. Cellier (http://
www.ece.arizona.edu/~cellier/bg.html) and the mirror site at the Glasgow University
(http://www.eng.gla.ac.uk/bg/).

Alan J. Blundell (1982)
Bond Graphs for Modelling Engineering Systems
Ellis Horwood Publishers, Chichester, United Kingdom, and Halsted Press, New York,
151p.

Peter C. Breedveld, Geneviève Dauphin-Tanguy (1992)
Bond Graphs for Engineers
Elsevier Science Publishers, Amsterdam.

François Edouard Cellier (1991)

12. Modeling Tutorial

127220-sim 5.1 Reference Manual

Continuous System Modeling
Springer-Verlag, New York, ISBN 0-387-97502-0, 755p.

Dean C. Karnopp, Ronald C. Rosenberg (1968)
Analysis and Simulation of Multiport Systems - The Bond Graph Approach to Physical
Systems Dynamics
M.I.T. Press.

Dean C. Karnopp, Ronald C. Rosenberg (1974)
System Dynamics: A Unified Approach
John Wiley, New York.

Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg (1990)
System Dynamics: A Unified Approach - 2nd Edition
John Wiley, New York.

Lennart Ljung, Torkel Glad (1994)
Modeling of Dynamic Systems
Prentice Hall, Englewood Cliffs, N.J.

Henry M. Paynter (1961)
Analysis and Design of Engineering Systems
M.I.T. Press, Cambridge, Mass.

Ronald C. Rosenberg, Dean C. Karnopp (1983)
Introduction to Physical System Dynamics
McGraw-Hill, New York.

Nobuhide Suda (1988)
System Dynamics
Koronasha, Tokyo. (in Japanese)

Jean U. Thoma (1982)
Grundlagen und Anwendungen der Bonddiagramme
Girardet Taschenbuch GT20, Essen, Germany.

Jean U. Thoma (1989)
Simulation by bond graphs - Introduction to a Graphical Method
Springer-Verlag, New York.

12. Modeling Tutorial

127320-sim 5.1 Reference Manual

Standard Elements12.2.19

0 and 1 junctions

Junctions couple one or more elements of a model in a power continuous mode: no
energy is stored or dissipated. Examples are a series junction or parallel junction in an
electrical network, a fixed connection between two mechanical parts etc. Two types of
junctions exist: 0 junctions and 1 junctions.

0 junction

The 0 junction represents a coupling where all efforts of the connected bonds are equal.

As a consequence of the property of power continuity the sum of the flows must be

equal to zero. The orientation of the bonds determines the sign of the flow
summation: all flows of the bonds pointing towards the 0 junction should be added and
all flows of the bonds pointing from the 0 junction should be subtracted. This summation
corresponds to the Kirchhoff current law for electrical networks. The equality of the

efforts, limits the causality. Only one bond may have an "effort-in" causality (the
stroke pointed towards the 0 junction). All other bonds must have (seen from the 0
junction) an "effort-out" causality (stroke pointing from the 0 junction). In other words:

the 1 junction has a constraint causality.

12. Modeling Tutorial

127420-sim 5.1 Reference Manual

1 junction

The 1 junction is the dual form of the 0 junction (effort and flow are opposite). The 1
junction represents coupling where all flows of the connected bonds are equal. As a

consequence of the property of power continuity the sum of the efforts must be equal

to zero. The orientation of the bonds determines the sign of the flow summation: all
efforts of the bonds pointing towards the 1 junction should be added and all efforts of the
bonds pointing from the 1 junction should be subtracted. This summation corresponds to

the Kirchhoff voltage law for electrical networks. The equality of the flows, limits the
causality. Only one bond may have an "effort-out" causality (the stroke pointing from
the 1 junction). All other bonds must have (seen from the 1 junction) an "effort-in"
causality (stroke pointing to the 1 junction). In other words: the 1 junction has a
constrained causality.

0 junction

Suppose we have the following 0 junction with one bond (1) pointing towards the
junction and two bonds (2 and 3) pointing from the junction.

1. For a 0 junction the efforts are always equal! This means:

e1 = e2 = e3

2. The junction is power continuous. For the figure above this means:

e1×f1 = e2×f2 + e2×f2

3. Combining 1 and 2 yields:

f1 - f2 - f3 = 0

12. Modeling Tutorial

127520-sim 5.1 Reference Manual

The last equation can also be derived with a rule of thumb: All flows of the bonds
pointing towards the 0 junction should be added and all flows of the bonds pointing from
the 0 junction should be subtracted.

The first equation, limits the causality. Only one bond may have an effort-in causality
(the stroke pointed towards the 0 junction). All other bonds must have (seen from the 0
junction) an effort-out causality (strokes pointing from the 0 junction). For the example
junction this means three possible causal forms can exist:

1 junction

Suppose we have the following 1 junction with one bond (1) pointing towards the
junction and two bonds (2 and 3) pointing from the junction.

1. For a 1 junction the flows are always equal! This means:

f1 = f2 = f3

2. The junction is power continuous. For the figure above this means:

e1×f1 = e2×f2 + e2×f2

3. Combining 1 and 2 yields:

e1 - e2 - e3 = 0

The last equation can also be derived with the rule of thumb: All effort of the bonds
pointing towards a 1 junction should be added and all efforts of the bonds pointing from
the 1 junction should be subtracted.

12. Modeling Tutorial

127620-sim 5.1 Reference Manual

The first equation, limits the causality. Only one bond may have an flow-in causality (the
stroke pointed from the 1 junction). All other bonds must have (seen from the 1
junction) a flow-out causality (strokes pointed towards the 1 junction). For the example
junction this means three possible causal forms can exist:

Buffers

Buffers are bond graph elements that can store energy. There are two types of buffers:
C-elements and I-elements. The table below shows the effort and flow descriptions that
belong to these elements. The parameters "C" and "I" are the bufferconstants, which
determine a linear buffer behavior. Examples of C-elements are a mechanical spring
and an electrical capacitor. Examples of an I-element are a mechanical inertia and an
electrical inductance.

C-element bond graph element equation

effort-in causality f = C de/dt

effort-out causality e = (1/C) int(f)

I-element bond graph element equation

effort-in causality f = (1/I) int(e)

effort-out causality e = I df/dt

Buffer elements do not fix the direction of the effort and flow. Both effort-in as well as
effort-out causality is allowed. With simulation however, we prefer to avoid
differentiation. in other words, with the C-element the effort-out causality is preferred
and with the I-element the effort-in causality is preferred.

12. Modeling Tutorial

127720-sim 5.1 Reference Manual

Resistance

A resistance, R, dissipates free energy. This energy of any arbitrary domain is
transported irreversibly to the thermal domain. This means the power towards a
resistance is always positive. In the table below the effort and flow description of the
resistance is shown. Examples of a resistance are a mechanical damper and an electrical
resistor.

R-element bond graph element equation

effort-in causality f = (1/R) e

effort-out causality e = R f

The direction of effort and flow is not restricted for a resistance and there is no preferred
form for the equation. In other words: the R-element has a indifferent causality.

Sources

Sources represent the interaction of a systems with its environment. There are two
types of source elements: effort sources (Se) and flow sources (Sf).

In the table below the effort and flow description of the source elements is shown.
Examples of a flow source are an electrical current source and a hydraulic pump that
generates a constant flow of liquid. Examples of an effort source are an electrical
voltage source and a constant mechanical force.

element bond graph element equation

effort source e = c, f = free

flow source f = c, e = free

The direction of effort and flow for sources are restricted. In other words: the Se-
element (effort-out) and Sf-element (effort-in) have a fixed causality.

12. Modeling Tutorial

127820-sim 5.1 Reference Manual

Modulated Sources

Next to the standard effort and flow sources, that generate a constant effort and flow,
bond graph modeling also allows the use of so called modulated sources. In these
sources the resulting effort or flow are equal to a (fluctuating) value provided by an
input signal. Two types of modulated sources are know: the modulated effort source
MSe and the modulated flow source MSf. In the table below the effort and flow
description of the source elements is shown.

element bond graph element equation

modulated effort source e = u, f = free

modulated flow source f = u, e = free

The direction of effort and flow for sources are restricted. In other words: the MSe-

element (effort-out) and MSf-element (effort-in) have a fixed causality.

Transformers and Gyrators

Transformers and gyrators are bond graph elements that can convert energy ideally, as
well in one physical domain as well as between one physical domain and another. A
transformer is denoted by the mnemonic code TF and a gyrator by the code GY. In the
table below the effort and flow equations are shown. The parameters r and n are the
transformation ratio and gyration ratio. An examples of a transformer is a mechanical
gear. An example of a gyrator is a DC-motor.

TF-element bond graph element equation

effort-in causality f1 = (1/n) f2

e2 = (1/n) e1

effort-out causality f2 = n f2

e1 = n e2

GY-element bond graph element equation

effort-in causality f1 = (1/r) e2

f2 = (1/r) e1

effort-in causality e1 = r f2

e2 = r f1

12. Modeling Tutorial

127920-sim 5.1 Reference Manual

The directions of the flow and effort are partly fixed for a transformer. Like the 1
junction and the 0 junction, the causality is constraint. For a transformer, an effort-in
causality on the incoming bond results in an effort-out causality on the outgoing bond
and vice-versa. For a gyrator, an effort-in causality on the incoming bond results in an
effort-in causality on the outgoing bond and vice-versa.

Modulated Transformers and Gyrators

Next to transformers and gyrators wit a fixed transformation ratio and gyration ratio, in
bond graphs also modulated transformers (MTF) and modulated gyrators (MGY) are
supported. In these models the transformation ratio of gyration ratio are equal to a
(fluctuating) value provided by an input signal. In the table below the effort and flow
equations are shown.

MTF-element bond graph element equation

effort-in causality f1 = (1/u) f2

e2 = (1/u) e1

effort-out causality f2 = u f2

e1 = u e2

MGY-element bond graph element equation

effort-in causality f1 = (1/u) e2

f2 = (1/u) e1

effort-in causality e1 = u f2

e2 = u f1

The directions of the flow and effort are partly fixed for a modulated transformer. Like
the 1 junction and the 0 junction, the causality is constraint. For a transformer, an effort-
in causality on the incoming bond results in an effort-out causality on the outgoing bond
and vice-versa. For a gyrator, an effort-in causality on the incoming bond results in an
effort-in causality on the outgoing bond and vice-versa.

12. Modeling Tutorial

128020-sim 5.1 Reference Manual

12.3 Iconic Diagrams

Dynamic Systems12.3.1

An important aspect in mechatronic systems is the dynamic behavior, i.e. the behavior
of the system as function of time. Especially in systems that display swift changes or
systems that should behave accurately, the dynamic behavior is important. It is
therefore useful to predict the dynamic behavior of a system. Modeling and simulation is
useful for making such predictions.

There are various methods of modeling and simulating dynamic systems. A well known
one is the Lumped Parameter Method.

With the Lumped Parameter Method, the dynamic behavior of a system is
concentrated in discrete points. The interaction of these points gives us insight
in the behavior of the real system. The more discrete points are used the more
accurate the model will be.

There are various ways to represent lumped parameter models. Well known
representations are iconic diagrams, differential equations, block diagrams and bond
graphs.

Let's consider the suspension of a car. A lumped parameter model starts with the
identification of the various lumps (or parts or components) of this system. We start with
the car body. It is supposed to be a rigid body and therefore this part is represented
with the icon of a mass. The suspension of the car is represented by a spring damper
combination. The wheel is considered to have a significant mass and to be elastic. This
component is therefore represented by a mass and spring icon. Finally the road is
modeled by path generator function. The resulting ideal physical model (IPM) is shown
below.

Iconic diagram of a car suspension.

Iconic Diagrams12.3.2

If we can represent the various parts of an ideal physical model by predefined models or
components modeling is easy. In 20-sim a large library of components is available
allowing you to create a model just by selecting the proper components and connect
them according to the ideal physical model. To make modeling even more easy, the
components are displayed in the editor by icons which look like the corresponding parts

12. Modeling Tutorial

128120-sim 5.1 Reference Manual

of the ideal physical model. In 20-sim these kind of models are called iconic diagrams
(sometimes other simulation tools refer to this kind of modeling as component based
modeling). 20-sim can automatically compute simulation code out of an iconic diagram
and start a simulation.

Look again at the car suspension example. In the picture below at the right an iconic
diagram is shown that has been entered in 20-sim. As you can see, the iconic diagram
similar to the ideal physical model. Each component of the iconic diagram represents a
physical process. For example the mass component represents the law of motion (F =
m*a) and the spring represents the linear spring equation (F = k*x). The connections
between the components in the iconic diagram represent ideal energy transfer between
those components, i.e. no energy is stored, generated or dissipated.

A iconic diagram model of a car suspension.

An iconic diagram describes a physical system as a number of physical concepts
(the components) connected by energy flows (the connections).

Across and through12.3.3

A connection between two components transfers energy from one component to the
other. This flow of energy can be described in many ways. In 20-sim a uniform approach
is chosen:

The flow of energy between two components of an iconic diagram can be
characterized by two variables, of which the product is power. These variables
are called across (a) and through (t).

Across and though as variables of a connection.

The across and though variables make up a combination that is typical for a physical
domain. For example voltage and current are used for electrical networks and force and
velocity are used for mechanical (translation) systems. The table below shows the
variables for the domains that are currently supported in 20-sim.

Domain across (a) through (t)

12. Modeling Tutorial

128220-sim 5.1 Reference Manual

power across a through t

mechanical

(translation)

velocity v [m/s] force F [N]

mechanical

(rotation)

angular velocity omega [rad/s] torque T [Nm]

pneumatic pressure p [Pa] volume flow phi [m3/s]

thermal temperature T [K] entropy flow dS [J/Ks]

electric voltage u [V] current i [A]

hydraulic pressure p [Pa] volume flow phi [m3/s]

magnetic magnetomotoric force i [A] flux change d /dt [V]

pseudothermal temperature T [K] heat flow dQ [W]

The across and through variables for several domains.

The most general domain is power. Connections of this domain can be used for all
domains. For the thermal domain there is one pair of across and through, T and dS, that
multiplies to power. The pair T and dQ however is more often used but does not multiply
to power. Therefore the domain with these variables is called pseudothermal.

There is a direct relation between the across and through variables of an iconic diagram
and the effort and flow variables of a bond graph:

Domain Non-

mechanical

domains

Mechanical

Domains

across variable effort flow

through
variable

flow effort

The relation between across and through variables and effort and flow variables.

