

Getting Started with 20-sim 4.8

© 2022, Controllab Products B.V.

Author: Ir. C. Kleijn, Ir. M. A. Groothuis

Disclaimer

This manual describes the modeling and simulation package 20-sim.

Controllab Products B.V. makes every effort to insure this information is accurate and
reliable. Controllab Products B.V. will not accept any responsibility for damage that may
arise from using this manual or information, either correct or incorrect, contained in this
manual.

Information in this document is subject to change without notice. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Controllab
Products B.V.

Windows is a registered trademark of the Microsoft Corporation, USA.

MATLAB is a registered trademark of The MathWorks, Inc., USA.

Reference

Kleijn, C., Groothuis, M.A.

Getting Started with 20-sim 4.8

Enschede, Controllab Products B.V., 2022

ISBN 978-90-79499236

Information

Controllab Products B.V.

Address: Hengelosestraat 500

7521 AN Enschede

the Netherlands

Phone: +31-85-773 18 72

Internet: www.20sim.com

www.controllab.nl

E-mail: info@20sim.com

iGetting Started with 20-sim 4.8

Table of Contents

Welcome1 1

Notation2 3

Installation3 4

Versions3.1 4

Installing 20-sim3.2 5

Uninstalling3.3 7

Deactivation3.4 7

Unattended Installation3.5 7

Unattended Uninstallation3.6 8

Introduction4 9

What is 20-sim4.1 9

20-sim: a quick tour4.2 10

Library4.3 13

Block Diagrams4.4 14

Iconic Diagrams4.5 15

Bond Graphs4.6 16

Editor4.7 19

Variables, Parameters and Initial Values4.8 21

Simulator4.9 22

Toolboxes4.10 23

Equation Models5 24

Introduction5.1 24

Equation Mainmodel5.2 26

Equation Submodel5.3 35

Block Diagrams6 46

Block Diagram Mainmodel6.1 46

Block Diagram Submodel6.2 51

iiGetting Started with 20-sim 4.8

Iconic Diagrams7 59

Iconic Diagram (Electric)7.1 59

View Menu7.2 62

Iconic Diagram (Mechanical)7.3 67

Bond Graphs8 72

Bond Graph Model8.1 72

3D Mechanics Toolbox9 77

3D Mechanics Toolbox9.1 77

Double Pendulum9.2 78

Scara Robot9.3 90

Contact Modeling9.4 102

Animation Toolbox10 132

Animation Toolbox10.1 132

3D Animation Basics10.2 133

Planetary System10.3 139

Control Toolbox11 145

Control Toolbox11.1 145

Frequency Domain Toolbox12 147

Frequency Domain Toolbox12.1 147

Mechatronics Toolbox13 151

Mechatronics Toolbox13.1 151

Servo Motor Editor13.2 152

Real Time Toolbox14 162

Real Time Toolbox14.1 162

Time Domain Toolbox15 164

Time Domain Toolbox15.1 164

Scripting Toolbox16 166

iiiGetting Started with 20-sim 4.8

Introduction16.1 166

Installation for Scripting: 20-sim16.2 167

Scripting Menu16.3 167

Scripting in Octave/Matlab16.4 168

Scripting in Python16.5 177

Unity Toolbox17 183

Introduction17.1 183

Index 184

1. Welcome

1Getting Started with 20-sim 4.8

1 Welcome

This manual provides a basic overview of installing and using 20-sim. It is not a
reference manual but intended as a guided tour to show you how to use 20-sim and how
to create and simulate your own models.

If you need detailed information on 20-sim please have a look at the the Reference
Manual.

If you are a first time user you are advised to read this manual carefully and run the
various examples to get hands on experience with the package.

Installation: This chapter describes the various versions of 20-sim and how to
install 20-sim on your computer. It is useful for system managers and if you
experience problems installing the package. You may skip this chapter if 20-sim is
properly working on your computer.

Introduction: This chapter describes the basic parts of the 20-sim package, the
modeling representations that are supported and the various toolboxes. It gives a
good overview of the package. Users who want to learn the package by trial and
error.

Equation Models: No one should skip this chapter! It describes the basic modeling
representation of 20-sim: (differential) equations. You should run the examples of
this chapter to get a good understanding of entering equations in 20-sim.

Block Diagram Models: Extremely recommended once you have finished the
equations. Everyone will now and then use block diagram elements and in this
chapter you can learn all about this modeling representation.

Iconic Diagrams: Iconic diagrams or physical components are the building blocks
of models of physical systems. This chapter is absolutely worth reading for everyone
who is involved in modeling physical systems.

Bond Graphs: Bond graphs are a mathematical notation of physical systems. 20-sim
has a large library of bond graph elements. This chapter does not explain bond
graphs but how to use 20-sim to enter bond graph models.

3D Mechanics Toolbox: The 20-sim 3D Mechanics Toolbox provides you with the
tool that makes 3D dynamic modeling easier, the 3D Mechanics Editor.

Animation Toolbox: The Animation Toolbox offers you an easy way to create 3D
Animations and view graph animations.

Control toolbox: The Control Toolbox of 20-sim contains several tools that can aid
you in developing controllers for your modeled machines, the Controller Design
Editor, the Filter Editor and the Neural Network Editors.

Frequency Domain Toolbox: The 20-sim Frequency Domain Toolbox consists of
the Linear System Editor, FFT Analysis and Model Linearization functionality.

1. Welcome

2Getting Started with 20-sim 4.8

Mechatronics Toolbox: The Mechatronics Toolbox includes the Motion Profile
Wizard, the CAM Wizard and the Servo Motor Editor.

Real Time Toolbox: The Real Time Toolbox provides you with C-code generation
tools and templates for all kinds of different targets and platforms.

Time Domain Toolbox: During simulation, the time domain behavior of a model is
calculated. Based on this time-domain behavior, the model can be analyzed. A set of
powerful methods for time domain analysis is available in 20-sim.

Scripting Toolbox: This chapter contains a description of the scripting functionality
that allows you to automate tasks with 20-sim using Octave, Matlab or Python.

20-sim Unity Toolbox: This chapter contains a description of the new 20-sim Unity
Toolbox functionality that allows you to use Unity 3D animations together with 20-
sim.

2. Notation

3Getting Started with 20-sim 4.8

2 Notation

In the 20-sim manual the following typographic notations are used:

User instructions are numbered:

1. Open the Simulator and start a simulation run.

Specific 20-sim menus and menu commands are in bold:

The simulator can always be started by the Start Simulator command from the
Model menu.

Files and directories are written in italic type:

The file ScaraRobot.emx is located in C:\Program Files\20-sim 4.8\Models\Examples
\2D Mechanics (or on 64-bit systems: C:\Program Files (x86)\20-sim 4.8\Models
\Examples\2D Mechanics).

20-sim commands, windows and window parts are started with an uppercase
character and written in italic type:

Drag and drop the model from the Library Browser to the Graphical Editor.

Parameters, variables and other specific 20-sim elements are written in italic type:

In the equation model the function abs is used to make the signal output equal to the
absolute value of sum of variable offset and the signal input.

3. Installation

4Getting Started with 20-sim 4.8

3 Installation

3.1 Versions
20-sim is available in two versions: Viewer and Professional.

Viewer/Demonstration version: This is a freeware version that allows you to load
and run models and evaluate the package. Saving of models is not possible in this
version.

Professional: This is the full version of 20-sim with all toolboxes.

The table below shows in detail the options that are available in the three versions:

 Viewer Professional

Library Models v* v

3D Mechanics Toolbox v* v

Animation Toolbox v* v

Control Toolbox v* v

Frequency Domain Toolbox v* v

Mechatronics Toolbox v* v

Real Time Toolbox v* v

Time Domain Toolbox v* v

Scripting Toolbox x v

20-sim Unity Toolbox x p

v = included
p = has to be purchased separately
v* = included but no saving possible
x = not available

20-sim is installed, using an Installation Manager that will lock 20-sim to your computer.
There are three types of licenses available:

Viewer/Demonstration: The free demonstration version comes with a license that
is not locked to your computer. No actions have to be taken after installation of 20-
sim to use this license. The limitation of this license is that you cannot save any
modifications.

Single License: A single license locks 20-sim to a specific computer. After
installation you have to register to get a valid license.

Floating License: A floating license allows multiple users to work with 20-sim at the
same time. After installation you have to register to get a valid license.

3. Installation

5Getting Started with 20-sim 4.8

3.2 Installing 20-sim
20-sim can be downloaded from the website www.20sim.com. This is an installation file
that will install 20-sim on your computer. The first 4 steps are equal for all users.
Depending on the type of license (single, floating) you have to continue differently.

1. Install 20-sim and start the program.

2. During Installation you will be asked to install the (optional) Python 3.7 package.
We advise to keep the default setting: Yes.

3. Start 20-sim (from the Windows Start Menu choose 20-sim 4.8).

If a valid license of 20-sim 4.8 was activated before, the program will start automatically
and you can skip the rest of this section. If you have not installed 20-sim before, the
License Activation dialog will open. You can also manually open the License Activation
dialog:

4. From the Help menu select License Activation.

Use the Registration/Update window to request for a license.

5. If you have a valid license key or license file, press the Activation button to enter
your license key or browse for the license file.

If you do not yet have a valid license, press the Trial License button request an trial
license or press the Buy button to purchase a license. If you want to continue in Viewer
mode (no save functionality), just close the dialog without activating 20-sim.

6. Select which kind of license you have and who should use the license.

http://www.20sim.com

3. Installation

6Getting Started with 20-sim 4.8

License installation dialog.

Single License

If you are using a single license, you have to enter a license key or license file.

7. On the next dialog, select I received a license key by e-mail and enter the key
in the next dialog. When you received a license file, you have to enter the
location of the license file.

Single License dialog.

You will be asked for confirmation (click Activate Now) and activation will be carried
out. After a successful activation process the License Information dialog will show the
new license.

Web Activation dialog.

3. Installation

7Getting Started with 20-sim 4.8

Floating License

Installing a floating license (Administrator)

If you are using a license that is shared by more users (floating license, also known as
concurrent license or server license), you have enter the received license key and a
location on the server (a normal Windows shared folder) first. This location on the server
should be accessible to all users and have read/write permission. The floating license will
be stored at the selected location.

6. On the next dialog, select First Installation and then enter the license key and
the location on the server (Windows share).

On the location that you have given, a license file 20sim.lic will be installed. Remember
the location of this file because every new user of 20-sim will need to enter it. You will
be asked for confirmation (click Activate Now) and activation will be carried out. After
a successful activation process the License Information dialog will show the new license.

Using a floating license (Other users, Administrator)

If you are using a floating license that was already installed you have to enter the
location of the license file.

7. On the next dialog, select Administrator already installed server license and
then enter the license location (i.e. location of the file 20sim.lic).

After a successful entry of the location of the license location, the License Information
dialog will show the new license.

3.3 Uninstalling
You can uninstall 20-sim by clicking the Uninstall command from the 20-sim start menu.
Uninstalling of 20-sim will not deactivate your license. If you want to move 20-sim to
another computer, you have to deactivate your license first before uninstalling.

3.4 Deactivation
If you want to move 20-sim to another computer, you have to deactivate your license
before uninstalling the program. On the new computer you can then install the program
and activate the license. To deactivate your license:

1. From the Windows Start menu open 20-sim.

2. From the Help menu choose License Activation.

3. Press the Activation button.

4. Choose Deactivate the License and click Finish

You will be asked for confirmation and deactivation will start. After a successful
deactivation, you version of 20-sim has turned into the demonstration version. You can
now uninstall the software and reinstall it.

3.5 Unattended Installation
An unattended installation is an installation that is performed without user interaction
during its progress or with no user present at all.

3. Installation

8Getting Started with 20-sim 4.8

To perform an unattended installation the default 'program files' installation directory run
the following command :

20sim.exe /S

It is possible to set an alternative installation directory by specifying the /D argument. It
must be the last parameter used in the command line and must not contain any quotes,
even if the path contains spaces. Only absolute paths are supported.

20sim.exe /S /D=D:\My Installation Files\20-sim 4.8

3.6 Unattended Uninstallation
An unattended uninstall is an uninstall that is performed without user interaction during
its progress or with no user present at all.
To perform an unattended uninstall from the default 'program files' installation directory
run the following command on the 20-sim uninstaller:

C:\Program Files (x86)\20-sim 4.8\Uninstall.exe /S

4. Introduction

9Getting Started with 20-sim 4.8

4 Introduction

4.1 What is 20-sim
20-sim is a modeling and simulation program that runs under Microsoft Windows. With
20-sim you can simulate the behavior of dynamic systems, such as electrical,
mechanical and hydraulic systems or any combination of these.

20-sim fully supports graphical modeling, allowing to design and analyze dynamic
systems in a intuitive and user friendly way, without compromising power. 20-sim
supports the use of components. This allows you to enter models as in an engineering
sketch: by choosing components from the library and connecting them, your engineering
scheme is actually rebuilt, without entering a single line of math!

From the engineering sketch,

directly to a model, one on one!

4. Introduction

10Getting Started with 20-sim 4.8

4.2 20-sim: a quick tour
The best way to experience the capabilities of 20-sim is to open example models and
run simulations. In this quick tour we will show you how to load models from the
Examples library and run simulations.

1. Start 20-sim.

20-sim consists of two main windows (Editor and Simulator) and a lot of tools. The Editor
opens when you start 20-sim. In the Editor you can create your models.

The 20-sim Editor.

The Editor consists of four parts:

Model tab / Library tab: This is the part at the middle left. The Model tab shows the
model hierarchy, i.e. the hierarchical composition (all the elements) of the model that
is created in the Editor. The Library tab shows the 20-sim library.

Graphical Editor / Equation Editor: This is the big white space at the middle right. In
this editor you can create graphical models and enter equations.

Output tab / Process tab / Find tab: This is the part at the bottom right. The Output
tab shows the files that are opened and stored. The Process tab shows the compiler
messages. The Find tab shows the search results.

Interface tab / Icon tab: This is the part at the bottom left. The Interface tab shows
the interface of a selected model. Double clicking it will open the Interface Editor.
The Icon tab shows the icon of a selected model. Double clicking it will open the Icon
Editor.

We will open the model DiscreteController.em from the Examples\Control\Standard

Control folder.

2. Select the Library tab to open the Library Browser (shows the 20-sim library).

4. Introduction

11Getting Started with 20-sim 4.8

3. In the Library Browser select Examples - Control - Standard Control - Discrete
Controller. Your Editor should now look like:

The 20-sim Editor with the model library selected.

Note: All models in 20-sim are stored on file with the extension .emx. Library models
can be found where 20-sim was installed, e.g. C:\Program Files (x86)\20-sim 4.8
\Models. The model DiscreteController is stored in: C:\Program Files\20-sim 4.8 (x86)
\Models\Examples\Control\Standard Control\DiscreteController.emx

4. Drag and drop the Discrete Controller model to the graphical editor (large white
area). Now the model is opened. Your Editor should look like:

The 20-sim Editor with the model DiscreteController.emx loaded.

4. Introduction

12Getting Started with 20-sim 4.8

You can inspect the model by enlarging the Editor window or using the zoom button. We
will continue the quick tour running a simulation.

5. In the Model menu select Start Simulator. Now the Simulator will be opened.

The 20-sim Simulator with the model DiscreteController.emx loaded.

In the Simulator you can run a simulation and show the results in plots and animations.
The Simulator contains various tools to analyze the simulation results.

6. In the Simulation menu select Run. Now a simulation run will be performed. Your
Simulator should look like:

The 20-sim Simulator with the simulation results.

4. Introduction

13Getting Started with 20-sim 4.8

You have just learned how to open and run an example model. Try to load and run other
models from the Examples library to find out more about the capabilities of the 20-sim
package.

4.3 Library
In 20-sim, creating models only takes you just a few mouse clicks. By dragging an
element from the library and dropping it in the graphical editor, your model is actually
built the same way as you would draw an engineering scheme. 20-sim supports various
model representations, such as block diagrams and iconic diagrams. These
representations may be combined in one model.

Library Browser

All models in 20-sim are stored on files with the extension .emx. The standard libraries
can be found in the 20-sim folder:

C:\Program Files\20-sim 4.8\Models

or on 64-bit systems:

C:\Program Files (x86)\20-sim 4.8\Models

This folder contains all the models that are visible in the Library Browser on the left part
of the Editor.

You can find the library at the left of the Editor.

The library contains 4 sections:

Bond Graph: bond graph elements

Iconic Diagrams: Physical components

Signal: Block diagram elements

Tutorial: example models that show you how to perform various tasks in 20-sim

Getting Started: al the models that you need in the lessons of the Getting Started
manual.

4. Introduction

14Getting Started with 20-sim 4.8

Open Models

All library models are open source. You can inspect the content of any model in the
Editor. If the model contains a hierarchy, you can use the Go Down command of the
Model menu to descend in the hierarchy. If a model opens a specific editor, you can still
inspect the underlying code by keeping the shift key pressed while clicking the Go Down
command.

Custom Libraries

You can create your own model libraries in 20-sim:

1. From the Tools menu click Options - Folders - Library Folders.

2. Add your folder.

3. Give it a useful name by clicking Edit Label.

4. Click OK to close the dialog.

Then you can add your own library models to the library:

5. Select the submodel that you want to store in your library.

6. From the File menu select Save Submodel.

7. Store the submodel in your library folder.

The next time you start up 20-sim, the library will show the new submodel.

4.4 Block Diagrams
Block diagrams allow you to graphically represent the mathematical relationships
between signals in a system. They are especially suited to model control systems. In 20-
sim a large library of block diagram elements is available. The elements are displayed in
the Editor by icons. You can create block diagram models by dragging the elements to
the Graphical Editor and making the proper connections between the elements.

4. Introduction

15Getting Started with 20-sim 4.8

Library

20-sim has a large library of block diagram elements such as linear, non-linear, discrete
and source elements. In 20-sim you can create custom made block diagram elements
and add them to the existing libraries or combine them in newly defined libraries.

From the Library Browser (left) you can drag and drop elements into the Graphical Editor (right).

Signals

The foundation of block diagram elements is the use of input and output signals. 20-sim
allows you to create user defined block diagram elements with an arbitrary number of
input and output signals. Signal sizes can be 1 (default) or larger.

Custom Made Models

In 20-sim you can create your own block diagram elements and save them in your own
model library. Models can have an arbitrary number of ports, input and output signals. A
specialized drawing editor can be used to give the models any kind of representation.

4.5 Iconic Diagrams
Iconic diagrams or components are the building blocks of physical systems. They allow
you to enter models of physical systems graphically, similar to drawing an engineering
scheme. In 20-sim a large library of iconic diagram elements is available. The elements
are displayed in the Editor by icons which look like the corresponding parts of the ideal
physical model. You can create models by dragging the elements to the Graphical editor
and making the proper connections between the elements.

4. Introduction

16Getting Started with 20-sim 4.8

Library

20-sim has a large library of iconic diagram elements such as electrical, hydraulic,
mechanic and thermal models. In 20-sim you can create custom made iconic diagram
elements and add them to the existing libraries or combine them in newly defined
libraries.

From the Library Browser (left) you can drag and drop elements into the Graphical Editor (right).

Ports and Multiports

The foundation of iconic diagram elements is the use of power ports. Power ports enable
the connection between elements by describing the power flow between the elements. A
power port consists of two signals which are called across and through. 20-sim allows
you to create user defined iconic diagram elements with an arbitrary number of power
ports. Port sizes can be 1 (default) or larger (multiports).

Algebraic Loops and Differential Causality

Algebraic loops and differential causalities are traced automatically. If possible, 20-sim
will rewrite the equations symbolically to remove algebraic loops and differential
causalities.

Custom Made Models

In 20-sim you can create your own iconic diagram elements and save them in your own
model library. Models can have an arbitrary number of ports, input and output signals. A
specialized drawing editor can be used to give the models any kind of representation.

4.6 Bond Graphs
20-sim was the first commercially released software package to support bond graph
modeling. The first version of 20-sim with a bond graph library was released in 1995.
Since then a continuous effort to improve bond graph modeling has made 20-sim the
standard in bond graph modeling.

4. Introduction

17Getting Started with 20-sim 4.8

Bond Graphs

Bond graphs are a network-like description of physical systems in terms of ideal physical
processes. With the bond graph method, the system characteristics are split-up into an
(imaginary) set of separate elements. Each element describes an idealized physical
process. To facilitate drawing of bond graphs, the common elements are denoted by
special symbols.

Library

20-sim has a large library containing all standard bond graph elements. Next to standard
elements, 20-sim supports custom user made bond graph models.

From the Library Browser (left) you can drag and drop elements into the Graphical Editor (right).

Ports and Multiports

The foundation of bond graph modeling is the use of power ports. Power ports form the
connections with other bond graph elements and consist of two signals which are called
effort and flow and multiply to power. 20-sim allows you to create user defined models
with an arbitrary number of power ports and signals. Ports sizes can be 1 (default) or
larger (multiports). For every port you can specify the causality as fixed preferred,
indifferent or depending on the causality of other ports.

4. Introduction

18Getting Started with 20-sim 4.8

Causality

Causal strokes indicate the direction of the efforts and flows in a bond graph model. In
20-sim you have to enter the equations in one of the possible causal forms only. If
causality is changed, the equations are rewritten automatically. 20-sim shows causal
strokes in black color for preferred causality and in causal strokes in orange color for
non-preferred causality. The Causality of a complete model is derived automatically but
can be changed manually.

20-sim will assign causality automatically to your bond graph model.

Algebraic Loops and Differential Causality

Algebraic loops and differential causalities are traced automatically. If possible, 20-sim
will rewrite the equations symbolically to remove algebraic loops and differential
causalities.

4. Introduction

19Getting Started with 20-sim 4.8

Custom Made Models

In 20-sim you can create your own bond graph models and save them in a custom made
model library. Models can have an arbitrary number of ports, input and output signals. A
specialized drawing editor can be used to give the models any kind of representation.

Create custom made bond graph elements.

4.7 Editor
Models are entered and compiled in the 20-sim Editor. The Editor is a versatile tool that
helps you to enter models supporting a wide variety of systems including linear, non-
linear, discrete-time, continuous-time and hybrid systems, without restricting the user to
a certain model representation. After entering and debugging, the model can be checked
and compiled. This is performed automatically in the background, when opening the
Simulator.

Model Representations

Systems can be modeled in 20-sim, using equations, state space descriptions, bond
graphs, block diagrams, and components or iconic diagrams. These descriptions can be
fully coupled to create mixed models.

4. Introduction

20Getting Started with 20-sim 4.8

Open Source

20-sim models are stored in files. A Library Browser is part of the program, but you can
also use the Windows Explorer for library management. All 20-sim models are open! You
can drag and drop them from the library browser into the graphical editor to build new
models. You are allowed to store the original and changed models in separate folders to
create your own library of models.

You can drag and drop models from the library browser to the graphical editor.

Debug Mode and Fast Mode

20-sim can operate in two modes: Debug Mode and Fast Mode . This is indicated
by the Mode button at the complete right of the toolbar. You can quickly change between
these modes by clicking on the Mode button. In Debug Mode all possible checks will be
performed and warnings will be generated for possible model errors. Always start
modeling in Debug Mode!