Note

20-sim propagates domains. If a connection of the general power domain is tied to a
component of the electrical domain, it automatically becomes an electrical
connection. The other end of the connection can then only be tied to another
component of the electrical domain. In this way it is prevented to connect
components of different physical domains.

If you want to use a connection of a domain that is not supported or has variables
other than across and through, use the general power domain. The across and
through variables can then be used as an alias of your own variables.

12. Modeling Tutorial

128320-sim 5.1 Reference Manual

Connections12.3.4

When two components in an Iconic Diagram are connected, one component will always

compute the across variable, while the opposite component will always determine the
through variable.

We can therefore also interpret a connection as a bilateral signal connection (across-
signal and through-signal), of which the directions are opposite to each other.

With "direction" we mean the computational direction, just like signals in a block
diagram. In a block diagram the across and through variables, which together form the
flow of power, are not shown as a couple. This breaks up the symmetry between the
physical system and the the structure of the model.

A connection as a bilateral signal flow.

The interpretation of a connection as a bilateral signal flow, does not fix the individual
direction of the across variable and the through variable. It only means the direction of
the across variable and through variable are opposite.

The specific computational direction of across and and through variables is called

causality. In 20-sim an advanced algorithm detects the possible causalities of each
submodel and tries to combine these in such a way, that optimal simulation code will be
generated. The result can be inspected using the Causality Info command from the View
menu. The result of this command is shown in the example below. The computational
direction of forces and velocities is clearly shown for all the connections.

12. Modeling Tutorial

128420-sim 5.1 Reference Manual

Orientation (Across)12.3.5

When simulating, you have to know how across and through variables are oriented to
make a correct interpretation of what is happening. 20-sim can show the orientation
when you select the Orientation Info option of the View menu.

Across variables in the Top Level

Across variables in the top level of a model are always defined with respect to a single
global reference. In the picture below an electrical iconic diagram is shown with three
voltages (u1 = 5 V, u2 = 3 V and u3 = 1 V). This means these voltages are all defined
with respect to the same reference, e.g., the ground u = 0 V.

All variables values of a connection can be easily inspected during simulation by placing
the mouse pointer on top of that connection as shown below. The connection between
the mass and the spring (see picture below) shows an across value v = 0.84 m/s. This
means the point where the mass and spring are connected has a global velocity of v
=0.84 m/s.

In the figure below the connection between the capacitor and the resistor shows a
negative voltage of u = -2e-5 V.

Across variables in Submodels

In submodels you have to inspect how across variables are defined. For example an
ideal electrical resistor (see figure below) uses separate high and low terminals. The
internal equations are:

p.u = p_high.u - p_low.u;
p_high.i = p_low.i = p.i;
p.u = R * p.i;

12. Modeling Tutorial

128520-sim 5.1 Reference Manual

where p.high and p_low are the ports to the connections at both sides of the resistor.
p_high.u and p_low.u are voltages defined with respect to the global reference, but p.u
is the voltage difference between the high and low port and therefore not defined with
respect to the global reference.

The definition of across variables depends on the definition of number of terminals of a
port, which is shown in the Type Editor. To inspect the ports, put the mouse pointer on
top of the Type section and select edit type from the right mouse menu.

Note

The geometrical layout of the iconic diagram does not have a meaning. If a
resistor is drawn upside down, its current is still defined with respect to the
resistor (flowing towards or from). If a mass is drawn upside down, its force
is still defined with respect to that mass (pulling or pushing).

To show or hide the orientation of an Iconic Diagram select or deselect the
Orientation Info option of the View menu.

Orientation (Through)12.3.6

When simulating, you have to know how across and through variables are oriented to
make a correct interpretation of what is happening. 20-sim can show the orientation

when you select the Orientation Info option of the View menu.

Through variables in connections

Through variables in connections are always defined with respect to the components
they are connected with. 20-sim automatically assigns an orientation for these through
variables. This orientation can be made visible by selecting the Orientation Info
command of the View Menu.

12. Modeling Tutorial

128620-sim 5.1 Reference Manual

Non-mechanical

Through variables that are not of the mechanical domain are always shown with an
arrow in the connection. The arrow indicates the direction of the positive flow. The figure
below shows a negative current: i = -2e-5 A. This means the current flows in the
opposite direction of the arrow.

Mechanical

Through variables of the mechanical domain are always shown with two arrows. The
arrows indicate the direction of the positive force. The figure below shows a positive
force: F = 0.45 N. This means the spring pushes with a force of F = 0.45 [N] upon the
mass and the mass pushes with a force of F = 0.45 N upon the spring (note: a negative
force would mean pulling instead of pushing).

This interpretation of forces in 20-sim is only valid when a positive velocity defined from
the left to the right, and from the bottom to the top!

Through Variables in Submodels

In submodels, you have to use the Type Editor to find out how through variables are
defined. For example an ideal mass (see next figure) uses the option any number of
terminals for its port (inspect the port in the Type Editor). The port equations are:

p.F = p1.F + p2.F
p.v = p1.v = p2.v;

The internal equations are:

p.v = (1/m)*int(p.F);
x = int(p.v);

where p1 and p2 are the ports to the connections at both sides of the mass. p1.v and
p2.v are velocities defined with respect to the global reference. However, p.F (see also
in the figure below) is the sum of the forces applied on both sides.

12. Modeling Tutorial

128720-sim 5.1 Reference Manual

The definition of through variables depends on the definition of number of terminals of a
port, which is shown in the Type Editor. To inspect the ports, put the mouse pointer on
top of the Interface tab and select Edit from the right mouse menu.

 Note

The geometrical layout of the iconic diagram does not have a meaning. If a
resistor is drawn upside down, its current is still defined with respect to the
resistor (flowing towards or from). If a mass is drawn upside down, its force
is still defined with respect to that mass (pulling or pushing).

To show or hide the orientation of an Iconic Diagram select or deselect the
Orientation Info option of the View menu.

Global Reference12.3.7

20-sim iconic diagram models do not contain geometrical information. It is not important
how a model is drawn, but how the elements are connected. To make a correct
interpretation of the simulation results, the definition of references has to be known.

Across

Across variables in the top level of a model are always defined with respect to a single
global reference. For all domains this global reference is equal to 0. The interpretation of
this reference is up to the user. For example a zero pressure could be the absolute
vacuum or the air pressure at ground level. For most physical domains, unless specified
otherwise, a standard interpretation is used. This is shown in the table below.

Domain Across (a) Global Reference

power across a zero

12. Modeling Tutorial

128820-sim 5.1 Reference Manual

mechanical

(translation)

velocity v [m/s] zero velocity

mechanical

(rotation)

angular velocity omega [rad/s] zero angular velocity

pneumatic pressure p [Pa] air pressure at ground level

thermal temperature T [K] absolute minimum temperature

electric voltage u [V] zero voltage

hydraulic pressure p [Pa] air pressure at ground level

magnetic magnetomotoric force i [A] zero

pseudothermal temperature T [K] absolute minimum temperature

Through

Through variables in connections are always defined with respect to the components
they are connected with.

Non-Mechanical

Through variables that are not of the mechanical domain are always shown with an
arrow indicating the direction of the positive flow.

Mechanical

Through variables of the mechanical domain are always shown with two arrows
indicating the direction of the positive force. Since mechanical variables are often
geometrically interpreted, these arrows assume a positive velocity from the left to the
right and from the bottom to the top.

See for example the system shown above. Look at the connection between the spring
and the fixed world. Most users will correctly interpret a positive force as one that
"makes the mass slow down". The same model is shown below. To prevent an incorrect
interpretation such as a positive force "makes the mass accelerate", the arrows are
pointing inwards.

This interpretation is only valid when you assume that a positive velocity is from the left
to the right and from the bottom to the top!

12. Modeling Tutorial

128920-sim 5.1 Reference Manual

Causality12.3.8

The connection between two components describes the flow of power from one to the
other. This power flow is always described by across and through variables. For example
an electrical connection can be described by the variables voltage u and current i (u*i =
power). Each Iconic Diagram component creates a causal relation between these
variables. E.g. an electric resistor can be described by the equation:

u = i*R;

where R is the resistance. Here the voltage is a function of the current. In 20-sim we say
the component has a voltage out causality. This causality is not fixed. We can easily
invert the equation:

i = u/R;

Now the component has a current out causality. Which of the two equations will be used
for the simulation depends on the other components.

In 20-sim an advanced algorithm detects the possible causalities of each model and tries
to combine these in such a way, that optimal simulation code will be generated. You can
help this algorithm by manually setting the causality of ports.

Ports12.3.9

A port is a location where a component can exchange information (in case of a signal
port) or power (in case of a power port) with its environment. So, it is the port that
defines the connection with a component. A port is an important concept, as it allows you
to describe the properties of the connection that can be made to the component, i.e., its
direction, size, domain, etc. Ports can be defined in 20-sim using the Type Editor.

12. Modeling Tutorial

129020-sim 5.1 Reference Manual

Port Variables

All ports of a submodel are shown in the Type window of the 20-sim Editor. In the figure
below an electrical Resistor is shown with one power port p. Each port has an across and
through variable. In 20-sim these variables are denoted with the extensions .a and .t.
You can also use the names that are specific for a certain domain. For the electrical
domain the extensions .u and .i are used. You can see an example in the figure below
(Implementation section) where equations are defined using the variables p.u and p.i.

12. Modeling Tutorial

129120-sim 5.1 Reference Manual

Port Properties

Ports can be added and defined in the 20-sim Type Editor. You can open the Interface
Editor in the Interface tab (right mouse menu). The Interface Editor of the Resistor is
shown below.

12. Modeling Tutorial

129220-sim 5.1 Reference Manual

Port Properties

Iconic Diagram Ports have several properties:

Name: The name of the port.

Type: Next to Iconic diagram ports, 20-sim also knows bond graph ports and
signal ports.

Size: The standard size of a port and corresponding connection is 1 but you
can also define ports with larger sizes.

Orientation: The orientation of a port defines how the though variable is
connected.

Input: A positive through variable will act upon a component in the positive
direction (mechanical domain) or flows into the component (non-
mechanical domain).

Output: A positive through variable will act upon a component in the
negative direction (mechanical domain) or flows from the component (non-
mechanical domain).

Note: The port orientation and the orientation of the corresponding connection can be
made visible in 20-sim by arrows.

Domain: The physical domain of the port.

Causality: The causality of the port variable (across and through). You have to
define here what should be the input variable (across or through) and what
should be the output variable (across or through).

12. Modeling Tutorial

129320-sim 5.1 Reference Manual

By default, an iconic diagram port is a port where power can be exchanged between a
component and its environment in terms of an across variable and a through
variable. Such a port is represented by one terminal. However, there are two special
cases where it is desirable to define an iconic diagram port that has more than one
terminal. These are the Separate High / Low Terminals port and the Any Number of
Terminals port. These options are only for advanced users!

Separate High / Low Terminals: Select the port to have two terminals. Only for
experienced users!

Any Number of Terminals: Select the port to have any number of terminals. Only for
experienced users!

Ports with more than one Terminal12.3.10

By default, an iconic diagram port is a port where power can be exchanged between a
component and its environment in terms of an across variable and a through variable.
Such a port is represented by one terminal (connection point). However, there are two
special cases where it is desirable to define an iconic diagram port that has more than
one terminal.

Separate High / Low Terminals

Consider, as an example, an mechanical spring. The power that flows into such a
component is uniquely determined by the velocity difference between the two terminals
of the component and the common force that acts upon both ends. Because of this one
could say that there is one port, whose power is determined by one across value (the
velocity difference) and one through value (the common force), but is represented by
two terminals. To support this, 20-sim allows you to define a special type of iconic
diagram port by indicating that is has Separate High / Low Terminals. The two terminals
of the connection are named high and low. If the port is named p, the formal equations
are:

fixed in orientation

p.t = p1.t = p2.t
p.a = p_high.a - p_low.a

fixed out orientation:

p.t = p1.t = p2.t
p.a = - p_high.a + p_low.a

In 20-sim these equations are automatically derived.

Any Number of Terminals

Consider, as an example, a mass. A characteristic of this component is that you can
connect many springs and dampers to it. Implicitly, one expects that the net force (i.e.,
the summation of the forces applied by the connected components) will be applied to the
mass, and that it will have a single velocity. To support this, 20-sim allows you to define
a special type of iconic diagram port by indicating the kind to be Any Number of
Terminals. The terminals of the connection are named 1, 2, 3 etc.. If the port is named
p, the formal equations are:

12. Modeling Tutorial

129420-sim 5.1 Reference Manual

p.a = p1.a = p2.a = p3.a =
p.t = sign(p1)*p1.t + sign(p2)*p2.t + sign(p3)*p3.t +
sign = 1 when p1 has a fixed in orientation etc.
sign = -1 when p2 has a fixed out orientation etc.

In 20-sim these equations are automatically derived.

Creating Iconic Diagrams12.3.11

When you understand the concepts of across and through, including orientation,
constructing an iconic diagram is easy:

1. Create an ideal physical model.

2. Select the components that represent the various parts of the ideal physical
model and drag and drop them to the 20-sim editor. Iconic Diagram
components can be found in the model library. Some standard components
are shown in the tables of this tutorial.

3. Connect the components according to the ideal physical model.

4. Compile the model and run a simulation. For a good interpretation of the
plots, you must know that across variables are always defined with respect to a
global reference and through variables are always defined with respect to the
components.

Creating your own Components12.3.12

In 20-sim you can easily create your own components. The process of creation consists
of three parts:

1. For any connection an internal port has to be defined. For each port you have to
specify some data:

The physical domain.

The size.

The orientation.

The causality.

2. Create the icon for the component. This can be done with a specialized
drawing editor.

3. Create the component description. This can be done by (differential)
equations or by an iconic diagram.

Index

20-sim 5.1 Reference Manual 1295

Index

- - -

- 237, 257

- * -

* 182, 235

- . -

./ 238

.^ 238

.cse 485

.csv 485

.emxz 31, 32

.fmu 593

- / -

/ 239

- [-

[275

-] -

] 275

- ^ -

^ 240

- + -

+ 182, 236, 257

- < -

< 254

<= 254

<> 255

- = -

== 255

- > -

> 256

>= 256

- 0 -

0 633, 1273

0 junction 1274

0-junction 633, 634

- 1 -

1 622, 623, 1273, 1275

1-3-5-7-9 Polynomial 456, 468

1D 878

1-junction 622, 623

- 2 -

20sim 2, 7, 8, 11, 12, 24, 237

20-sim 2, 7, 8, 11, 12, 22, 23, 24, 237, 573, 574,
584, 585, 586, 589

20-sim Coordinates 595

20-sim Dynamic DLL 521

20-sim Filter Editor 415

20-sim Inspector 604

20-sim library 21

20-sim Model 302

20-sim Scenery 302

20-sim scenery file 604

20-sim submodel for Arduino/AVR 521

255 349

2D 878

2-D 876

2D Library 876

2D motion 876

2D Springs 897

2D-Animation 344

2D-modelling 913

2D-point-X 917

2DSmallRotation library 876

2dtable 1033

- 3 -

3 degrees of freedom 913

32-bit machine code 65

3-4-5 Polynomial 456, 468

3D Animation 108

3D Animation Plot 324

3D Animation Properties 326

3D Body 911

3D Library 911

3D mechanics 2

3D Mechanics Editor 286

3D Points 911

3D Representation 293

Index

20-sim 5.1 Reference Manual 1296

3D-body 917

3D-files 342

3D-mass 911

- A -

A 689

ABCD matrix 408

abort 267

Abs 162

Absolute 133, 134, 235, 1036

absolute error 100

absolute tolerance 413

absolute value 162

AC motor 793, 799

AC synchronous motor 502

acceleration 464, 894, 960

AccelerationActuator 792, 924

AccelerationActuator-Relative 792, 924

AccelerationSensor-Absolute 864, 972

AccelerationSensor-Relative 865, 973

accumulator 786

accuracy 100

acmotor 799

ACMotor-TorqueLoop 793

Across 87, 1281

Actions 436

Activation 8

activation function 377

Activation Function Type 379

Active 114

activity 634

Actuated Joints 308

actuator 808, 809, 810, 811, 812, 914, 915, 927,
928, 933, 934, 935

Actuator Model 1069

Actuator Properties dialog 318

Actuators 897

AD 1126

Adams-Bashford 133

Add 1030

Add New 49

Add Plot Window 449

Add to Favorites 110

Add to Input Probes 110

Add to Output Probes 110

Add/Delete 114, 532

Addition 236

Additional Outputs 302

Additional Toolboxes 285

Adjoint 205, 207

Advanced Scripts 581

After the run 521

algebraic 110, 163

algebraic loop in 65

algebraic loop out 65

Algebraic loops 40, 70, 132, 278

algebraic solver 132

algebraic variables 40

Algebraic variables solved 40

Alias 90

alias variable 65

Alias Variables 110

All Runs 108

Allow model updates 40

Allow Symbol Prefixes 91

Always Look up Vector 344

Ambient color 348

Ambient Light 347

amplifier 672

Amplitude 371, 429

amplitudesensor 1186

Analog 1129

analog filter 415

Analog to Digital Convertor 1126

analysis 96

Analyze Causality 45

and 252, 1158, 1172

angle 831

angular acceleration 831

angular velocity (constant) 810, 811

angular velocity (variable) 811, 812

Index

20-sim 5.1 Reference Manual 1297

angular velocity = 0 826, 942

Animation Properties 326

annotations 151

ANSI-C Code 521

ANSI-C Function 521

antisym 208

Anti-Windup 1069

Any Number of Terminals 85, 1293

API 574

Apply Regularization 385

Apply to: 103

arccos 224

arccosh 225

Archive 30

arcsin 223

arcsinh 226

arctan 226

arctanh 227

arduino 2

Array 276

Array Division 238

array multiplication 237

Array Power 238

Artificial intelligence 375, 380

As Constraint Joint 308

As Global Parameter 304

Assert Test 449

AssertSignal 1187

atan2 228

Attempting Real-Time simulation 126

Attenuate 1006

Attenuation 355

Attributes 326

Author 40

Auto Causality 40

Auto Indent 22

Auto Recovery Filename 28, 43

Automatic Tests 1187

Average 1189, 1216

Averaging Integration 1021

Avi 332

Axes 103

- B -

B 349

back plane 344

Background 103

Background Color 334

Background Image 334

Backgrounds 62

Backlash 813, 935, 1044

BackPropagation Networks 375

Backward Difference transformation 415

Backward Differentiation Formula 134

Backward Euler 132

Band 400

Band Pass 400

Band Stop 400

Bandwith 1145, 1146

Base 10 Logarithm 171

basic libraries 689

Basic Script 580

basis function 380

BDF 134

bearing 814, 826

BeltPulley 839, 978

Bessel 400

bilateral signal 1283

bilinear transformation 415

binary 159

binary operators 241, 242, 243, 244, 245, 246,
247, 248, 249, 250

Bipolar Sigmoid 379

Bipolar Sigmoid Activation Function Scale 379

bitand 241

bitclear 242

bitcmp 243

bitget 244

bitinv 245

bitmap 352

bitor 246

Index

20-sim 5.1 Reference Manual 1298

bitset 247

bitshift 248

bitshiftright 249

bitxor 250

Block Diagram 1264

Block Diagrams 1126

blue 349

Bode Plots 371, 429

body points 911

Body Properties Dialog 304

body without rotational inertia 916

Bond Graph 27, 610, 611, 612, 613, 614, 615,
616, 617, 618, 619, 620, 621, 622, 623, 625, 626,
627, 628, 629, 630, 631, 632, 633, 634, 636, 637,
638, 639, 641, 642, 643, 644, 645, 646, 647, 648,
650, 651, 652, 653, 654, 655, 656, 657, 658, 659,
660, 1259, 1264, 1266