Graphical Models

You can construct graphical models (block diagrams, iconic diagrams, bond graphs) by
dragging and dropping models from the Model Library to the Graphical Editor. Default

the Editor is in Selection Mode . If you want to make connections between the models,

you have to change to the Connection Mode .

Drawing

The icon of every standard library model in 20-sim has been created using a special
drawing editor: the Icon Editor. You can use the Icon Editor to change the standard
library models or create your own library models. You can enter text and add bitmap
pictures in every level of your model. With lines, arrows and other drawing objects you
can enhance the understanding of your model.

Hierarchical modeling

20-sim supports unlimited hierarchical modeling. The highest levels consist of graphical
models (state space models, block diagrams, bond-graphs or components) and the
lowest level is formed by equations models.

4. Introduction

21Getting Started with 20-sim 4.8

Equations

The lowest level in a 20-sim model is formed by equations. Equations in 20-sim follow
the standard mathematical notation and can be changed by the user. A large collection
of linear, non-linear, scalar and matrix functions are available for the use in equations.

4.8 Variables, Parameters and Initial Values
Equations are the foundation for all models in 20-sim. At the lowest level of a model you
will always find equations. Equations can be entered in the 20-sim Editor. An example
equation model is shown below:

parameters
real m = 1.0 {kg}; // mass
real g = 9.8 {m/s2}; // gravity
real K = 2.0 {N/m}; // spring constant
real f = 1.0 {N.s/m}; // friction parameter

variables
real v {m/s}; // velocity
real interesting x {m}; // position
real Fm {N}; // net-force applied to the mass
real Fs {N}; // spring force
real Fd {N}; // damper force

equations
Fm = -m * g - Fs - Fd;
v = (1/m) * int(Fm , 0);
x = int(v , 0);
Fs = K * x;
Fd = f * v;

A 20-sim equation model starts with the declaration of parameters and variables. In the
Equation section, the equations are entered. An equation is simply a variable on the left
part of the equal sign and variables or functions at the right side. During a simulation,
the equations are calculated over and over again, many time steps, while the resulting
variable values are be shown in plots.

You can inspect equations by opening an example model, select one of the blocks with
you mouse pointer and select "Go Down "from the right mouse menu. If you repeat this
you will always see an equation model at the lowest level.

Variables

Variables can change value during a simulation. You can inspect the current value of a
variables in the Variables Chooser (Simulator - View - Variables).

Parameters

Parameters have a fixed value that you can change before a simulation in the
Parameters/Initial Values Editor (Simulator - Properties - Parameters).

Initial Values

Some functions like an integral or a hold have an initial value. These initial values can be
entered in the equation model (see int-function with a zero initial value in the example
above: v = (1/m)*int(Fm , 0)) or be changed before a simulation in the the Parameters/
Initial Values Editor (Simulator - Properties - Parameters).

4. Introduction

22Getting Started with 20-sim 4.8

4.9 Simulator
After entering a model in the Editor you can check and compile it. This is performed
automatically in the background, when opening the Simulator. The Simulator is used for
model simulation and analysis.

Plot Windows

Simulation results can be shown in plots and animations. These plots and animations can
be part of the main Simulator window or additional windows. Plots are fully configurable.
Logarithmic views, true-type fonts, line styles, marker styles and backgrounds are
supported. Plots and animations can be made ready for publication easily (copy to
clipboard and paste in any document).

Show simulation results in plots and animations simultaneously.

Debug Mode and Fast Mode

20-sim can operate in two modes: Debug Mode and fast Mode This is indicated by
the Mode button in the toolbar. In Fast mode a built-in runtime compiler is used which
compiles the simulation model into platform specific 32-bit machine code. The result is a
dramatic increase of simulation speed. 20-sim machine code runs faster than the
equivalent compiled C-code! Compiling the machine code, even with large models, is
done while you start up the Simulator. The compiler is an internal part of the 20-sim
software. No external compiler or program is required!

Simulation Algorithms

20-sim contains powerful simulation algorithms for solving ordinary differential equations
(ODE) and differential algebraic equations (DAE). It has a variety of numerical
integration methods: one-step, multi-step and multi-order.

Discrete-time models

20-sim will automatically detect discrete-time loops in a model and assign each
independent loop a separate sample rate. Discrete signals are shown in the Editor in
green. Discrete-time parts are activated by time events so that mixed continuous-time
and discrete-time models are handled correctly.

4. Introduction

23Getting Started with 20-sim 4.8

Events

20-sim can also handle state events based on zero-crossing algorithms. This results in a
fast and accurate event detection and localization.

4.10 Toolboxes
20-sim contains a number of Toolboxes:

1. 3D Mechanics Toolbox: This toolbox consists of the 3D Mechanics Editor.

2. Animation Toolbox: This toolbox consists of the 3D Animation and Graph Animation
tools.

3. Control toolbox: This toolbox consists of the Controller Design Editor, the MLP
Network Editor, the B-Spline Editor and the Filter Editor.

4. Frequency Domain Toolbox: This toolbox consists of FFT analysis and Linearization.

5. Mechatronics Toolbox: This toolbox consists of the Cam Wizard, the Motion Profile
Wizard and the Servo Motor Wizard.

6. Real Time Toolbox: This toolbox allows you to create C-code out of any 20-sim
model for the use in real-time applications.

7. Time Domain Toolbox: This toolbox contains powerful tools to inspect the behaviour
of your model using time domain simulation: Parameter sweeps, Optimization,
Curve Fitting, Tolerance analysis, Sensitivity analysis, Monte Carlo analysis and
Variation analysis. You can also use External DLL's to run your time domain
simulations.

8. Scripting Toolbox: This toolbox contains powerful tools to inspect the behaviour of
your model using time domain simulation: Parameter sweeps, Optimization, Curve
Fitting, Tolerance analysis, Sensitivity analysis, Monte Carlo analysis and Variation
analysis. You can also use External DLL's to run your time domain simulations.

9. 20-sim - Unity Toolbox: This is a brand new toolbox that couples 20-sim with the
third party software Unity. Unity is a game engine that allows you to make 3D
animations with high quality rendering and display on screen and VR headsets.

5. Equation Models

24Getting Started with 20-sim 4.8

5 Equation Models

5.1 Introduction
Equations are the foundation for all models in 20-sim. At the lowest level of a model you
will always find equations. Equations can be entered in the 20-sim Editor.

1. Open 20-sim and select File, New and Graphical Model.

The right part of the Editor will now allow you to graphical models. That is why we have
named this part of the Editor the Graphical Editor. The Graphical Editor will change into
an Equation Editor if we go to the deepest level of any model.

2. Go to the left of the Editor and click the Library tab

Now the Library Browser will appear.

2. Click on Examples and System Dynamics.

3. Drag the model LorenzAttractor to the white space at the right (Graphical Editor).

Equation model of the Lorenz Attractor.

As you will see the Graphical Editor changes into an Equation Editor and equation model
is opened. This model is called an equation mainmodel, because it has no input signals,
output signals or ports. This can be verified in the lower left part of the Editor which
shows the Interface of the model (empty). A mainmodel is a model that cannot be
connected with other models.

4. Open 20-sim and select File, New and Graphical Model.

5. Go to the left of the Editor and click the Library tab.

Now the Library Browser will appear.

6. Click on Examples and Block Diagrams.

7. Drag the model Oscillator to the white space at the right (Graphical Editor).

5. Equation Models

25Getting Started with 20-sim 4.8

As you will see a block diagram model is opened. We will inspect the integrate element
of this model.

Block diagram model of an oscillator.

8. Go to the left of the Editor and click the Model tab.

Now the Model Browser will appear. The Model Browser shows the relevant block
diagram elements of this model.

9. Select the Integrate1 element.

Equation implementation of an integration element.

5. Equation Models

26Getting Started with 20-sim 4.8

As you can see an equation model is shown. This is called an equation submodel,
because it has equations which relate an output signal to an input signal. The signals are
defined in the lower left part of the Editor (the Interface). A submodel is in general a
model that can be connected to other submodels using signals or power ports.

In the next sections we will show how to create equation mainmodels and submodels.
We will start with a simple mechanical system and show how it can be described by
differential equations. We will enter these equations in 20-sim in the form of an equation
mainmodel. In next section we will show how to model a pendulum with differential
equations incorporated in an equation submodel.

5.2 Equation Mainmodel

Differential Equations

We consider the mechanical system of the figure below.

A mass with spring and damper.

We will first derive the necessary equations for this system and then enter these
equations in 20-sim and do a simulation. For the mass we can write the following
equation:

where Fm is the force on the mass m due to its inertia, v the velocity and a the
acceleration. In block diagram models integration is to be preferred above
differentiation, so we rewrite the equation for Fm:

For the spring we can write:

where Fs is the force on the spring and K is the spring constant. For the damper we can
write:

5. Equation Models

27Getting Started with 20-sim 4.8

where Fd is the force due to viscous friction and f is the friction parameter. For the
gravity force we can write:

where Fg is the force due to gravity and g is the acceleration of gravity. Combining the
forces leads to the following set of differential equations:

Equation Model

These equations can be entered in 20-sim directly as equations. We will use an equation
mainmodel. A main model means that the model has no input or output signals to
connect it with the outside world.

1. Open 20-sim and select File, New and Equation Model.

Make sure that 20-sim is in Debug Mode. The right part of the Editor will now allow you
to create graphical models. That is why we have named this part of the Editor the
Graphical Editor. Equations in 20-sim written in a special language called SIDOPS+. This
language is similar to mathematical equations and is easy to learn.

The taskbar of the Equation Editor.

Look at the taskbar at the top of the Equation Editor. The taskbar contains buttons to
insert functions, statements and other language constructs of SIDOPS+.

2. From the task bar select the add button. Choose Equation Examples and Simple.

5. Equation Models

28Getting Started with 20-sim 4.8

Now you will see a simple example of an equation model. Your Editor should look like:

Using the add button you can insert the template of a simple set of equations.

An equation model starts with the declaration of parameters and variables, followed by
the actual equations. You can easily get help by putting the mouse pointer on top and
pressing the F1 key.

3. Put the mouse pointer on top of the word sin, click once with the left mouse button
and press the F1 key.

Now the 20-sim Help file should open with the topic on the sine function opened.

4. Close the Help File.

We will enter the differential equations from the previous topic.

5. Clear all equations from the Editor (select them and press delete).

5. Equation Models

29Getting Started with 20-sim 4.8

6. Enter the following equations (you can copy and paste them):

parameters
real m = 1.0 {kg}; // mass
real g = 9.8 {m/s2}; // gravity
real K = 2.0 {N/m}; // spring constant
real f = 1.0 {N.s/m}; // friction parameter

variables
real v {m/s}; // velocity
real interesting x {m}; // position
real Fm {N}; // net-force applied to the mass
real Fs {N}; // spring force
real Fd {N}; // damper force

equations
Fm = -m * g - Fs - Fd;
v = (1/m) * int(Fm , 0);
x = int(v , 0);
Fs = K * x;
Fd = f * v;

7. Delete empty lines and use the tab-key to get a better layout.

Your Editor should now look like:

The equations of the spring-damper-mass model entered.

8. From the Model menu select the Check Complete Model command.

5. Equation Models

30Getting Started with 20-sim 4.8

Now the complete model will be checked. If the model is correct at the bottom of the
Editor the Process tab should show a message indicating 0 errors and 0 warnings:

The results of model compilation are shown in the Process tab.

If any errors are found, a message window pops up, showing the errors which 20-sim
has found. The figure below shows the errors that are generated when a multiplication is
missing (m g should be m*g). You can click on the error in the Process tab to highlight
the corresponding equation.

If errors occur, messages will be generated in the Process tab.

9. If any errors occur, try to solve them.

10. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name EquationModel.emx.

If you have problems entering the equations or checking the model, load the model
Equation Mainmodel from the Getting Started\Equation Models section of the library.

Simulation

Now we have entered the equation model, we will proceed and show how you can run a
simulation.

11. In the Editor toolbar from the Model menu select the Start Simulator command.

5. Equation Models

31Getting Started with 20-sim 4.8

This opens the Simulator window. We will proceed with this window.

The Simulator will open with an empty plot.

12. In the Simulator toolbar from the Properties menu select the Parameters
command.

The Parameters Editor shows all the parameters of your model. It is a useful tool to
quickly change the value of a parameter. Check that the parameter values of your
model are equal to the values in the picture below.

The Parameters Editor allows you to make quick changes to the parameters in a model.

13. From the Properties menu select the Run command.

5. Equation Models

32Getting Started with 20-sim 4.8

14. The Run Properties Editor shows the simulation settings. Change the Finish Time to
15 s and the Integration Method to Euler.

The Run Properties Editor allows you change the simulation settings.

15. Specific settings for the Euler method can be selected by clicking the Set
Properties button. Set the step size equal to 0.2 s.

The second tab shows the specific settings of the chosen Integration Method.

5. Equation Models

33Getting Started with 20-sim 4.8

16. From the Properties menu select the Plot command.

In the Plot Properties Editor you can define the settings of a plot.

17. In the Y-axis tab click Choose.

This opens the Variable Chooser which helps you to select the variable that should be
plotted. It should look like:

The Variable Chooser shows the model variables and their current values.

18. Select the variable x and click OK.

5. Equation Models

34Getting Started with 20-sim 4.8

19. Select the Plot Properties tab and change the Title to Equation Mainmodel.

You can give a plot any desired look and feel.

20. Click OK to close the Plot Properties Editor.

21. From the Simulation menu select the Run command to start the simulation. The
result should look like the figure below.

The simulation results of our equation mainmodel.

22. From the File menu click Save.

If you had problems running a simulation, load the model Equation Mainmodel from the
Getting Started\Equation Models section of the library.

5. Equation Models

35Getting Started with 20-sim 4.8

5.3 Equation Submodel

Differential Equations

In the second part of this lesson you will learn how to enter the equations of motion of a
simple pendulum in an equation submodel. If we transfer all equations to the hingepoint
with angle theta, the equations of motion of a simple pendulum can be described as:

m·l²·s²·theta = T - c·s·theta - m·g·l·sin(theta)

or

s²·theta = (T - c·s·theta)/(m·l²) - g/l·sin(theta)

with:

theta pendulum angle (rad)

T applied torque on the pendulum (Nm)

l pendulum length (4 m)

m pendulum mass (0.25 kg)

c friction at the pendulum hinge (0.1 Nms/rad)

g gravity constant (9.8 m/s²)

Written as first order differential equations:

theta_dot_dot = (torque - c·theta_dot)/(m*l2) - (g/l)·sin(theta);
theta_dot = int(theta_dot_dot);
theta = int(theta_dot);

The input variable is the applied torque and the output variable is the pendulum angle
theta. This equation submodel will be used in a block diagram model as shown below. A
square wave generator will act as torque and the signal monitor block will catch the
output angle theta.

A pendulum submodel implemented by equations.

Entering Equations

These equations can be entered in 20-sim directly as equations. We will use an equation
submodel. A submodel means that the model has input or output signals to connect it
with the outside world.

1. Open 20-sim.

Make sure that 20-sim is in Debug Mode.

5. Equation Models

36Getting Started with 20-sim 4.8

2. Select File, New and Graphical Model.

The right part of the Editor will now allow you to graphical models. That is why we have
named this part of the Editor the Graphical Editor. The Graphical Editor will change into
an Equation Editor if we go to the deepest level of any model.

3. Go to the left of the Editor and click the Library tab.

4. Drag the following library models to the Graphical Editor:

 model library model

 Library\Signal\Sources
Library\Signal\Block Diagram

WaveGenerator-Square
SignalMonitor

5. Select the SignalMonitor submodel.

6. From the right mouse menu or from the Model menu select the Properties
command.

7. Change the name of the model to Angle and click OK.

8. Rename the other submodel to Torque.

The Editor now should look like:

Drag and drop models from the library to the Graphical Editor.

If the submodel names are not shown, select a submodel and from the right mouse
menu choose Show Name and Bottom.

9. Put the mouse pointer in between the two submodels. From the right mouse menu or
from the Insert menu select Empty Submodel.

This adds an empty submodel.

10. Rename the new Submodel to PendulumSubmodel (right mouse menu - Properties).
Use the right mouse menu to show the name at the bottom.

5. Equation Models

37Getting Started with 20-sim 4.8

The Editor now should look like:

Drag and drop models from the library to the Graphical Editor.

11. Make sure that the PendulumSubmodel is selected.

12. From the right mouse select Edit Interface.

This will open the Interface Editor.

The Interface Editor is used to define input and output signals.

In the Interface Editor, you can define the model interface. We are going to define two
signals: one input signal (Torque) and one output signal (Angle).

13. Change the Name to PendulumSubmodel.

14. From the Edit menu select Add Port.

5. Equation Models

38Getting Started with 20-sim 4.8

15. Choose the following settings:

 Items Values

 Name
Type
Orientation
Quantity

torque
Signal
Input
torque

Your Interface Editor should now look like:

The input signal represents a torque.

16. From the Edit menu select Add Port.

17. Now choose the following options:

 Items Values

 Name
Type
Orientation
Quantity

theta
Signal
Output
plane angle

5. Equation Models

39Getting Started with 20-sim 4.8

Your Interface Editor should now look like:

The output signal represents an angle.

18. Close the Interface Editor by clicking the OK button.

Now we have defined the Interface of our equations submodel. Next we will change its
appearance.

13. Make sure that the PendulumSubmodel is selected.

14. From the right mouse select Edit Icon.

Now the Icon Editor will be opened:

The Icon Editor is used to create custom made model icons.

In the Icon Editor, you can change the icon of the model. As you can see, a default icon
has been generated. The terminals (dots in the center, indicating where the signals
connections should be) are already available. We are only going to enlarge the gray
square.

21. In the toolbar of the Icon Editor, click the left arrow to change to selection
mode.

5. Equation Models

40Getting Started with 20-sim 4.8

22. Select the gray box.

Four orange squares, indicating the corners of the box, will now be visible.

23. While the square is still selected, go to the colorbar at the bottom of the Icon Editor.

24. Point the mouse on the color yellow and click the right mouse button.

Now the square should have a yellow background and a black border (with the left
mouse button the border color can be selected).

25. Select the text (name) in the middle of the square.

26. From the right mouse menu, click Properties.

A text editor pops up.

27. Change the default text to Pendulum Submodel and click OK.

28. Select the square and drag the corners until it is large enough to contain the text.

29. Select the text Pendulum Submodel.

30. Click the keyboard arrows to move the text to the center of the square (press the
Shift button while dragging for fine movements).

31. Click on the small squares in the middle, representing the input signal (torque) and
the output signal (angle) and drag them to the borders of the square.

Now the icon should look like:

The black squares indicate the connections for the input and output signal.

32. From the File menu select Exit. A pop-up window will ask you to update the graph
first. Choose Yes.

5. Equation Models

41Getting Started with 20-sim 4.8

You Editor will now show the yellow icon. So far we have given the model an icon and an
interface. now we are going to enter its implementation in the form of equations. Look at
the taskbar at the top of the Graphical Editor. The taskbar contains buttons create
connections, draw lines and more.

The taskbar of the Equation Editor with the selection mode selected.

33. In the taskbar, choose the left button . This is the selection mode button.

34. Select the PendulumSubmodel.

35. From the Model menu select the Go Down command.

The submodel has no implementation. A window will therefore pop-up, asking you what
kind of implementation you would like.

36. Select equation submodel.

Now an empty Equation Editor will be shown:

The submodel has an empty implementation.

We will enter the differential equations that where at the start of the topic.

5. Equation Models

42Getting Started with 20-sim 4.8

37. Copy the following equations to the Equation Editor.

parameters
real l = 4.0 {m};
real c = 0.1 {N.m.s/rad};
real g = 9.8 {m/s2};
real m = 0.25 {kg};

variables
real theta_dot_dot {rad/s2};
real theta_dot {rad/s};

equations
theta_dot_dot = (torque - c * theta_dot)/(m*l^2) - (g / l) * sin(theta);
theta_dot = int (theta_dot_dot , 0);
theta = int (theta_dot , 0);

You model should now look like:

The submodel is implemented by equations.

38. From the Model menu select the Check Submodel command. Now the submodel
will be checked. If any errors are found, a message window pops up.

39. Return to the main model level of the hierarchy: From the Model menu select the
Go Up command.

Now we have completed our equation submodel. The only thing that is left is to connect
it to the other models.

40. In the taskbar, choose the second left button . This is the connection mode
button.

41. Select the submodel Torque and then the submodel PendulumSubmodel.

Now a signal should be visible pointing from Torque to PendulumSubmodel.

5. Equation Models

43Getting Started with 20-sim 4.8

42. Connect the submodels PendulumSubmodel and Angle.

Now your model should look like:

The equation submodel connected to the other models.

43. From the Model menu select the Check Complete Model command.

Now the complete model will be checked. If the model is correct at the bottom of the
Editor the Process tab should show a message indicating 0 errors and 0 warnings:

The results of a model check are shown in the Output tab.

If any errors are found, a message window pops up, showing the errors which 20-sim
has found. You can click on the error in the Process tab to highlight the corresponding
equation.

44. If any errors occur, try to solve them.

45. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name EquationSubmodel.emx.

If you had problems running a simulation, load the model Equation Submodel from the
Getting Started\Equation Models section of the library.

Simulation

We have entered the model and proceed with the simulation.

5. Equation Models

44Getting Started with 20-sim 4.8

46. In the Editor toolbar from the Model menu select the Start Simulator command.

This opens the Simulator window. We will proceed with this window.

47. In the Simulator toolbar from the Properties menu select the Parameters
command and change the default parameter values to:

 Torque\Amplitude
Torque\omega
PendulumSubmodel\l
PendulumSubmodel\c
PendulumSubmodel\g
PendulumSubmodel\m

4
0.1
4
0.1
9.8
0.25

Note that 20-sim will sometimes use prefixes like m (= 0.001), when working with units.
The value of PendulumSubmodel\c may therefore be indicated as 100 m N.m.s./rad.

48. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method
Step Size

0
100
Runge-Kutta 4
0.1

49. From the Properties menu select the Plot command.

50. Select the Plot Properties tab and change the Plot Title to Equation Submodel.

51. Select the Y-axis tab.

The variable Angle\plot is automatically selected.

52. Change the label to Angle.

53. Click the Add Curve button.

This opens the Variable Chooser which helps you to select another variable that should
be plotted.

54. Select the variable Torque\output from the list and click the OK button.

55. Change the label to Torque.

56. De-select the Shared Y-Axes option.

57. Close the Plot Properties Editor by clicking the OK button.

5. Equation Models

45Getting Started with 20-sim 4.8

58. From the Simulation menu select the Run command to start the simulation. The
result should look like the figure below.

The simulation results of the equation submodel.

59. From the File menu click Save.

If you had problems running a simulation, load the model Equation Submodel from the
GettingStarted\Equation Models section of the library.

6. Block Diagrams

46Getting Started with 20-sim 4.8

6 Block Diagrams

6.1 Block Diagram Mainmodel

Differential Equations

We consider the mechanical system that was also use for the equation main model. In
this lesson on you will learn how to describe this system with a block diagram.

A mass with spring and damper.

The mechanical system can be described by the following set of differential equations:

Block Diagram Model

Drag and Drop

These equations can be entered in 20-sim using a block diagram. We want to obtain the
following block diagram.

Block Diagram model of the mechanical system.

1. Open 20-sim and select File, New and Graphical Model and make sure that 20-

sim is in Debug Mode .

6. Block Diagrams

47Getting Started with 20-sim 4.8

The right part of the Editor will now allow you to enter graphical models. That is why we
have named this part of the Editor the Graphical Editor.

2. Go to the left of the Editor and click the Library tab.

3. Drag the following library models to the Graphical Editor:

 model library model

 Library\Signal\Sources
Library\Signal\Block Diagram
Library\Signal\Block Diagram
Library\Signal\Block Diagram

Constant
Attenuate
Integrate (2×)
Gain (2×)

4. Select the Constant model. From the Model menu select the Properties command.
This will open the Model Properties Editor.

5. Rename the model to Fg.

6. Do so with all the models until your Editor looks like:

You can give block diagram elements useful names.

Connections

7. In the taskbar, choose the second left button (the mouse pointer with line). This

is the connection mode button .

8. Select the model Fg (left mouse click on top of the Fg model) and then the model m
(left mouse click on top of the m model).

Now a signal should be visible pointing from Fg to m.

6. Block Diagrams

48Getting Started with 20-sim 4.8

9. Enter the other connections until your Editor looks like the figure below. You can
make intermediate points (the corners of a connection) by quickly clicking the left or
right mouse button, while dragging.

If you have problems making connections please note that there are two way to make a
connection: tapping mode and pressing mode. With the tapping mode you click the
left mouse button at the first model (do not keep it pressed but quickly "tap" the button)
and keep tapping until the second model is reached. With the pressing mode you press
left mouse button on the first model and keep it pressed until the second model is
reached. Intermediate points in pressing mode are made by clicking the right mouse
button.

Using the connection model button, you can create connections between elements.

If you want to change there position of the models or connections, you have to switch to

the selection mode button. You can switch to selection mode by clicking left button

(the mouse pointer) of the taskbar. Make sure to switch back to connection mode to
make the other connections.

Splitters

10. Click on the middle of the signal pointing from the submodel v to x.

A splitter will be inserted.

11. Make a connection from the splitter to the model f.

6. Block Diagrams

49Getting Started with 20-sim 4.8

Your model should look like:

Click on a signal to insert splitters.

Plus Minus

12. Click on the K model to start a connection and then click on the middle of the signal
pointing from the submodel Fg to m.

13. 20-sim will open a dialog asking you to insert a multiplication or addition. Select the
PlusMinus option and select the minus sign.

14. Repeat this action by making a connection from the f model to make your Editor
look like:

if you end a connection on another connection 20-sim will insert a multiplication or addition.

6. Block Diagrams

50Getting Started with 20-sim 4.8

Compiling

15. From the Model menu select the Check Complete Model command.

Now the complete model will be checked. If the model is correct at the bottom of the
Editor the Process tab should show a message indicating 0 errors and 0 warnings. If any
errors are found, a message window pops up, showing the errors which 20-sim has
found. You can click on the error in the Process tab to highlight the corresponding
equation.

16. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name Block Diagram Mainmodel.emx.

If you have problems creating the model, load the model Block Diagram Mainmodel from
the Getting Started\Block Diagrams section of the library.

Simulation

17. In the Editor toolbar from the Model menu select the Start Simulator command.

This opens the Simulator window. We will proceed with this window.

18. In the Simulator toolbar from the Properties menu select the Parameters
command and change the default parameter values to:

 Fg\C
m\K
f\K
K\K

-9.8
1
1
2

19. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method
Step Size

0
15
Euler
0.2

20. From the Properties menu select the Plot command.

21. Select the Plot Properties tab and change the Plot Title to Block Diagram
Mainmodel.

22. Select the Y-axis tab and click Choose to open the Variable Chooser.

22. Select the variable x\output from the list and click OK.

23. Set the following values:

 Tick Style Properties

 Tick Style
Min. Distance (pixels)
Color

Diamond Closed
2
Red

6. Block Diagrams

51Getting Started with 20-sim 4.8

 Scaling

 Scaling
From
To

Manual
-10
10

25. Close the Plot Properties Editor by clicking the OK button.

26. From the Simulation menu select the Run command to start the simulation. The
result should look like the figure below.

The simulation result.

27. From the File menu click Save.

If you had problems running a simulation, load the model Block Diagram Mainmodel
from the Getting Started\Block Diagrams section of the library.

6.2 Block Diagram Submodel

Differential Equations

In a previous lesson we have found that a pendulum can be described by the differential
equations:

theta_dot_dot = (torque - c·theta_dot)/(m*l2) - (g/l)·sin(theta);

theta_dot = int(theta_dot_dot);

theta = int(theta_dot);

6. Block Diagrams

52Getting Started with 20-sim 4.8

Block Diagram Model

The input variable is the applied torque and the output variable is the pendulum angle
theta. We can represent these equations by a block diagram:

Block diagram model of a pendulum.

In the block diagram a square wave generator acts as torque and the signal monitor
block catches the output angle theta. Block diagrams tend to grow complex easily when
more elements are involved. To keep a good overview, hierarchy must be used. In this
model the elements of the pendulum part (inside the green square) will be hidden in a
submodel as shown below. Still the square wave generator will act as torque and the
signal monitor block will catch the output angle theta.

Pendulum as a block diagram submodel.

1. Open 20-sim.

2. Make sure that 20-sim is in Debug Mode.

3. Try to create the block diagram at the top of this topic yourself or load the model
Block Diagram from the Getting Started\Block Diagrams section of the library.

To make a submodel out of all the elements in the green square we first have to select
all these elements. A multiple selection (i.e. more than one element selected) is easy in
20-sim. Two methods can be used:

Keep the Shift key pressed while you click your mouse pointer on various elements.

Press your left mouse button and keep it pressed while you drag the mouse pointer
diagonal down (you are creating a square). As you move the mouse, you will see a
square and every element in the square will be selected. Now you can release the
left mouse button.

4. In the Editor select all elements that are in the green square.

6. Block Diagrams

53Getting Started with 20-sim 4.8

Your Editor should now look like (only the models Torque and Angle not selected):

Drag a rectangle over an area to select multiple element.

5. From the Edit menu select Implode.

This will make all selected elements, part of a new submodel. Your model should now
look like:

Use the Implode command to combine the selected elements into one submodel.

6. Select the new submodel and click Go Down (Model menu).

This command will show us the inside of the submodel. It should look like:

6. Block Diagrams

54Getting Started with 20-sim 4.8

The implementation of the submodel is a block diagram.

As you can see, 20-sim has added ports (plus and output) automatically that connect the
submodel to the outside world.

7. Click Go Up (Model menu) to go to the highest model level.

8. Select the new Submodel and change its name to PendulumSubmodel (select
Properties from the right mouse menu).

9. Select the new Submodel and open the Icon Editor (select Edit Icon from the
right mouse menu).

In the previous topic is explained how you can use the Icon Editor to change the
appearance of a submodel.

6. Block Diagrams

55Getting Started with 20-sim 4.8

10. Change the icon until it looks like:

With the Icon Editor you can create custom made model icons.

11. From the Model menu select the Check Complete Model command.

Now the complete model will be checked. If the model is correct at the bottom of the
Editor the Process tab should show a message indicating 0 errors and 0 warnings. If any
errors are found, a message window pops up, showing the errors which 20-sim has
found. You can click on the error in the Process tab to highlight the corresponding
equation.

12. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name Block Diagram Submodel.emx.

If you had problems running a simulation, load the model Block Diagram Submodel from
the Getting Started\Block Diagrams section of the library.

Simulation

We have entered the model and proceed with the simulation.

13. In the Editor toolbar from the Model menu select the Start Simulator command.

This opens the Simulator window. We will proceed with this window.

14. In the Simulator toolbar from the Properties menu select the Parameters
command and change the default parameter values to:

 PendulumSubmodel\c\K
PendulumSubmodel\g\K
PendulumSubmodel\l\C
PendulumSubmodel\m\C
Torque\amplitude
Torque\omega

0.1
9.8
4
0.25
4
0.1

6. Block Diagrams

56Getting Started with 20-sim 4.8

15. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method
Step Size

0
100
Runge-Kutta 4
0.1

16. From the Properties menu select the Plot command.

17. Select the Plot Properties tab and change the Plot Title to Block Diagram
Submodel.

18. Select the Y-axis tab.

The variable Angle\plot is automatically selected.

19. Change the Label to Angle and click OK close the Plot Properties.

Now your Simulator should look like:

The Simulator with one plot and one curve entered.

20. In the tree at the left click on Window 1 to select it.

21. From the right mouse menu select Add Plot - Plot.

6. Block Diagrams

57Getting Started with 20-sim 4.8

Now a second plot will be visible.

The Simulator with the second plot entered.

22. In the tree, select the second plot (model). From the right mouse menu, select
Plot Properties.

23. Click on the Choose button to select the variable Torque\output and change the
Label to Torque.

24. Select the Plot Properties tab and change the Plot Title to Second Plot.

25. De-select the Plot Title option.

Now it should look like:

Entering a plot title and hiding it for display.

26. Close the Plot Properties by clicking OK.

6. Block Diagrams

58Getting Started with 20-sim 4.8

27. In the tree at the left click on Window1 to select it.

28. From the right mouse menu select Tile Plots - Tile Vertical.

29. Run a simulation

Now the Simulator should look like:

The simulation results of the block diagram submodel.

30. From the File menu click Save.

If you had problems running a simulation, load the model Block Diagram Submodel from
the Getting Started\Block Diagrams section of the library.

7. Iconic Diagrams

59Getting Started with 20-sim 4.8

7 Iconic Diagrams

7.1 Iconic Diagram (Electric)
In the previous lessons you have learned the basics of 20-sim and how to enter equation
models and block diagram models. In this lesson you will learn how to enter iconic
diagram models. In the first part an electric network will be entered and simulated. With
help of this model, the importance of the View menu for iconic diagram models will be
explained. After that a mechanical system will be entered and simulated.

1. Open 20-sim and select File, New and Graphical Model and make sure that 20-

sim is in Debug Mode .

The right part of the Editor will now allow you to enter graphical models. That is why we
have named this part of the Editor the Graphical Editor.

2. Go to the left of the Editor and click the Library tab.

3. Drag the following library model to the Graphical Editor:

 model library model

 Library\Iconic Diagrams\Electric\Sources VoltageSource
(DC)

The VoltageSource model has multiple implementations: DC and AC. When you drag and
drop the model to the Graphical editor, you are asked which implementation should be
used.

4. Choose the implementation DC.

You can always change the implementation by using the right mouse menu: select the
model, right mouse menu, choose implementation.

5. Drag the following library model to the Graphical Editor:

 model library model

 Library\Iconic Diagrams\Electric\Sources
Library\Iconic Diagrams\Electric\Components
Library\Iconic Diagrams\Electric\Components
Library\Iconic Diagrams\Electric\Components
Library\Iconic Diagrams\Electric\Components

VoltageSource
Inductor
Resistor
Capacitor
Ground

6. Select the VoltageSource model. From the Settings menu select the Submodel
command.

This will open the Model Properties Editor.

7. Rename the model to Voltage.

7. Iconic Diagrams

60Getting Started with 20-sim 4.8

8. Do so with all the models until your Editor looks like:

Drag and drop models from the library.

As in the figure above, leave a lot of space between the models. Otherwise some
effects, explained later in this topic, might be hard to spot. Every iconic diagram model
has one or more terminals to allow connections with other models.

9. To show these terminals, from the View menu click Show Terminals.

The terminals will be visible as open and closed rectangles:

Use the View menu to show the terminals of the models.

10. In the taskbar, choose the second left button (the mouse pointer with line).

This is the connection mode button.

11. Select the model Voltage and then the model Inductor.

Now a connection will be created between the two submodels.

7. Iconic Diagrams

61Getting Started with 20-sim 4.8

12. Enter the other connections until your Editor looks like the figure below. You can
make intermediate points (the corners of a connection) by clicking the right mouse
button, while dragging.

The complete model.

13. From the Model menu select the Check Complete Model command.

Now the complete model will be checked. If the model is correct at the bottom of the
Editor the Process tab should show a message indicating 0 errors and 0 warnings. If any
errors are found, a message window pops up, showing the errors which 20-sim has
found. You can click on the error in the Process tab to highlight the corresponding
equation.

14. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name IconicDiagramModelElectric.emx.

If you have problems creating the model, load the model Iconic Diagram Electric from
the Getting Started\Iconic Diagrams section of the library.

Simulation

15. Select the Start Simulator command from the Model menu in the Editor window.

This opens the Simulator window. We will proceed with this window.

16. In the Simulator window, select from the Properties menu the Parameters
command and change the default parameter values to:

 Voltage\U
CapacitorC
Resistor\R
Inductor|L

1V
1u
10
1m

17. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method

0
1e-3
Backward Differentiation Formula (BDF)

7. Iconic Diagrams

62Getting Started with 20-sim 4.8

18. From the Properties menu select the Plot command.

19. Select the Plot Properties tab and change title to Iconic Diagram Electric.

20. Select the Y-axis tab and select the variable Capacitor\p.u for plotting.

21. Change the label to Capacitor Voltage.

22. Close the Plot Properties Editor by clicking the OK button.

23. From the Simulation menu select the Run command to start the simulation. The
result should look like the figure below.

The simulation results for the electric circuit.

As you can see, creating a model and starting a simulation is easy in 20-sim. If you
have problems creating the model, load the model Iconic Diagram Electric from the
Getting Started\Iconic Diagrams section of the library.

7.2 View Menu
In this topic we will give some more insight into the model of the electric circuit.

1. If you had problems creating this model, load the model Iconic Diagram Electric
from the Getting Started\Iconic Diagrams section of the library.

2. Go to the Editor.

Across and Through

In iconic diagrams, connections describe the flow of energy from one model to another.
This flow of energy can be characterized by two variables, of which the product is power.
These variables are called across (a) and through (t). The across and through
variables make up a combination that is typical for a physical domain. For electrical
networks these variables are voltage and current. In 20-sim we can inspect the
across and through variable of every connection.

3. Put your mouse pointer on top of a connection, until a little window pops up.

7. Iconic Diagrams

63Getting Started with 20-sim 4.8

It should look like the figure below (don't worry when the values are different, these are
just example values):

If you put your mouse pointer on top of a connection, the corresponding values are shown.

As you can see, the connection has a voltage (across) of 993 [mV] and a current
(through) -39 [uA]. Across variables (voltages in this model) in the top level of a model,
are always defined with respect to a single global reference of 0 V. This means that the
voltage is defined with respect to the ground.

Through variables, like the current in this model, are always defined with respect to the
models they are connected with. 20-sim automatically assigns an orientation for these
through variables. This orientation can be made visible by selecting the Orientation Info
command of the View Menu.

4. From the View menu enable the option Show Terminals (click it until the option is
enabled).

5. From the View menu click the option Orientation Info (click it until the option is
enabled).

Your model should look like:

With the View menu you can show the orientation that 20-sim has chosen for positive currents.

7. Iconic Diagrams

64Getting Started with 20-sim 4.8

The arrows indicate the direction of the positive currents. Now you will understand why
open and closed rectangles are used to indicate the terminals. Open rectangles will
have an outward oriented positive current and closed rectangles will have an inward
oriented positive current. In the previous figure of this topic we saw a current value of i
= -39 [uA]. With the given orientation this means a current i = 39 [uA] flowing from the
resistor to the inductor.

Internal Description

6. From the View menu select Port Names Info.

7. Drag the Inductor model to the bottom, to have a better view of the port names.

Your model should have all ports (input signals, output signals or power ports) indicated
by their name:

With the View menu you can show the port names.

8. Select the model Inductor.

9. Click the F1 key or from the Help menu click Current Selection to open the help
file.

As the help file explains this model has one port p with two terminals p_high and p_low.
These terminals are the points where the connections with the other models are made.
Therefore p_high.u and p_low.u are the voltages on both sides of the inductor (the plus
sign in the model indicates the high voltage):

p.i = p_high.i = p_low.i;
p.u = p_high.u - p_low.u;

p.u is the internal voltage difference and p.i is the current that flows through the
inductor. The internal equation of the inductor is

p.i = (1/L)int(p.u);

10. From the Model menu click Go Down.

Now we see the internal model description. In 20-sim we can inspect the value of every
variable in an equation model.

11. Put your mouse pointer on top of a variable, until a little window pops-up.

7. Iconic Diagrams

65Getting Started with 20-sim 4.8

It should look like the figure below (don't worry when this value is different, this is just
an example value):

Put your mouse pointer on any variable, to inspect its value.

As you can see the voltage p.u is 6.72 [mV] which means:

p.u = p_high.u - p_low.u = 6.72 [mV];

12. From the Model menu click Go Up.

13. From the Model menu select Show Variables.

14. In the Variable Chooser window, select the Inductor model.

Now you can see all the variables of the inductor model.

Variable values can also be inspected in the Variable Chooser.

Note that p_low.u = 993 [mV] (equal to the voltage we found at the start of this topic),
p_high.u = 1.0000 [V] and again p.u = 6.72 [mV].

Causality

15. Close the Variable Chooser.

16. From the View menu de-select all options and select Causality Info.

7. Iconic Diagrams

66Getting Started with 20-sim 4.8

Your model should look like:

The causal order of the model equations can be visualized with the Causality Info option.

The arrows at the connections show the computational direction of the voltages and
currents. This computational direction is called causality. The numbers show the order in
which the causality is computed in 20-sim. For the Inductor model this means that at
both sides current is computed as function of the voltages. Combining the previous
findings, we can conclude that the following equations are derived:

p.u = p_high.u - p_low.u
p.i = (1/L)*int(p.u);
p_high.i = p.i;
p_low.i = p.i;

As you see with Causality Info command you can manually inspect computational order
of your model equations. This might be helpful when 20-sim has problems finding the
correct computational order and you have to find the cause of these problems.

As you have seen the View menu of the 20-sim Editor is an important aid for
understanding an iconic diagram. We advise you to use the options of this menu, as
much as possible, when creating iconic diagrams. In the next section we will create a
simple mechanical system. We will apply the options of the View menu, to correctly
interpret the simulation results.

7. Iconic Diagrams

67Getting Started with 20-sim 4.8

7.3 Iconic Diagram (Mechanical)
In this topic you will learn how to enter a simple mechanical system in the form of an
Iconic Diagram. We consider the mechanical system of the figure below.

Spring damper system.

 This system can easily be transferred into the iconic diagram model shown below.

The equivalent 20-sim model.

1. Open 20-sim and select File, New and Graphical Model and make sure that 20-
sim is in Debug Mode .

The right part of the Editor will now allow you to enter graphical models. That is why we
have named this part of the Editor the Graphical Editor.

2. Put the mouse pointer in the middle of the Graphical Editor.

3. From the right mouse menu or from the Insert menu select Insert, Knot and
Node.

This adds a an iconic diagram node.

4. Insert a second node.

7. Iconic Diagrams

68Getting Started with 20-sim 4.8

5. Drag the following library models to the Graphical Editor:

 model library model

 Library\Iconic Diagrams\Mechanical\Translation\Components
Library\Iconic Diagrams\Mechanical\Translation\Components
Library\Iconic Diagrams\Mechanical\Translation\Components
Library\Iconic Diagrams\Mechanical\Translation\Components
Library\Iconic Diagrams\Mechanical\Translation\Actuators

Damper
FixedWorld
Mass
Spring
Force

6. Select the Force model and rename it to Fg (select Settings menu and Submodel
command).

7. Do so with all the submodels and use the names given in the iconic diagram at the
top of this topic.

8. Select the FixedWorld submodel.

9. From the Drawing menu select the Rotate Left command.

10. Do the same for the Spring, Damper and Fg submodels.

11. Select the Fg submodel. From the right mouse menu select Show Name and
Right.

12. Do so with all the other submodels.

13. From the View menu select Show Terminals. Now your model should look like:

All the models have been dropped in the Graphical Editor.

14. In the taskbar, choose the second left button (the mouse pointer with line).

This is the connection mode button.

15. Select the model Fg and then the model Mass.

Now a connection will be created between the two submodels.

7. Iconic Diagrams

69Getting Started with 20-sim 4.8

16. Enter the other connections until your model looks like:

With the proper connections the model is ready for simulation.

The connections of an iconic diagram represent the power flow between the components.
The power flow in iconic diagrams is always characterized by two variables, across and
through (in this model velocity and force). The velocities are all defined with respect to a
general reference (fixed world, v = 0). The forces are defined with respect to the
various components.

17. From the View menu select Orientation Info.

Your model should look like:

With the View menu you can show the orientation that 20-sim has chosen for positive forces.

7. Iconic Diagrams

70Getting Started with 20-sim 4.8

The orientation of the forces is now shown in the Editor by the little arrows and
. When the arrows point inwards , this means a positive force will pull both

ends of the connection together. When the arrows point outwards , this means a
positive force will push both ends of the connection outwards.

The connection between the Fg model and the Mass model show outward pointing
arrows . This means that a positive force will push the mass upwards and a
negative force will pull the mass down. To generate a pulling gravity force we will
therefore use a negative force value in the next topic.

18. From the Model menu select the Check Complete Model command.

Now the complete model will be checked. If the model is correct at the bottom of the

Editor the Process tab should show a message indicating 0 errors and 0 warnings. If any

errors are found, a message window pops up, showing the errors which 20-sim has

found. You can click on the error in the Process tab to highlight the corresponding

equation or submodel.

19. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name IconicDiagramModelMechanical.emx.

If you have problems creating the model, load the model Iconic Diagram Mechanical
from the Getting Started\Iconic Diagrams section of the library.

Simulation

20. In the Editor toolbar from the Model menu select the Start Simulator command.

This opens the Simulator window. We will proceed with this window.

21. In the Simulator window, select from the Properties menu the Parameters
command and change the default parameter values to:

 Damper\d
Mass\m
Spring\k
Fg\F

1
1
2
-9.81

22. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method
Step Size

0
15
Euler
0.2

23. In the From the Properties menu select the Plot command.

24. Select the Plot Properties tab and change the title to Iconic Diagram
Mechanical.

25. Select the Y-axis tab and click Choose to open the Variable Chooser.

26. Select the variable Spring\x from the list and click OK.

27. Change the label to x.

7. Iconic Diagrams

71Getting Started with 20-sim 4.8

28. Set the following values:

 Tick Style Properties

 Tick Style
Min. Distance (pixels)
Color

Diamond Closed
2
Red

 Scaling

 Scaling
From
To

Manual
-10
10

29.Close the Plot Properties Editor by clicking the OK button.

30.From the Simulation menu select the Run command to start the simulation. The
result should look like the figure below.

The simulation results.