Bond Graph Literature 1271

Bond Graph Models 1255

Bond Graph Models,Simplification 1255

Bond Graph,Equations 1266

Bond Graph,Iconic Diagram 1259

Bond Graphs 24, 1250, 1258, 1259, 1261

Bond Graphs,Iconic Diagrams 1259, 1261

Bonds 1252, 1253

Boolean 154, 157, 158

boolean and 252, 1158

boolean CMOS_CD4020 1160

boolean CompareGE 1161

boolean CompareGT 1162

boolean CompareLE 1162

boolean CompareLT 1163

boolean false 1163

boolean F-type Trigger Flip Flop 1164

boolean invertor 1164

boolean nand 1165

boolean nor 1166

Boolean Not 257

boolean or 253, 1167

Boolean ResetSet Flip Flop 1168

boolean R-type Trigger Flip Flop 1169

boolean SetReset Flip Flop 1169

boolean true 1170

boolean xor 1171

Brackets 145

Break 814

Breakpoint Editor 114

Breakpoints 113, 114

Bridge 676

Broydon Fletcher Goldfarb Shanno 544

Brush DC Motors 497

Brushless DC Motors 500

Brute Force 108

brute force simulation 40

Bryant angles 304, 349

B-spline 380

B-spline Network 380

bsplinenetwork 1062

Buffers 1276

Building Hydraulic Models 691

built-in 285

Built-in Compiler 100

Bulk modulus 689

Butterworth 400, 1145, 1146

BW 1145, 1146

by 263

- C -

c 521, 610, 611

C++ class for 20-sim submodel 521

C-2 648

C-3 636

cam 839, 979

Cam Motion Profiles 456

Cam Wizard 452, 456

Camera 344

Camera Settings 296

CamProfile.dll 839, 979

cams 452, 839, 979

Capacitor 664

Capacitor.emx 664

carriage 897

Index

20-sim 5.1 Reference Manual 1299

Case 266

cast 161

casting 161

Catch up with lost time 126

Category 442

Causal analysis 45

causal conflict 45

Causal Form 66, 279

causal order 66, 279

Causal Strokes 45, 1283

Causality 66, 84, 272, 273, 279, 1256, 1283,
1289

Causality Info 25

CCCS 681

C-code Folders 28, 43

C-Code for 20-sim submodel 521

C-Code Generation 28, 43, 521

Cd 689

ceil 163

C-elements 1276

center of stiffness 900

centi 91

CentrifugalPump 721

changing mass 960

Chebychev 400

check 300

Check Complete Model 39

Check Energetic Behavior 45

Check for Model Updates 61

Check Model 302

checkvalve 738

checkvalve-states 762

Chinese 20

Choose Colors 25

Choosing a Motor 517

Chrome 352

Circle 344

circle elements 336, 339, 340, 355

Clear 108

Clear After Every Run 532

Clock 1173

Clock Signal 1159

Clock-Continuous 1159

clock-discrete 1127

clockinterrupt 129

closed chain mechanism 297

Closed Forms 355

closed loop system 410

Clutch 820

cmabender 661, 925

CMAStretcher 662, 926

CMOS_CD4020 1160, 1174

code 22, 138, 139

code block 139

Code Blocks 71, 282

code generation 2

Cogging 511

collect 218

Collision 939

Collision-Relative 937

colon 275

Color 90, 349

Color Syntax Highlighting 22

Color Themes 103

Colors 25, 103

Column 53

Columns 208, 275, 1289

Combining of divisions 36

Combining of multiplications 36

Combining splitters 36

comment 144

Comments 144

Commercial Controllers 1074

Company 40

Compare CSV 449

CompareGE 1161, 1174

CompareGT 1162, 1175

CompareLE 1162, 1175

CompareLT 1163, 1176

Comparison of Friction Models 1247

Index

20-sim 5.1 Reference Manual 1300

compensator 360, 399

Compiling 32, 65

Compiling Models 65

complete set of equations 74, 284

Component Properties 286

Components 1294

computational direction 1283

Cone 340

Confirmation on Delete 28, 43

connecting of joints 300

Connecting Sensors 315

Connecting Submodels 33

connection 698, 832, 963

connection mode 33, 35

Connections 35, 47, 1283

Constant 348, 1193

constant current 686

Constant Values 146

constant voltage 688

Constants 17, 23, 98, 146, 148

constraint 84, 163

constraint equal 84

Constraint Joint 297

constraint not equal 84

Constraint Settings 308

constraint variables 40

Constraint variables solved 40

constraints on motion 884

Continue 114

Continuous Descent 544

continuous pulse 456, 468

Continuous-Discrete Tranformations 415

Continuous-Time 51

Continuous-Time and Discrete-Time Models 51

contra-rotating shafts 845

ControlledLinearSystem 1056

ControlledSystem 1057

Controller 395, 396, 397, 398, 399, 1096, 1097,
1098, 1119, 1120, 1121, 1122

Controller Design Editor 360

controller output 1064

controller variable 1064

Controller-P 1079, 1103

Controller-PD_p 1080, 1103

Controller-PD_s 1081, 1104

Controller-PI 1081, 1105

Controller-PI_sp 1082, 1106

Controller-PI_sp_aw 1083, 1106

Controller-PI_sp_aw_u0 1084, 1107

controller-pi_sp_aw_u0_tr 1085, 1108

Controller-PID_p 1086, 1109

Controller-PID_p_sp 1087, 1110

Controller-PID_p_sp_aw 1088, 1111

Controller-PID_p_sp_aw_u0 1089, 1112

controller-pid_p_sp_aw_u0_tr 1090, 1113

Controller-PID_s 1091, 1115

Controller-PID_s_sp 1092, 1115

Controller-PID_s_sp_aw 1093, 1116

Controller-PID_s_sp_aw_u0 1094, 1117

controller-pid_s_sp_aw_u0_tr 1095, 1118

controllerwizard 1079

convection 994

Convert 1259

converting from real to boolean 161

Copy 110

Copy from States 532

Copy Initials 98

Copy Parameters 98

Copy Specified 110

Copy States 108, 119

correct order of execution 71, 282

cos 229, 232

cosh 229

co-simulation 55, 92, 93

Cosine 1036

Cosine Wave 1211

cost function 572

CostFunction 1123, 1124

CounterbalanceValve 764

counter-moving ports 983

Index

20-sim 5.1 Reference Manual 1301

counting 275

coupling 858

CPS 434

crankrod 842, 981

Create Datafile 532

Created 40

Creating 1258, 1294

Creating Components 1294

Creating Elements 1271

Creating,Bond Graphs 1258

Creating,Iconic Diagrams 1294

cross 208

CrossingBoth 1139

CrossingDown 1139

CrossingUp 1139

crossover yerk 456, 468

Cube 337, 595

Cubic 456, 468

cumulative power spectral density 434

current 686

current controlled current source 681

Current time 408

CurrentSensor.emx 665

CurrentSource 686

CurrentSource.emx 686

CurrentSource-CCCS 681

CurrentSource-CCCS.emx 681

Curve 101

curve fitting 549

custom libraries 27

CV 1064

cyclic 456, 468

Cyclic Motions 456, 468

Cycloid 1199

Cycloidal 456, 468

Cylinder 339, 352, 699

CylinderChamberA 700

cylinderchamberb 701

cylinderdouble 704

cylindersingle 708

CylinderSingleSpringReturn 706

CylinderSpringReturn 703

- D -

D Controller 396

DA 1129

da-delay 1128

Damper 825, 900, 941, 966

Dashed Bonds 40

data 183

Data Files 478

Data Input Wizard 1194

Data Types 157

Datafile 1041, 1200

DataFromFile 1194

Davidson Fletcher Powel 544

DB 1037

DC Motors 518

DCmotor 663, 800

DC-motor 663, 800

DCmotor.emx 663, 800

Ddt 164

De 612

deactivate license 11

deactivation 11

DeadZone 1032

deal voltage source 687

debug mode 121

Debugger 113

debugging 96

deci 91

decimal 159

declarations 23

Decrypt Models 58

Decryption 58

Default Lights and Cameras 344

Default Line Thickness 28, 43

Default Shared Y-Axis 28, 43

default value 98

default values 149

degree of freedom 913

Index

20-sim 5.1 Reference Manual 1302

degrees of freedom 876, 880

deinstallation 11

Delay 1007, 1130

delay-n 1129

Delay-Pade 1006

Delay-Step 1007

Delay-Time 1007

delay-variabletime 1008

delete 35

demonstration 7

Demux 1009, 1010, 1011

denominator 364, 420

Department 40

Dependent 110

dependent rate 65, 68, 281

dependent state 65, 68, 281

Dependent states 40

Dependent/Algebraic 110

Derivative 164

Derivative action 1067

Derivative Gain Limitation 1014, 1067

Derivative time 1067

description 90, 98

Desired Area of Operation 517

det 209

Determinant 209

Df 613

diag 209

Diesel 710

difference equations 362, 418

Differential 844, 1131

differential equations 362, 418

differential form 68, 281

DifferentialGear 843

DifferentialPressure 735

Differentiate 1013

Differentiate- 1012

Differentiate-Calculus 1012

Differentiate-Default 1015

Differentiate-FO 1013

Differentiate-SVF 1014

Differentiation 1014, 1015

Differentiator 396

Diffuse color 348

Digital 1129

digital filter 415

Digital linear controllers 394

Digital linear filters 394

Digital to Analog Convertor 1129

Diode 666, 676

Diode Bridge 676

Diode-Ideal 666

direct 219

Direct acting 1065

direct search 544

Direction (using order of Connection Points) 308

Direction Up Vector 304

Directional Light 348

Disable plot 101

discharge coefficient 689

Discrete 415

Discrete Differential 1131

Discrete Integral 1132

Discrete Sample time 362, 418

Discrete System 128, 175

Discrete Time Interval 128

DiscreteDifferential 1131

DiscreteIntegral 1132

Discrete-Time 51

Discrete-Time Models 51

discrete-time system 415

disk space 4

DisplacementMotor 712

displacementmotor-leakage 714

displacementpump 717

displacementpump-leakage 724

dissipative element 619, 627

Dissolve 2, 36

Distribute curves 40

disturbances 360

Index

20-sim 5.1 Reference Manual 1303

Div 239, 240

Divide 1025

Division 239

DLL 185, 186

dlldynamic 193

dly 165

Do 263, 264

Documentation 583

Documentation Editor 59

DoFromMatlab 1150

Domain 87

domain changes 630

Domain name 90

Domains 86, 87, 90

Domains,Quantities and Units Editor 86

DoMatlab 269, 1152

DoMatlab-Final 1151

DoMatlab-Initial 1151

double acting cylinder 704

Double Click Function 28, 43

DoubleSwitch-Level 667

drag and drop 27, 33, 35, 300

Drag and Drop .fmu 607

Drawing Rules 880

DTypeFlipFlop 1176

DTypeFlipFlop-Discrete 1176

Duplication 357

During the run 521

Dutch 20

Duty Cycle 511

DXF-files 342

Dynamic Backgounds 62

Dynamic DLL's 194

Dynamic Error Budgeting 434

Dynamic Model 484

Dynamic Systems 1249, 1280

dynamic variables 110

- E -

Eddy Current 511

Edit Condition 114

Edit Implementation 49

Edit Modes 294

Edit window 290

Editing Domains 90

editor 2, 21, 22

Effort 87, 1250

effort detector 612

effort in 272

effort source 620, 628

Effortincausality 272

EffortSensor 613, 1253

Eigen Frequencies 369, 427

Electric 87, 661

Electric Switch 667, 677

electrical inductance 671

Elements 275, 1271

Eliminating double differences 36

Eliminating junctions 36

Eliminating nodes 36

Else 259, 261, 262

Elsif 261

Enable plot 101

Enable XMLRPC Interface 28, 43

Encoder 867

Encrypt Models 57

encrypted 30

Encryption 57

end 37, 258, 259, 261, 262, 263, 264

End Angle 452

end plane 334

end position 336

End Time 464

end_time 456, 468

Endless 100, 126

Energy 45, 614

energyfunction 165

EnergySensor.emx 614

English 20

Enter equations in 3D Mechanics Editor 323

Enter expressions in 3D Mechanics Editor 323

Index

20-sim 5.1 Reference Manual 1304

Equal 84, 181, 254, 255, 256

equation 22

equation editor 21, 22, 23

equation model 22

Equation Sections 139

Equations 74, 138, 139, 284, 1266

Equations interpreted as code 40

Equations,Bond Graph 1266

Error 1064

error message 39

Errors 39, 40, 113

Euler 132

Euler Parameters 304, 349

event 144, 179, 180, 1139

Event delta 100

eventdown 179

Events 144

eventup 179

Every 28, 43

Examples 27

Execution 71, 282

Execution Order 138

Exp 166

exp10 167

exp2 167

Expand Vectors/Matrices 98, 110

Expand Vectors/Matrices: 110

Explode 35

Exponential 166

Exponential Base 10 167

Exponential Base 2 167

Exponential Window 1017

export 55, 59, 92

Export 3D Animation to Unity 600

Export to Matlab 12, 55

Export to Simulink 55

Exporting Simulations 121

Expression 321

Expressions 323

Expressions Editor 323

External Tracking 1069

externals 92

eye 210

- F -

F3 26

fading colors 109

false 154, 1163, 1177

Fast Fourier Transform 404

fast mode 121

fast simulation 121

Faulhaber 2006 492

favorites 110

femto 91

fft 407

FFT Analysis 404

FFT plot 404

FFT settings 404

FFT Window 407

File Data 183, 204

File Input 1041, 1200

FileInput 183

Filename 1194

Files of Type 30

Filter 394, 400, 404, 1015, 1067, 1144, 1145,
1146

Filter Editor 394, 1015

Filtering 415

Final Equations 139

finalequations 138, 139

Find 26, 109

Find again 26

Find box 26

Find tab 21, 26

Finish 100

finishtime 154, 202

first 220

First Order Filter 401, 403

Fixation of bodies 884

Fixed 47

Fixed Causality 66, 279

Index

20-sim 5.1 Reference Manual 1305

fixed in orientation 1289

fixed out 84

fixed out orientation 1289

fixed position 47, 76

fixed sample time 118

Fixed Sampletime 129

fixed time step 118

fixed world 826, 891, 914, 942

FixedWorld 826, 942

Flash 332

Flat 351, 352

Flexible Components 897

Flip Flop 1164, 1178

FlipFlop 1176, 1185

Flipping 911

Floating License 7, 8, 11

floating mechanism 304

floor 168

Flow 87, 1250

flow conductance 689

flow detector 613

flow in 273

flow source 621, 629

flowcontrolvalve 740

flowcontrolvalve-states 765

Flowincausality 273

FlowSensor 614, 736, 1253

FlowSource 718

flowsource-leakage 726

Fluid Properties 710

FluidProperties 710

FMI 2, 55, 92, 94

FMI Import 93

FMU 2, 55, 92, 94

FMU 1.0 export 521

FMU 2.0 export 521

FMU export 92, 94

FMU Import 92, 93

Fonts 28, 43, 103

For 263

For To Do 263

Force 914, 915, 927

force (constant) 927

force (variable) 928

ForceActuator 928

ForceActuator-Relative 928

Force-Relative 927

forces 896

ForceSensor-Relative 974

Fork 982

Form 66, 279

Forward Euler transformation 415

Fourier Analysis 404

fourthreewaydirectionalvalve 741

fourthreewaydirectionalvalve-states 767

FourThreeWayProportionalValve 743

FourThreeWayProportionalValve-States 769

frame 349

frame hierarchy 335

frame rate 332

Frames 344

frames per second 334

free 7

freeze 891, 914

frequency 128, 404, 433

frequency range 404

Frequency Response 411

Frequency Sweep 1207

frequencyevent 180, 1142

Friction 619, 627, 826, 942

friction literature 1248

Friction Phenomena 1240

FrictionRelative 947

FrictionSimple 952

FrictionSimple-Relative 956

From Matlab 98

FromMatlab 270, 1152

front plane 344

F-type Trigger Flip Flop 1164, 1178

Full Screen 124, 324

Index

20-sim 5.1 Reference Manual 1306

Functions 23, 162

- G -

G 349, 689

Gain 395, 422, 1016, 1065

Gain Margin 371, 429

Gain-Phase 433

Gasoline 710

Gauss 221, 1202, 1217

Gaussian Noise 221, 1202, 1203, 1217

Gear 845

gear box 845

gear ratio 845, 856

gearbox 856

General Modified Sine with Constant Velocity
456, 468

General Properties 28, 43, 334, 351

Generate 20-sim Model 302

Generate Code 449

Generate CSV 449

Generate Global Parameters 299

Generating Unity Animation 606

Generic Filter 400

Geneva Mechanism 456, 468

German 20

Getting started 15

Ghost Modes 294

giga 91

Global 78, 79, 155

Global Maximum 109

Global Minimum 109

Global parameters 78, 98, 155

global parameters multiple assignement 78, 155

Global Reference 1287

Global Relations Editor 80

global variables 78, 110, 155

globals 78

Globals tab 80

Go Down 18, 37

Go Up 18, 37

Gouroud 351

gradient fill 28, 43

gradient search 544

Graph Animation 358

graphical editor 21, 24

gravity 960

green 349

green input and output lines 51

Grid 103

Ground 670, 994

Ground.emx 670

GY 615

GY-2 650, 652

GY-3 637

GY-element 1278

Gyrator 615, 619, 629

Gyrators 1278

- H -

halt 267

hamming 407

hann 407

Has Damping 308

Has Minimum 308

Has Spring 308

Head Sensor 737

heatcapacity 995

heatflow 1000

heatflowsensor 1004

hecto 91

Help 1

Help Page 40

hex 159

hexadecimal 159

Hidden 98, 110, 146, 149, 152, 157, 326

Hidden layer 377

Hidden layers 375

Hidden Parameters 98

hidden variable 65

Hidden Variables 110

Hide 3D Objects 326

Hide curve 101

Index

20-sim 5.1 Reference Manual 1307

Hide plot 101

Hierarchical Models 18

hierarchy 18, 37, 335

high 85

High / Low Terminals 85, 1293

High frequency noise 1067

High pass 400, 401

High Pass First Order Filter 401

High Pass Second Order Filter 401

high-frequency measurement noise 1067

High-frequency roll-off filter 399

Hinge X-rotation 308

Hinge Y-rotation 308

Hinge Z-rotation 308

Histogram 560

H-matrix (4x4) 315

Hold 175, 1133

Home 37

homogeneous 210

hose 695

how to speed up simulations 121

How to use the Parameters 482

html document 59

HTTP 28, 43

Hydraulic 87

hydraulic accumulator 786

hydraulic pipe 695

Hydraulic Powersensor 737

HydraulicInertia 694

Hysteresis 511, 1045, 1052

Hz 128, 1145, 1146

- I -

i 616, 617

I Controller 396

I-2 651

I-3 638

IC-2 618

Icon 18

Icon Editor 21, 75

Icon Size 28, 43

Icon tab 21

Iconic Diagram 1259

iconic diagram models 24

Iconic Diagram Ports 1289

Iconic Diagram,Bond Graph 1259

Iconic Diagrams 27, 661, 1259, 1261, 1280

Iconic Diagrams,Bond Graphs 1259, 1261

ideal capacitor 664

ideal current source 686, 687

ideal cylinder 699

ideal DC-motor 663, 800

ideal electrical inductance 671

ideal electrical resistor 676

ideal mass 960

ideal physical model 1249, 1280

ideal voltage source 688

Identified with 128

I-elements 1276

If 258, 259, 261, 262

If Then 258

If Then Else 259, 262

If Then Elsif 261

Image 334

images 25

imaginary 433

impacts 964

Implementation 18, 449

Implementations 49

Implode 35

Import 92, 98, 114

Import 20-sim Scenery file 600

Import Data 433

Import Gain-Phase 433

Import Real-Imag 433

Importing Simulations 122

impulse 221

included toolboxes 7

indentation 335

independent rate 65

independent state 65

Index

20-sim 5.1 Reference Manual 1308

indexer 839, 979

indexers 839, 979

indifferent 84

Indifferent Causality 66, 279

Inductor 671

Inductor.emx 671

Inertia 831

Initial 133, 134

Initial Equations 139

initial output 1074

Initial Values 17, 98

Initial Values Quick Tour 17

Initial Values Reset 121

Initial Weights Fill Scale 379

initial yerk 456, 468

initialequations 138, 139

Initialize variables 40

Initialize Variables on Nan 113

Initials to Zero 98

inner 210

Input Equations 65

Input from File 204, 1200

Input is not used 40

input noise 434

input probes 110

input signal 83

Input/Output 595

insert a submodel 33

Inspect Models 18

installation 8, 575, 584

Installing 20-sim 8

Installing Unity Toolbox 593

instructions 65

int 169

Integer 157, 159

Integral 169, 1132

Integral Form 68, 281

integral time 1066

Integrate 1018, 1022

Integrate Data 404

Integrate-ExpWindow 1017

Integrate-FO 1018

integrate-folimited 1019

Integrate-Limited 1020

Integrate-RectWindow 1021

Integrate-Reset 1021

Integration Error 133, 134

Integration Methods 100, 126

integrationmethod 202

Integrator 396

interacting form 1067

Interesting 110, 152, 157

interesting variable 65

interface 22, 82

Interface Editor 21, 82

Interface tab 21

intermediate points 33

Intermittent 456, 468

Interpreter Code 65

Interval 1021

introduction 476, 573

introduction to friction 1239

inverse 211, 1023

inverseH 211

inverting equations 66, 279

Invertor 1164, 1178

IPM 1249, 1280

ipython 584

ISA form 1067

ISO VG 100 710

ISO VG 150 710

ISO VG 22 710

ISO VG 32 710

ISO VG 46 710

ISO VG 68 710

iterate 144

- J -

Jacobian Matrix 315

jerk 452

Join Parameter Variation 532

Index

20-sim 5.1 Reference Manual 1309

Joint Constraint Settings 299

Joint Constraint Settings dialog 299

Joystick 1196

Jump 26, 1047

Jump and Rate Limiter 1047

Junction 1275

Junctions 1273

- K -

Kerosene 710

Keyboard 63, 124, 1197

keyboard keys 330

Keyboard Shortcuts Editor 63

Keyboard shortcuts simulator 124

keys 330

Keywords 40, 142, 146

kilo 91

kind 110

- L -

Label 103

Lag Filter 402

laminar flow 689, 730, 733

LaminarResistance 730

language 20, 22

Language Reference 136, 138, 139, 146, 157,
162, 234, 258

Laplace variable 364, 420

Larger Than 256

Last Run 108

layers 375

Lead Filter 402

leakage 407

Learn after Leaving Spline 380, 385

Learn at each Sample 380, 385

learning rate 379, 380, 385

left-hand frames 344

left-handed 351

Less Than 254

Lever 983, 991

lever ratio 983

Libraries 28, 43

library 2, 21, 27, 40, 304

Library Folders 28, 43

library names 28, 43

library paths 28, 43

Library tab 21, 292

License 8, 11

License Activation 8

license Key 8

License Unity Toolbox 592

Lightwave Object files 342

Likes 84

Likes Causality 66, 279

limint 169

Limit 169, 1046

limitations 7

Limited Integration 169, 1020

limited stiffness 911

Limits 508

Line 336, 695

Line Climber 544

Linear 348

Linear Actuators 897

linear differential equations 362, 418

linear feedback anti windup 1069

Linear Motors 504

Linear Slides 897

Linear System 410, 1023, 1226

Linear System Editor 415, 1023, 1226

linear time- invariant models 415

Linearization Explained 410

Linearization moment 40

Linearization Tolerances 413

Linearization Type 40

Linearize at 408

Linearize Model 408

linearized symbolically 876

LinearSystem 1133

linsolve 212

Literature 1075

Load Scene 332

Index

20-sim 5.1 Reference Manual 1310

Load Weights at Start of Simulation 379, 385

Localhost 28, 43

Locate License File 11

locks 330

Log 170, 1037

Log Variables 449

log10 171

log2 171

Logarithm Base 10 171

Logarithm Base 2 171

Logging 450

Logical Nand 1179

Logical-Invertor 1178

Logical-Nor 1180

Logical-Or 1181

Loop 3D Animation 40

Loop Flushing Valve 746

Loops 70, 278

low 85

Low Pass 400, 403, 1145, 1146

Low Pass First Order Filter 403

Low Pass Second Order Filter 403

Low Terminals 85, 1293

LowPassFilter-BW2Hz 1145

lowpassfilter-bw4 1146

LowPassFilter-BW4Hz.emx 1146

lowpassfilter-fo 1147

lowpassfilter-so 1149

Lumped Parameter Method 1249, 1280

lydraulic line 695

- M -

Machine Code 65

Magnetic 87

Main Model 18, 40

main reference frame 335

major 154

major step 72

Manager 40

Manipulate 330

Manual output 1074

Mark 109

mask 53, 415

Masked Models 53

Mass 960

Material 355

matlab 2, 12, 55, 110, 268, 269, 270, 408, 521,
532, 573, 578

matlab simulink connection 12

Matlab-Code folders 28, 43

Matlab-Code Generation 28, 43

matplotlib 584

Matrices 53, 110, 274, 275

Matrix 237, 275, 276

Matrix Declaration 274

Matrix is assigned a scalar 40

Matrix Notation 275

Matrix Operators 276

Matrix Use 276

max 151, 213

maximum 133, 134, 1054, 1189

Maximum allowed lost time 126

maximum continuous torque 511

Maximum Efficiency 516

maximum phase current 500

maximum phase to phase voltage 500

Maximum Power 516

Maximum Step Size 134

Maximum Value 110

Maxon 486

Maxon motors 486

Maxwell reciprocity 618

Mean 1189, 1216

mean time interval 1221

measured variable 1064

measurement 360, 1064

Mechanical 87, 791

mechanism 839, 979

mechanisms 452, 839, 979

mega 91

Melt equal junctions 36

Index

20-sim 5.1 Reference Manual 1311

Menu Scripting 575

Mesh 351

Message Log 96

Message window 293

m-file 55

MGY 619, 1279

MGY-2 652

MGY-3 639

MGY-element 1279

micro 91

Migrating from Older Versions 288

milli 91

min 151, 213

Minimize/Maximize 538

Minimum 1055, 1190

Minimum / Maximum 532, 538

Minimum Value 110

minor steps 72

Minus 1030

Mixed models 51

MLP Network 377

mlpnetwork 1063

Mod 240

Modal 962

ModalSummer 963

Model exchange 92

Model Help 40

Model Hierarchy 21, 37, 98

Model Hierarchy: 110

Model Layout 137

model libraries 27

model library 24

model name 62

Model Properties 40

Model Settings 40, 295

Model tab 21, 291

Model Template Folders 28, 43

modeling 610

models 18, 610

Modified Sine 456, 468

Modified Sine with Constant Velocity 456, 468

modified sine with contstant velocity 456, 468

Modified Trapezoidal 456, 468

Modulated dissipative element 619

Modulated effort source 620

Modulated Elements 1253

Modulated flow source 621

Modulated gyrator 619

Modulated Gyrators 1279

Modulated Sources 1278

Modulated transformer 621

Modulated Transformers 1279

ModulatedCurrentSource 687

ModulatedCurrentSource.emx 687

modulatedflowsource 719

modulatedflowsource-leakage 727

modulatedheatflow 1001

modulatedpressuresource 719

ModulatedTemperatureSource 1001

ModulatedVoltageSource 687

ModulatedVoltageSource.emx 687

Module 442

Modulus Operator 240

Momentum Constant 379

Monitor 1031, 1211

Monte Carlo analysis 108, 560

More 332, 1194

motion 300, 452, 468

Motion Profile 452, 1197

Motion profile parameters 468

Motion Profile Wizard 464, 467, 1197

MotionProfile-Wizard.emx 1198

Move curve 101

Move plot 101

Moving 330

Moving Objects 330

MovingAverage 1190

MR 619

MR-2 653

MR-3 641

Index

20-sim 5.1 Reference Manual 1312

MSC% 456, 468

MSC50 456, 468

MSe 620

MSe-2 654

MSe-3 642

MSe-element 1278

MSf 621

MSf-2 655

MSf-3 642

MSf-element 1278

msum 213

MTF 621, 1279

MTF-2 655

MTF-3 643

MTF-element 1279

mul 182

mulitplydivide 35

Multi Layer Perceptron 377

multi-bond 53

multi-connection 53

Multi-Dimensional Models 53

Multi-Dimensional Ports 53

Multi-Line Tabbing 22

multiple port restrictions 84

Multiple Run 108, 571

Multiple Run results 108, 532

Multiple Run Wizard 531

multiple-run 108

multiplication 89, 235, 237

multiplication factor 91

Multiplication/Offset 103

Multiplications 91

Multiply 1006, 1025

MultiplyDivide 182, 1025

multiplyH 214

multi-signal 53

Mux 1026, 1027, 1028

- N -

Name 25, 40, 62, 110, 1289

names 98, 146, 149, 152

Naming Conventions 62, 1099

Nand 1165, 1179

nano 91

Natural Logarithm 170

Negate 1029

net energy 45

net power 45

net power flow 45

network 375, 380

Network is Discrete 385

Network Name 379, 385

Neural Networks 375, 380

neuron 377

neurons 375, 380

New 3D Animation Plot 116

new in 20-sim 2

New Simulation Plot 115

Newlines 145

Newton Raphson 544

next 176

Next Camera 344

Next Local Maximum 109

Next Local Minimum 109

Nichols 373, 431

Nichols Chart 373, 415, 431

No Emphasising Threshold 28, 43

Node 698, 832, 963

Node.emx 672

Noise 221, 222, 1202, 1205, 1217, 1218

Nominal Operating Point 511

Non-actuated 308

non-interacting form 1067

Nor 1166, 1180

norm 214

Normal Force 1239

Normal stop 267

norminf 215

Not 257

Not Equal 84, 255

Notch Filter 403, 404

Index

20-sim 5.1 Reference Manual 1313

NTC 1003

Number 85, 1293

Number Hidden Neurons 379

number of frames per second 334

Number of Splines 385

numerator 364, 420

numerical linearization 413

Numerical Output 532

Numerical Values 109

numpy 584

Nyquist 374, 430

Nyquist Diagram 374, 430

Nyquist Plot 415

- O -

Object Attributes 326

Object Tree 326

objects 326, 330

octave 2, 573, 575

octaveforge 575

offset 352, 1066

Offset First Data Point 1194

OK 532

OK to Continue 449

Omega (3x1) 315

Omega and Velocity (3x1) 315

Omega-X 315

Omega-Y 315

Omega-Z 315

one 1199

One Junction 623, 631, 1273, 1275

One Step 108

One Step Simulation 108, 113

One_in 84

One_out 84

OneJunction 622

oneup 156

Only Frames 332

OpAmp 672

OpAmp.emx 672

Open 30

open chain mechanism 297

open end 892

open loop system 410

Open Model 30

Operating Point 119, 408

operating system 4

operational amplifier 672

Operators 23, 234

optimization 538, 544

Optimization Method 538

Optimization Methods 544

Optimization Results 538

optimization run 108

Optimize Divisions 40

Optimize Duplicate Expression 40

Optimize Equation Structure 40

Optimize Static Expressions 40

Optimizing Equation Structure 65

Or 253, 1167, 1181

orange outlines 37

order 385, 456, 468

Order of Excecution 71, 282

Order of Execution 71, 282

Orientation 84, 85, 315, 349, 1253, 1284, 1285,
1289

Orientation Info 25, 1284

orifice 731

orifice area 689

Origin 352

OrthoGraphic 344

oscillating 456, 468

oscillating signal generators 456, 468

Other Motors 519

output 1078, 1102

Output After Each 100, 126

output delay 362, 418

Output Equations 65

Output Filename 302

Output is not used 40

Output position 308

Index

20-sim 5.1 Reference Manual 1314

output probes 110

Output Sigma 434

output signal 83

Output tab 21

Override the General Spring Damper Values 299

overshoot 370, 428

- P -

P 1079, 1096, 1119

P Controller 395, 1096, 1119

p_vapour 689

Pack 30, 31, 55

Packed Files 31

Pade Time Delay 1006

Pair-wise transfer function 404

Parallel 348

Parallel Form 1067

Parameter is not used 40

parameter name 62

parameter sweep 108, 532

Parameter Sweeps 532

parameters 17, 98, 149, 479

Parameters Quick Tour 17

parameters ranges 151

Parameters/Initial Values Editor 98

Parametric modeling 321

Parametric Modeliong 323

Parasitic 789

ParasiticVolume 789

Parenthesis 145

Partial Cubic 456, 468

Partial Trapezoidal 456, 468

Pass Band 400

PD 1096, 1120

PD Controller 396, 1096, 1120

peaks 404

penumbra 348

Permanent Magnet Motorsunction 496

Perpendicular Search 544

Perspective 344

PgDown 37

PgUp 37

phase 371, 429, 433

Phase Margin 371, 429

phase to phase inductance 505

phase to phase resistance 505

Phased Sine Wave.emx 1212

phasesensor 1191

Phong 351

physical domain 87

Physical Domains 87