31. From the File menu click Save.

If you have problems creating the model, load the model Iconic Diagram Mechanical
from the Getting Started\Iconic Diagrams section of the library.

8. Bond Graphs

72Getting Started with 20-sim 4.8

8 Bond Graphs

8.1 Bond Graph Model
In the previous sections you have learned how to enter equation models and block
diagram models. You have also learned how to enter hierarchy into a model. In this
lesson we will explain the basics of bond graph modeling in 20-sim. The lesson is meant
for users interested in bond graph modeling. If you are not interested in bond graph
modeling, we advise you to skip this section and continue with iconic diagrams.

Bond Graph Model

We consider the mechanical system of the figure below.

A mass with spring and damper.

This system can easily be transferred into the bond graph model shown below.

Bond graph model of the mass-spring-damper system

1. Open 20-sim and select File, New and Graphical Model and make sure that 20-

sim is in Debug Mode .

The right part of the Editor will now allow you to enter graphical models. That is why we
have named this part of the Editor the Graphical Editor.

2. Put the mouse pointer in the middle of the Graphical Editor.

3. From the right mouse menu or from the Insert menu select Insert, Knot and
OneJunction.

This adds a 1-junction.

8. Bond Graphs

73Getting Started with 20-sim 4.8

4. Right click on this 1-junction and select the Show Name menu and the None
command to hide the name of the 1-junction.

5. Go to the left of the Editor and click the Library tab.

6. Drag the following library models to the Graphical Editor:

 model library model

 Library\Bond Graph
Library\Bond Graph
Library\Bond Graph
Library\Bond Graph

C
I
R
Se

6. Select the Se model. From the Settings menu select the Submodel command.

This will open the Model Properties Editor.

7. Rename the model to Fg. Do so with all the submodels and use the names given in
the bond graph at the top of this topic.

8. Select the C model and from the right mouse select the Show Name menu and
the Right command.

This will put the element name to the right of the element.

9. Do so with the other elements (except for the Se element) until your model looks
like:

The bond graph elements in the Editor.

10. In the taskbar, choose the second left button (the mouse pointer with line).

This is the connection mode button.

11. Select the model Fg (left mouse click on top of the element) and then the 1-junction
(left mouse click on top of the element).

8. Bond Graphs

74Getting Started with 20-sim 4.8

This will create a connection between both elements:

The red color of the bond indicates a conflict. In this case more bonds need to be inserted.

The bond is drawn red, which means causality could not be assigned. Don't worry! This
is because 20-sim has an on-line causality assignment and notices there is only one
bond connected to the 1-junction.

12. Create a bond between the 1-junction and the submodel spring.

Now your model should look like:

The orange stroke indicates a non-preferred causality.

The bond to the C model has an orange causal stroke. This means that the C model in
this configuration has a non-preferred causality.

8. Bond Graphs

75Getting Started with 20-sim 4.8

13. Enter the other connections until your model looks like:

The complete bond graph model.

14. From the Model menu select the Check Complete Model command.

Now the complete model will be checked. If the model is correct at the bottom of the
Editor the Process tab should show a message indicating 0 errors and 0 warnings. If any
errors are found, a message window pops up, showing the errors which 20-sim has
found. You can click on the error in the Process tab to highlight the corresponding
equation.

15. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name BondGraphModel.emx.

If you have problems creating the model, load the model Bond Graph Model from the
Getting Started\Bond Graphs section of the library.

Simulation

16. In the Editor toolbar from the Model menu select the Start Simulator command.

This opens the Simulator window. We will proceed with this window.

17. In the Simulator window, select from the Properties menu the Parameters
command and change the default parameter values to:

 friction\r
Fg\effort
Mass\i
Spring\c

1
-9.81
1
0.5

18. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method
Step Size

0
15
Euler
0.2

8. Bond Graphs

76Getting Started with 20-sim 4.8

19. Select from the Properties menu the Plot command.

20. Select the Plot Properties tab and change the title to Bond Graph Mainmodel.

21. Select the Y-axis tab and click Choose to open the Variable Chooser.

22. Select the variable spring\state from the list and click OK.

23. Change the label to x.

24. Set the following values:

 Tick Style Properties

 Tick Style
Min. Distance (pixels)
Color

Diamond Closed
2
Red

 Scaling

 Scaling
From
To

Manual
-10
10

25. Close the Plot Properties Editor by clicking the OK button.

26. From the Simulation menu select the Run command to start the simulation. The
result should look like the figure below.

The simulation results.

27. From the File menu click Save.

If you have problems creating the model, load the model Bond Graph Model from the
Getting Started\Bond Graphs section of the library.

9. 3D Mechanics Toolbox

77Getting Started with 20-sim 4.8

9 3D Mechanics Toolbox

9.1 3D Mechanics Toolbox
The 20-sim 3D Mechanics Toolbox provides you with the tool that makes 3D dynamic
modeling easier, the 3D Mechanics Editor.

Bodies

You can create 3D models by dragging bodies in a 3D workspace. The representations of
each body can be changed to a sphere, block, cylinder etc. Furthermore, colors can be
changed and descriptions can be added. The size and shape of a body are merely for
representation, a body is fully characterized by its inertia coefficients and mass.

The 3D Mechanics Editor helps you to create 3D models easily.

Joints

Bodies are interconnected by the use of joints. Several joints are present in the library,
divided in two groups, rotational joints and translational joints. These joints can also be
drag and dropped on the workspace. Constraints can be added to create closed loop
systems like four bar mechanisms or Stewart platforms.

Interface

The user interface has 4 different modes in which you can select, connect, translate and
rotate bodies and joints. Much effort is done to keep the graphical user interface as
natural as possible. Multiple views are supported. Besides the 3D environment, you can
see 2D intersections in the xy xz, and yz plane.

Models

The 3D Mechanics Editor can generate a 20-sim model from your 3D model. This 20-sim
model comprises all dynamics and kinematics of the model. Forces can be applied to the
joints or on to each body directly. You can also couple springs and dampers from the
mechanics library in 20-sim, to the joints, because the whole model is port-based.
Gravity can be set as an external force. Eventually, the dynamic response of the
complete model can be shown by the 3D Animation Editor.

9. 3D Mechanics Toolbox

78Getting Started with 20-sim 4.8

9.2 Double Pendulum

Introduction

In this section we will use the 3D Mechanics Editor to create the model of a double
pendulum. In this editor you can define the geometry of the pendulum and inspect the
possible movements. From the 3D Mechanics Editor we will generate a 20-sim model that
incorporates the equations of motion and a 20-sim scenery for the animation of the
pendulum.

The pendulum model that we will create has actuated joints. This means we can apply a
torque to the joints. In 20-sim, we will insert the pendulum model and connect passive
actuation through dampers. After that we will simulate the model and show a 3D
Animation, to see how the damping affects the pendulum behavior.

Inserting Components

1. Open 20-sim and select File, New and Graphical Model.

2. In the Editor from the Tools menu select 3D Mechanics Toolbox and 3D
Mechanics Editor.

A 3D mechanics model will be inserted in the Editor and the 3D Mechanics Editor will be
opened:

The 3D mechanics Editor.

Like the Editor, the 3D Mechanics Editor consists of several parts:

Model / Library section: This is the part at the middle left. The Model tab opens the
Model Browser which shows a hierarchical composition (all the elements) of the
model that is created in the 3D Mechanics Editor. The Library tab opens the Library
Browser which shows all the objects that can be used.

Object Properties: This is the part at the right that in the picture above shows "No
Selection". As soon as an object is selected, it will show the name of that object and
allow you to change the object properties.

9. 3D Mechanics Toolbox

79Getting Started with 20-sim 4.8

Object Representation: This is the part at the right that in the picture above shows
"None". As soon as an object is selected, it will show the name of that object and
allow you to change its representation.

Graphical Editor: This is the space with the checker board at the right. In this editor
you can drag objects and create models.

Messages tab: This is the part at the right bottom, where all messages are shown.

The Editor has several modes of operation which are indicated by the buttons at the right
of the editor:

 butto
n

mode description

 Translation Mode Use this mode to translate selected objects

 Rotation Mode Use this mode to rotate selected objects

 Connection Mode Use this mode to connect objects

 Camera
Movement

Use this mode to change the camera view

You can choose to make objects transparent:

 butto
n

mode description

 Ghost Mode for
Bodies

Click this button to make all bodies transparent

 Ghost Mode for
Joints

Click this button to make all joints transparent

 Ghost Mode for
Sensors /
Actuators

Click this button to make all sensors and actuators
transparent

The Editor is in translation mode, which is suited for dragging and dropping components.
We are going to insert the necessary components to construct a double pendulum.

3. Click on the Library tab.

4. In the Library click on Bodies - Body and drag it to the Graphical Editor (the
checker board).

The first body that is inserted in the Graphical Editor will be fixed to the floor and will not
move during simulation. Our pendulum will be attached to this body.

5. Click on Edit Body button (at the left) to open the Body Properties.

6. Rename the body to Base.

9. 3D Mechanics Toolbox

80Getting Started with 20-sim 4.8

7. Select the Is Fixed World option.

Use the Body Properties dialog to change the name of a body, its position and mass parameters.

8. Click the Position button and change the position to (x = 4, y = -4, z = 0).

Set the position of the body.

9. Close the Body Properties.

9. 3D Mechanics Toolbox

81Getting Started with 20-sim 4.8

Your 3D Mechanics Editor should now look like:

The model tab shows that one body (Base) is fixed to the ground (indicated by the anchor).

10. In the Library tab click on Joints - Rotation - Actuated - X-rotation and drag it
to the Graphical Editor.

If a joint is selected, lines through the center of the joint indicate the possible
movements that you can make with the body. If you click the left mouse button you can
move the joint over the surface. If you press the Ctrl-button while keeping the left
mouse button pressed, the body goes up and down.

11. Select the joint and place it next to the body like:

In Translation Mode you can move objects easily with the mouse pointer.

12. Click on the Edit joint button to open the Joint Properties.

9. 3D Mechanics Toolbox

82Getting Started with 20-sim 4.8

13. Rename the joint to Base_Arm1.

Double clicking a joint will open the Joint Properties Dialog.

14. Close the Joint Properties.

15. Insert two more bodies and another actuated joint (X-rotation) and rename the
bodies to Arm1 and Arm2 and the joint to Arm1_Arm2.

Now the 3D Mechanics Editor should look like:

The model tab shows three bodies and two actuated joints.

9. 3D Mechanics Toolbox

83Getting Started with 20-sim 4.8

Creating Connections

16. Click on to set the 3D Mechanics Editor in Connection Mode.

Now we can define the connections by clicking on the components.

17. Put the mouse pointer on top of the Base body and click the left mouse button.

Now a dotted line should appear between the body and the mouse pointer to indicate
that a connection is being defined between the body and a second component.

In Connection Mode you can create connections clicking the left mouse button.

18. Put the mouse on top of the Base_Arm1 joint and click again.

Now the connection is made and the Create Connection dialog is opened. In this
dialog you can define the position offset of the Base_arm1 joint with respect to the Base
body. As shown in the Create Connection dialog, every joint has two connections. We
will choose ConnectionPoint1 to start with.

19. Click on ConnectionPoint1.

20. Click on the position button and set the position to x = 0, y = 0, z = 0.

9. 3D Mechanics Toolbox

84Getting Started with 20-sim 4.8

Now the Create Connection dialog should look like:

After a connection is made the Create Connection dialog is opened.

21. Close the Create Connection dialog.

Because we have set the offset position to zero, the Base_Arm1 joint has the same
position as the Base body. To better see the joint we can turn on the Ghost Mode for
Bodies, to make the bodies transparent.

22. Click on to set the 3D Mechanics Editor in Ghost Mode for Bodies.

The 3D Mechanics Editor should now look like:

Use the ghost modes to make objects transparent.

9. 3D Mechanics Toolbox

85Getting Started with 20-sim 4.8

23. Make the connections 2, 3 and 4 according to the table below:

 Action First click Second click Position offset

 1 Base Base_Arm1 x = 0, y = 0, z = 0

 2 Base_Arm1 Arm1 x = 0, y = -2, z = 0

 3 Arm1 Arm1_Arm2 x = 0, y = 2, z = 0

 4 Arm1_Arm2 Arm2 x = 0, y = -2, z = 0

The 3D Mechanics Editor should look like:

All bodies are connected with joints.

24. Click on to turn off the Ghost Mode for Bodies.

Checking Motion

To see if the model was defined properly we can check it and see how it can move.

25. Click on to set the 3D Mechanics Editor in Translation Mode.

26. From the Actions menu, select Check Model.

The Message Dialog should show Analysis Completed Successfully. We will inspect the
possible motions of the mechanism.

27. Put the mouse pointer on top of the Arm1 body and click the left mouse button.

The Base_Arm1 joint will show an arrow that indicates positive rotation.

28. Keep the left mouse button pressed an move it up and down.

The body will now rotate around the joint.

9. 3D Mechanics Toolbox

86Getting Started with 20-sim 4.8

29. Repeat the movement with the Arm2 body to see its movement.

If the model is correctly assembled, you can inspect the motion by dragging the mouse pointer.

30. Select Check Model from the Actions menu to reset the movement.

During the checking all joint angles will be reset to their initial value. Since we have not
changed the initial values (default = 0) the mechanism will return to its original set-up.

Updating to 20-sim

31. From the Actions menu select Generate 20-sim model.

A window will pop up asking you to store the model. 3D Mechanical models are stored in
a separate file with the extension 3dm. If you open a 3D Mechanics model from 20-sim,
this file will be read by the 3D Mechanics Editor.

32. Click Yes and store the model in a temporary directory (e.g. C:\temp) using the
name DoublePendulum.3dm.

9. 3D Mechanics Toolbox

87Getting Started with 20-sim 4.8

After the storage of the .3dm file the Code Generation dialog will be opened.

In the Code Generation dialog you can enter the settings for the generation of a 20-sim model.

A number of options can be set in this dialog:

Model Filename: The 3D Mechanics Editor will automatically generate the equations
that describe the double pendulum. These equations are stored as a 20-sim
submodel.

20-sim Scenery: In 20-sim we will show the pendulum motion in an animation. The
animation is generated by the 3D Mechanics Editor and stored on file.

Submodel Name: The double pendulum will be loaded in 20-sim as a submodel,
with the name that can be entered here.

Icon: You can choose to make a snapshot of the model (automatic) or load an image
from file to be used for the model icon.

In most cases the default entries will be sufficient. We will not make any changes.

33. Click OK to export the model to 20-sim.

34. Close the 3D Mechanics Editor.

35. You will be asked to save the model. Choose Yes to save it.

9. 3D Mechanics Toolbox

88Getting Started with 20-sim 4.8

Editor

The 20-sim Editor will be updated with the double pendulum model. It should look like:

The 20-sim model of the double pendulum in the Graphical Editor.

Now it is a good time to store the model.

36. Save the model using the name DoublePendulumSimulation.emx.

37. Go to the Library tab and select the library Library\Iconic Diagrams
\Mechanical\Rotation\Components.

37. Insert the model Bearing twice.

38. Connect the two bearing models with the Base_Arm1 and Arm1_Arm2 ports of the
DoublePendulum submodel.

9. 3D Mechanics Toolbox

89Getting Started with 20-sim 4.8

You can connect two bearing models to the double pendulum.

40. From the File menu click Save.

Simulation

41. From the Model menu click Start Simulator.

This will open the Simulator with a second window showing a 3D Animation with our
pendulum. You can now set the parameters values, choose an integration method, set
the plot variables etc. We will use the default parameter values and run a 3D animation.

The 3D Animation window with the double pendulum scenery loaded.

42. Click the blue Run button to run a simulation

43. Click the green Run button below the 3D Animation to replay the animation.

If you had problems creating the model, load the model DoublePendulumSimulation.emx
from the Getting Started\3D Mechanics Toolbox section of the library. You should see the
pendulum swinging during the simulation. Try to change the bearing parameters to find

the changes in the pendulum movement. You can click the Camera button to change
camera views.

The pendulum model shows bodies as cubes with default sizes. A more elegant display
would result if we could define arbitrary shapes. Moreover, we used default mass and
inertia parameters. Both can be changed in the 3D Mechanics editor as will be shown in
the next lesson.

9. 3D Mechanics Toolbox

90Getting Started with 20-sim 4.8

9.3 Scara Robot

Introduction

In this lesson you will learn how to create and simulate the dynamic model of a SCARA
robot.

A Selective Compliant Articulated Robot Arm (SCARA).

You will expand the knowledge learned from the previous lesson, by introducing
mass and inertia parameters and making a more elegant display.
We will start by inspecting the robot, identify the links and mass and inertia

parameters. Then we will introduce the 20-sim model that will be used to simulate the

Scara robot. This model contains setpoint generators, controllers and drives that will

be connected to the robot.

We will proceed by entering the Scara robot in the 3D Mechanics Editor. From the 3D
Mechanics Editor we will generate a 20-sim submodel that incorporates the equations
of motion of the Scara robot. From the 3D Mechanics Editor you can also generate a
20-sim scenery that describes the animation of the Scara robot.

Finally the Scara robot model will be connected to the drives and simulated.

9. 3D Mechanics Toolbox

91Getting Started with 20-sim 4.8

Inspection

We start the modeling session by inspecting the Scara robot. The robot has a base with
arms that can move in the horizontal plane and a load that can move vertically. The
robot can thus be modeled using four bodies which are connected by joints. Between the
base and the first arm, a rotational joint is mounted, which can be actuated (indicated by
the torque T). Between the first and the second arm an identical joint is mounted.
Between the load and the second arm a translation joint is mounted, which is also
actuated (indicated by the force F).

Arms and joints of the Scara robot.

The robot model that we are going to create in the 3D Mechanics Editor will therefore
have to three power ports. Two power ports for the rotation joints and one for the
translation joint. To simulate the robot model, we have to connect actuators to these
joints.

Geometrical parameters of the Scara robot.

The geometrical parameters and the masses and inertia's can be found in the design
drawings of the Scara robot. We will use the figure above.

9. 3D Mechanics Toolbox

92Getting Started with 20-sim 4.8

Components

The complete model that will be used to simulate the Scara robot is shown in the figure
below. The grey square with the local name robot is generated with the 3D Mechanics
Editor. It represents the mechanical structure of the robot. The rotation joints are by
driven electrical motors (modeled by ideal torque sources) with gearboxes. The
translation joint is driven by an electrical motor (also modeled by an ideal torque
source) with a spindle. The motors are controlled by PD controllers, which compare the
desired motion (given by motion profile generators) with the actual position of the robot.

The 20-sim model of the drive system and the 3D robot model (grey).

1. Open 20-sim and load the model ScaraRobot from the Getting Started Manual\3D
Mechanics Toolbox section of the library.

2. Use File, Save As to Store the model in a temporary directory (e.g. C:\temp) using
the name ScaraRobot.emx.

9. 3D Mechanics Toolbox

93Getting Started with 20-sim 4.8

As you can see, this model contains the drives and controllers for the robot. Only the
mechanical part of the robot model is missing. We are going to create this part in the 3D
Mechanics Editor.

The 20-sim drive system model is already created: load ScaraRobot.emx.

3. In the 20-sim Editor from the Tools menu select 3D Mechanics Toolbox and 3D
Mechanics Editor.

This will insert a 3D Mechanics model in the 20-sim Editor and open the 3D mechanics

Editor. The dimensions of the Scara robot are rather small. Therefore we are going to

change the scaling of the 3D Mechanics Editor.

4. From the Tools menu in the 3D Mechanics Editor window select Model Settings.

9. 3D Mechanics Toolbox

94Getting Started with 20-sim 4.8

5. Change the Size of the Reference Frames to 0.1 and the Grid Size to 0.1 as
show below.

Changing the frame size.

6. Click OK to Close the Model Settings dialog.

If the reference frame is too far away you can move the camera closer to the origin.

7. Change the Editor into Camera Mode (indicated by), press the Ctrl-key and
drag the mouse until a good view has been obtained.

Use the Camera Mode to change the view.

9. 3D Mechanics Toolbox

95Getting Started with 20-sim 4.8

8. Return to Translation Mode (indicated by).

We are going to insert the necessary components to construct the Scara robot.

9. Insert the following components into the Graphical Editor and rename them
according the table below.

 Action Component Name

 1 Bodies\Body base

 2 Bodies\Body arm1

 3 Bodies\Body arm2

 4 Bodies\Body load

 5 Joints\Rotation\Actuated\Z-rotation base_arm1

 6 Joints\Rotation\Actuated\Z-rotation arm1_arm2

 7 Joints\Translation\Actuated\Z-
translation

arm2_load

 Now the 3D Mechanics Editor will look like:

For the Scara robot we need four bodies and three joints.

Representation

To make the mechanism look like a real Scara robot, we have to change the
representation of the bodies. We will use the geometrical parameters of the robot.

10. Select the base body.

The Edit button of the Object Representation (at the left of the 3D Mechanics Editor)
should now be active.

9. 3D Mechanics Toolbox

96Getting Started with 20-sim 4.8

11. Click on the Edit button to open the 3D Representation dialog.

In the 3D Representation dialog you can change the looks of an object.

Using the 3D representation dialog, you can change the look of an object.

12. Change the representation of the base body according to the table below (action 1).

 Action Body Size Color Representation

 1 base x = 0.1, y = 0.1, z = 0.5 Green Block

 2 arm1 x = 0.1, y = 0.5, z = 0.1 Blue Block

 3 arm2 x = 0.1, y = 0.4, z = 0.1 Red Block

 4 load x = 0.04, y = 0.04, z = 0.5 Orange Cylinder

13. Do so with the other bodies according to the table (actions 2, 3 and 4).

14. Double click on the base body which opens the Body Properties dialog.

15. Make sure this body is Fixed to the World.

16. Set the Position to x = 0, y = 0 and z = 0.25 and close the Body Properties
dialog.

9. 3D Mechanics Toolbox

97Getting Started with 20-sim 4.8

If desired, you can drag and drop the other bodies to a more favorable location like:

You can give objects arbitrary shapes and colors.

Parameters

The bodies still have default mass and inertia parameters. We will change them
according to the specifications given previously.

17. Double click on the arm1 body which opens the Body Properties dialog.

18. Click the Edit button of the Inertia Properties and change the parameters of the
arm1 body according to the table below (action 1).

 Action Body Mass [kg] Ixx [kgm2] Iyy [kgm2] Izz [kgm2]

 1 arm1 8 0.1 0.02 0.1

 2 arm2 6 0.05 0.01 0.05

 3 load 0.5 0.01 0.01 0.0005

The base body is fixed to the ground, which make the inertia parameters irrelevant. If
you want to insert then anyway, temporary remove the Is fixed world option.

19. Do the same with the other bodies according to the table (actions 2 and 3).

Connections
To assemble the Scara robot we will create connections between the various bodies and
joints.

20. Click on to set the 3D Mechanics Editor in Connection Mode.

Now we can define the connections by clicking from joints to bodies. To make the joints
better visible, we will use the Ghost Mode for bodies.