physical model 1249, 1280

physical systems 610

pi 1081, 1097, 1121, 1199

PI Controller 397, 1097, 1121

pico 91

pictures 25

PID 1098, 1122

PID Compensator 399

PID Control 1064

PID Controller 397, 398, 399, 1098, 1122

PID-1 Controller 397

PID-2 Controller 398

piezo actuator 661, 662, 925, 926

PilotOperatedCheckValve 748

PilotOperatedCheckValve-States 773

pipe 695

planar motion 876

Plane Distance 344

PlanetaryGear 847

plant 360, 1064

Play button 436

PlaySound 1237

Plot 96, 101

Plot Properties Editor 103

Plot Title 103

Plot Window 2, 101

plug-in 593

Plus 1030

PlusMinus 35, 182, 1030

Pneumatic 87

Index

20-sim 5.1 Reference Manual 1315

point mass 882

point model 886

Polack Ribiere 544

Pole Zero 372, 432

Pole Zero Diagram 372, 432

pole zero notation 366, 424

Poles 366, 415, 424, 1023

Poles and Zeros (including root locus) 415

Polynomial 456, 468

Polynomials 364, 420

Port is not used 40

port name 83

Port Names 25, 140

Port Properties 1268, 1289

Port Relations tab 84

Port Variables 87, 1289

Ports 82, 85, 1268, 1289, 1293

port-size 53

position 304, 315, 348, 464, 595, 893, 921, 960

Position (3x1) 315

Position Sensor 893, 921

Position/Orientation 315

PositionActuator 804, 930

PositionActuator-Relative 801, 929

PositionSensor-Absolute 870, 975

PositionSensor-Relative 871, 975

Position-X 315

Position-Y 315

Position-Z 315

positive direction 880

Possible loss of data 40

Potentiometer 675, 872

Power 45, 87, 240, 896, 1038

power flow 45

Power Interaction Port 308

Power ports 140

power sensor 625

power spectral density 404, 434

powerflow 896

power-port variables 138, 140

PowerSensor 737, 873

PowerSplitter 626

powertport 87

pre-act 1067

Predefined Constants 148

Predefined Variables 154

preferred 84

Preferred Causality 45, 66, 279

Preferred out 84

Prefilter 360, 404

prefix 91

Prefix Minus Sign 257

Prefix Plus Sign 257

prefixes 89

Prepare Scripting Folder 578

Pressing Mode 33

pressure 689

Pressure Compensator 750, 775

Pressure drop sensor 735

pressurereducingvalve 752

pressurereducingvalve-states 778

pressurereliefvalve 753

pressurereliefvalve-states 779

pressuresensor 738

pressuresource 720

previous 177

Previous Local Maximum 109

Previous Local Minimum 109

Previous Runs 108

privacy 5

process 39, 1064

process output 1064

Process tab 21

process variable 1064

Processed Files 32

processing 32, 40

processor 4

professional 7

profile 456, 464, 468

Profiles 332, 456, 468

Index

20-sim 5.1 Reference Manual 1316

Programming Language 521

Project 40

Projection 344

Properties 292, 326, 1289

Property Page 28, 43

Proportional Band 1065

proportional gain 1065

PSD 434

Psensor 626, 1253

Pseudo Domain 90

Pseudo Pneumatic 87

PseudoHydraulic 87

PseudoThermal 87

PseudoThermalH 87

PTC 1003

Pulse 456, 468, 1204

purchase 285

PV 1064

pwm 1048

python 573, 584, 585, 586, 589

Python 3.4 8

Python Scripting Help 588

- Q -

Qsensor 627, 1253

quadratic 348, 407

quanties 98

Quantisize-Round 1135

Quantisize-Truncate 1136

quantities 86, 89, 90

Quantities and Units Editor 86

Quantities Mismatch 40

QuantitiesAndUnits.ini 86

Quantity 91, 110, 146, 149, 152

Quantity name 90

- R -

R 349, 627

R-2 656

R-3 644

RackPinionGear 849, 984

radiation 996

Radius 341

Raising Power 1038

Ramp 221, 456, 468, 1204

ran 222

Random 154, 222, 1205, 1218

random form 66, 279

random integers 1220

random noise 222, 1203

random numbers 1203

Random Seed 222, 1203

range 275

ranges 149, 151, 275

Rate 68, 281, 1049, 1067

Rate Limiter 1047, 1049

Rates 110

ratio 615, 619

raw Pseudo bonds 40

Ray Tracing 332

Read Datafile 108

readonly 151

real 157, 160, 433

real and 1172

Real Clock 1173

real CMOS_CD4020 1174

real CompareGE 1174

real CompareGT 1175

real CompareLE 1175

real CompareLT 1176

real false 1177

real F-type Trigger Flip Flop 1178

Real Invertor 1178

real ResetSet Flip Flop 1182

real R-type Trigger Flip Flop 1183

real SetReset Flip Flop 1184

Real Time 3D Animation 108

Real Time Toolbox 520

Real-Imag 433

realtime 154

Realtime Simulation 100

Real-Time simulation 126

Index

20-sim 5.1 Reference Manual 1317

Rectangular Window 1021

Rectifier 676

red 349

Reduction Tolerance 415

Redundant Equations 40

Reference Body is Floating option 304

Reference Frame 335, 349

Registration/Update License 11

Regularization 385

Relative 133, 134

relative error 100

relative tolerance 413

Relay 1050

RelayHysteresis 1052

Remove redundant equations 65

Rename Implementation 49

render 351

Rendering 351

Repeat 265

Repeat Until 265

replace models 35

Replace parameters 40

Replay 108

Representation 293

Request License 11

requirements 4

resample 118

Reserved Words 142

reset 1066

Reset Initial Values 121

Reset Initials 121

Reset Model 450

reset time 1066

ResetSet Flip Flop 1168, 1182

Resettable Integration 172, 1021

resint 172

Resistance 1277

Resistor 619, 627, 676, 1002

Resistor.emx 676

resolution 404

resonance frequencies 404

resonant frequencies 404

resonant peaks 404

Restore Default 28, 43

Return Angle 452

Return Time 464

return_time 456, 468

reverse acting 1065

rewrite equations 68, 281

rewriting equations 66, 279

rho 689

right hand frames 344

ripple 400, 497

rise time 370, 428

Root Locus Gain 422

root locus plot 372, 432

Root Mean Square 1192

Rotation 87, 595

Rotation (3x3) 315

Rotation Axis 308

rotation speed 873

rotational inertia 831, 882

rotational spring 832

round 172

Rounding 1135

Row 53

Rows 215, 275, 1289

Rows/Columns 1268, 1289

RS232 28, 43

R-type Trigger Flip Flop 1169, 1183

Run 96, 108

Run Number 109

Run Properties Editor 100

Run Simulation 449

run tasks 573

Runge Kutta 2 133

Runge Kutta 4 133

Runge Kutta Dormand Prince 8 134

Runge-Kutta-Fehlberg 133

Running a 1-D B-Spline Network 386

Index

20-sim 5.1 Reference Manual 1318

Running a Simulation 15, 108

running in real-time 608

running the Unity Animation 608

Runtime 139

- S -

s 128, 415

SAE 10W-30 710

SAE 10W-40 710

SAE 15W-40 710

SAE 75W-140 710

Safe Operating Area 511

Sample 176, 177, 1126, 1137

Sample and Hold 1133

sample frequency 51, 128

sample rate 51

sample time 118, 415

Sampletime 154, 177, 1126, 1133, 1137

Sampling 177

Save 30

Save As 30

Save Encrypted 30

Save Scene 332

Save Weights at End of Simulation 385

Save Weights at Start of Simulation 379

Saw Wave 1212

Scale 595

Scaling 103, 349

Scenario 436, 442

Scenario Manager 436, 442, 1187

Scenario Manager - File Storage 451

Scenario Manager Reset Model 450

Scenario Mmanager Logging 450

Scenery Filename 302

Scenes 332

scipy 584

scope 26, 78, 79, 80

Screen 124

Scripting 573, 574, 578, 584, 585, 586, 589, 595

scripting configuration 574

Scripting Examples 575

Scripting Interface 28, 43

Scripting Menu 575

Scripting_API 574

Scrolling 37

Se 628

Se-2 657

Se-3 645

Sea Water 710

search 26

Search box 26

Second Order Filter 401, 403

see 344

Se-element 1277

Segment 340

segments 338, 339, 340, 341

Select 326

Selecting Objects 328

selection box 328

selection mode 35

Selection Properties 292

sensitivity 556, 1065

Sensitivity analysis 556

Sensor 893, 894, 921

Sensor Types 315

Sensors 315, 892, 911

Separate High / Low Terminals 85, 1293

sequential 139

Serial 28, 43

Series Form 1067

servomotor 803, 931

Set As Reference Body 304

Set Parameter 449

Set Values 532

setpoint 1064, 1075, 1078, 1102

Setpoint Weighting 1068

SetReset Flip Flop 1169, 1184

Setting Causality 45

settings 40, 202

settling time 370, 428

settoolsetting 2, 202

Index

20-sim 5.1 Reference Manual 1319

Sf 629

Sf-2 658

Sf-3 645

Sf-element 1277

S-function 55

S-functions 521

SGY 629

SGY-2 658

SGY-3 646

shape 456, 468

shared 92

shock absorber 964

shortcuts 63, 124

Show 3D Objects 326

Show Curve 101

Show Equations 74, 284

Show Grid 40

Show Hidden 98

Show Name 25

Show Names For New Submodel 28, 43

Show plot 101

Show results after processing 40

Show Terminals 25, 47

Show Variables: 110

Shuttle Valve 755, 781

SI Symbol 90

sidops 136, 237

SIDOPS+ 136

Sigma 1138

Sigmoid 377

Sign 173, 1038, 1041

Signal 27

Signal Ports 140

SignalGenerator-Cycloid 1199

SignalGenerator-FileInput 1200

SignalGenerator-GaussianNoise 1202, 1217

SignalGenerator-Pulse 1204

SignalGenerator-Ramp 1204

SignalGenerator-Random 1205, 1218

SignalGenerator-RandomInteger 1220

SignalGenerator-Step 1206

SignalGenerator-StepTime 1207

SignalGenerator-Sweep 1207

SignalGenerator-Time 1210

SignalGenerator-VariableBlock 1221

SignalMonitor 1031, 1211

Signals 1253

Silent stop 267

Simple Transformer 630

Simplification 36, 1255

Simplification,Bond Graph Models 1255

Simplify Model 36, 1255

simulation 96

Simulation Code 65

Simulation Quick Tour 15

simulator 2, 96

Simulator Setting 449

Simulink 12, 55, 521

Simulink S-function 521

sin 230, 232

sincos 232

Sine 456, 468, 1039

Sine Sweep 1207

Sine Wave 1212, 1213

single 7

single acting cylinder 700, 703, 706, 708

single license 8

Single-Step Simulation 108, 113

sinh 231

SISO 364, 415, 420

size 53, 332

skew 216

Skip 114

Skydrol 500B-4 710

SkyHookDamper 966

Slides 897

slow simulation 121

Small Rotations 876, 879

Smart Contraint Solving 135

Smooth Line 33

Index

20-sim 5.1 Reference Manual 1320

Snap to Grid 40

Solo 326

Solve algebraic variables 40

Solving Differential Equations 68, 281

sound 1237

source 620, 621, 628, 629

Sources 1277

SP 1064, 1078, 1102

space bar 35

Specular color 348

Speed Factor 100

speed up simulator 121

Sphere 338, 352

spindle 852, 987

Spiral 341

spline function 380

Splitter 1031

Spot Angle 348

Spot Exponent 348

Spot Light 348

Spring 832, 967

Spring Damper 297

Spring Damper Joint 297

SpringDamper 833, 968

spring-damper 833

Springs 897

sqr 173

sqrt 174

square 173, 343, 1039

Square Brackets 145, 274

Square Root 174

Square Root with Sign 1040

Square Sign 1041

Square Wave 1213

squareroot 1040

stall torque 506

Stand-alone ANSI-C 521

Stand-alone C-code 521

standalone FMU 94

standard 7

standard deviation 434, 1192, 1224

standard deviations 434

Standard Elements 1253

standard form 1067

StandardCameras_Orthographic.scn 344

Star and Delta Networks 505

Start 100

Start Angle 452

Start of simulation 408

start plane 334

start position 336

Start Simulation 449

Start Time 464

start_time 456, 468

starttime 154, 202

state 68, 281

State and Time Events 144

state events 100, 144

State Space 1023

State Space Models 362, 415, 418

State Variable Filter 1014

Statements 23, 258

States 110

States/Rates 110

state-space description 408

Static and Dynamic Phenomena 1243

Static Backgrounds 62

steady state 119

Steady State Gain 422

steady state value 370, 428

Steepest Descent 544

steepness 506

Step 223, 370, 428, 1206

Step Response 370, 415, 428

Step Size 100, 132, 133, 134

Step-by-Step 114

StepMotor 806

Steps 532

stepsize 154, 202

STF 630

Index

20-sim 5.1 Reference Manual 1321

STF-2 659

STF-3 647

stiffness 900, 911

stiffness and damping 299

STL-files 342

Stop 108, 126

Stop Angle 452

Stop band 400

Stop Simulation 449

Stop Time 464

stop_time 456, 468

Stopsimulation 267

Storage element 610, 616

Straight Lines 33

String 157, 160

Strip charted 116

Stroke 452, 456, 464, 468

strokes 45

structural connection 832, 963

Submodel 33, 40, 1271

Submodel Colors 28, 43

Submodel Name to be used in 20-sim 302

Submodels 18

Subtract 1030

Subtract DC-component 404

Subtraction 237

sum 182

swapbytes 251

swapping the connection points 308

Sweep 532, 1207

Switch 266, 667, 677, 1053, 1054

Switch Case 266

Switch-Break 1053

Switch-Default 1053

switching 631

Switch-Level 677

Switch-Make 1054

Switch-Maximum 1054

Switch-Minimum 1055

sym 216

Symbol 91

Symbol Prefixes 91

Symbolic Linear Systems 417

Symbolic Linearization 413

Symplectic gyrator 629

sympy 584

Syntax Highlighting Threshold 28, 43

system 1064

System Gain 422

system output 1064

- T -

Table 204, 1041

Table of Contents 59

Tabular Function 1041

Tachometer 873

tan 233, 1043

tanh 233

Tank 788, 790

Tank with resistance 788

TankNoRes 790

Tapping Mode 33

targets 522, 524

Targets.ini 522, 524

taskbar 21, 23, 25

TCP 28, 43

tdelay 174

Tecnotion 491

Tecnotion motors 491

temperaturesensor 1005

temperaturesource 1003

tera 91

Terminal 85

terminal inductance 505

Terminal Properties 47

terminal resistance 505

Terminals 25, 33, 47, 76, 85, 1293

Test Automation 1187

Texture 352

Texture Offset 352

texture wrap 352

Index

20-sim 5.1 Reference Manual 1322

TF 632

TF-2 660

TF-3.emx 647

TF-element 1278

Then 258, 259, 261, 262

Thermal 87, 993

Thermal Duty Cycle 511

Thermal Model 520

ThermalConductance 998

ThermalResistor 999

thermistor 1003

ThreeDBody 911

ThreeDFixedWorld 914

ThreeDForceActuator 915

ThreeDForceActuator-Relative 914

ThreeDMass 916

ThreeDPoint-X 917

ThreeDPositionSensor-Y 921

threedspringdamper 922

ThreeDZeroForce 923

throttling band 1065

Through 87, 1281

Tick Style 103

tilde 216

Tile Horizontal 116

Tile Vertical 116

Time 154, 1194, 1210

Time Delay 174, 1007

Time Domain Toolbox 531

Time Events 144

Time window 1021

timeevent 180, 1143

timer 129

Timing 100

timingbelt 853, 989

Title 40

To 263

To Matlab 98, 110

ToDoMatlab 1153, 1154

Toggle Full Screen 124

tokens 522, 527

Tolerance 415, 538

Tolerances 40, 408

ToMatlab 268, 1157

ToMatlab-Plot 1154

ToMatlab-Store 1155

ToMatlab-Timed 1156

ToMatlab-TimedPlot 1156

ToMatlab-TimedStore 1157

tool wrapper 55

toolbox 2, 7

Toolboxes 285

Toolwrapper 92

Tool-wrapper 94

Torque 808, 896

torque (constant) 808

torque (variable) 809, 810

torque constant 506

torque f 496

Torque.emx 808

TorqueActuator 810

TorqueActuator-Relative 809

Torque-Relative 808

TorqueSensor-Relative 874

Torus 340

trace 217

tracking time constant 1069

train 375, 380

Training 380

Training a 1-D B-Spline Network 390

Training Simulators 125

transducer 873

Transfer Function 404, 1023

Transfer Functions 364, 415, 420, 1225

TransferFunction 1228

TransferFunctionWithDeadTime 1233

Transform Dependents states 40