21. Click on to set the 3D Mechanics Editor in Ghost Mode for Bodies.

9. 3D Mechanics Toolbox

98Getting Started with 20-sim 4.8

22. Make the connections according to the table below:

 Action First click Second click Connection Point Position

 1 base_arm1 base ConnectionPoint1 x = 0, y = 0, z = 0.25

 2 base_arm1 arm1 ConnectionPoint2 x = 0, y = 0.2, z = -0.05

 3 arm1_arm2 arm1 ConnectionPoint1 x = 0, y = -0.2, z = -0.05

 4 arm1_arm2 arm2 ConnectionPoint2 x = 0, y = 0.15, z = 0.05

 5 arm2_load arm2 ConnectionPoint1 x = 0, y = -0.15, z = 0

 6 arm2_load load ConnectionPoint2 x = 0, y = 0, z = 0

When all bodies and joints are connected, 20-sim will start to assemble the robot. Your
3D Mechanics Editor should now look like:

20-sim will assemble all objects as soon as they are all connected.

Checking Motion

To see if the model was defined properly we can check it and see how it can move.

23. Click on to set the 3D Mechanics Editor in Translation Mode.

24. Click on to de-select the Ghost Mode.

25. From the Actions menu, select Check Model.

The Message Dialog should show Analysis Completed Successfully. We will inspect the
possible motions of the mechanism.

26. Put the mouse pointer on top of the arm1 body and click the left mouse button.

The base_arm1 joint will show an arrow that indicates positive rotation.

27. Keep the left mouse button pressed an move it up and down.

9. 3D Mechanics Toolbox

99Getting Started with 20-sim 4.8

The body will now rotate around the joint.

If the model is correctly assembled, you can inspect the motion by dragging the mouse pointer.

28. Repeat the movement with the arm2 and the load bodies to see their movements.

Updating to 20-sim

29. From the Actions menu select Generate 20-sim model.

A window will pop up asking you to store the model.

30. Store the model in the same temporary directory as the 20-sim model (e.g. C:
\temp) using the name Robot.3dm.

9. 3D Mechanics Toolbox

100Getting Started with 20-sim 4.8

After the storage of the .3dm file the Code Generation dialog will be opened.

In the Code Generation dialog you can enter the settings for the generation of a 20-sim model.

31. Click OK to export the model to 20-sim.

32. Close the 3D Mechanics Editor.

33. You will be asked to save the model. Choose Yes to save it.

Editor

The 20-sim Editor will be updated with the double pendulum model. It should look like:

The 20-sim model of the drive system and the robot model.

Now it is a good time to store the model.

9. 3D Mechanics Toolbox

101Getting Started with 20-sim 4.8

34. Save the model.

If you had problems creating the model, load the model ScaraRobotSimulation.emx from
the Getting Started\3D Mechanics Toolbox section of the library. If you look at the Robot
model, you can see that it has three ports. One for the arm base_arm1 joint, one for
the arm1_arm2 joint and one for the arm2_load joint. We are going to connect these
joints to the actuators.

35. Connect the actuators to the robot model (Gear1 to base_arm1, Gear2 to
arm1_arm2 and Spindle3 tot arm2_load), until the model looks like:

The robot model is connected to the drive trains.

Simulation

36. From the Model menu click Start Simulator.

9. 3D Mechanics Toolbox

102Getting Started with 20-sim 4.8

This will open the Simulator. As you can see a predefined experiment is loaded, showing
a plot with setpoint and position variables. The 3D animation is filled automatically with
the generated scenery file.

3D Animation of the Scara robot.

37. Click the Run button to start a simulation and show the corresponding animation.

38. You should see the robot move during the simulation. You can click the Camera
button to change camera views.

You can also show the robot animation in the main Simulator window. Try to insert a 3D
Animation plot. You must open the 3D mechanics model and generate a 20-sim model
(see number 29) to make it effective.

9.4 Contact Modeling

Introduction

In the previous section, we have seen how to create a dynamic model of a robot with 3D
Mechanics Editor using Scara Robot. This section describes how to create a model with
some basic contact in it.

In order to explain contact modeling, we use a model of a two wheel robot, that should
balance itself. It is a small “Segway” robot as shown below. The contact of the wheels
with the ground are modeled. At the end, the robot should be able to drive in straight
line while balancing itself.

9. 3D Mechanics Toolbox

103Getting Started with 20-sim 4.8

Model of two wheel "segway" robot

Model of the Robot

Assumptions

The following assumptions are made during modeling.

The ground is a horizontal plane where where z==0.

The robot wheels will always stay level w.r.t. the ground.

Geometry

The robot will have the following geometry:

The main body will be modeled by a cube with mass=1{kg}

The size of the main body (cube) is 10 {cm} in all directions.

The wheels will have a radius of 4{cm}.

The width of the wheels will be 2{cm}

The mass of each wheel is 0.5 {kg}

The geometry of the wheel is a cylinder.

Connection of wheels is made at 2.5 {cm} distance from the bottom of the cube

Step 1: Modeling main body

1. First start 20-sim.

2. In the 20-sim Editor from the Tools menu select 3D Mechanics Toolbox and 3D
Mechanics Editor.

This will insert a 3D Mechanics model in the 20-sim Editor and open the 3D mechanics

Editor.

3. From the Library tree in 3D Mechanics Editor, drag a Body to the workspace.

4. Select the body and click Edit Body, as shown below, and change the

name to 'carBody'.

9. 3D Mechanics Toolbox

104Getting Started with 20-sim 4.8

Edit body dialog

5. Then press the Edit button and edit the Inertia and Mass properties for this object.

Our body has a mass (m) of 1{kg} and a width (w), height (h) and depth (d) of 10{cm}.

The inertia can therefore be calculated as:

9. 3D Mechanics Toolbox

105Getting Started with 20-sim 4.8

Inertia calculations

Substituting the m, w, h and d values, we get:

I
h
 = I

w
 = I

d
 = 1/12 * m * (h2 + w2) = 1/12 * 1 * (0.12 + 0.12) = 0.001667

In our case, I
h

, I
w
 and I

d
 correspond to I

xx
, I

yy
 and I

zz
 respectively.

Mass and inertia properties

6. Press OK on this dialog, and then OK on the Body Properties Dialog.

Now the shape of the cube must be set that it represents indeed a cube of 10{cm}.

7. To change the representation, press the Edit Button in the Representation section at
the left of the editor.

This opens a dialog shown below with which we can choose the color, shape and size of
a body. It is important to know that this is indeed only a representation. Any change
made here does NOT influence the dynamic behavior of the model, but only the
appearance.

9. 3D Mechanics Toolbox

106Getting Started with 20-sim 4.8

Edit representation dialog

8. Press the Size button, and for every direction choose 0.1{m} and click OK.

Changing size

The color of the body can also be changed with this dialog.

9. Choose a color you like and press OK to close.

If the body is not visible anymore, you can move the camera closer to the object by
moving the mouse while pressing the Ctrl-key.
Now our worksheet will look like this:

9. 3D Mechanics Toolbox

107Getting Started with 20-sim 4.8

The grid is currently a square of 1 {m} which is a too big for our model.

10. To change the grid, choose from the Tools menu Model Settings. The dialog
shown below opens.

Here you can change the size of the reference frames, and the grid. Change both to 0.1
{m}. The scenery then looks like as shown below.

9. 3D Mechanics Toolbox

108Getting Started with 20-sim 4.8

Step 2: Inserting left wheel

Using similar steps followed, we insert a body for the left wheel. The size of the newly
added body is now already scaled by 0.1. This is because of the settings for the
reference frame size we changed in the previous step.

11. Change the representation to be a cylinder with a radius of 4 {cm} and height of 2
{cm} as shown below.

9. 3D Mechanics Toolbox

109Getting Started with 20-sim 4.8

12. Press Ok to apply the settings. The scenery will now look like this:

9. 3D Mechanics Toolbox

110Getting Started with 20-sim 4.8

Cylinder representation with wrong scaling

Not exactly what we expected, but it can be explained: Because we changed the size of
the reference frames to be 0.1, all new bodies inserted will have a scaling of 0.1 in all
directions. So by setting the exact dimension of the cylinder in the Cylinder Properties,
all those are now scaled by 0.1.

13. To adjust the setting, open the representation of the cylinder and change the scale
back to 1. It will now look like this:

Cylinder representation with correct scaling

We see that the orientation of the cylinder is such that it is lying down.
Ultimately, we need the wheel to be connected to the left side of the body with y-
coordinate -0.5 and rotate in y-axis. For that the representation should be adjusted
accordingly.

14. Open the cylinder representation again and change the orientation in x-axis to 90-
degrees.

9. 3D Mechanics Toolbox

111Getting Started with 20-sim 4.8

Orientation changed to 90-degrees in x-axis

You see that it has rotated to the left (positive angle) and that the origin is at the
bottom.

15. Change the color of the cylinder to purple (Red, Green, Blue = 153, 85, 187) to
indicate Left Wheel.

We now have the correct representation, we will go ahead and change the body
properties.

On Wikipedia we can find the following for calculating the inertia of a cylinder.

We are rotating over the y-axis, so take that into account. Also in the picture the
reference frame is at the center of the cylinder, but we have it at the bottom.

16. Open the Body Properties and change the name to LeftWheel.

Substituting for mass (m) of 0.5 {kg}, height (h) of 0.02 {m} and radius (r) of 0.04
{m}, the inertia's we can be calculated as the following.

9. 3D Mechanics Toolbox

112Getting Started with 20-sim 4.8

In the Inertia Properties, we can also specify the location of the center Of Mass w.r.t. the
body reference. Since the center of mass is really at the center, and we have our body
reference at the right side. The position offset is 1{cm} to the left.

17. Fill in the calculated inertia values and position offset in the dialog as shown below.

Step 3: Connecting the left wheel

We're going to attach the left wheel to the car body using a joint that rotates over the y-
axis. We want to be able to actuate this joint.

18. Choose the Actuated Y-Rotation Joint from the library and drag the joint to the
workspace.

9. 3D Mechanics Toolbox

113Getting Started with 20-sim 4.8

19. Now set the 3D Mechanics Editor in Connection Mode by pressing the Space Bar,
or by selecting the Connection Mode icon in the right button bar.

Now we want to connect the wheel to the body. The joint has two connection points. We
are going to connect the first connection point to the CarBody and the second connection
point to the LeftWheel.

20. Start connecting by dragging from the CarBody to the Joint.

9. 3D Mechanics Toolbox

114Getting Started with 20-sim 4.8

Once you release your mouse left button when you selected the joint the following dialog
will appear:

At the top, it shows that a connection is made from CarBody to RotationJointY1. We're
using ConnectionPoint1 to make the connection.
The position and orientation must be made w.r.t. the body coordinates.

9. 3D Mechanics Toolbox

115Getting Started with 20-sim 4.8

21. The orientation is the same as the body and is therefore set to zero. The position
offset is [x,y,z] = [0, -0.05, -0.025]

In the scenery still nothing happens, since the joint is not yet connected to the wheel.
So we will do the same action but now for the connection to the wheel.

22. Choose the position as [0, 0, 0] and the orientation also [0, 0, 0].

Now the model will look like this.

Step 4: Inserting right wheel

The easiest way to create the second wheel is by copying the first wheel.

23. Select the left wheel and press Ctrl-C and Ctrl-V. Or choose Copy and Paste from
the Edit menu.

A new wheel is inserted.

24. Change its name from LeftWheel2 to RightWheel and it's color to red.

9. 3D Mechanics Toolbox

116Getting Started with 20-sim 4.8

Step 5: Connecting the right wheel

24. Connect a second Actuated Y-Rotation Joint this wheel just like with the first wheel.
Make sure the settings are set as shown below.

9. 3D Mechanics Toolbox

117Getting Started with 20-sim 4.8

Now it will look like this.

At the left side of the editor, you can select the model tree by pressing the tab with
Model. Here you can see that the joints have the name RotationJointY1 and
RotationJointY2.

25. With the right mouse button select Joint Properties. A dialog will open, here you
can change the names of the joints to LeftWheelJoint and RightWheelJoint.

9. 3D Mechanics Toolbox

118Getting Started with 20-sim 4.8

Step 6: Simulating the model

At this point we have enough information to make a simulation.

26. Press the 20-sim icon in the button bar (see figure below) in order to generate the
20-sim code.

First you will get the question:

27. Click Yes and choose a location and name. e.g. TwoWheelRobot3D.3dm for your
.3dm model.

This name MUST be different from our 20-sim model name later on. Once you chose
your name, the Code Generation Dialog will open. It will show the following:

9. 3D Mechanics Toolbox

119Getting Started with 20-sim 4.8

28. Press Ok, and 20-sim will automatically update it's icon and pop to the front.

If we look at the interface of this model (right mouse click: select Edit Interface) we
see that there are two ports:

9. 3D Mechanics Toolbox

120Getting Started with 20-sim 4.8

Just close the dialog, since we don't have to make modifications to it.
We are now going to connect simple torques to the Joints.

29. Select Torque Actuator from the iconic Diagram library and drag two of them on
the worksheet.

9. 3D Mechanics Toolbox

121Getting Started with 20-sim 4.8

30. Change the names of the Torque Actuators to LeftWheelTorque and
RightWheelTorque.

Now connect the actuators to the TwoWheelRobot3D sub-model. Two constant source
sub-models are used as an input to the torque actuators.

31. Now press the start simulator button and the simulator window will open together
with the 3D animation window.

9. 3D Mechanics Toolbox

122Getting Started with 20-sim 4.8

32. Now press the run button. And then the replay animation.

You will see that the car will just drop through the floor. Therefore, it is now time to add
ground contact.

Step 5: Adding ground contact

To add ground contact, go back to the 3D Mechanics Editor.

Determining the lowest point of the wheel

33.From the library choose H-Matrix from the Sensor\Position&Orientation\Orientation.

This will return a 4x4 matrix giving the position and orientation of a specific point on the
car.
We're going to connect it to the center of each wheel. The idea is, if we know the center
of the wheel, we can subtract the radius of the wheel in z-direction to obtain the lowest
point of the wheel.

9. 3D Mechanics Toolbox

123Getting Started with 20-sim 4.8

34. Drag the H-Matrix and change the name into LeftWheelAbsH. Then connect it to
the left wheel just like you connected the joint. Since the body reference is at the
side of the cylinder we want to place it really in the center, by giving it an offset of
[0, -0.01, 0].

35. Repeat this action for the right wheel and change the name to RightWheelAbsH.

When we generate a 20-sim model again we now have two additional ports that give the
H-Matrices for the left wheel and right wheel. By subtracting the radius of the wheel in z-
direction we get the lowest point. This will be done in 20-sim.

The ground contact

The ground contact is modeled by applying a force upwards which is dependent on
position. The force must be perpendicular to the floor.
We do this by applying a force Actuator also at the same location as the H-Matrix sensor.

36. From 3D mechanics Select the Torque & Force actuator from the library.

37. Drag it to the workspace and rename it to LeftWheelContact.

Note: Make sure that the Port Properties are set to World Coordinates.

9. 3D Mechanics Toolbox

124Getting Started with 20-sim 4.8

38. Connect the actuator to the LeftWheel at position [0, -0.01, 0]

39. Do the same for the RightWheel but connect it to position [0, 0.01, 0]

Now an external force can be applied to the center of the wheel, but always with the
orientation of the inertial frame.

39. Generate 20-sim model again.

In 20-sim the model will be updated and 4 additional ports will appear, 2 for each wheel.

40. In 20-sim Insert a new empty submodel. (with the right-mouse button) and name it
LeftWheelContact.

Open the interface for this model and add the following ports:

9. 3D Mechanics Toolbox

125Getting Started with 20-sim 4.8

signal port: AbsH[4,4]

Iconic Diagram Port, mechanical: WheelContactForce[6,1]

41. Connect both ports it to the TwoWheelRobot3D model.

42. Now Double Click on the LeftWheelContact sub-model and choose a graph sub-
model. A graph sub-model will show with the two ports WheelContactForce and AbsH

43. At this level, insert yet another new sub-model with name Transformations.

44. Open the Interface editor for this sub-model and add the following ports:

signal port: AbsH[4,4]

Iconic Diagram Port, mechanical, Orientation Output, Causality: Fixed Force Out:
WheelContactForce[6,1]

signal port, Orientation Output: zLowestPosition

Iconic Diagram Port, mechanical, Causality: Fixed Force In (Fixed velocity out):
ForceX

Iconic Diagram Port, mechanical, Causality: Fixed Force In (Fixed velocity out):
ForceY

Iconic Diagram Port, mechanical, Causality: Fixed Force In (Fixed velocity out):
ForceZ

45. Connect the AbsH port and the WheelContactForce.

46. Double Click on the Transformations submodel. Choose equation sub-model and
enter the following.

parameters

real global g_radius; //radius of the wheel

variables

9. 3D Mechanics Toolbox

126Getting Started with 20-sim 4.8

real LowestPointAbsH[4,4];

real AbsHinverse[4,4];

real invAdjointH[6,6];

real WheelWrench[1,6];

real WheelTwist[6];

equations

// copy all values from the AbsH matrix

// but by subtracting the g_radius from the z-coordinate

// the rotation part

// now unity, so no rotation w.r.t. inertial frame

LowestPointAbsH[1:3,1:3] = eye(3);

// the position part

LowestPointAbsH[1,4] = AbsH[1,4]; // x-position

LowestPointAbsH[2,4] = AbsH[2,4]; // y-position

LowestPointAbsH[3,4] = AbsH[3,4] - g_radius; // z-position

// and the last row, which is [0, 0, 0, 1];

LowestPointAbsH[4,1:4] = AbsH[4,1:4];

// and set the output port

zLowestPosition = LowestPointAbsH[3,4];

// make an adjoint matrix, so we can transform a force

// acting on the lowest point, to the center of the body

AbsHinverse = inverseH (LowestPointAbsH);

invAdjointH = Adjoint (AbsHinverse);

// make a 1x6 vector holding the translational forces

WheelWrench = [0.0, 0.0, 0.0, ForceX.F, ForceY.F, ForceZ.F];

// transform the incoming WheelContactForce vector

WheelContactForce.F = transpose (WheelWrench * invAdjointH);

// and do the same for the twist (velocity) vector

WheelTwist = invAdjointH * WheelContactForce.v;

// and pass the velocity

ForceX.v = WheelTwist[4];

ForceY.v = WheelTwist[5];

ForceZ.v = WheelTwist[6];

Describing the ground contact

At the three separate ports ForceX, ForceY and ForceZ, we're going to connect the
ground contact and the friction in x and y-direction.

9. 3D Mechanics Toolbox

127Getting Started with 20-sim 4.8

47. From the Translation library, choose the FixedWorld, Damper, and
SpringDamper sub-models.

48. Rename the Damper and SpringDamper to FrictionX, GroundContactZ.

49. Now open the interface of the FrictionX model, and add a port name
zPositionLowestPoint.

50. Do the same with the GroundContactZ model.

51. Now go down in the FrictionX model and change the line at the equations like this

equations

p.F = if zPositionLowestPoint < 0 then

d * p.v

else

0.0

end;

This means that the friction only is active if the lowest part of the wheel is lower that the
ground.

52. For the GroundContactZ model rewrite the equations to be like this

equations

p.F = if zPositionLowestPoint < 0 then

k * zPositionLowestPoint + d*p.v

else

0.0

end;

This means there is a spring/damper combination active only when the wheel goes
through the ground.
We will determine them later when we make a simulation.

Connecting the sub-models

It is now time to connect the sub-models.

53. First copy FrictionX and paste it to the model FrictionY. They will be both the same.

9. 3D Mechanics Toolbox

128Getting Started with 20-sim 4.8

54. Now connect FrictionX, FrictionY and GroundContactZ to the Transformations sub-
model at the top. Some small nodes will be inserted, because of the port orientation.
Also connect the bottom of the models to the FixedWorld and the zLowestPosition to
all three models.

55. Now go up one level, so you see the TwoWheelRobot3D model again.

56. Copy the LeftWheelContact model, and paste this model, and rename it to
RightWheelContact.

57. Connect it to the TwoWheelRobot3D model, in the same way you connected the
LeftWheelContact model.

Note: The global parameter g_radius is defined twice since we copied the
implementation of the LeftWheelContact to the RightWheelContact. Therefore, remove
the value of the parameter at one of the sub-models.

Simulating the model

Before simulating the model, the parameters should be set properly.

9. 3D Mechanics Toolbox

129Getting Started with 20-sim 4.8

58. Open the parameters editor and select the sub-model LeftWheelContact
\GroundContactZ and change the parameters to:

d = 1k {N.s/m}
k = 100k {N/m}

59. Do the same with the RightWheelContact\GroundContactZ.

60. Open the Parameters Editor again, and change the ConstantLeft and
ConstantRight models the values to C = 0.01

61. Change the friction in X -and Y-direction of both left wheel as right wheel to d = 10
{k.N.s/m}

The contact model should now be working as expected. However, the car is rotating.
This is because the wheels are actuated with a constant torque. The torque is applied
between the wheels and the body, so they will rotate in opposite directions.

Step 6: Balancing the mass

We want to be able to control two things:

The mass of the robot should remain upright.
The mass of the robot should be under a certain angle such that it moves with a constant
velocity.

Because we rotate over the y-axis a positive rotation will tilt the mass in the forward x-
direction. In order to do this, we must move the robot forward to balance this mass. So
by controlling the angle, we control the velocity of the vehicle.

Measuring the angle of the robot

62. Go to the 3D Mechanics model and from Sensors in the library choose
RotationMatrix(3x3)

9. 3D Mechanics Toolbox

130Getting Started with 20-sim 4.8

63. Rename it to Rbody and connect it to the CarBody at the location of the axis: [0, 0,
-0.025].

Generate 20-sim code again. An additional port is now available holding the Rotation
matrix of the CarBody.

From this rotation matrix we can extract the tilting-angle.

64. In 20-sim create a new sub-model with the name CarAngle. At the interface define
two ports:

input: signal R[3,3]

output signal angle

For the implementation fill in the following:

variables

real angles[3];

equations

angles = dll('EulerAngles.dll', 'EulZYXrFromRotationMatrix', R);

angle = angles[2];

What this does is, it gives the three angle rotations that are applied next to each other in
the order: Z-axis rotation, Y-axis rotation and X-axis rotation.

If we're moving in the x-direction, the rotation of the x-axis and z-axis are zero, so this
will only have value for the y-axis.
If we drive in a circle, we first have to rotate over the z-axis, and then the y-axis. The x-
axis will remain zero in that case as well.

Now connect the complete model in the following way:

9. 3D Mechanics Toolbox

131Getting Started with 20-sim 4.8

What we see here is that the angle of the car is compared to a reference angle. The
difference is fed into a PID controller. The output of the controller is given to both wheel
motors.
There is an additional multiplication of -1, because a positive torque on the wheels, will
make the wheel move backward (positive angle is counter-clockwise). We want it to
move forward with a positive measured angle.

The OffsetAngle can be created by a simple MotionProfile submodel. Choose the
amplitude not larger than 0.5 {rad}. You can give any type of movement you want. The
PID works fine with the default parameters. Simulating the model should drive the car in
a straight line.

10. Animation Toolbox

132Getting Started with 20-sim 4.8

10 Animation Toolbox

10.1 Animation Toolbox
Animation is a powerful method to inspect and verify your simulation results, especially
when working in three dimensions. The 20-sim Animation Toolbox offers you an easy
way to create 3D Animations and view graph animations.

3D Animation

Simulation results in 20-sim can be shown as animations using a 3D Animation Editor.
Animations are composed of predefined objects like cubes, spheres, lines, squares,
cameras and lights. Complex objects can be imported from CAD packages using
common exchange formats.

Objects

Any variable of a 20-sim model can be connected to an object. Various attributes of the
object can be controlled this way: position, orientation, size, etc. Thermal graphs can be
created by controlling the color of the objects.

In the 3D Animation Editor you can connect every object property to a variable in the model.

Reference frame objects can be used to group animation objects and inherit object
attributes. Objects can be duplicated, resulting in complex animation with a few mouse
clicks.

Connected to Simulation

Animations are fully linked to the 20-sim Simulator. While a plot is being drawn,
simultaneously the animation will be shown! This link is kept after a simulation has
finished. While inspecting the numerical values, you will notice that the 3D Animation
changes simultaneously!

Movies

Every animation can be exported to movies in various formats (mpg, wmv, avi. flash)
for the use in presentations and external programs.

10. Animation Toolbox

133Getting Started with 20-sim 4.8

Graph Animation

With 20-sim Graph Animation you can display the results of a simulation in your
graphical model. During simulation, the thickness and color of the bonds, connections
and signals will correspond with the values they carry.

10.2 3D Animation Basics
This lesson demonstrates how to build a simple 3D-animation. It helps you to understand
the basics of reference frames, define objects and couple them to variables in your
model.

Model

1. Open 20-sim and load the model 3DAnimation from the Getting Started\Animation
Toolbox section of the library.

This model consists of three signal generators. We will use the outputs of these
generators to show moving objects in a 3D Animation window.

2. Open the Simulator.

3. In the tree at the left select Window1. From the right mouse menu select Add
Plot - 3D Animation.

This will open a 3D Animation plot next to the standard plot:

The 3D Animation window at start-up.

The first time the 3D Animation window is opened, the top reference frame is shown
(red = x, green = y, blue = z) in a semi transparent grid (the checkerboard) that covers
the xy-plane. All objects you want to show in the 3D Animation window, must be defined
with respect to this frame.

4. In the tree at the left select 3D Animation. From the right mouse menu select
Plot Properties.

10. Animation Toolbox

134Getting Started with 20-sim 4.8

This opens the 3D Animation Properties window:

The 3D Animation Properties window at start-up.

At the left of the 3D Animation Properties window an object tree is shown with several
reference frames and objects:

Reference Frame: This is the top reference frame. All other reference frames and
objects are defined with respect to this frame.

Default Lights and Cameras: This reference frame contains the default lights and
cameras.

Scenery: In this reference frame you can add your own objects.

5. Close the 3D Animation Properties and re-open it by double clicking in the 3D
Animation plot.

Cameras

The 3D Animation window comes with five default cameras. All cameras are defined with
respect to the Default Lights and Cameras frame, which has the same orientation as the
top reference frame.

Front Cameras

There are three cameras which are positioned on top of the principal axes of the Default
Lights and Cameras frame. The front cameras do not show in perspective.

6. In the 3D Properties window, from the objects tree select the Front(XY)-
Camera.

10. Animation Toolbox

135Getting Started with 20-sim 4.8

As you will notice the view in the 3D Animation window changes. It shows the x-axis
(red) and y-axis (green) of the top reference frame:

The view with the Front (XY) Camera selected.

7. Try out the other cameras.

Camera Looking at Origin

The Camera Looking at Origin can be positioned at every desired place but will always
look at the origin of the Default Lights and Cameras frame.

8. In the 3D Animation Properties window, from the objects tree select the Camera
Looking At Origin and inspect the position tab on the right of the window.

9. Change the Y-position of the Camera Looking At Origin and inspect the results in
the 3D Animation window.

As you will see the position of the camera can be changed, but its orientation will always
be chosen to make the camera look at the origin of the Default Lights and Cameras
frame.

Position and orientation of the Camera Looking at Origin.

Adding Objects

With the camera in a good position, it is easy to add objects. We will remove the 3D
Animation window and open it again to get a fresh set of cameras.

10. Animation Toolbox

136Getting Started with 20-sim 4.8

10. Close the 3D Properties and the 3D Animation window.

11. In the tree at the left select 3D Animation. From the right mouse menu select
Delete Plot.

12. In the tree at the left select Window1. From the right mouse menu select Add
Plot - 3D Animation.

13. Open the 3D Properties window.

12. In the 3D Properties window, from the objects tree select the Scenery frame.

13. From the right mouse menu select Edit, Insert Object and Sphere.

Now a sphere is added to the objects tree. A dialog is popped-up showing the Object
Properties of the Sphere.

14. Change the properties of the Sphere into:

 Color Scaling Values

 Red, Value = 1.0 Scale X, Value = = 0.5

 Green, Value= 0.0 Scale Y, Value = = 0.5

 Blue, Value = 0.0 Scale Z, Value = = 0.5

15. Close the Object Properties dialog and set the position and orientation of the sphere
equal to:

 Position Orientation (Bryant)

 X-position, Variable = Sine
\output

X, Value = 0.0

 Y-position, Value = 0.0 Y, Value = 0.0

 Z-position, Value = 0.0 Z, Value = 0.0

16. For the X-position you have to choose the correct variable using the Choose
Variable button.

Your 3D Properties window should now look like:

The X-position of the sphere is coupled to a variable of the 20-sim model.

10. Animation Toolbox

137Getting Started with 20-sim 4.8

17. Close the 3D Properties window and return to the 20-sim Simulator.

18. From the Simulation menu select Run to calculate the plot (or click the blue Run

Simulation button).

19. From the Simulation menu select Replay and 3D Animation (or click the green
Run 3D Animation button) and you will see the Sphere move.

The sphere moving along the X-axis.

If you have problems producing a good animation, close all windows. Open 20-sim and
load the model 3DAnimation1 from the Getting Started\Animation Toolbox section of the
library. This model will show the proper animation of the moving sphere.

Zooming

The object is quite far away. We will use the camera zoom to get a close look.

20. Open the 3D Properties window and from the objects tree select the Default
Lights and Cameras and Camera Looking at Origin.

21. Select the Object Properties (tab at the right) and click the Set Object
Properties button.

10. Animation Toolbox

138Getting Started with 20-sim 4.8

22. Pull the Zooming slider until you have a closer look at the object and close the
Properties window.

Use the Camera properties to change the zooming level.

Other Objects

23. In the tree at the left of the 3D Properties window select the Scenery frame.

24. From the menu select Edit, Insert Object and Cube.

25. Open the 3D Properties window and from the objects tree select the Scenery
frame.

26. From the menu select Edit, Insert Object and Cube.

We would like to see the Cube rotate.

27. Select the Cube from the objects tree and change the Object Properties to:

 Color Scaling Values Position Orientation (Bryant)

 Red = 0.0 X = 0.5 X-position = 0.0 X = 0.0

 Green = 1.0 Y = 0.5 Y-position = 2.0 Y = 0.0

 Blue = 0.0 Z = 0.5 Z-position = -0.25 Z = Triangle\output

28. Like the Cube now add a Line object.

We want the line to rotate along the Y-axis.

29. Select the Object Properties of the Line and change the properties to:

 Color Start Position End Position

 Red = 1.0 X-position = 0.0 X = Sine\output

 Green = 1.0 Y-position = 1.0 Y = 1.0

 Blue = 1.0 Z-position = 0.0 Z = Cosine\output

30. Close the 3D Properties window and return to the 20-sim Simulator.

10. Animation Toolbox

139Getting Started with 20-sim 4.8

31. From the Simulation menu select Run to calculate the plot (or click the blue Run

Simulation button).

32. From the Simulation menu select Replay and 3D Animation (or click the green
Run 3D Animation button).

You will see the sphere move, the cube rotate and the line rotate along the Y-axis. It
should look like the figure below:

Three moving objects.

If you have problems producing a good animation, close all windows. Open 20-sim and
load the model 3DAnimation2 from the Getting Started\Animation Toolbox section of the
library. This model will show the proper animation of the moving objects.

10.3 Planetary System
All objects in a 3D Animation can be defined with respect to the top reference frame.
If you have multiple objects that move relative to the top reference frame but have a
fixed position and orientation to with respect to each other, it is useful to introduce
additional reference frames. We will demonstrate this by creating a 3D Animation of a
planetary system.

Remove Default Elements

1. Open 20-sim and load the model Planetary System from the Getting Started
\Animation Toolbox section of the library.

2. Open the Simulator.

3. In the tree at the left select Window1.

4. From the right mouse menu select Add Plot - 3D Animation.

5. In the tree at the left select 3D Animation. From the right mouse menu select Plot
Properties.

Change background and remove the grid

We will remove the grid and change the background.

10. Animation Toolbox

140Getting Started with 20-sim 4.8

6. From the Properties Menu select General Properties.

7. Select the Choose Color button and change the background color to black.

8. De-select the Apply Image check box and the Show Grid check box.

In the General Properties window you can select the background color and the grid.

9. Close the General 3D Properties window.

Sun

10. Select the Scenery Reference Frame and rename it (Edit menu) to: Sun
Reference Frame.

11. Select the Sun Reference Frame.

12. Insert a Spot Light.

13. Rename it to Sun Light and change the properties to:

 Ambient Color Diffuse Color Specular Color Position

 Off On On

 Red = 0.0 Red = 1.0 Red = 1.0 X-position = 0.0

 Green = 0.0 Green = 1.0 Green = 1.0 Y-position = 0.0

 Blue = 0.0 Blue = 1.0 Blue = 1.0 Z-position = 0.0

14. Select the Sun Reference Frame and insert an Ambient Light. Change its
properties to:

 Ambient Color Diffuse Color Specular Color Position

 On Off Off

 Red = 0.5 Red = 0 Red = 0 X-position = 0.0

 Green = 0.5 Green = 0 Green = 0 Y-position = 0.0

 Blue = 0.5 Blue = 0 Blue = 0 Z-position = 0.0

15. Select the Sun Reference Frame and insert a Camera. Change the zooming
until you have a good view.

10. Animation Toolbox

141Getting Started with 20-sim 4.8

Now your 3D Animation should look like:

With an additional camera you will have a new view.

16. Select the Sun Reference Frame and insert a Sphere.

17. Rename it to Sun and change the properties to:

 Color Scaling Values Position Orientation
(Bryant)

 Red = 1.0 X = 1.0 X-position = 0.0 X = 0.0

 Green = 1.0 Y = 1.0 Y-position = 0.0 Y = 0.0

 Blue = 0.0 Z = 1.0 Z-position = 0.0 Z = 0.0

18. Select the Sun Reference Frame and insert a Circle.

19. Rename it to Hot Spot and change the properties to:

 Color Scaling Values Position Orientation
(Bryant)

 Red = 0.0 X = 0.2 X-position = 0.5 X = 0.0

 Green = 0.0 Y = 0.2 Y-position = 0.0 Y = 1.57

 Blue = 0.0 Z = 0.2 Z-position = 0.0 Z = 0.0

Earth

As you might have guessed we are creating the sun. For the earth motion we will use a
second reference frame.

20. Select the Sun Reference Frame and from the Edit menu select Copy and
Paste.

As you can see a second reference frame is added including objects.

21. From the second reference frame delete the Sun Light and Camera objects.

22. Click on the Camera of the Sun Reference Frame to get a correct view again.

10. Animation Toolbox

142Getting Started with 20-sim 4.8

23. Rename the second reference frame to Earth Reference Frame and change the
properties to:

 Scaling Values Position Orientation (Bryant)

 X = 0.3 X-position = Sine\output X = 0.0

 Y = 0.3 Y-position = Cosine\output Y = 0.0

 Z = 0.3 Z-position = 0.0 Z = Sine\arg

24. From the Earth Reference Frame select the Hot Spot object and change the name
to Launch Site.

25. Select the Sun object and change its name to Earth.

26. Change its color to red = 0, green = 0.5 and blue = 1.

27. Select the Camera from the Sun Reference Frame.

We have added objects and variables which haven't been simulated before. To see a
good animation, we first have to run a simulation.

28. Close the 3D Animation Properties window and return to the 20-sim Simulator.

29. From the Simulation menu select Run to calculate the plot (or click the blue Run

Simulation button).

30. From the Simulation menu select Replay and 3D Animation (or click the green
Run 3D Animation button).

Now you will see the earth orbiting the sun. It should look like the figure below:

The earth orbiting the sun.

If your objects seem far away, change the zooming of the camera.

Moon

The same trick as we did with the earth will now be repeated to create a moon.

31. Open the 3D Properties window.

10. Animation Toolbox

143Getting Started with 20-sim 4.8

32. Select the Earth Reference Frame and from the Edit menu select Copy and
Paste.

33. Rename the objects to Moon Reference Frame, Moon and Lunar Landing Site.

34. Select the Moon Reference Frame and change the properties to:

 Scaling Values Position Orientation
(Bryant)

 X = 0.5 X-position = Cosine
\output

X = 0.0

 Y = 0.5 Y-position = Sine
\output

Y = 0.0

 Z = 0.5 Z-position = 0.0 Z = Sine\arg

35. Select the Moon and change its color to red = 1, green = 1 and blue = 0.5.

36. Select every reference frame and de-select the option Show Frame.

You can also press the Ctrl-key and de-select the Show Frame option of the top frame.
This will make that all underlying frames will have the Show Frame option de-selected.

37. Select the Camera from the Sun Reference Frame.

Viewing the Animation

38. Close the 3D Properties window and return to the 20-sim Simulator.

39. From the Simulation menu select Replay and 3D Animation (or click the green
Run 3D Animation button).

Now you should see the earth orbiting the sun:

The earth orbiting the sun and the moon orbiting the earth.

40. In the Simulator, from the View menu select Numerical Values.

10. Animation Toolbox

144Getting Started with 20-sim 4.8

With the Numerical Values window you can inspect the values of the simulation plot. At
the same time you will see the corresponding view in the 3D Animation window. If you
use the slider of the Numerical Values window you can seen the earth and the moon
move.

41. Use the slider of the Numerical Values window to move the earth and the moon.

Switching Cameras

42. In the 3D Properties window select the Earth Reference Frame and insert a
Camera object. Change the zooming until you have a good view.

43. Change the name of the Camera into Earth Camera.

44. In the 3D Animation window click the Play button to see the sun and moon
moving around the earth.

45. Switch between cameras by clicking the Camera button.

46. If you have problems producing a good animation, close all windows. Open 20-sim
and load the model Planetary System1 from the Getting Started\Animation Toolbox
section of the library. This model will show the proper animation of the planetary
system.

11. Control Toolbox

145Getting Started with 20-sim 4.8

11 Control Toolbox

11.1 Control Toolbox
The Control Toolbox of 20-sim contains several tools that can aid you in developing
controllers for your modeled machines, the Controller Design Editor, the Filter Editor and
the Neural Network Editors.

Controller Design Editor

1. In the Editor from the Tools menu select Control Toolbox - Controller Design
Editor.

The Controller Design Editor is a specialized tool for the design of feedback control
systems. A feedback structure of subsystems is presented with a linear plant, controller,
measurement and pre-filter. Also the open-loop and closed-loop gains and the
sensitivities are available.

The Controller Design Editor.

You can edit your controller as an ABCD State Space system, a Transfer Function or in a
Zero Pole Gain form. Changes in one of the subsystems directly update all open plots
and dialogs. For instance, adapting the controller gain immediately changes poles and
zeros of the closed-loop system and the overall step response. The integration within 20-
sim and linear system exchange with MATLAB makes this editor a powerful tool for
designing feedback control systems!

Filter Editor

2. In the Editor from the Tools menu select Control Toolbox - Filter Editor.

11. Control Toolbox

146Getting Started with 20-sim 4.8

With the Filter Editor you can create your own linear filters according to your
specifications. Available filters are Bessel, Butterworth and ChebyChev filters where you
can specify the order and characteristic frequencies. A choice can also be made from
PID, lead/lag, or notch filters.

The Filter Editor.

Neural Network Editors

3. In the Editor from the Tools menu select Control Toolbox - B-Spline Network
Editor.

The 20-sim Control toolbox supports two well-known networks: Adaptive B-Spline
Networks and Multi-Layer Perceptron Networks.

The B-Spline Editor.

These neural networks must be trained by repeatedly presenting examples to the
network. Each example includes both inputs and desired outputs. Based on the error
between desired outputs and the real network output, the neural network adapts the
weight of each neuron according to a user-defined learning rate. If the response is
accurate enough, you can save the weights of the neurons, to use the neural network in
your controller. An unlimited number of neurons may be used.

12. Frequency Domain Toolbox

147Getting Started with 20-sim 4.8

12 Frequency Domain Toolbox

12.1 Frequency Domain Toolbox
The 20-sim Frequency Domain Toolbox consists of the Linear System Editor, FFT
Analysis, Model Linearization and Dynamic Error Budgeting functionality.

Linear System Editor

The Linear System Editor is a specialized tool for the design and analysis of linear
systems. The editor supports continuous-time and discrete-time SISO systems using
various representations.

The graphical interface allows you to edit a linear system in any desired form: ABCD
state space, Transfer Function or Zero Pole Gain. Analyzing the Step response, Bode
plot, Nyquist diagram, Nichols chart and Pole-Zero plots allows you to quickly evaluate
system behavior. Phase, gain and modulus margins are calculated, as well as rise time,
overshoot and steady state value.

Input can originate from a 20-sim linear system model, 20-sim filter or control editor,
MATLAB workspace, or user input. You are able to generate output for all 20-sim editors,
the clipboard and the MATLAB workspace.

Fast Fourier Transform

Fast Fourier Transforms (FFT) can be applied to any time-domain plot in 20-sim. Either
simulation results or measurement data will do. When the data is not equally spaced,
linear interpolation is first applied after which the Fast Fourier Transform is used to
calculate the frequency contents. Three representations are supported: Amplitude and
Phase plot, Frequency plot and Power Spectral Density plot.

Model Linearization

Any 20-sim model can be linearized to state space form. If possible, linearization will be
performed symbolically. Otherwise linearization will be performed numerically.

12. Frequency Domain Toolbox

148Getting Started with 20-sim 4.8

The resulting state space model is shown in the 20-sim Linear System Editor. The Linear
System Editor is a specialized tool for the design and analysis of linear systems. The
editor supports continuous-time and discrete-time SISO systems using various
representations. Standardized plots enable you to quickly evaluate system behavior.

In the Linear System Editor you can generate bode plots.

Features

Editing as ABCD state space, Transfer Function or Zero Pole Gain with automatic
transformation between these forms.

Transfer between continuous-time and discrete-time representation.

View characteristic properties like eigenfrequencies and damping.

Handles numeric and symbolic models.

Various plot options: Step Response, Bode Plot, Nyquist Diagram, Nichols Chart and
Pole-Zero Plot.

Dynamic Error Budgeting

The performance of precision machines is mostly limited by the disturbances that are
injected in these machines. These disturbances are often stochastic in nature. Dynamic
Error Budgeting is a method whereby the effect of these disturbances on the final
performance can be calculated. The advantage of this method is that it enables the
designer to enter the contributions of the individual disturbances and view and optimize
the overall machine performance.

12. Frequency Domain Toolbox

149Getting Started with 20-sim 4.8

The Dynamic Error Budgeting toolbox shows the total error as a result of injected disturbances.

Running the Toolbox

You can open the Dynamic Error Budgeting tool in the Simulator:

1. Open 20-sim and load the model Dynamic Error Budgeting from the Getting Started
\Frequency Domain Toolbox section of the library.

2. In the Simulator from the Tools menu select Frequency Domain Toolbox and
Dynamic Error Budgeting.

The Dynamic Error Budgeting tool.

The tool allows you to enter disturbances (as power spectral density) in the Input Noises
section.

12. Frequency Domain Toolbox

150Getting Started with 20-sim 4.8

3. For each disturbance you have to select a corresponding variable by clicking the
Add input noise button.

Each disturbance is effectively a summation to the chosen variable, just like closed loop
linearization. You can inspect each disturbance in the graph on the top right.

Next you have to select an output variable, where the result of the disturbances is
calculated.

4.Select the output by clicking the Add Output button.

In the graph on the bottom right you can see the resulting error at the selected output
as a result of the disturbances. The error is given in the form of a power spectral density
(PSD) and cumulative power spectral density (CPS). The square root of the final value of
the CPS is equal to the standard deviation of the output error.

13. Mechatronics Toolbox

151Getting Started with 20-sim 4.8

13 Mechatronics Toolbox

13.1 Mechatronics Toolbox
The Mechatronics Toolbox includes the Motion Profile Wizard, the CAM Wizard and the
Servo Motor Editor.

Servo Motor Editor

The 20-sim Servo Motor Editor is a program that helps engineers to choose the proper
servo motor for any electromechanical system:

Brush DC (Iron Armature Motor, Hollow Rotor Motor, Disc Armature Motor)

Brushless DC

AC synchronous

AC synchronous linear

In cooperation with motor manufacturers, motor data tables have been created for the
Servo Motor Editor. The performance of every motor can be shown by the torque speed
curve. The Servo Motor Editor can generate dynamic models for the simulation program
20-sim. In this program you can simulate the thermal and dynamic behaviour of the
servo motor in combination with control loops and dynamic loads.

Any engineer involved in the design of electromechanical machines can benefit from the
Servo Motor Editor. Precious time and money can be saved by finding the optimal servo
motor in a few minutes, without risking overheating or under-powering.

The 20-sim Servo Motor Editor.

Features

Support of predefined motor data tables.

Add your own motors to the data table.

Quick search by multiple parameters.

13. Mechatronics Toolbox

152Getting Started with 20-sim 4.8

Torque-Speed curves with: line of maximum current, maximum torque, maximum
voltage, maximum speed, maximum power, maximum efficiency and maximum
power output.

Safe Operating Area, Desired Operating Area.

Generate dynamic models for the simulation program 20-sim. These models include
thermal effects of the coils and housing, electrical losses through dissipation,
magnetic losses through hysteresis, eddy currents and cogging.

Show torque speed curve with dynamic load curve.

Template models, covering most commercial control schemes and many mechanical
loads.

Application Areas

Control Design

Industrial Equipment and Machinery

Precision Engineering

Simulation

Utilities and Energy

Vibration Analysis and Control

13.2 Servo Motor Editor
This section demonstrates how to use the Servo Motor Editor to select the correct motor
for a drive train. The Servo Motor Editor is part of the Mechatronics Toolbox.

You can use the Servo Motor Editor to create models that include permanent magnet
servo motors. In the figure below you see a PID controlled AC synchronous motor
driving a load through a gearbox and beltdrive. In this example we will show how to
create and use such a model.

PD controlled servo motor with gearbox and belt.

Model

13. Mechatronics Toolbox

153Getting Started with 20-sim 4.8

1. Open 20-sim and select File, New and Graphical Model.

2. From the Tools menu select Mechatronics Toolbox and Servo Motor Editor.

A servo motor model will be inserted:

A servo motor inserted.