transformation 415, 879

transformer 621, 630, 632

Transformer.emx 679

Index

20-sim 5.1 Reference Manual 1323

Transformers 1278

Translation 20, 87

Translation Axis 308

translational spring 967

Transmission 856, 991

Transmission-Universal 992

Transparency 352, 355

transpose 218

Trapezoidal 456, 468

Triangle Wave 1215

Trigger-type Flipflop 1185

TriggerTypeFlipFlop 1185

troubleshooting 12

true 1170, 1185

trunc 175

Truncate 1136

Truncation 1043

Tube 340, 341

turbulent flow 689, 731, 733

turns 341, 872

Tustin 415

two port 611, 617

TwoDAccelerationSensor 894

TwoDBody 882, 913

TwoDFixedWorld 891

TwoDForceSensor 896

TwoDLinearActuator-X 906

TwoDLinearSlide-X 902

TwoDPoint-X 886

TwoDPositionSensor 893

TwoDPowerSensor 896

TwoDSpring 900

TwoDVelocitySensor 894

TwoDZeroForce 892

Two-Terminal 85, 1293

TwoTwoWayDirectionalValve 757

twotwowayproportionalvalve 759

twotwowayproportionalvalve-states 784

TwoTwoWayValve-States 783

Type 110, 1289

type cast 2

type conversion 40

Type conversion found 40

Type Editor 1268, 1284, 1289

type of motion 464

typecasting 161

Types 98, 146, 149, 152

- U -

umbra 348

unattended installation 12

Unbalance 836

Undo Buffer Memory Size 28, 43

Uniform distribution 1202, 1217

uninstalling 11

Unipolar Sigmoid 379

Unit 98, 110, 146, 149, 152

Unit Conversion when SI disabled 40

Unit Conversion when SI enabled 40

Unit Delay 165, 177

Unit is unknown 40

Unit missing for variable when SI disabled 40

Unit name 91

Unit Symbol 90

units 86, 89, 90, 91, 98

Units Editor 86

unity 2

Unity Animation 606

Unity Application 593

Unity Cube 595

Unity Import Scenery 604

Unity Simulation 593

Unity Toolbox 591

UnityCoordinates 595

Universal Joint coupling 858

Universal Notch Filter 404

Unlit 351

Unlit Flat 351

Unpack 30, 31, 55

Until 265

Unwrap Phase 371, 429

Index

20-sim 5.1 Reference Manual 1324

update another model 40

Update Icons 49

Update Interfaces 49

Update Submodel 449

Updates 61

updating plot 40

use 477

Use as Result 532

Use BDF Integration Scheme 134

Use Built-in Compiler 100

Use Newton Solver 134

- V -

Value 98, 110

Values 98, 146, 149, 532

vapour pressure 689

Variable 110

Variable Chooser 110

Variable is never given a value 40

Variable is not used 40

Variable is set but not used 40

Variable Multiple set 40

Variable Name 62, 90, 103

Variable Pulse 1222

variable sampletime 129

variable voltage 687

variabledisplacementmotor 713

variabledisplacementmotor-leakage 716

variabledisplacementpump 720

variabledisplacementpump-leakage 728

variablelaminarresistance 733

variableorifice 733

Variables 17, 110, 152, 154

Variables Pane 22

Variables Quick Tour 17

Variables: 110

variance 1193, 1202, 1217, 1224

Variation Analysis 566

VCVS 683

Vector 275, 276, 347

Vectors 53, 110, 274, 275, 352

Velocity 315, 464, 811, 894, 933

Velocity (3x1) 315

velocity (constant) 810, 811, 933

velocity (variable) 811, 812, 934, 935

VelocityActuator 812, 935

VelocityActuator-Relative 811, 934

VelocityActuator-Relative.emx 811

Velocity-Relative 810, 933

VelocitySensor-Absolute 875, 977

VelocitySensor-Relative 876, 977

Velocity-X 315

Velocity-Y 315

Velocity-Z 315

Version 7, 40

version number 40

View 25

View menu 25

View Modes 294

viewer 7

Vode Adams 134

voltage 687, 688

voltage constant 506

voltage controlled voltage source 683

VoltageSensorCurrentSensor.emx 681

VoltageSource.emx 688

VoltageSource-VCVS 683

VoltageSource-VCVS.emx 683

Volume 789, 790

Volume-Constant 790

VW13 710

- W -

Warning 39, 268

warnings 39, 40, 113, 161

Water 710

wav file 1237

WaveGenerator-Cosine 1211

WaveGenerator-PhasedSine 1212

WaveGenerator-Saw 1212

WaveGenerator-Sine 1213

WaveGenerator-Square 1213

Index

20-sim 5.1 Reference Manual 1325

Wavegenerator-SquareExp 1214

WaveGenerator-Triangle 1215

weight 380

Welcome 1

Wet and Dry Friction 1241

While 264

While Do 264

White Space 143

whitespace 143

Window 1017, 1021

Windows Media Video 332

WireFrame 334, 351

Working Point 408

WormGear 860

wrap 352

Writing Comments 144

Writing DLL's 186

Writing Dynamic DLL's 194

Writing your own Scripts 583

- X -

XMLRPC 28, 43

XML-RPC 574

Xor 253, 1171, 1185

X-rotation 308

X-translation 308

X-value 109

X-Y-X Euler 304

- Y -

Y-Axis 352

yellow 328

yerk 456, 464, 468

YouTube 332

Y-rotation 308

Y-translation 308

Y-value 109

- Z -

z 415

Z-1 1130

Z-Axis 352

zero 1216

Zero Junction 631, 1273

Zero Order Hold 175, 1133

ZeroForce 971

zerojunction 633, 634

Zeros 366, 415, 424, 1023

Zeros and Poles 415

ZeroTorque 838

zip-file 31

Zoom 37

Zooming 37, 344

Z-rotation 308

Z-translation 308

Z-X-Z-Euler 349

	Welcome to 20-sim
	What is new in 20-sim?
	Requirements
	Privacy Statement
	Installation
	Versions
	Requirements
	Installing 20-sim
	Uninstalling
	Deactivation
	Unattended Installation
	Unattended Uninstall
	Matlab

	Quick Tour
	Running a Simulation
	Variables, Parameters, Initial Values and Constants
	Hierarchy
	Language

	Editor
	Introduction
	Editor
	Equation Editor
	Equation Editor Taskbar
	Graphical Editor
	Graphical Editor Taskbar
	Search
	Library
	Options

	Using Models
	Open Models
	Save Models
	Packed Files
	Processed Files
	Insert Models
	Connecting Models
	Change Models
	Implode / Explode
	Dissolve
	Simplify Models
	Navigate Models
	Add Variable To
	Check Models
	Model Properties
	General Properties
	Check Energetic Behavior
	Analyze Causality
	Show Terminals
	Implementations
	Continuous-Time and Discrete-Time Models
	Masked Models
	Working with Multi-Dimensional Models
	Exporting Models
	Encrypt Models
	Decrypt Models
	Documentation Editor
	Check for Model Updates
	Backgrounds
	Naming Conventions
	Keyboard Shortcuts

	Compiling
	Compiling Models
	Causal Form
	Integral Form
	Algebraic Loops
	Order of Execution
	Integration Steps
	Show Equations

	Icon Editor
	Icon Editor
	Terminals

	Global Parameters and Variables
	Introduction
	Global Parameters and Variables
	Scope
	Global Relations Editor

	Interface Editor
	Interface Editor
	Port Properties
	Orientation
	Causality
	Ports with more than one Terminal

	Domains, Quantities and Units
	Domains, Quantities and Units Editor
	Domains
	Quantities and Units
	Editing Domains
	Editing Quantities
	Editing Units

	FMI Support
	FMI Standard
	Co-simulation Interface
	FMU Import
	FMU Export

	Simulator
	Introduction
	Simulator

	Running a Simulation
	Parameters and Initial Values
	Run Properties
	Plots
	Plot Properties
	Running a Simulation
	Numerical Values
	Variable Chooser
	Debugging
	Breakpoints
	New Simulation Plot
	New 3D Animation Plot
	Arrange Plots
	Resample Curves
	Copy States
	Reset Initial Values
	Speeding Up Simulations
	Exporting Simulations
	Importing Simulations
	Full Screen Mode
	Keyboard Shortcuts
	Training Simulators

	Run Properties
	Simulator Tab
	Discrete System Tab
	Advanced Discrete System Settings
	Algebraic Relations Solver Tab
	Euler
	Backward Euler
	Adams-Bashford
	Runge Kutta 2
	Runge-Kutta 4
	Runge-Kutta-Fehlberg
	Runge Kutta Dormand Prince 8
	Vode Adams
	Backward Differentiation Formula (BDF)
	Modified Backward Differentiation Formula (MBDF)

	Language Reference
	Introduction
	Language Reference
	Equation Model Layout
	Equations
	Equation Sections
	Using Port Names
	Reserved Words
	White Space
	Writing Comments
	State and Time Events
	Using Brackets and Newlines

	Keywords
	Keywords
	Constants
	Predefined Constants
	Parameters
	Annotations
	Variables
	Predefined Variables
	Global Parameters and Variables
	OneUp

	Types
	Data Types
	Boolean
	Integer
	Real
	String
	Typecasting

	Functions
	Functions
	Arithmetic
	abs
	algebraic
	ceil
	constraint
	ddt
	derivative
	dly
	energyfunction
	exp
	exp10
	exp2
	floor
	initialvalue
	int
	limint
	limit
	log
	log10
	log2
	resint
	round
	sign
	square
	sqrt
	tdelay
	trunc

	Discrete
	hold
	next
	previous
	sample

	Event
	event
	eventdown
	eventup
	frequencyevent
	timeevent

	Expansion
	equal
	mul
	sum

	External
	data
	dll
	Writing Static DLL's

	dlldynamic
	Writing Dynamic DLL's

	settoolsetting
	table

	Matrix
	adjoint
	Adjoint
	antisym
	columns
	cross
	det
	diag
	eye
	homogeneous
	inner
	inverse
	inverseH
	linsolve
	max
	min
	msum
	multiplyH
	norm
	norminf
	rows
	skew
	sym
	tilde
	trace
	transpose

	Port
	collect
	direct
	first

	Source
	gauss
	impulse
	ramp
	ran
	Random Seed

	step

	Trigonometric
	arcsin
	arccos
	arccosh
	arcsinh
	arctan
	arctanh
	atan2
	cos
	cosh
	sin
	sinh
	sincos
	tanh
	tan

	Operators
	Operators
	Arithmetic
	Absolute
	Multiplication
	Addition
	Subtraction
	Array Multiplication
	Array Division
	Array Power
	Division
	Integer Division
	Modulus Operator
	Power

	Binary
	bitand
	bitclear
	bitcmp
	bitget
	bitinv
	bitor
	bitset
	bitshift
	bitshiftright
	bitxor
	swapbytes

	Boolean
	and
	or
	xor

	Comparison
	Less than
	Less than or Equal
	Not Equal
	Equal
	Larger Than
	Larger Than or Equal

	Prefix
	Prefix Plus Sign
	Prefix Minus Sign
	Boolean Not

	Statements
	Statements
	If Then
	If Then Else
	If Then Elsif
	If Then Else (expression)
	For To Do
	While Do
	Repeat Until
	Switch Case
	Stopsimulation
	Warning
	toMatlab
	domatlab
	frommatlab
	Effortincausality
	Flowincausality

	Matrices and Vectors
	Declaration
	Notation
	Use

	Advanced Topics
	Algebraic Loops
	Causal Form
	Integral Form
	Order of Execution
	Show Equations

	Toolboxes
	Toolboxes
	3D Mechanics Toolbox
	Introduction
	Introduction
	Opening The 3D Mechanics Editor
	Migrating from Older Versions
	Edit Window
	Model Tab
	Library Tab
	Selection Properties
	3D Representation
	Output
	Edit Modes
	Ghost Modes
	View Modes
	Model Settings
	Camera Settings
	Spring Dampers and Constraints
	Flexibility

	Working Order
	3D Mechanics Editor
	Generating a 20-sim Model

	Library
	Library
	Bodies
	Joints
	Sensors
	Actuators

	Parametric Models
	Parametric Modeling
	Expressions Editor

	Animation Toolbox
	3D Animation
	3D Animation Window
	3D Properties
	Selecting Objects
	Moving Objects
	Scenes
	Movies
	General Properties
	Objects
	Reference Frames
	Line
	Cube
	Sphere
	Cylinder
	Cone
	Torus
	Spiral
	3D-files
	Square
	Circle
	Camera
	Vector
	Ambient Light
	Spot Light
	Directional Light

	Properties
	Position
	Orientation
	Scaling
	Color
	Mesh
	Texture
	Material
	Closed Shapes
	Circle Elements
	Attenuation
	Duplication

	Graph Animation
	Graph Animation

	Control Toolbox
	Controller Design Editor
	Controller Design Editor
	State Space Models
	Transfer Functions
	Zeros and Poles
	Eigen Frequencies
	Step Response
	Bode Plots
	Pole Zero Diagram
	Nichols Chart
	Nyquist Diagram

	MLP Network Editor
	Neural Networks
	BackPropagation Networks
	Introduction to MLP Networks
	How to use the MLP Editor

	B-Spline Network Editor
	Neural Networks
	Introduction to B-Spline Networks
	How to use the BSpline Editor
	Running a 1-D B-Spline Network
	Training a 1-D B-Spline Network

	Filter Editor
	Filter Editor
	Controllers
	P-Controller
	I-Controller
	D-Controller
	PD-Controller
	PI-Controller
	PID1-Controller
	PID2-Controller
	PID-Compensator
	PID-Controller

	Filters
	Generic Filter
	High-Pass First Order Filter
	High-Pass Second Order Filter
	Lag Filter
	Lead Filter
	Low-Pass First Order Filter
	Low-Pass Second Order Filter
	Notch Filter
	Universal Notch Filter

	Frequency Domain Toolbox
	FFT Analysis
	FFT Analysis
	FFT Window

	Model Linearization
	Linearize
	Linearization Explained
	Frequency Response
	Linearization Tolerances

	Linear System Editor
	Linear System Editor
	Symbolic Linear Systems
	Continuous and Discrete Linear Systems
	Output Delay
	Editor
	State Space Models
	Transfer Functions
	Gains
	Zeros and Poles
	Eigen Frequencies
	Step Response
	Bode Plots
	Nyquist Diagram
	Nichols Chart
	Pole Zero Diagram
	Import Data

	Dynamic Error Budgeting
	Dynamic Error Budgeting

	Scenario Manager
	Introduction
	Example
	Actions
	Action Logs
	Reset Model
	File Storage

	Mechatronics Toolbox
	Cam Wizard
	How to use the Cam Wizard
	Cam Motion Profiles

	Motion Profile Wizard
	Motion Profile Wizard
	Motion Profile Wizard (Old Style)
	Motion Profiles

	Servo Motor Editor
	Servo Motor Editor
	Introduction
	How to use the Servo Motor Editor
	Data Files
	Parameters
	How to use the Parameters
	Dynamic Model
	Creating your own data files

	Data Files
	Maxon 2005 / 2006
	Tecnotion 2006
	Faulhaber 2006

	Theory
	Basic Principles
	Permanent Magnet Motors
	Brush DC Motors
	Brushless DC Motors
	AC synchronous motor
	Linear Motors
	Star and Delta Networks

	Torque Speed Plot
	General Model
	Limits
	Safe Operating Area
	Losses
	Maximum Power and Maximum Efficiency
	Choosing a Motor

	Thermal Behaviour
	DC Motors
	Other Motors
	Thermal Model

	Real-Time Toolbox
	Introduction
	Real Time Toolbox

	C-Code Generation
	C-Code Generation
	Generating ANSI C-Code
	Target.Ini File
	Available 20-sim Tokens

	Time Domain Toolbox
	Time Domain Toolbox
	Parameter Sweep
	Optimization
	Optimization Methods
	Curve Fitting
	Sensitivity Analysis
	Monte Carlo Analysis
	Variation Analysis
	Multiple Run Wizard - External DLL
	Cost Function

	Scripting Toolbox
	Introduction
	Scripting API
	Installation for Scripting: 20-sim
	Scripting Menu
	Scripting in Octave/Matlab
	Installation for Scripting: Octave
	Installation for Scripting: Matlab
	Prepare Scripting Folder
	Basic Script
	Advanced Scripts
	Writing your own Scripts

	Scripting in Python
	Installation for Scripting: Python
	Prepare Scripting Folder
	Basic Script
	Python Scrypting Help
	Writing your own Scripts
	Advanced Functionality

	Unity Toolbox
	Unity Toolbox
	License
	How does the Unity Toolbox work?
	Installing
	Example: Cube
	Example: Scara Robot
	20-sim Inspector Properties
	Importing 3D Scenery
	Generating the Unity Animation
	Drag and Drop to 20-sim
	Running the Unity Animation

	Library
	Bond Graph
	Bond Graph Models
	C
	CC
	De
	Df
	EffortSensor
	EnergySensor
	FlowSensor
	GY
	I
	II
	IC
	MGY
	MR
	MSe
	MSf
	MTF
	OneJunction
	OneJunction-Activity
	PowerSensor
	Power Splitter
	PSensor
	Qsensor
	R
	Se
	Sf
	SGY
	STF
	SwitchingOneJunction
	SwitchingZeroJunction
	TF
	ZeroJunction
	ZeroJunction-Activity
	3d
	C-3
	GY-3
	I-3
	MGY-3
	MR-3
	MSe-3
	MSf-3
	MTF-3
	R-3
	Se-3
	Sf-3
	SGY-3
	STF-3
	TF-3