3. The Servo Motor Editor will be opened automatically. If this does not happen,
force the editor to open by clicking the Go Down button.

The editor will show the default motor list and the parameters of the selected motor.

You can choose from a list of existing servo motors in the Servo Motor Editor.

4. From the File menu choose Open Database.

5. Load the file Maxon 2006.cse. You can find this file in the folder C:\Program Files

\20-sim 4.8\Tools\Servo Motor Dynamics

13. Mechatronics Toolbox

154Getting Started with 20-sim 4.8

Use C:\Program Files (x86)\20-sim 4.8\Tools\Servo Motor Dynamics on 64-bit versions
of Windows

Now the Servo Motor Editor will show a list of Maxon motors.

6. From the list choose the Maxon EC 60 motor with keyname 167131 s.

Display the characteristic parameters of a selected motor.

7. Click the Plot tab to inspect the torque speed curve.

Show a torque speed plot of the selected motor.

8. Click the OK button to close the editor and generate the dynamic model.

13. Mechatronics Toolbox

155Getting Started with 20-sim 4.8

The 20-sim editor will now look like:

The selected motor is now inserted in 20-sim.

9. Add the following models and connect them until your model looks like the figure
below. Try to give the same submodel names as indicated in the figure.

 model library model

 Iconic Diagrams\Mechanical\Translation\Sensors
Iconic Diagrams\Mechanical\Translation\Components
Iconic Diagrams\Mechanical\Translation\Transmission
Iconic Diagrams\Mechanical\Rotation\Gears
Signal\Block Diagram
Signal\Sources
Signal\Control\PID Control\Continuous

PositionSensor-Absolute
Mass
BeltPulley
Transmission (Ideal)
PlusMinus
SignalGenerator-Cycloid
PID

The complete model of the belt driven load.

10. From the File menu click Save as. Store the model in a temporary directory (e.g.
C:\temp) using the name ServoMotor.emx.

If you have problems creating the model, load the model ServoMotor1 from the Getting
Started\Mechatonic Toolbox section of the library.

13. Mechatronics Toolbox

156Getting Started with 20-sim 4.8

Simulation

11. In the Editor toolbar from the Model menu select the Start Simulator command.

12. In the Simulator, click the Parameters command from the Properties menu.

13. As you will see the parameter values for the AC motor have been filled in
automatically by the Servo Motor Editor. Enter the other parameters as:

 Parameter Value

 Load\m
PID\kp
PID\tauD
PID\beta
PID\tauI
BeltPulley\radius
Gear\i
SP\start_time
SP\amplitude
SP\stop_time

20
5000
0.05
0.1
20
0.1
20
1
1
2

14. From the Properties menu select the Run command and change the default values
to:

Start
Finish
Method

0
4
Vode Adams

15. In the tree, select the plot (model). From the right mouse menu, select Rename
and rename it to position.

16. From the right mouse menu, select Plot Properties.

17. From the Properties menu select the Plot command. Add the following plot
variables to the Y-tab.

 Variable Label

 SP\output
Pos\x

SP
x

18. Click on the Shared Axis option to select it.

13. Mechatronics Toolbox

157Getting Started with 20-sim 4.8

19. Close the Plot Properties Editor and run a Simulation. It should look like the next
figure.

Simulation of the drive system.

As you can see the motor is able to drive a load of 20 kg. Now we are going to inspect
the thermal behaviour of the motor.

19. In the tree at the left click on Window 1 to select it.

20. From the right mouse menu select Add Plot - Plot.

Now a second plot will be visible.

20. Rename the plot to temperature.

21. Open the Plot Properties Editor (Properties - Plot). Add the following plot
variables to the Y-tab.

 Variable Label

 ServoMotor\Temp_coil
ServoMotor\Temp_housing

coil
housing

22. Click on the Shared Axis option to select it.

13. Mechatronics Toolbox

158Getting Started with 20-sim 4.8

23. Run a new simulation. The Simulator will look like the next figure.

In the Simulator you can open additional plots.

The coils heat up immediately and the housing heats up gradually. We have to run a
simulation for a longer time, to see if the motor will overheat. We can also inspect the
torque speed curve to inspect the thermal behaviour.

24. From the View menu choose New Plot Window. This will open a new plot.

25. Open the Plot Properties Editor (Properties - Plot). Add the following plot
variables.

 x-axis Variable Label

 ServoMotor\omega_range speed

 y-axis Variable Label

 ServoMotor\T_100
ServoMotor\T_25
ServoMotor\Torquemax
ServoMotor\T_abs

T_100
T_25
max torque
load torque

For the variable ServoMotor\T_abs we will choose a separate x-axis.

26. Select the Separate X-Axis option at the bottom of the Plot Properties Editor.

27. Click the Choose button next to the Separate X-Axis option and select the variable
ServoMotor\omega_abs.

13. Mechatronics Toolbox

159Getting Started with 20-sim 4.8

Your Plot Properties Editor should now look like:

You can choose a separate x-axis for every plotted variable.

28. Run a new simulation. The extra plot will look like the next figure.

Torque speed plot with the duty cycle lines and the load torque.

The load torque, i.e. the torque that is applied by the motor to drive the load, is
completely under the 25% duty cycle curve. This means the motor will never overheat
when once every 4 sec there is a step change of 1 s. The motor curve is even under the
100% duty cycle. This means it wouldn't overheat if we would apply 4 steps in 4 s. If we
stick to the 25% duty cycle, we might choose a lighter motor.

29. Go to the Editor. Select the ServoMotor model and click Go Down.

30. In the Servo Motor Editor choose the motor with keyname 252463 s.

This is a motor with less power (156 W vs. 312W), a smaller maximum torque (5.14 Nm
vs. 6.59 Nm) and a higher maximum speed (10000 rpm vs. 7000 rpm)

13. Mechatronics Toolbox

160Getting Started with 20-sim 4.8

31. Click OK to close the Servo Motor Editor.

32. In the Editor from the Model menu click the Check Complete Model command.
This will ensure that the new motor will be used in the simulation.

33. In the Simulator from the Simulation menu choose Clear - All Runs.

34. Now run a new simulation. The torque speed plot will now look like:

The motor torque crosses the 25% duty cycle line. This means the motor will overheat.

The load curve now crosses the 25% duty cycle line. This means the motor will heat up
higher than the allowed maximum. To prevent this from happening we will use the
higher maximum speed of the motor. This can be done by changing the gearbox ratio.

35. In the Simulator, from the Properties menu click the Parameters command.
Change the gearbox ratio Gear\i to 40.

13. Mechatronics Toolbox

161Getting Started with 20-sim 4.8

36. Clear the previous simulation and run a new simulation. The torque speed plot will
now look like:

Changing the gearbox ratio will keep the motor torque under the 25% duty cycle line.

Now the load curve does not cross the 25% duty cycle line anymore. You can also load
the model ServoMotor2 from the Getting Started\Mechatonic Toolbox section of the
library to show the final result.

You can load the model ServoMotor3.emx from the Getting Started\Mechatonic Toolbox
section of the library, to see a long simulation of the motor temperature. In this model
the setpoint generation is performed by a motion profile block which outputs a repeating
signal with a duty cycle of 25%. As you can see from the plot the coil temperature
increases to 43 °C which is far below the maximum temperature of 125 °C.

A simulation of the motor temperature.

14. Real Time Toolbox

162Getting Started with 20-sim 4.8

14 Real Time Toolbox

14.1 Real Time Toolbox
The Real Time Toolbox provides you with C-code generation tools and templates for all
kinds of different targets and platforms.

With 20-sim you are able to generate C-code as well as MATLAB code for every 20-sim
model that you have created, whether it is a continuous or discrete-time model. The C-
code can be created for several targets, like MATLAB Simulink, but also for Rapid
Prototyping (RP) systems and Hardware-In-the-Loop (HIL) simulations.

Matlab Simulink

Generating C-code for use in MATLAB Simulink also includes a submodel block with input
and output terminals. 20-sim uses the MEX-compiler, to compile this code directly into an
S-function. These S-functions can also be used in the Real Time Workshop in order to
generate code for a specific platform, for instance xPC Target.

C-code

20-sim can generate standalone C-code for use in C and C++ programs. The generated
C-code is supplied with several fixed step simulation algorithms to assure that it will run
in real-time. The Euler and RungeKutta 4 method are supported by default.

All C-code templates are open and can be adapted by the user to assign compilers, run
ftp-sessions and automate almost everything between the 20-sim code generation and
the actual running of the code on a (remote) machine. During C-code generation support
code is generated for 20-sim operators like matrix calculations and trigonometric
functions.

20-sim 4C

With the Real-Time Toolbox you can generate code for 20-sim 4C. 20-sim 4C is a
program that is sold separate from 20-sim. 20-sim 4C is a prototyping environment that
enables you to connect 20-sim models to physical systems. The models can be executed
as real-time C-code on hardware like PC's or ARM-9 based processor boards. This
enables you to perform various tasks:

Measurement and Calibration: From 20-sim 4C you can export C-code that will
operate and read sensors.

Machine Control: With 20-sim 4C you can export code to external targets to control
the operation of machines. In 20-sim 4C you can start and stop the controller and
change parameters during run-time.

14. Real Time Toolbox

163Getting Started with 20-sim 4.8

Rapid Prototyping: 20-sim models can be exported to 20-sim 4C with the click of a
button and executed on a target with a second click. This makes 20-sim 4C a
valuable tool for rapid prototyping.

20-sim 4C allows you to run C-code, generated in 20-sim, on real machines.

More information on 20-sim 4C can be found on the 20-sim website www.20sim.com.

http://www.20sim.com

15. Time Domain Toolbox

164Getting Started with 20-sim 4.8

15 Time Domain Toolbox

15.1 Time Domain Toolbox
During simulation, the time domain behavior of a model is calculated. Based on this
time-domain behavior, the model can be analyzed. A set of powerful methods for time
domain analysis is available in 20-sim.

Parameter Sweeps

Parameter sweeps are multiple simulations with a variation of parameter values. It is a
quick method to see how your model behavior depends on the parameter values.

Parameter Optimization

Using Optimization, you can maximize the performance of your model by varying
specified model parameters. Predefined or user defined cost functions can be used as a
measure of model performance. A number of well known optimization methods can be
used to minimize or maximize these cost functions.

Using optimization to find controller parameters with optimal disturbance rejection.

Curve Fitting
With Curve Fitting you can fit model performance to a given result by variation of
parameters. It is a very useful method to optimize model parameters when
measurement data is available.

Sensitivity Analysis

Sensitivity Analysis is used to investigate the effect of parameter variation on model
performance. The change in performance divided by the parameter change is plotted in
a table. Sensitivity Analysis is a well-known method in production engineering to find
critical systems tolerances in early stages of the design

15. Time Domain Toolbox

165Getting Started with 20-sim 4.8

Monte-Carlo Analysis

With Monte-Carlo Analysis, you can perform a predefined number of simulation runs with
statistical variation of parameter values. Results can be shown as histograms or
inspected numerically. Monte Carlo Analysis is a powerful method to find out worst case
model behavior.

Variation Analysis

With Variation Analysis you can find the statistical range of parameter values that yield a
model with a certain performance level. Variation Analysis is a powerful method to find a
measure for system tolerances in the early stage of the design.

16. Scripting Toolbox

166Getting Started with 20-sim 4.8

16 Scripting Toolbox

16.1 Introduction
20-sim scripting allows you to run tasks in 20-sim automatically using specialized
scripting functions. With these functions you can open models, run simulations, change
parameters, store results and much more. Scripting support was introduced in 20-sim
4.4.

20-sim session automated by a script in Octave, Matlab or Python.

These scripting functions are not very useful stand-alone, but you can use them to write
scripts to automate various tasks in 20-sim.
20-sim provides a set of script functions for numerical computation environments like
Octave and Matlab and for the Python programming language (since 20-sim 4.6).
The 20-sim scripting functions are based on XML-RPC calls, so any other programming
language with support for XML-RPC can be used to automate various 20-sim steps.

In this chapter you will learn how to run basic scripts and make scripts on your own.

The next sections explain:

Installation for scripting:

o 20-sim: enabling the XML-RPC scripting interface in 20-sim

o Octave: installing Octave as scripting environment

o Matlab: installing Matlab as scripting environment

o Python: installing Python as scripting environment

Prepare Scripting Folder: extract the 20-sim scripting functions and
documentation to your work directory.

Basic Script: run your first script and see how a basic script is made in Octave/
Matlab or Python.

Advanced Scripts: see how you can expand the basic script to perform more
advanced tasks in Octave/Matlab.

Writing your own Scripts: How to write your own scripts in Octave/Matlab or
Python.

Note: Scripting is not supported in the 20-sim Viewer/Demonstration Version. If you
would like to try the scripting functionality, you will need licensed 20-sim version or a
trial license.

16. Scripting Toolbox

167Getting Started with 20-sim 4.8

16.2 Installation for Scripting: 20-sim
20-sim uses XML-RPC as a protocol to communicate scripting functions with external
packages. By default the XML-RPC interface is turned on only for your local computer
(listening on the TCP ports 5580 and 5520).

To enable/disable and configure the 20-sim scripting support:

1. Open 20-sim.

2. Go to Tools/Options and select the Scripting Interface tab.

Scripting Interface settings tab.

3. To enable the 20-sim scripting support, make sure that the HTTP and TCP
checkboxes under XMLRPC Interface are enabled.

By default, 20-sim will only accept scripting connections from your local computer
(Localhost only option is enabled).

Your firewall may generate a warning message and ask you to allow network
communication for 20-sim.

4. Set the firewall to allow communication.

16.3 Scripting Menu
If you store the scripts in a folder "Scripting" next to your 20-sim model, a Scripting
menu will appear in the 20-sim Editor.

The Examples\Scripting folder contains models with scripting. If you open one of these
models, the Scripting menu will be visible showing several scripts. You can run these
scripts directly from the menu.

16. Scripting Toolbox

168Getting Started with 20-sim 4.8

16.4 Scripting in Octave/Matlab

Installation for Scripting: Octave

What is Octave?

GNU Octave is a high-level language, primarily intended for numerical computations. The
package is open source and can be freely distributed. GNU Octave offers functionality
similar to Matlab users. If you have experience with Matlab, using Octave will be
familiar. Users with no experience with Octave nor Matlab are advised to read a proper
introduction to GNU Octave first. You will find lot of pages and videos on the Internet.

Installation

The Windows versions of Octave 7.1.0, 6.x, 5.x, 4.x, 3.8.x, 3.6.x have been tested with
20-sim scripting at the time of this release.
Note that for older versions of Octave only the 32-bit Octave is supported. 64-bit
versions of Octave are supported since Octave 4.2.1.

First choose the Octave version you wish to install and go to the corresponding section
below:

Octave 7.1.0 / 6.x / 5.x / 4.x

1. Go to: https://www.gnu.org/software/octave/

2. Go to the download page and download the Windows installer (direct link: https://
ftp.gnu.org/gnu/octave/windows/octave-7.1.0-w64-installer.exe)

3. Run the installer and follow the wizard. The steps below assume default installation
settings.

4. Octave 4.0.x only: Unfortunately Octave 4.0.x has a Windows specific bug in its
internal run() function. This bug is resolved in Octave 4.2 and above.
For Octave 4.0.x you will need to manually replace the default run() implementation
with a corrected version. Copy the file:

C:\Program Files (x86)\20-sim 4.8\Scripting\Octave-patch\4.0.0

\run.m

or on 32-bit versions of Windows:

C:\Program Files\20-sim 4.8\Scripting\Octave-patch\4.0.0\run.m

to:

C:\Octave\Octave-4.0.0\share\octave\4.0.0\m\miscellaneous\run.m

5. Launch Octave from the Start menu or using the script: C:\Octave\Octave-x.y.z

\octave.bat

6. Execute the following commands to make sure that the io, control and signal are
installed.
pkg install -forge io

pkg install -forge control

pkg install -forge signal

https://www.gnu.org/software/octave/
https://ftp.gnu.org/gnu/octave/windows/octave-7.1.0-w64-installer.exe
https://ftp.gnu.org/gnu/octave/windows/octave-7.1.0-w64-installer.exe

16. Scripting Toolbox

169Getting Started with 20-sim 4.8

The Octave GUI.

Your Octave installation is now ready to use.

Octave 3.8.x

1. Go to: http://www.20sim.com/downloads/files/ThirdParty/octave-3.8.2-2-
installer.exe

2. Run the installer and follow the wizard.

3. Launch Octave using the script: C:\Octave\Octave-3.8.2\octave.bat

4. Execute the following commands to install packages io, control and signal:
pkg install -forge io

pkg install -forge control

pkg install -forge signal

Your Octave installation is now ready to use.

Octave 3.6.x

1. Go to the Octave download site (http://sourceforge.net/projects/octave/.).

2. Click on the Files tab and click on Octave Windows Binaries.

3. Select the Octave 3.6.4 for Windows MinGW installer.

http://www.20sim.com/downloads/files/ThirdParty/octave-3.8.2-2-installer.exe
http://www.20sim.com/downloads/files/ThirdParty/octave-3.8.2-2-installer.exe
http://sourceforge.net/projects/octave/

16. Scripting Toolbox

170Getting Started with 20-sim 4.8

4. Now you can download the files Octave3.6.4_gcc4.6.2_yyyyxxxx.7z

(Octave Installation) and Octave3.6.4_gcc4.6.2_pkgs_yyyyxxxx.7z
(Octaveforge Packages).

5. Create an installation directory which doesn't have space chars (i.e. C:\Octave).

6. Unzip the file Octave3.6.4_gcc4.6.2_yyyyxxxx.7z and copy it to the

installation directory.

7. Copy the shortcut link C:\Octave\Octave3.6.4_gcc4.6.2.lnk to your desktop.

This is a shortcut to start Octave.exe.

Note: Unzipping can be done with programs like 7-zip (http://www.7-zip.org/)
Note: There is a bug with Windows 8 and running Octave. In order to use Octave start
Octave with octave.exe -i --line-editing. See the Octave wiki webpage for more

information.

8. Unzip the file Octave3.6.4_gcc4.6.2_pkgs_yyyyxxxx.7z and copy it to the

installation directory.

9. Launch Octave (e.g. the link to Octave.exe).

10. Execute the following five rebuild commands from the Octave console (e.g. re-type
every line followed by ENTER):

pkg rebuild -auto

pkg rebuild -noauto ad

pkg rebuild -noauto nan % shadows many statistics functions

pkg rebuild -noauto gsl % shadows some core functions

pkg rebuild -auto java

The Octave command window.

11. Close and restart Octave.

Setting the Octave Location

1.In the 20-sim Editor choose Tools - Options - Scripting Client - Octave Folder to enter
the location where Octave is installed on your computer.

http://www.7-zip.org/
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs
http://wiki.octave.org/Octave_for_Windows#Octave-3.6.4-mingw_.2B_octaveforge_pkgs

16. Scripting Toolbox

171Getting Started with 20-sim 4.8

Installation for Scripting: Matlab

What is Matlab?

Matlab is a high-level language, primarily intended for numerical computations. The
package is commercially distributed by the Mathworks. If you don't have the resources
to purchase Matlab, you can run use Octave, which offers similar functionality.

Versions

Matlab R2011, R2012, R2013, R2014, R2015, R2016 and R2017 have been tested with
20-sim scripting but older and newer versions may also work fine.

Installation

See the Matlab documentation from the Mathworks for information on installing Matlab.
No special (additional) installation is needed to use 20-sim scripting from Matlab.

Note: Scripting in Matlab is similar to Octave. You can type exactly the same commands
as given for Octave in the next sections.

Prepare Scripting Folder

20-sim comes with a Scripting Folder that contains documentation of all scripting
functions, the function library and example scripts. You have to install this folder to use
scripting.

Installation

1. Open the Install Scripting program from the Windows Start menu (located under
20-sim 4.8)
- or -
Go to the folder where 20-sim is installed (e.g. C:\Program Files\20-sim 4.8
\Scripting or C:\Program Files (x86)\20-sim 4.8\Scripting) and open
20simScripting.exe

2. This will open a dialog where you can choose where to extract the 20-sim scripting
files. Change the path to a local working folder of your choice (for example: C:
\Users\yourusername\Documents\20simscripting)

20-sim Scripts extraction

Note: To write/modify scripts, the scripting folder should be accessible and writable by
the user. Do not install the scripting folder on C:\Program Files (x86) or C:\Program
Files.

For the remainder of this chapter, we use the name scripting working folder when we
refer to the folder where you just extracted the 20-sim scripting files.

http://www.mathworks.nl/
http://www.mathworks.nl/
http://www.mathworks.nl/
http://www.mathworks.nl/

16. Scripting Toolbox

172Getting Started with 20-sim 4.8

Contents

Your newly created scripting working folder contains a number of subfolders:

1. Models: This folder contains the 20-sim models and data files that are used for the
example and tutorial scripts .

2. Octave: This folder contains all Octave/Matlab scripting functionality and
documentation

a. documentation: This folder contains the scripting API documentation: a list of
supported functions and their syntax. It is a copy of the help file that you can
open in the 20-sim Editor by selecting Help - Octave Scripting API.

Note: the API documentation is also accessible from the Windows Start menu
under 20-sim 4.8\Scripting API documentation

b. library: This folder contains the core scripting functions.

c. tutorials: This folder contains basis scripts with a step by step explanation. You
can use these scripts as a base for your own scripts.

d. examples: This folder contains some more advanced scripts.

3. Octave-patch: This folder contains modified Octave scripts for certain Octave
versions to fix bugs in the core Octave scripts that are not yet fixed in the latest
release (currently 4.0.0)

4. Python: This folder contains all Python scripting functionality and documentation
(see the Scripting in Python section for more information).

Basic Script

When the scripting files are properly installed in your scripting working folder, we can
run some tutorial scripts. Tutorial scripts are a step by step demonstrations of usage of
the scripting functionality in 20-sim. These scripts are found in the tutorials subfolder of
the scripting working folder. We will start with a basic script that opens and runs a 20-
sim model.

1. Open 20-sim.

2. Open Octave (or Matlab).

3. In Octave/Matlab, change the local working directory to the tutorial folder inside
your scripting working folder . E.g . type:

cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'

Note: 20-sim should be open before running the script!

4. In Octave/Matlab, execute the following command (e.g. type the following case
sensitive command followed by ENTER):

runSimulation

Note: Octave may give a cryptic "undefined near line x column 1" message, if you type
the command as runsimulation instead of runSimulation!

16. Scripting Toolbox

173Getting Started with 20-sim 4.8

5. Now Octave / Matlab will give a message and ask you to press ENTER to continue.

The model ControlledSystem.emx is loaded into 20-sim and simulated.

6. Again Octave/Matlab will give a message and ask you to press ENTER to continue.

Now the simulation and model will be unloaded.

Inspecting the script

To see how the script is made, you can inspect it with a text editor.

1. Open a file browser and go to the tutorials folder (e.g. C:\Users\yourusername
\Documents\20simscripting\Octave\tutorials)

2. Open the file runSimulation.m with a text editor like Notepad.

Core Functions

The core functions of the runSimulation script are:

addpath: The script starts with the command addpath('../library/xxsim'); This will
enable Octave / Matlab to use the 20-sim scripting functions that are stored in the
library subfolder of your scripting working folder.

xxsimConnect: This command opens a connection to 20-sim.

xxSimOpenModel: This command opens a model in 20-sim by giving the filename
including the full path.

xxsimProcessModel: This command will process the model.

xxsimRun: This command will run a simulation.

xxsimCloseModel: This command will remove the simulation model from 20-sim.

These functions are the basis of scripting in 20-sim and will be present in this order in
most scripts. Therefore you can use the script runSimulation.m as a template for any
new script that you create.

16. Scripting Toolbox

174Getting Started with 20-sim 4.8

Advanced Scripts

Now that we have seen the core functions of a script we will run and check some more
advanced scripts.

1. Open 20-sim.

2. Open Octave (or Matlab).

3. In Octave/Matlab, change the local working directory to the tutorial folder inside
your scripting working folder. E.g . type:

cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'

Set Parameter Values

4. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

SetParameterAndRun

This script will open the model ControlledSystem.emx and run a simulation. Then a
model parameter is changed and a second simulation run is performed. As explained in
the previous topic, you can inspect the script in a text editor.

Compared to the basic script you will find a new function:

xxsimSetParameters: This function is used to set the parameter in the model with
the new value.

Multiple Runs

5. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

multipleRun

This script will open the model ControlledSystem.emx and run a simulation multiple
times while changing a parameter. Then a model parameter is changed and a second
simulation run is performed.

Read Parameter Values

6. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

readAndSetParameters

This script will open the model ControlledSystem.emx and run a simulation. Then a
model parameter is read from file and changed accordingly in the model, followed by a
second simulation run.

You will find these new functions:

addpath: An additional path is given (../library/xxlib) to allow addtional (user
defined) functions.

16. Scripting Toolbox

175Getting Started with 20-sim 4.8

xxlibReadCsv: This function is used to read a parameter name and value from a
spreadsheet file.

Store Simulation Results

7. In Octave/Matlab, execute the following script (e.g. type the command followed by
ENTER):

modelVerification

This script will open the model ControlledSystem.emx and run a simulation. After the run
the simulation results are stored and plotted in Octave/Matlab. You will find these new
functions:

xxsimSetLogVariables: Define which variables are going to be logged during the
simulation run.

xxsimGetLogVariables: Export the logged variables after the simulation run to
Octave/Matlab.

Examples

8. In Octave/Matlab, change the local working directory to the tutorial folder. E.g. type:

cd 'C:\Users\yourusername\Documents\20simscripting\examples'

here you can find more example scripts.

Writing your own Scripts

Example

We will show you how to write your own scripts using a simple example. We assume that
you have installed a scripting folder and its location is:

'C:\Users\yourusername\Documents\20simscripting'

of course you can use own location. We will copy a 20-sim model to the scripting folder
and write a script that will open this model in 20-sim and run a simulation.

1. Copy the example model FastManipulator.emx to the Octave\tutorials folder. E.g
copy:

'C:\Program Files (x86)\20-sim 4.8\Models\Examples\Drivetrains

\FastManipulator.emx'

to

'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials

\FastManipulator.emx'

16. Scripting Toolbox

176Getting Started with 20-sim 4.8

2. Open a text editor (e.g. notepad) and enter the following lines:

run('../library/xxsim/xxsimAddToPath.m');

xxsimConnect();

xxsimOpenModel('FastManipulator.emx');

xxsimProcessModel();

xxsimRun();

xxsimDisconnect();

3. Save the text file as:

'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials

\MyScript.m'

4. Open 20-sim.

5. Open Octave (or Matlab).

6. In Octave/Matlab, change the local working directory. Type in the command line:

cd 'C:\Users\yourusername\Documents\20simscripting\Octave\tutorials'

7. In Octave/Matlab, run your own script. Type in the command line:

MyScript

Now you will see the model being loaded in 20-sim and a simulation being run.

Writing your own scripts

In the tutorial folder there are more scripts. Use these as a template for writing you own
scripts and follow the guidelines below:

Location

Create your own subfolder inside your scripting working folder. This allows you to
update the 20-sim scripting files when new versions of 20-sim are released.

Functions

You can find help on scripting functions in the 20-sim Editor by selecting Help - Octave
Scripting API.

16. Scripting Toolbox

177Getting Started with 20-sim 4.8

16.5 Scripting in Python

Installation for Scripting: Python

What is Python

Python is a general-purpose high-level programming language with an emphasis on code
readability and writing algorithms in fewer lines of code than other programming
languages. Python is open-source and managed by the Python Software Foundation. It
has an extensive standard library and can be extended with many external libraries
including a rapidly growing set of scientific and mathematical libraries such as SciPy,
NumPy and Sympy and an extensive plotting library Matplotlib. 20-sim scripting has
been tested with the following versions of Python: Python 2.7.x, Python 3.4.x-3.7.x (32-
bit and 64-bit).

Installation

During installation of 20-sim, you are asked to install the (optional) Python 3.7
package. We advise to keep the default setting (Yes) which will install the Python 3.7
installation that includes 20-sim scripting support and the following packages: NumPy,
Matplotlib, Sympy, Pandas and IPython. This installation provides just enough support to
get started with 20-sim scripting. However, it does not provide a development IDE or an
extensive set of scientific and mathematical libraries.

Prepare Scripting Folder

20-sim comes with a Scripting Folder that contains documentation of all scripting
functions, the function library and example scripts. You have to install this folder to use
scripting.

Installation

1. Open the Install Scripting program from the Windows Start menu (located under
20-sim 4.8)
- or -
Go to the folder where 20-sim is installed (e.g. C:\Program Files (x86)\20-sim
4.8\Scripting or C:\Program Files (x86)\20-sim 4.8\Scripting) and open
20simScripting.exe

2. This will open a dialog where you can choose where to extract the 20-sim scripting
files. Change the path to a local working folder of your choice (for example: C:
\Users\yourusername\Documents\20simscripting)

20-sim Scripts extraction

Note: To write/modify scripts, the scripting folder should be accessible and writable by
the user. Do not install the scripting folder on C:\Program Files (x86) or C:\Program
Files.

https://www.python.org/
http://www.scipy.org/
http://www.numpy.org/
http://www.sympy.org
http://matplotlib.org/
http://www.numpy.org/
https://matplotlib.org/
https://www.sympy.org
https://pandas.pydata.org/
http://ipython.org/

16. Scripting Toolbox

178Getting Started with 20-sim 4.8

For the remainder of this chapter, we use the name scripting working folder when we
refer to the folder where you just extracted the 20-sim scripting files.

Contents

Your newly created scripting working folder contains a number of subfolders:

1. Models: This folder contains the 20-sim models and data files that are used for the
example and tutorial scripts .

2. Octave and Octave-patch: These folders contain Octave/Matlab scripting
functionality and documentation (see the Scripting in Octave/Matlab section for more
information)

3. Python: This folder contains all Python scripting functionality and documentation:

a. controllab: Folder containing the Python classes that allow communication with
20-sim.

b. documentation: This folder contains the scripting API documentation: a list of
supported functions and their syntax. It is a copy of the help file that you can
open in the 20-sim Editor by selecting Help - Python Scripting API.

c. examples: This folder contains some more advanced scripts.

d. tutorials: This folder contains basis scripts with a step by step explanation. You
can use these scripts as a base for your own scripts.

Basic Script

When the scripting files are properly installed in your scripting working folder, we can
run some tutorial scripts. Tutorial scripts are step by step demonstrations of usage of the
scripting functionality in 20-sim. These scripts can be found in the tutorials subfolder of
the scripting working folder. We will start with a basic script that opens and runs a 20-
sim model.

1. Open 20-sim.

2. Open IPython (Interactive Python shell) from the Start menu (under 20-sim 4.8).

3. In IPython, change the local working directory to the tutorial folder inside your
scripting working folder . E.g . type:

cd 'C:\Users\yourusername\Documents\20simscripting\Python'

16. Scripting Toolbox

179Getting Started with 20-sim 4.8

4. In IPython, execute the following command (e.g. type the following case
sensitive command followed by ENTER):

run main_menu

Note that the run command is specific for IPython. For a standard Python session, you

can start this script on the command line using: python.exe menu.py. This command

will show a menu with several options including T for Tutorials.

IPython session for the tutorials

5. Select option T - Tutorials (press t, ENTER) to show the tutorial menu:

 - Tutorial menu -

Select a tutorial:

1 - Run a simulation.

2 - Set a parameter in 20-sim, then run a simulation.

3 - Execute multiple runs with a changing parameter.

4 - Basic simulation result analysis.

5 - Read a parameter from a CSV file and set it in 20-sim.

6 - Retrieve 20-sim model variables and their properties.

Or choose a menu option:

 Q - Quit

 I - Show the introduction text again.

Your choice > 1

6. Press ENTER again to show the available tutorials and choose option 1 Run a
simulation followed by ENTER.

In this tutorial the scripting interface will:

 - Open a 20-sim model (starting 20-sim if necessary)

 - Process and run the model

 - Close the 20-sim model

7. Press ENTER

The Python scripting interface will now connect to 20-sim.

If 20-sim is not running it will be started automatically.

8. Press ENTER

16. Scripting Toolbox

180Getting Started with 20-sim 4.8

Connecting, please wait...

The scripting interface has successfully connected to 20-sim.

The tutorial model will be opened.

If you still have an open model. SAVE YOUR MODEL, unsaved changes

will be overwritten.

9. Press ENTER

The model ControlledSystem.emx has been opened in 20-sim.

The model will be processed and simulated.

The 20-sim plot window will open.

10. Press ENTER to load the model ControlledSystem.emx in 20-sim and to simulate it.

The tutorial will now close the 20-sim model and exit.

11. Press ENTER to close the simulation and this 20-sim model

Inspecting the script

Tutorial completed!

Do you want to see the source code? [y/N]

To see how the script is made, you can inspect it by choosing y. This will print the
relevant script lines on the Python console. You can also open the real script in a text
editor like Notepad by opening the file: C:\Users\yourusername\Documents

\20simscripting\Python\tutorials\run_simulation.py.

Important Functions

The important functions / lines of the runSimulation script are:

import controllab: Tell Python to load the Controllab package with the 20-sim
scripting functions in the XXSim() class.

my20sim = controllab.XXSim(): create a 20-sim scripting object

my20sim.connect(): This command opens a connection to 20-sim.

my20sim.set_scriptmode(): Tell 20-sim that we are in scripting mode (does not
show confirmation dialogs)

my20sim.open_model(): This command opens a model in 20-sim by giving the file
name including the full path.

my20sim.process_model(): This command will process the model.

my20sim.run(): This command will run a simulation.

my20sim.close_model(): This command will remove the simulation model from
20-sim.

These functions are the basis of scripting in 20-sim and will be present in this order in
most scripts.

16. Scripting Toolbox

181Getting Started with 20-sim 4.8

Writing your own Scripts

Example

We will show you how to write your own scripts using a simple example. We assume that
you have installed a scripting folder and its location is:

'C:\Users\yourusername\Documents\20simscripting'

Of course you can use own location. We will copy a 20-sim model to the scripting folder
and write a script that will open this model in 20-sim and run a simulation.

1. Copy the example model FastManipulator.emx to the Python\tutorials folder.

E.g copy:

'C:\Program Files (x86)\20-sim 4.8\Models\Examples\Drivetrains

\FastManipulator.emx'

to

'C:\Users\yourusername\Documents\20simscripting\Python\tutorials

\FastManipulator.emx'

2. Open a text editor (e.g. notepad) and enter the following lines:

import controllab

xxsim = controllab.XXSim()

xxsim.connect()

xxsim.open_model('FastManipulator.emx')

xxsim.process_model()

xxsim.run()

xxsim.disconnect()

3. Save the text file as:

'C:\Users\yourusername\Documents\20simscripting\Python\tutorials

\myscript.py'

4. Open 20-sim.

5. Open IPython.

6. In IPython, change the local working directory. Type in the command line:

cd 'C:\Users\yourusername\Documents\20simscripting\Python\tutorials'

7. In IPython, run your own script. Type in the command line:

16. Scripting Toolbox

182Getting Started with 20-sim 4.8

run myscript

Now you will see the model being loaded in 20-sim and a simulation being run.

Writing your own scripts

In the tutorial folder there are more scripts. Use these as a template for writing your
own scripts and follow the guidelines below:

Location

Create your own subfolder inside your scripting working folder. This allows you to
update the 20-sim scripting files when new versions of 20-sim are released.

Functions

You can find help on scripting functions in the 20-sim Editor by selecting Help - Python
Scripting API.

Advanced Functionality

Python Distributions

When you need more functionality or prefer to use an IDE with syntax highlighting and
debugging support, it is strongly advised to install one of the following external Python
distributions or IDEs:

Anaconda: The World's Most Popular Python/R Data Science Platform.

Spyder: the Scientific PYthon Development EnviRonment with a powerful IDE for the
Python language with advanced editing, interactive testing, debugging and
introspection features and a a numerical computing environment based on SciPy,
NumPy, Matplotlib and IPython.

Python, extended with the Visual Studio IDE and Python Tools for Visual Studio.

Running 20-sim scripts in Python distributions

To add the 20-sim scripting support to your Python distribution, you can use the Python
pip command (installed by default since Python 2.7.10 and 3.4.x) to install the Controllab
package.

1. Open a Windows command prompt (cmd.exe) and type:

cd YOUR_PYTHON_INSTALLATION_DIR\

python -m pip install --no-cache-dir --upgrade "C:\Program Files (x86)\20-sim 4.8\Scripting\Python\whl\controllab-1.3.3-py2.py3-none-any.whl"

Note: use C:\Program Files\20-sim 4.8\ on 32-bit Windows systems.

Manual installation of the Controllab package in Python

https://www.anaconda.com
http://pythonhosted.org/spyder/
http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/
http://ipython.org/
https://www.python.org/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/

17. Unity Toolbox

183Getting Started with 20-sim 4.8

17 Unity Toolbox

17.1 Introduction
Unity is a game engine developed by Unity Technologies that allows you to create high
visual fidelity, 3D real-time interactive user experiences. The Unity Toolbox allows you
to couple animations created in Unity with a 20-sim simulation model. When you run the
20-sim simulation, the Unity application is shown and moves/changes with the
simulation.

Features

The Unity Toolbox will allow you to couple variables from a 20-sim model to objects in
Unity. You can for example couple the position of an object with the simulated position.
Every time you start a 20-sim simulation, a Unity window will be shown and changes/
moves while the 20-sim simulation advances.

The Unity Toolbox does exactly the same as the 20-sim 3D Animation, but is far more
advanced. In Unity far more objects are available, the quality of rendering (shadow,
light , etc.) is far better and there are more display options (single screen, multiple
scree, VR/AR headsets etc.).

License

The Unity Toolbox does not come standard with 20-sim. It has to be purchased
separately. If you have purchased the Unity Toolbox you will receive a license key that
will enable the toolbox in 20-sim.

Example

To see a Unity Animation in action (if you have a valid license) open the example model
Examples\2D Mechanics\ScaraRobot_UnityAnimation.emx.

Getting Started

To get started and learn to work with the Unity Toolbox, please have a look at the the
Reference Manual.

License Required

The Unity Toolbox is not part of the set of standard toolboxes of 20-sim. It has to be
purchased separately. When you have purchased the Unity Toolbox, you will receive a
license code for 20-sim that will enable the plug-in to establish a run-time
communication between 20-sim and Unity.

https://unity.com

Index

Getting Started with 20-sim 4.8 184

Index

- 1 -

1-junction 72

- 2 -

20-sim 1, 166, 177, 178, 181

- 3 -

3D Animation Editor 132

3D Animation Properties 133

3D Animation Properties window 133

3D Animation window 133

3D Mechanics 77

3D Mechanics Editor 77

3D Mechanics Toolbox 77

- A -

across 59, 62

Add Port 35

Advanced Scripts 174

Animation 132

Animation Control 139

Animation Toolbox 132

Attributes 46

- B -

Basic Script 172

Block Diagram 46

Block Diagrams 14

Bond Graph 72

Bond Graph Model Demo 72

Bond Graphs 16

Browser 46

B-Spline Networks 145

- C -

Camera Movement 78

Causal Relation 62

Causality Info 62

C-code 162

C-code templates 162

Change the name 51

Check 46

Check Complete Model 26, 35, 46, 51

Check Model 78

Check Submodel 35

Choose 26

closed rectangles 62

connection 78

Connection Mode 35, 46, 78

Connections 46, 59, 67

Contact Modeling 102

Control Toolbox 145

Controller Design Editor 145

Create Bond Graph Model 72

Create Connection dialog 78

Create Iconic Diagram Model 59

current 62

Curve Fitting 164

Custom Libraries 13

- D -

Deactivate License 7

Deactivation 7

Debug Mode 19, 22, 26

Demonstration Version 4

Description 62

Diagram 59

Discrete-time models 22

Documentation 175

dragging and dropping 59

- E -

Edit Icon 51

Editor 10, 19, 46

Empty Submodel 35

energy 59

Equation Editor 10, 35

equation mainmodel 24

Equation Model Demo 26

Equation Models 26

equation submodel 24

equations 62

Events 22

Index

Getting Started with 20-sim 4.8 185

- F -

F1 26

F1 key 62

Fast Fourier Transform 147

Fast Mode 19, 22

FFT 147

File 46

Filter Editor 145

Find tab 10

Floating License 4

Free License 4

Frequency 147

Frequency Domain Toolbox 147

- G -

Getting Started 1

Ghost Mode for Bodies 78

Ghost Mode for Joints 78

Ghost Mode for Sensors / Actuators 78

global reference 62

Go Down 35

Go Down command 51

Go Up 35, 62

graph submodel 51

Graphical Editor 10, 78

Graphical Model 46

grid 133

- H -

Help file 62

Hierarchy 46, 51

high 62

- I -

Icon 46, 51

Icon Editor 10, 35

Icon tab 10, 35

Iconic Diagram Model Demo 67

Iconic Diagram Models 59

Iconic Diagrams 15

Implementation 35, 46

implementations 59

Implode 51

Initial Values 21

Input 51

Insert 67, 78

Insert menu 46, 51

Inserting Junctions 72

inspect 62

installation 168, 177

Interface 35

Interface Editor 10, 35

Interface tab 10, 35

intermediate points 46

Internal Description 62

introduction 166

inward oriented 62

ipython 177

- K -

Knot 46, 67

- L -

library 10, 13, 46

Library Browser 10, 13

Library tab 10, 24, 78

License 5

Linear System Editor 147

Linearization 147

look at position 139

low 62

- M -

Main Model 26

mainmodel 24

matlab 166, 171

matplotlib 177

mechanical system 67

Mechatronics Toolbox 151

Menu Scripting 167

Messages tab: 78

minus 46

Model Browser 10

model library 13, 46

Index

Getting Started with 20-sim 4.8 186

Model menu 51, 62

Model tab 10, 24, 78

Monte-Carlo Analysis 164

movements 78

Multi-Layer Perceptron Networks 145

- N -

Neural Network Editors 145

New 46

New Simulation Plot 152

Node 67

Notation 3

Numerical Values 139

numpy 177

- O -

Object Properties 78, 133

Object Representation 78

octave 166, 168

octaveforge 168

OneJunction 72

Open rectangles 62

Orientation 62, 67

Orientation Info 62

Output 51

Output tab 10

outward oriented 62

- P -

Parameter Optimization 164

Parameter Sweeps 164

Parameters 21, 26

Plot 26

Plot Properties 26

Plot Windows 22

Plots 22

plus 46

PlusMinus 46

Port 51

Prepare Scripting Folder 171

Process tab 10

Professional 4

Properties 26

python 166, 177, 178, 181

- R -

Real Time Toolbox 162

rectangles 62

Reference 62

Registration/Update License 5

Rename 35, 46

Replay Animation 139

Request License 5

Rotate Left 67

Rotation Mode 78

Run 26

run tasks 166

- S -

Save 26, 46

Save as 26, 46

Save Submodel 51

Scara Robot 90

scipy 177

scripting 166, 167, 171, 177, 178, 181

scripting configuration 167

Scripting Examples 167

Scripting Menu 167

selection mode 35, 46

Sensitivity Analysis 164

Separate X-Axis 152

Servo Motor Editor 151

Show Name 67

Show Terminals 59, 67

Show Variables 62

signal additions 46

Simulation 26

Simulation Algorithms 22

Simulator 10, 22

Single License 4, 5

Splitters 46

Standard 4

Start Simulator 26

Submodels 24, 46

Index

Getting Started with 20-sim 4.8 187

sympy 177

- T -

terminals 51, 59, 62

text mode 51

through 59, 62

Time Domain Toolbox 164

Title 26

Toolboxes 23

top reference frame 133

Translation Mode 78

Type 46

- U -

Unattended Installation 7, 8

Uninstalling 7

Unity 183

Unity Toolbox 183

- V -

values 62

Variables 21

Variation Analysis 164

View menu 62

Viewer 4

voltage 62

- W -

Welcome 1

What is 20-sim 9

Writing your own Scripts 175

- X -

XML-RPC 167

- Y -

Y-axis 26

	Welcome
	Notation
	Installation
	Versions
	Installing 20-sim
	Uninstalling
	Deactivation
	Unattended Installation
	Unattended Uninstallation

	Introduction
	What is 20-sim
	20-sim: a quick tour
	Library
	Block Diagrams
	Iconic Diagrams
	Bond Graphs
	Editor
	Variables, Parameters and Initial Values
	Simulator
	Toolboxes

	Equation Models
	Introduction
	Equation Mainmodel
	Equation Submodel

	Block Diagrams
	Block Diagram Mainmodel
	Block Diagram Submodel

	Iconic Diagrams
	Iconic Diagram (Electric)
	View Menu
	Iconic Diagram (Mechanical)

	Bond Graphs
	Bond Graph Model

	3D Mechanics Toolbox
	3D Mechanics Toolbox
	Double Pendulum
	Scara Robot
	Contact Modeling

	Animation Toolbox
	Animation Toolbox
	3D Animation Basics
	Planetary System

	Control Toolbox
	Control Toolbox

	Frequency Domain Toolbox
	Frequency Domain Toolbox

	Mechatronics Toolbox
	Mechatronics Toolbox
	Servo Motor Editor

	Real Time Toolbox
	Real Time Toolbox

	Time Domain Toolbox
	Time Domain Toolbox

	Scripting Toolbox
	Introduction
	Installation for Scripting: 20-sim
	Scripting Menu
	Scripting in Octave/Matlab
	Installation for Scripting: Octave
	Installation for Scripting: Matlab
	Prepare Scripting Folder
	Basic Script
	Advanced Scripts
	Writing your own Scripts

	Scripting in Python
	Installation for Scripting: Python
	Prepare Scripting Folder
	Basic Script
	Writing your own Scripts
	Advanced Functionality

	Unity Toolbox
	Introduction