	2d
	C-2
	GY-2
	I-2
	MGY-2
	MR-2
	MSe-2
	MSf-2
	MTF-2
	R-2
	Se-2
	Sf-2
	SGY-2
	STF-2
	TF-2

	Iconic Diagrams
	Iconic Diagrams
	Electric
	Electric
	Actuators
	CMABender
	CMAStretcher
	DCMotor

	Components
	Capacitor
	CurrentSensor
	Diode
	DoubleSwitch
	Ground
	Inductor
	Node
	OpAmp
	Potentiometer
	Rectifier
	Resistor
	Switch
	Transformer
	VoltageSensor

	Sources
	ControlledCurrentSource
	ControlledVoltageSource
	CurrentSource
	ModulatedCurrentSource
	ModulatedVoltageSource
	VoltageSource

	Hydraulics
	Hydraulics
	Building Hydraulic Models
	Flow
	Components
	HydraulicInertia
	Line
	Node

	Cylinders
	Basic Cylinders
	Cylinder
	CylinderChamberA
	CylinderChamberB
	CylinderSpringReturn

	CylinderDouble
	CylinderSingleSpringReturn
	CylinderSingle

	Fluids
	FluidProperties

	Motors
	Basic Motors
	DisplacementMotor
	VariableDisplacementMotor

	DisplacementMotor-Leakage
	VariableDisplacementMotor-Leakage

	Pumps
	Basic Pumps
	DisplacementPump
	FlowSource
	ModulatedFlowSource
	ModulatedPressureSource
	PressureSource
	VariableDisplacementPump

	CentrifugalPump
	DisplacementPump-Leakage
	FlowSource-Leakage
	ModulatedFlowSource-Leakage
	VariableDisplacementPump-Leakage

	Restrictions
	LaminarResistance
	Orifice
	VariableLaminarResistance
	VariableOrifice

	Sensors
	DifferentialPressure
	FlowSensor
	HeadSensor
	PowerSensor
	PressureSensor

	Valves
	Basic Valves
	CheckValve
	FlowControlValve
	FourThreeWayDirectionalValve
	FourThreeWayProportionalValve
	LoopFlushingValve
	PilotOperatedCheckValve
	PressureCompensator
	PressureReducingValve
	PressureReliefValve
	ShuttleValve
	TwoTwoWayDirectionalValve
	TwoTwoWayProportionalValve

	CheckValve-States
	CounterbalanceValve
	FlowControlValve-States
	FourThreeWayDirectionalValve-States
	FourThreeWayProportionalValve-States
	LoopFlushingValve-States
	PilotOperatedCheckValve-States
	PressureCompensator-States
	PressureReducingValve-States
	PressureReliefValve-States
	ShuttleValve-States
	TwoTwoWayValve-States
	TwoTwoWayProportionalValve-States

	Volumes
	Accumulator
	ExternalLeakage
	ParasiticVolume
	Tank
	Volume

	Mechanical
	Mechanical
	Rotation
	Actuators
	AccelerationActuator-Relative
	AccelerationActuator
	ACMotor-TorqueLoop.em
	ACMotor
	DCMotor
	PositionActuator-Relative
	ServoMotor
	PositionActuator
	Steppermotor
	Torque-Relative
	Torque
	TorqueActuator-Relative
	TorqueActuator
	Velocity-Relative
	Velocity
	VelocityActuator-Relative
	VelocityActuator

	Components
	Backlash
	Bearing
	Brake
	Clutch
	Damper
	FixedWorld
	Friction
	Inertia
	Node
	Spring
	SpringDamper
	Unbalance
	ZeroTorque

	Gears
	BeltPulley
	Cam-Wizard
	CamRod
	CrankRod
	DifferentialGear
	Differential
	Gear
	PlanetaryGear
	RackPinionGear
	Spindle
	TimingBelt
	Transmission
	UniversalCoupling
	Wormgear

	Sensors
	AccelerationSensor-Absolute
	AccelerationSensor-Relative
	Encoder
	PositionSensor-Absolute
	PositionSensor-Relative
	Potentiometer
	PowerSensor
	Tachometer
	TorqueSensor
	VelocitySensor-Absolute
	VelocitySensor-Relative

	Translation
	2DSmallRotation
	2D Library (Small Rotations)
	Ports
	Small Rotations
	Connections
	TwoDBody
	TwoDPoint Models
	TwoDPoint
	TwoDFixedWorld
	TwoDZeroForce
	Sensors
	TwoDPositionSensor
	TwoDVelocitySensor
	TwoDAccelerationSensor
	TwoDForceSensor
	TwoDPowerSensor
	Springs and other Flexible Components
	TwoDSpring
	TwoDLinearSlide
	TwoDLinearActuator
	Tips

	3DSmallRotation
	ThreeDLibrary
	ThreeDBody
	ThreeDFixedWorld
	ThreeDForceActuator-Relative
	ThreeDForceActuator
	ThreeDMass
	ThreeDPoint
	ThreeDPositionSensor
	ThreeDSpringDamper
	ThreeDZeroForce

	Actuators
	AccelerationActuator-Relative
	AccelerationActuator
	CMABender
	CMAStretcher
	Force-Relative
	Force
	ForceActuator-Relative
	ForceActuator
	PositionActuator-Relative
	PositionActuator
	ServoMotor
	Velocity-Relative
	Velocity
	VelocityActuator-Relative
	VelocityActuator

	Components
	Backlash
	Collision-Relative
	Collision
	Damper
	FixedWorld
	Friction
	Friction-Relative
	FrictionSimple
	FrictionSimple-Relative
	Mass
	Modal
	ModalSummer
	Node
	ShockAbsorber
	SkyHookDamper
	Spring
	SpringDamper
	ZeroForce

	Sensors
	AccelerationSensor-Absolute
	AccelerationSensor-Relative
	ForceSensor
	PositionSensor-Absolute
	PositionSensor-Relative
	PowerSensor
	VelocitySensor-Absolute
	VelocitySensor-Relative

	Transmission
	BeltPulley
	Cam-Wizard
	CamRod
	CrankRod
	Fork
	Lever
	RackPinionGear
	Spindle
	TimingBelt
	Transmission
	UniversalLever

	Thermal
	Thermal
	Components
	Convection
	Ground
	HeatCapacity
	Radiation
	ThermalConductance
	ThermalResistor

	Generators
	HeatFlow
	ModulatedHeatFlow
	ModulatedTemperatureSource
	Resistor
	TemperatureSource
	Thermistor

	Sensors
	HeatFlowSensor
	TemperatureSensor

	Signal
	Block Diagram
	Attenuate
	Delay-Pade
	Delay-Step
	Delay-Time
	Delay-VariableTime
	Demux
	DemuxBoolean
	DemuxInteger
	DemuxString
	Differentiate-Calculus
	Differentiate-FO
	Differentiate-SVF
	Differentiate
	Filter
	Gain
	Integrate-ExpWindow
	Integrate-FO
	Integrate-FOLimited
	Integrate-Limited
	Integrate-RectWindow
	Integrate-Reset
	Integrate
	Inverse
	Linear System
	MultiplyDivide
	Mux
	MuxBoolean
	MuxInteger
	MuxString
	Negate
	PlusMinus
	SignalMonitor
	Splitter

	Block Diagram Non-Linear
	DeadZone
	Function-2DTable
	Function-Absolute
	Function-Cosine
	Function-DB
	Function-Log
	Function-Power
	Function-Sign
	Function-Sine
	Function-Square
	Function-SquareRoot
	Function-SquareRootSign
	Function-SquareSign
	Function-Table
	Function-Tan
	Function-Truncation
	SignalLimiter-Backlash
	SignalLimiter-Hysteresis
	SignalLimiter-Limit
	SignalLimiter-JumpRateLimit
	SignalLimiter-PWM
	SignalLimiter-RateLimit
	SignalLimiter-Relay
	SignalLimiter-RelayHysteresis
	switch-Break
	Switch-Default
	Switch-Make
	Switch-Maximum
	Switch-Minimum

	Control
	Controlled Linear Systems
	ControlledLinearSystem
	ControlledSystem

	Neural Networks
	BSplineNetwork
	MLPNetwork

	PID Control
	PIDControl
	Setpoint and other Variables
	Proportional Control
	Integral Control
	Derivative Control
	PID Controller Types
	Setpoint Weighting
	Anti-Windup
	Initial Output
	Commercial Controllers
	Literature
	Continuous
	Naming Conventions
	Controller Use
	ControllerWizard
	Controller-P
	Controller-PD_p
	Controller-PD_s
	Controller-PI
	Controller-PI_sp
	Controller-PI_sp_aw
	Controller-PI_sp_aw_u0
	Controller-PI_sp_aw_u0_tr
	Controller-PID_p
	Controller-PID_p_sp.
	Controller-PID_p_sp_aw
	Controller-PID_p_sp_aw_u0
	Controller-PID_p_sp_aw_u0_tr
	Controller-PID_s
	Controller-PID_s_sp
	Controller-PID_s_sp_aw
	Controller-PID_s_sp_aw_u0
	Controller-PID_s_sp_aw_u0_tr
	P
	PD
	PI
	PID

	Discrete
	Naming Conventions
	Controller Use
	Controller-P
	Controller-PD_p
	Controller-PD_s
	Controller-PI
	Controller-PI_sp
	Controller-PI_sp_aw
	Controller-PI_sp_aw_u0
	Controller-PI_sp_aw_u0_tr
	Controller-PID_p
	Controller-PID_p_sp.
	Controller-PID_p_sp_aw
	Controller-PID_p_sp_aw_u0
	Controller-PID_p_sp_aw_u0_tr
	Controller-PID_s
	Controller-PID_s_sp
	Controller-PID_s_sp_aw
	Controller-PID_s_sp_aw_u0
	Controller-PID_s_sp_aw_u0_tr
	P
	PD
	PI
	PID

	Cost Functions
	Continuous
	CostFunction

	Discrete
	CostFunction

	Discrete
	AD
	Clock-Discrete
	DA-Delay
	DA
	Delay-n
	Delay
	DiscreteDifferential
	DiscreteIntegral
	Hold
	LinearSystem
	Quantize-Round
	Quantize-Truncate
	Sample
	SampleTime
	Sigma

	Events
	Event
	FrequencyEvent
	TimeEvent

	Filters
	Filter
	LowPassFilter-BW2
	LowPassFilter-BW4
	LowPassFilter-FO
	LowPassFilter-SO

	Import Export
	Matlab
	DoFromMatlab
	DoMatlab-Final
	DoMatlab-Initial
	DoMatlab
	FromMatlab
	ToDoFromMatlab
	ToDoMatlab
	ToMatlab-Plot
	ToMatlab-Store
	ToMatlab-Timed
	ToMatlab-TimedPlot
	ToMatlab-TimedStore
	ToMatlab

	Logical
	Boolean
	And
	Clock
	CMOS_CD4020
	CompareGE
	CompareGT
	CompareLE
	CompareLT
	False
	FTriggerTypeFlipFlop
	Invertor
	Nand
	Nor
	Or
	ResetSetFlipFlop
	RTriggerTypeFlipFlop
	SetResetFlipFlop
	True
	Xor

	Real
	And
	Clock
	CMOS_CD4020
	CompareGE
	CompareGT
	CompareLE
	CompareLT
	DTypeFlipFlop
	False
	FTriggerTypeFlipFlop
	Invertor
	Nand
	Nor
	Or
	ResetSetFlipFlop
	RTriggerTypeFlipFlop
	SetResetFlipFlop
	TriggerTypeFlipFlop
	True
	Xor

	Signal Processing
	AmplitudeSensor
	AssertSignal
	Maximum
	Mean
	Minimum
	MovingAverage
	PhaseSensor
	RootMeanSquare
	StandardDeviation
	Variance

	Sources
	Constant
	DataFromFile
	Joystick
	Keyboard
	MotionProfile
	MotionProfile-Wizard
	One
	Pi
	SignalGenerator-Cycloid
	SignalGenerator-FileInput
	SignalGenerator-Gaussian Noise
	Random Seed
	SignalGenerator-Pulse
	SignalGenerator-Ramp
	SignalGenerator-Random
	SignalGenerator-Step
	SignalGenerator-StepTime
	Signalgenerator-Sweep
	SignalGenerator-Time
	SignalMonitor
	WaveGenerator-Cosine
	WaveGenerator-PhasedSine
	WaveGenerator-Saw
	WaveGenerator-Sine
	WaveGenerator-Square
	WaveGenerator-SquareExp
	WaveGenerator-Triangle
	Zero

	Stochastic
	Mean
	SignalGenerator-Gaussian Noise
	Signalgenerator-Random
	SignalGenerator-RandomInteger
	SignalGenerator-VariableBlock
	SignalGenerator-VariablePulse
	StandardDeviation
	Variance

	Transfer Functions
	Using Transfer Functions
	Linear System
	TransferFunction
	TransferFunctionWithDeadTime

	Various
	Library.Signal.Various.PlaySound

	Modeling Tutorial
	Friction
	Introduction
	Normal Force
	Friction Phenomena
	Wet and Dry Friction
	Static and Dynamic Phenomena
	Comparison of Friction Models
	Literature

	Bond Graphs
	Dynamic Systems
	Bond Graphs
	Effort and Flow
	Bonds
	Standard Elements
	Orientation
	Bonds and Signals
	Simplification of Bond Graph Models
	Causality
	Creating a Bond Graph model
	From Iconic Diagram to Bond Graph
	Iconic Diagrams to Bond Graphs (Electrical Domain)
	Iconic Diagrams to Bond Graphs (Mechanical Domain)
	From Bond Graph to Block Diagram
	From Bond Graph to Equations
	Ports
	Creating your own Elements
	Bond Graph Literature
	Standard Elements
	0 and 1 junctions
	0 junction
	1 junction
	Buffers
	Resistance
	Sources
	Modulated Sources
	Transformers and Gyrators
	Modulated Transformers and Gyrators

	Iconic Diagrams
	Dynamic Systems
	Iconic Diagrams
	Across and through
	Connections
	Orientation (Across)
	Orientation (Through)
	Global Reference
	Causality
	Ports
	Ports with more than one Terminal
	Creating Iconic Diagrams
	Creating your own Components

